JP2013192417A - Motor core and method of manufacturing the same - Google Patents

Motor core and method of manufacturing the same Download PDF

Info

Publication number
JP2013192417A
JP2013192417A JP2012058432A JP2012058432A JP2013192417A JP 2013192417 A JP2013192417 A JP 2013192417A JP 2012058432 A JP2012058432 A JP 2012058432A JP 2012058432 A JP2012058432 A JP 2012058432A JP 2013192417 A JP2013192417 A JP 2013192417A
Authority
JP
Japan
Prior art keywords
mass
less
core
relief annealing
strain relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058432A
Other languages
Japanese (ja)
Other versions
JP6270305B2 (en
Inventor
Yoshiaki Zaizen
善彰 財前
Yoshihiko Oda
善彦 尾田
Hiroaki Toda
広朗 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012058432A priority Critical patent/JP6270305B2/en
Publication of JP2013192417A publication Critical patent/JP2013192417A/en
Application granted granted Critical
Publication of JP6270305B2 publication Critical patent/JP6270305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a motor core which still has a good magnetic property with small hysteresis loss even after stress relief annealing; and a favorable manufacturing method thereof.SOLUTION: The method of manufacturing a motor core comprises: processing a non-oriented electromagnetic steel sheet into core-shaped materials, provided that the steel sheet includes 0.005 mass% of C, no more than 4 mass% of Si, 0.05-3 mass% of Mn, no more than 3 mass% of Al, no more than 0.005 mass% of N, no more than 0.2 mass% of P, no more than 0.005 mass% of S, and no more than 0.0010 mass% of Se with the balance consisting of Fe and inevitable impurities; putting the core-shaped materials together; and then performing a stress relief annealing on the core-shaped materials thus assembled. The non-oriented electromagnetic steel sheet has a crystal grain diameter of 70 μm or smaller. In manufacturing the core, the stress relief annealing is performed so that a processed portion deformed plastically has a crystal grain diameter of 100 μm or larger, and a dislocation density of 1×10mor less.

Description

本発明は、モータコアとその製造方法に関し、具体的にはヒステリシス損が小さく優れた磁気特性を有するモータコアとその製造方法に関するものである。   The present invention relates to a motor core and a manufacturing method thereof, and more particularly to a motor core having a small hysteresis loss and excellent magnetic characteristics, and a manufacturing method thereof.

近年、自動車の操舵系には、モータで操舵を補助する電動パワーステアリング(EPS)システムが採用されている。このようなEPSシステムに用いられるモータは、小型・高トルクが求められることから、永久磁石を使用するPMモータ(Permanent Magnet Motor)が主に用いられている。しかし、PMモータでは、操舵後、比較的大きなロストルクが生じることから、旋回した後、直進状態になるまでに時間遅れが発生し、操舵感が劣るという問題があった。   2. Description of the Related Art In recent years, an electric power steering (EPS) system that assists steering with a motor has been adopted for a steering system of an automobile. Since a motor used in such an EPS system is required to have a small size and high torque, a PM motor (Permanent Magnet Motor) using a permanent magnet is mainly used. However, since a relatively large loss torque is generated after steering in the PM motor, there is a problem that a time delay occurs until the vehicle goes straight after turning, resulting in poor steering feeling.

このロストルクを低減するためには、ヒステリシス損の小さな電磁鋼板を使用すればよいことが明らかになっている。そこで、EPSモータ用のコアとして、特許文献1には、最大磁束密度1.5Tまで磁化した場合における周波数1Hz当たりのヒステリシス損が0.10J/kg以下である鋼板を用いた電動パワーステアリングモータコアが開示されている。   In order to reduce this loss torque, it has become clear that an electrical steel sheet having a small hysteresis loss may be used. Therefore, as a core for an EPS motor, Patent Document 1 discloses an electric power steering motor core using a steel plate having a hysteresis loss per frequency of 1 Hz when magnetized up to a maximum magnetic flux density of 1.5 T and having a hysteresis loss of 0.10 J / kg or less. It is disclosed.

特許第4165848号Japanese Patent No. 4165848

ところで、EPSモータ用コアは、製造する際の打抜加工やカシメ、曲げ加工などの塑性変形で導入された歪を解放するため、歪取焼鈍が施されることが多い。この歪取焼鈍が施される場合には、当然、歪取焼鈍後においてもヒステリシス損が小さいことが必要となる。
しかしながら、特許文献1のモータコアは、カシメなどの加工時に導入された歪を解放するために行なわれる歪取焼鈍後の特性については何ら考慮されていないため、磁気特性に劣るという問題があり、さらなる特性の向上が望まれている。
By the way, the EPS motor core is often subjected to strain relief annealing in order to release strain introduced by plastic deformation such as punching, caulking, and bending during manufacturing. When this strain relief annealing is performed, it is naturally necessary that the hysteresis loss is small even after the strain relief annealing.
However, the motor core of Patent Document 1 has a problem that it is inferior in magnetic characteristics because no consideration is given to the characteristics after strain relief annealing performed to release the strain introduced during processing such as caulking. Improvement of characteristics is desired.

本発明は、従来技術における上記問題点に鑑みてなされたものであり、その目的は、コア作製時における打抜加工やカシメなどの塑性変形を伴う加工が施されるモータコアにおいて、歪取焼鈍後においてもヒステリシス損が小さい、優れた磁気特性を有するモータコアを提供すると共に、その有利な製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems in the prior art, and the purpose of the present invention is in a motor core that is subjected to punching or plastic deformation such as caulking at the time of core fabrication, after strain relief annealing. In addition to providing a motor core having a small hysteresis loss and excellent magnetic characteristics, an advantageous manufacturing method thereof is proposed.

発明者らは、打抜加工やカシメなどの塑性変形が施されるモータコアに用いられる無方向性電磁鋼板において、歪取焼鈍後の磁気特性を向上させる方法について鋭意検討を行った。その結果、Seの含有量を低減し、歪取焼鈍後のコア加工部における結晶粒径および転位密度を特定の範囲内に制御することにより、歪取焼鈍後においても、ヒステリシス損が小さく、優れた磁気特性を有するモータコアを得ることができることを知見した。   The inventors diligently studied a method for improving magnetic properties after strain relief annealing in a non-oriented electrical steel sheet used for a motor core subjected to plastic deformation such as punching and caulking. As a result, by reducing the Se content and controlling the crystal grain size and dislocation density in the core processed part after strain relief annealing within a specific range, hysteresis loss is small and excellent even after strain relief annealing. It was found that a motor core having magnetic characteristics can be obtained.

上記知見に基く本発明は、C:0.005mass%、Si:4mass%以下、Mn:0.05〜3mass%、Al:3mass%以下、N:0.005mass%以下、P:0.2mass%以下、S:0.005mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避的不純物からなる無方向性電磁鋼板を積層してなるモータコアにおいて、コア製造時に塑性変形を受けた加工部における歪取焼鈍後の結晶粒径が100μm以上で、転位密度が1×1013−2以下であることを特徴とするモータコアである。 The present invention based on the above knowledge, C: 0.005 mass%, Si: 4 mass% or less, Mn: 0.05 to 3 mass%, Al: 3 mass% or less, N: 0.005 mass% or less, P: 0.2 mass% Hereinafter, in a motor core formed by laminating non-oriented electrical steel sheets containing S: 0.005 mass% or less and Se: 0.0010 mass% or less, and the balance being Fe and inevitable impurities, the core undergoes plastic deformation at the time of core production. In the motor core, the crystal grain size after strain relief annealing in the processed part is 100 μm or more and the dislocation density is 1 × 10 13 m −2 or less.

本発明のモータコアにおける無方向性電磁鋼板は、前記成分組成に加えてさらに、Sn:0.003〜0.5mass%、Sb:0.003〜0.5mass%およびCa:0.0010〜0.005mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In the non-oriented electrical steel sheet in the motor core of the present invention, Sn: 0.003-0.5 mass%, Sb: 0.003-0.5 mass%, and Ca: 0.0010-0. 1 type or 2 types or more chosen from 005 mass% are contained.

また、本発明は、C:0.005mass%、Si:4mass%以下、Mn:0.05〜3mass%、Al:3mass%以下、N:0.005mass%以下、P:0.2mass%以下、S:0.005mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避不純物からなる無方向性電磁鋼板をコア形状に加工した後、積層し、歪取焼鈍してモータコアを製造する方法において、前記無方向性電磁鋼板として結晶粒径が70μm以下のものを用いると共に、前記コア製造時に塑性変形を受けた加工部の結晶粒径が100μm以上、かつ、転位密度が1×1013−2以下となる条件で歪取焼鈍を施すことを特徴とする磁気特性に優れたモータコアの製造方法を提案する。 Further, the present invention includes C: 0.005 mass%, Si: 4 mass% or less, Mn: 0.05 to 3 mass%, Al: 3 mass% or less, N: 0.005 mass% or less, P: 0.2 mass% or less, A non-oriented electrical steel sheet containing S: 0.005 mass% or less and Se: 0.0010 mass% or less, the balance being Fe and unavoidable impurities is processed into a core shape, and then laminated and strain relief annealed to obtain a motor core. In the manufacturing method, the non-oriented electrical steel sheet having a crystal grain size of 70 μm or less is used, the crystal grain size of the processed part subjected to plastic deformation during the core manufacturing is 100 μm or more, and the dislocation density is 1 ×. A method of manufacturing a motor core having excellent magnetic properties, characterized by performing strain relief annealing under conditions of 10 13 m −2 or less.

本発明のモータコアの製造方法に用いる前記無方向性電磁鋼板は、前記成分組成に加えてさらに、Sn:0.003〜0.5mass%、Sb:0.003〜0.5mass%およびCa:0.0010〜0.005mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the component composition, the non-oriented electrical steel sheet used in the method for manufacturing a motor core of the present invention further includes Sn: 0.003-0.5 mass%, Sb: 0.003-0.5 mass%, and Ca: 0. One or two or more selected from .0010 to 0.005 mass% are contained.

本発明によれば、歪取焼鈍後の磁気特性(ヒステリシス損)に優れるモータコアを提供することができるので、電動パワーステアリングシステムの操舵性を大きく改善することが可能となる。   According to the present invention, a motor core having excellent magnetic characteristics (hysteresis loss) after strain relief annealing can be provided, so that the steering performance of the electric power steering system can be greatly improved.

モータコアのカシメ部を説明する断面図である。It is sectional drawing explaining the crimping part of a motor core. 歪取焼鈍前の結晶粒径が歪取焼鈍後のモータコアのヒステリシス損に及ぼす影響を示すグラフである。It is a graph which shows the influence which the crystal grain diameter before stress relief annealing has on the hysteresis loss of the motor core after stress relief annealing. 歪取焼鈍前の結晶粒径が歪取焼鈍後のカシメ加工部の転位密度に及ぼす影響を示すグラフである。It is a graph which shows the influence which the crystal grain diameter before strain relief annealing has on the dislocation density of the crimping process part after strain relief annealing. 歪取焼鈍前の結晶粒径が歪取焼鈍後のカシメ加工部の結晶粒径に及ぼす影響を示すグラフである。It is a graph which shows the influence which the crystal grain size before strain relief annealing has on the crystal grain size of the caulking processed part after strain relief annealing. Se含有量が歪取焼鈍後のモータコアのヒステリシス損に及ぼす影響を示すグラフである。It is a graph which shows the influence which Se content has on the hysteresis loss of the motor core after strain relief annealing. Se含有量が歪取焼鈍後のカシメ加工部の結晶粒径に及ぼす影響を示すグラフである。It is a graph which shows the influence which Se content has on the crystal grain diameter of the crimping process part after strain relief annealing. Se含有量が歪取焼鈍後のカシメ加工部の転位密度に及ぼす影響を示すグラフである。It is a graph which shows the influence which Se content has on the dislocation density of the crimping process part after strain relief annealing. 歪取焼鈍後のカシメ加工部の転位密度とモータコアのヒステリシス損の関係を示すグラフである。It is a graph which shows the relationship between the dislocation density of the crimping process part after strain relief annealing, and the hysteresis loss of a motor core.

発明者らは、モータコア製造時に塑性変形を受ける電磁鋼板における歪取焼鈍後の磁気特性を向上する方法について検討するため、以下の一連の実験を行った。
まず、歪取焼鈍後の磁気特性に及ぼす歪取焼鈍前の結晶粒径の影響について調査するため、C:0.0025mass%、Si:1.0mass%、Mn:0.5mass%、Al:0.2mass%、N:0.0021mass%、P:0.1mass%、S:0.0022mass%およびSe:0.0003mass%を含有する鋼を実験室にて溶解し、鋼塊とした後、熱間圧延して板厚2.4mmの熱延板とし、冷間圧延して板厚0.50mmの冷延板とし、その後、800〜950℃×10secの仕上焼鈍を施し、半有機の絶縁被膜コーティング液を塗布して無方向性電磁鋼板とした。
The inventors conducted the following series of experiments in order to examine a method for improving the magnetic properties after strain relief annealing in an electromagnetic steel sheet that undergoes plastic deformation during the manufacture of a motor core.
First, C: 0.0025 mass%, Si: 1.0 mass%, Mn: 0.5 mass%, Al: 0 in order to investigate the influence of the crystal grain size before the stress relief annealing on the magnetic properties after the stress relief annealing. .2 mass%, N: 0.0021 mass%, P: 0.1 mass%, S: 0.0022 mass%, and Se: 0.0003 mass% Cold rolled into a hot rolled sheet with a thickness of 2.4 mm, cold rolled into a cold rolled sheet with a thickness of 0.50 mm, and then subjected to finish annealing at 800 to 950 ° C. × 10 sec, a semi-organic insulating coating A coating solution was applied to obtain a non-oriented electrical steel sheet.

斯くして得た無方向性電磁鋼板からサンプルを採取し、歪取焼鈍前の結晶粒径を線分法により求めた。また、この無方向性電磁鋼板をコア形状に打抜加工してコア材とし、このコア材を積層し、その際、バックヨーク部に、図1に示したような台形カシメ(カシメ幅:1mm、長さ:3mm、カシメ深さ:0.5mm)を8点形成して固定し、出力300W、極数8極のEPSモータ用のコアを作製した。その後、750℃×2hrの歪取焼鈍を施した後、モータのバックヨーク部に1次:100ターン、2次:100ターンの巻線を施して、50Hzおよび200Hzにおける鉄損を測定し、2周波法によりヒステリシス損Wh15/50を分離して求めた。 A sample was taken from the non-oriented electrical steel sheet thus obtained, and the crystal grain size before strain relief annealing was determined by the line segment method. Further, this non-oriented electrical steel sheet is punched into a core shape to form a core material, and this core material is laminated. At this time, a trapezoidal caulking (caulking width: 1 mm) as shown in FIG. , Length: 3 mm, caulking depth: 0.5 mm) were formed and fixed, and a core for an EPS motor having an output of 300 W and a pole number of 8 was produced. Then, after applying 750 ° C. × 2 hr stress relief annealing, the motor was subjected to primary: 100 turns, secondary: 100 turns, and the iron loss at 50 Hz and 200 Hz was measured. The hysteresis loss Wh 15/50 was determined separately by the frequency method.

図2は、上記測定結果を示したものであり、歪取焼鈍前の結晶粒径が70μm以下でヒステリシス損が減少し、良好な磁気特性が得られていることがわかる。
そこで、この原因を究明するため、歪取焼鈍後のモータコアのカシメ加工部からサンプルを切り出し、組織観察および転位密度測定を行った。ここで、モータコアのカシメ加工部とは、カシメの中心から5mmの領域とした(図1参照)。なお、結晶粒径は、断面組織から線分法にて求め、転位密度は透過型電子顕微鏡により測定を行った。
FIG. 2 shows the measurement results. It can be seen that when the crystal grain size before strain relief annealing is 70 μm or less, the hysteresis loss is reduced and good magnetic properties are obtained.
Therefore, in order to investigate the cause, a sample was cut out from the crimped portion of the motor core after strain relief annealing, and the structure was observed and the dislocation density was measured. Here, the caulking portion of the motor core is an area 5 mm from the center of the caulking (see FIG. 1). The crystal grain size was determined from the cross-sectional structure by the line segment method, and the dislocation density was measured with a transmission electron microscope.

図3は、歪取焼鈍前の結晶粒径が歪取焼鈍後のカシメ加工部の転位密度に及ぼす影響を示したものであり、歪取焼鈍前の結晶粒径が70μmを超える領域では、転位密度が高くなっており、加工歪が残存していること、一方、歪取焼鈍前の結晶粒径が70μm以下の材料では、転位密度が低くなっており、加工歪が歪取焼鈍で十分に解放されていることがわかる。   FIG. 3 shows the effect of the crystal grain size before strain relief annealing on the dislocation density of the crimped part after strain relief annealing. In the region where the crystal grain size before strain relief annealing exceeds 70 μm, The density is high and the working strain remains. On the other hand, the dislocation density is low in the material having a crystal grain size of 70 μm or less before the strain relief annealing, and the strain is sufficiently high by the strain relief annealing. You can see that they are released.

また、図4は、歪取焼鈍前の結晶粒径と歪取焼鈍後の結晶粒径との対応関係を示したものであり、歪取焼鈍前の結晶粒径が70μm以下の材料は、歪取焼鈍後に結晶粒径が粗大化していることがわかる。これは、歪取焼鈍前の結晶粒径が小さい材料は、粒界頻度が高くて粒界エネルギーが高いため、歪取焼鈍時に粒成長が促進され、歪のない結晶粒に置き換わり易くなる。その結果、加工歪が解放されて、コアの磁気特性が改善されたものと考えられる。以上の結果から、EPSモータコアに用いる鋼板は、歪取焼鈍前の結晶粒径は70μm以下とする必要があることがわかる。   FIG. 4 shows the correspondence between the crystal grain size before strain relief annealing and the crystal grain size after strain relief annealing. A material having a crystal grain size before strain relief annealing of 70 μm or less is strained. It can be seen that the crystal grain size is coarsened after the annealing. This is because a material having a small crystal grain size before strain relief annealing has a high grain boundary frequency and a high grain boundary energy, so that grain growth is promoted during strain relief annealing and is easily replaced with crystal grains without strain. As a result, it is considered that the processing strain is released and the magnetic properties of the core are improved. From the above results, it can be seen that the steel plate used for the EPS motor core needs to have a crystal grain size of 70 μm or less before strain relief annealing.

次いで、発明者らは、上記知見に基いて、上記実験と類似した成分組成の鋼を、転炉等を用いて数チャージ出鋼して無方向性電磁鋼板を製造し、その鋼板から上記と同様の要領でモータコアを作製し、歪取焼鈍を施した後、モータコアの磁気特性を評価したところ、大きなバラつきが認められた。そこで、この原因を調査するため、磁気特性の良好なコアと劣位なコアについて比較調査したところ、磁気特性の劣位なコアでは、粒界にMnSeが多く析出しており、歪取焼鈍後の粒径も小さくなっていることが明らかになった。   Next, based on the above knowledge, the inventors manufactured a non-oriented electrical steel sheet by using a converter or the like to produce a non-oriented electrical steel sheet by using a converter or the like to produce a non-oriented electrical steel sheet. When the motor core was manufactured in the same manner and subjected to strain relief annealing, the magnetic characteristics of the motor core were evaluated. Therefore, in order to investigate this cause, a comparative investigation was conducted on a core having a good magnetic property and an inferior core. In the inferior core having a magnetic property, a large amount of MnSe was precipitated at the grain boundaries, and the grains after strain relief annealing were observed. It became clear that the diameter was getting smaller.

そこで、歪取焼鈍時の粒成長性に及ぼすSe含有量の影響について調査するため、C:0.0030mass%、Si:1.5mass%、Mn:0.7mass%、Al:0.3mass%、N:0.0025mass%、P:0.05mass%、S:0.0020mass%を含有し、Seの含有量をTr.〜0.0050mass%の範囲で種々に変化させた鋼を実験室にて溶解し、鋼塊とした後、熱間圧延して板厚2.5mmの熱延板とし、冷間圧延して板厚0.35mmの冷延板とし、その後、850℃×10secの仕上焼鈍を施し、半有機の絶縁被膜コーティング液を塗布して無方向性電磁鋼板とした。   Therefore, in order to investigate the influence of Se content on the grain growth property during strain relief annealing, C: 0.0030 mass%, Si: 1.5 mass%, Mn: 0.7 mass%, Al: 0.3 mass%, N: 0.0025 mass%, P: 0.05 mass%, S: 0.0020 mass%, and the content of Se is Tr. Steels varied in a range of up to 0.0050 mass% were melted in the laboratory to form a steel ingot, then hot rolled to a hot-rolled sheet with a thickness of 2.5 mm, and then cold-rolled to plate A cold-rolled sheet having a thickness of 0.35 mm was obtained, and then finish annealing at 850 ° C. × 10 sec was performed, and a semi-organic insulating coating liquid was applied to obtain a non-oriented electrical steel sheet.

斯くして得た無方向性電磁鋼板からサンプルを切り出し、歪取焼鈍前の結晶粒径を線分法により求めた。また、この無方向性電磁鋼板をコア形状に打抜加工してコア材とし、このコア材を積層し、その際、バックヨーク部に、図1に示したような台形カシメ(カシメ幅:1mm、長さ:3mm、カシメ深さ:0.3mm)を8点形成して固定し、出力300W、極数8極のEPSモータ用のコアを作製した。その後、750℃×2hrの歪取焼鈍を施した後、モータのバックヨーク部に1次:100ターン、2次:100ターンの巻線を施して、50Hzおよび200Hzにおける鉄損を測定し、2周波法によりヒステリシス損Wh15/50を分離して求めた。また、歪取焼鈍後のコアのカシメ加工部(図1参照)からサンプルを切り出して、結晶粒径を線分法にて求め、さらに透過型電子顕微鏡にて転位密度を測定した。 A sample was cut out from the non-oriented electrical steel sheet thus obtained, and the crystal grain size before strain relief annealing was determined by a line segment method. Further, this non-oriented electrical steel sheet is punched into a core shape to form a core material, and this core material is laminated. At this time, a trapezoidal caulking (caulking width: 1 mm) as shown in FIG. , Length: 3 mm, caulking depth: 0.3 mm) were formed and fixed, and a core for an EPS motor having an output of 300 W and a pole number of 8 was produced. Then, after applying 750 ° C. × 2 hr stress relief annealing, the motor was subjected to primary: 100 turns, secondary: 100 turns, and the iron loss at 50 Hz and 200 Hz was measured. The hysteresis loss Wh 15/50 was determined separately by the frequency method. Further, a sample was cut out from the crimped portion (see FIG. 1) of the core after strain relief annealing, the crystal grain size was determined by the line segment method, and the dislocation density was measured with a transmission electron microscope.

図5は、Se含有量と歪取焼鈍後のヒステリシス損Wh15/50との関係を示したものであり、Se含有量が0.0010mass%(10massppm)以下の範囲で良好な特性が得られていることがわかる。また、図6は、Se含有量と歪取焼鈍後のカシメ加工部の結晶粒径との関係を示したものであり、Se含有量が0.0010mass%以下の範囲で歪取焼鈍後の結晶粒径が粗大化していることがわかる。さらに、図7は、Se含有量と歪取焼鈍後のカシメ加工部の転位密度との関係を示すものであり、Se含有量が0.0010mass%以下の範囲で転位密度が低くなっていることがわかる。 FIG. 5 shows the relationship between the Se content and the hysteresis loss Wh 15/50 after strain relief annealing, and good characteristics are obtained when the Se content is 0.0010 mass% (10 massppm) or less. You can see that FIG. 6 shows the relationship between the Se content and the crystal grain size of the crimped portion after strain relief annealing, and the crystal after strain relief annealing in the range where the Se content is 0.0010 mass% or less. It can be seen that the particle size is coarsened. Furthermore, FIG. 7 shows the relationship between the Se content and the dislocation density of the crimped part after strain relief annealing, and the dislocation density is low in the range where the Se content is 0.0010 mass% or less. I understand.

これらの結果はいずれも、Seが増加したことにより、粒界に析出するMnSeが増加し、歪取焼鈍時の粒成長が阻害されて、歪のない結晶粒に置き換わられなくなり、カシメ加工部の転位密度が高いままとなり、ヒステリシス損が増加したためであると推察された。以上の結果から、モータコアに用いる無方向性電磁鋼板のSe含有量は0.0010mass%以下とする必要があることがわかる。   All of these results show that the increase in Se increases the amount of MnSe precipitated at the grain boundaries, hinders the grain growth during strain relief annealing, and does not replace the crystal grains without strain. It was inferred that the dislocation density remained high and the hysteresis loss increased. From the above results, it can be seen that the Se content of the non-oriented electrical steel sheet used for the motor core needs to be 0.0010 mass% or less.

次に、磁気特性に及ぼす歪取焼鈍後の転位密度の影響について調査するため、C:0.0020mass%、Si:1.2mass%、Mn:0.5mass%、Al:0.3mass%、N:0.0022mass%、P:0.07mass%、S:0.0023mass%およびSe:0.0002mass%を含有した鋼を実験室にて溶解して鋼塊とし、熱間圧延して板厚2.5mmの熱延板とし、冷間圧延して板厚0.50mmの冷延板とし、その後、820℃×10secの仕上焼鈍を施し、半有機の絶縁被膜コーティング液を塗布して無方向性電磁鋼板とした。   Next, in order to investigate the influence of dislocation density after strain relief annealing on the magnetic properties, C: 0.0020 mass%, Si: 1.2 mass%, Mn: 0.5 mass%, Al: 0.3 mass%, N : Steel containing 0.0022 mass%, P: 0.07 mass%, S: 0.0023 mass% and Se: 0.0002 mass% were melted in a laboratory to form a steel ingot, and hot-rolled to obtain a plate thickness of 2 .5mm hot-rolled sheet, cold-rolled to a cold-rolled sheet with a thickness of 0.50mm, and then subjected to finish annealing at 820 ° C for 10 seconds, and a semi-organic insulating coating solution is applied to make it non-directional An electrical steel sheet was used.

斯くして得た無方向性電磁鋼板からサンプルを切り出して、結晶粒径を線分法により求めたところ、35μmであった。また、この無方向性電磁鋼板をコア形状に打抜加工してコア材とし、このコア材を積層し、その際、バックヨーク部に、図1に示したような台形カシメ(カシメ幅:1mm、長さ:3mm、カシメ深さ:0.5mm)を8点形成して固定し、出力300W、極数8極のEPSモータ用のコアを作製し、その後、焼鈍条件を750℃×10〜300minの範囲で変化させて歪取焼鈍を施した後、上記実験と同様にしてモータコアのヒステリシス損Wh15/50を求めた。 A sample was cut out from the non-oriented electrical steel sheet thus obtained, and the crystal grain size was determined by the line segment method. Further, this non-oriented electrical steel sheet is punched into a core shape to form a core material, and this core material is laminated. At this time, a trapezoidal caulking (caulking width: 1 mm) as shown in FIG. , Length: 3 mm, caulking depth: 0.5 mm) are formed and fixed to produce an EPS motor core with an output of 300 W and a pole number of 8 poles. After performing strain relief annealing in a range of 300 min, the hysteresis loss Wh 15/50 of the motor core was determined in the same manner as in the above experiment.

その結果を図8に示した。この図から、歪取焼鈍後の転位密度が1×1013−2以下の範囲において良好な磁気特性が得られることがわかる。これは、転位密度が1×1013−2を超えると、加工歪が残存した状態となり、磁化され難くなり、ヒステリシス損が増大する結果、磁気特性が低下するためである。上記の結果から、歪取焼鈍後のモータコアの転位密度は1×1013−2以下と規定する。
本発明は、上記実験結果に基いて開発したものである。
The results are shown in FIG. From this figure, it can be seen that good magnetic properties are obtained when the dislocation density after strain relief annealing is in the range of 1 × 10 13 m −2 or less. This is because when the dislocation density exceeds 1 × 10 13 m −2 , the processing strain remains, it becomes difficult to be magnetized, and hysteresis loss increases, resulting in deterioration of magnetic characteristics. From the above results, the dislocation density of the motor core after strain relief annealing is defined as 1 × 10 13 m −2 or less.
The present invention has been developed based on the above experimental results.

次に、本発明のモータコアに用いる無方向性電磁鋼板の成分組成について説明する。
C:0.005mass%以下
Cは、0.005mass%を超えて含有すると、磁気時効を起こして鉄損を劣化させる。よって、Cは0.005mass%以下とする。
Next, the component composition of the non-oriented electrical steel sheet used for the motor core of the present invention will be described.
C: 0.005 mass% or less When C is contained in excess of 0.005 mass%, magnetic aging occurs and iron loss is deteriorated. Therefore, C is set to 0.005 mass% or less.

Si:4mass%以下
Siは、鋼の固有抵抗を高めて鉄損特性を改善するために添加する元素であり、0.5mass%以上含有させることが好ましい。しかし、4mass%を超える添加は、鋼が硬質化し、圧延して製造することが難しくなる。よって、Siは4mass%以下とする。
Si: 4 mass% or less Si is an element added to increase the specific resistance of steel and improve iron loss characteristics, and is preferably contained in an amount of 0.5 mass% or more. However, addition exceeding 4 mass% makes the steel hard and difficult to roll and manufacture. Therefore, Si is 4 mass% or less.

Mn:0.05〜3mass%
Mnは、鋼の熱間加工性を改善するために必要な元素であるが、0.05mass%未満では上記効果がなく、一方、3mass%を超える添加は、圧延性を阻害したり、原料コストの上昇を招いたりする。よって、Mnは0.05〜3mass%の範囲とする。
Mn: 0.05-3 mass%
Mn is an element necessary for improving the hot workability of steel, but if it is less than 0.05 mass%, the above effect is not obtained. On the other hand, if it exceeds 3 mass%, rollability is hindered or the raw material cost is reduced. Invite to rise. Therefore, Mn is set to a range of 0.05 to 3 mass%.

Al:3mass%以下
Alは、Siと同様、鉄損特性改善のために添加されるが、3mass%を超える添加は、圧延性を阻害するので上限を3mass%とする。
Al: 3 mass% or less Al is added for improving the iron loss characteristics as in the case of Si. However, since addition exceeding 3 mass% inhibits the rollability, the upper limit is set to 3 mass%.

N:0.005mass%以下
Nは、鋼中に不可避的の混入してくる不純物であり、磁気特性を低下させる有害元素であるので、できる限り低減することが望ましい。よって、本発明では、Nは0.005mass%以下に制限する。
N: 0.005 mass% or less N is an impurity that is inevitably mixed in steel, and is a harmful element that deteriorates magnetic properties, so it is desirable to reduce it as much as possible. Therefore, in the present invention, N is limited to 0.005 mass% or less.

P:0.2mass%以下
Pは、固溶強化能が大きい元素であり、0.2mass%を超える添加は、鋼が硬質化して圧延して製造することを難しくする。よって、Pの上限は0.2mass%とする。
P: 0.2 mass% or less P is an element having a large solid solution strengthening ability, and the addition exceeding 0.2 mass% makes it difficult for the steel to be hardened and rolled and manufactured. Therefore, the upper limit of P is 0.2 mass%.

S:0.005mass%以下
Sは、Nと同様、不可避的不純物であり、磁気特性を低下させる有害元素であるので、できる限り低減することが望ましい。よって、本発明では、Sは0.005mass%以下に制限する。
S: 0.005 mass% or less S, like N, is an unavoidable impurity and is a harmful element that degrades magnetic properties, so it is desirable to reduce it as much as possible. Therefore, in the present invention, S is limited to 0.005 mass% or less.

Se:0.0010mass%以下
Seは、上述した実験結果からわかるように、歪取焼鈍後の磁気特性を低下させる有害元素である。よって、本発明では、斯かる弊害を回避する観点から、0.0010mass%以下に制限する。
Se: 0.0010 mass% or less Se is a harmful element that degrades the magnetic properties after strain relief annealing, as can be seen from the experimental results described above. Therefore, in this invention, from a viewpoint of avoiding such a bad effect, it limits to 0.0010 mass% or less.

本発明のモータコアに用いる無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、Sn,SbおよびCaについては、下記の範囲で1種または2種以上を含有することができる。
Sn:0.003〜0.5mass%、Sb:0.003〜0.5mass%
SnおよびSbは、集合組織を改善して磁束密度を向上させるだけでなく、鋼板表層の酸化や窒化およびそれらに伴う表層微細粒の生成を抑制することで、磁気特性の劣化を防止する等種々の好ましい作用効果を有する。かかる効果を発現させるためには、SnおよびSbのいずれか1種以上を0.003mass%以上含有させることが好ましい。一方、上記元素の含有量が0.5mass%を超えると、結晶粒の成長が阻害され、却って磁気特性の劣化を招くおそれがある。よって、SnおよびSbは、それぞれ0.003〜0.5mass%の範囲で添加するのが好ましい。
In the non-oriented electrical steel sheet used for the motor core of the present invention, the balance other than the above components is Fe and inevitable impurities. However, about Sn, Sb, and Ca, 1 type (s) or 2 or more types can be contained in the following range.
Sn: 0.003-0.5 mass%, Sb: 0.003-0.5 mass%
Sn and Sb not only improve the texture and improve the magnetic flux density, but also prevent the deterioration of the magnetic properties by suppressing the oxidation and nitridation of the steel sheet surface layer and the generation of surface layer fine grains accompanying them, etc. It has a preferable effect. In order to express such an effect, it is preferable to contain 0.003 mass% or more of any one of Sn and Sb. On the other hand, if the content of the element exceeds 0.5 mass%, the growth of crystal grains is hindered and the magnetic characteristics may be deteriorated. Therefore, it is preferable to add Sn and Sb in the range of 0.003 to 0.5 mass%, respectively.

Ca:0.0010〜0.005mass%
Caは、Se化合物と複合化して粗大な析出物を形成するため、歪取焼鈍時の粒成長を促進し、鉄損特性を改善する効果がある。このような効果を発現させるためには、0.0010mass%以上添加することが好ましい。一方、0.005mass%を超えて添加すると、CaSの析出量が多くなってSe化合物が巨大化し、却って鉄損特性が劣化するので、上限は0.005mass%とするのが好ましい。
Ca: 0.0010 to 0.005 mass%
Since Ca is compounded with the Se compound to form coarse precipitates, it has the effect of promoting grain growth during strain relief annealing and improving iron loss characteristics. In order to exhibit such an effect, it is preferable to add 0.0010 mass% or more. On the other hand, if added over 0.005 mass%, the amount of precipitated CaS increases, the Se compound becomes enormous, and the iron loss characteristics deteriorate on the contrary, so the upper limit is preferably set to 0.005 mass%.

次に、本発明のモータコアに用いる無方向性電磁鋼板の製造方法について説明する。
本発明に用いる無方向性電磁鋼板は、製造方法について特に制限はないが、例えば、上記成分組成に適合する鋼を転炉や電気炉、真空脱ガス装置などを用いた通常公知の精錬プロセスで溶製し、連続鋳造法あるいは造塊−分塊圧延法で鋼スラブとした後、この鋼スラブを通常公知の方法で熱間圧延し、必要に応じて熱延板焼鈍を施した後、冷間圧延し、仕上焼鈍し、絶縁被膜を被成する従来公知のプロセスで製造するのが好ましい。なお、より好ましい製造条件は、以下のとおりである。
Next, the manufacturing method of the non-oriented electrical steel sheet used for the motor core of this invention is demonstrated.
The non-oriented electrical steel sheet used in the present invention is not particularly limited with respect to the production method. After melting and forming a steel slab by a continuous casting method or ingot-bundling rolling method, this steel slab is hot-rolled by a generally known method and subjected to hot-rolled sheet annealing as necessary, followed by cooling. It is preferable to manufacture by the conventionally well-known process of carrying out hot rolling, finish annealing, and forming an insulating film. The more preferable production conditions are as follows.

熱延板焼鈍
熱延板焼鈍は、本発明においては必須の工程ではないが、磁気特性の向上に有効であるため、適宜採用することができる。熱延板焼鈍を施す場合の焼鈍温度は、通常の750〜1050℃の範囲とするのが好ましい。焼鈍温度が750℃未満では、未再結晶組織が残存する可能性があり、一方、1050℃を超えると、焼鈍設備に多大な負荷がかかるためである。より好ましくは800〜1000℃の温度範囲である。
Hot-rolled sheet annealing Hot-rolled sheet annealing is not an essential step in the present invention, but can be appropriately employed because it is effective in improving magnetic properties. The annealing temperature when hot-rolled sheet annealing is performed is preferably within a range of 750 to 1050 ° C. If the annealing temperature is less than 750 ° C., an unrecrystallized structure may remain. On the other hand, if it exceeds 1050 ° C., a great load is applied to the annealing equipment. More preferably, it is the temperature range of 800-1000 degreeC.

冷間圧延
熱延板を最終板厚とする冷間圧延は、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延のいずれを用いてもよい。また、最終板厚(製品板厚)については、特に制限はないが、通常の無方向性電磁鋼板の板厚である0.1〜0.5mmの範囲が好ましい。また、冷延圧下率も、通常の無方向性電磁鋼板の場合と同様で構わない。
Cold Rolling Cold rolling with a hot-rolled sheet as the final sheet thickness may be either one cold rolling or two or more cold rollings with intermediate annealing interposed therebetween. Moreover, there is no restriction | limiting in particular about final board thickness (product board thickness), However, The range of 0.1-0.5 mm which is the board thickness of a normal non-oriented electrical steel plate is preferable. Further, the cold rolling reduction ratio may be the same as that of a normal non-oriented electrical steel sheet.

仕上焼鈍
最終板厚まで圧延した冷延板は、その後、再結晶させかつその結晶粒径を所望の大きさにする、すなわち、モータコア加工部における歪取焼鈍前の結晶粒径を70μm以下にするための仕上焼鈍を施す。この仕上焼鈍における焼鈍温度は、再結晶粒を粗大化させない観点から750〜900℃の範囲とするのが好ましい。より好ましくは750〜850℃の範囲である。ここで、仕上焼鈍後の結晶粒径を70μm以下に制限する理由は、粒界エネルギーを高めて、歪取焼鈍時における再結晶および粒成長を促進させるためである。
Finish annealing The cold-rolled sheet rolled to the final sheet thickness is then recrystallized and the crystal grain size is set to a desired size, that is, the crystal grain size before strain relief annealing in the motor core processed part is 70 μm or less. For finish annealing. The annealing temperature in the finish annealing is preferably in the range of 750 to 900 ° C. from the viewpoint of not coarsening the recrystallized grains. More preferably, it is the range of 750-850 degreeC. Here, the reason why the crystal grain size after finish annealing is limited to 70 μm or less is to increase the grain boundary energy and promote recrystallization and grain growth during strain relief annealing.

仕上焼鈍後の鋼板は、その後、必要に応じて絶縁被膜を被成するためのコーティング液を塗布し、乾燥させて無方向性電磁鋼板の製品板とする。   The steel sheet after the finish annealing is then coated with a coating liquid for forming an insulating film as necessary, and dried to obtain a product plate of a non-oriented electrical steel sheet.

次に、上記無方向性電磁鋼板を用いて、本発明のモータコアを製造する方法について説明する。
上述のようにして得た無方向性電磁鋼板は、その後、所定のモータコアの形状に打ち抜き加工等してコア材とした後、このコア材を積層し、この際、積層した鋼板同士を固着させるため、カシメ加工を施したり、積層したコア材を溶接したりして固定し、モータコアとする。
Next, a method for manufacturing the motor core of the present invention using the non-oriented electrical steel sheet will be described.
The non-oriented electrical steel sheet obtained as described above is then punched into a predetermined motor core shape to form a core material, and then the core material is laminated. At this time, the laminated steel plates are fixed to each other. Therefore, caulking is performed or the laminated core material is welded and fixed to obtain a motor core.

次いで、打抜加工やカシメ等で塑性変形を受けた加工部に導入された歪を除去するため、700〜900℃の温度で2時間程度均熱保持する歪取焼鈍を施す。歪取焼鈍温度が700℃未満では、コア作製時の加工部における再結晶とその後の粒成長が十分ではなく、歪取焼鈍後の結晶粒径の大きさを100μm以上としたり、転位密度を1×1013−2以下としたりすることができないため、磁気特性に優れたモータコアを安定して得られない。一方、900℃を超える温度では、燃料コストの増加を招くため好ましくない。より好ましい温度は750〜850℃の範囲である。なお、歪取焼鈍後のコア加工部における結晶粒径の大きさを100μm以上とし、かつ、転位密度を1×1013−2以下となる歪取焼鈍条件(均熱温度、均熱時間)は、鋼成分や鋼板の製造条件、コアの製造条件(歪量)によっても変化するので、適宜調整するのが好ましい。 Next, in order to remove the strain introduced into the machined portion that has undergone plastic deformation by punching or caulking, a strain relief annealing is performed at 700 to 900 ° C. for 2 hours. When the stress relief annealing temperature is less than 700 ° C., recrystallization and subsequent grain growth in the processed part at the time of core preparation are not sufficient, and the crystal grain size after stress relief annealing is set to 100 μm or more, or the dislocation density is × 10 13 m −2 or less cannot be achieved, and thus a motor core having excellent magnetic properties cannot be obtained stably. On the other hand, a temperature exceeding 900 ° C. is not preferable because the fuel cost is increased. A more preferable temperature is in the range of 750 to 850 ° C. In addition, the strain relief annealing conditions (soaking temperature, soaking time) in which the size of the crystal grain size in the core processed portion after strain relief annealing is 100 μm or more and the dislocation density is 1 × 10 13 m −2 or less. Since it changes also with the manufacturing conditions (steel amount) of a steel component, a steel plate, and a core, adjusting suitably is preferable.

表1からなる成分組成を有する鋼を溶製し、鋼スラブとし、1060℃×30minの加熱後、熱間圧延して板厚2.0mmの熱延板とし、その後、950℃×30secの熱延板焼鈍を施した後、1回の冷間圧延で最終板厚0.35mmの冷延板とした。その後、上記冷延板を、表2に示した焼鈍温度で仕上焼鈍を施した後、半有機の絶縁被膜コーティング液を塗布して無方向性電磁鋼板とした。なお、表1に示した鋼No.19はAlが、No.23はSiが、No.27はMnがおよびNo.31はPが、本発明の範囲を超えているため、冷間圧延が困難となり、最終板厚まで圧延することができなかった。   Steel having the composition shown in Table 1 is melted to form a steel slab, heated at 1060 ° C. × 30 min, hot-rolled into a hot-rolled sheet having a thickness of 2.0 mm, and then heated at 950 ° C. × 30 sec. After performing the sheet annealing, a cold rolling sheet having a final sheet thickness of 0.35 mm was obtained by one cold rolling. Thereafter, the cold-rolled sheet was subjected to finish annealing at the annealing temperatures shown in Table 2, and then a semi-organic insulating coating liquid was applied to obtain a non-oriented electrical steel sheet. The steel No. 1 shown in Table 1 was used. No. 19 is Al. No. 23 is Si. 27 is Mn and No. 27. No. 31 had a P exceeding the range of the present invention, so it was difficult to cold-roll and could not be rolled to the final thickness.

斯くして得た無方向性電磁鋼板からサンプルを採取し、線分法で結晶粒径を測定した。また、上記無方向性電磁鋼板をコア形状に打抜加工してコア材とした後、このコア材を積層し、その際、バックヨーク部に、図1に示したような台形カシメ(カシメ幅:1mm、長さ:3mm、カシメ深さ:0.3mm)を8点形成して固定し、出力300W、極数8極のEPSモータ用のコアを作製した。その後、750℃×2hrの歪取焼鈍を施した後、モータのバックヨーク部に1次:100ターン、2次:100ターンの巻線を施して、50Hzおよび200Hzにおける鉄損を測定し、2周波法によりヒステリシス損Wh15/50を分離して求めた。また、歪取焼鈍後のコアのカシメ加工部(図1参照)からサンプルを切り出して、結晶粒径を線分法にて求め、さらに透過型電子顕微鏡にて転位密度を測定した。 A sample was taken from the non-oriented electrical steel sheet thus obtained, and the crystal grain size was measured by a line segment method. In addition, the non-oriented electrical steel sheet is punched into a core shape to obtain a core material, and then the core material is laminated. At this time, a trapezoidal caulking (caulking width) as shown in FIG. 1 mm, length: 3 mm, caulking depth: 0.3 mm) were formed and fixed, and a core for an EPS motor having an output of 300 W and a pole number of 8 was produced. Then, after applying 750 ° C. × 2 hr stress relief annealing, the motor was subjected to primary: 100 turns, secondary: 100 turns, and the iron loss at 50 Hz and 200 Hz was measured. The hysteresis loss Wh 15/50 was determined separately by the frequency method. Further, a sample was cut out from the crimped portion (see FIG. 1) of the core after strain relief annealing, the crystal grain size was determined by the line segment method, and the dislocation density was measured with a transmission electron microscope.

Figure 2013192417
Figure 2013192417

Figure 2013192417
Figure 2013192417

表1および表2の結果から、本発明に適合する条件で製造したモータコアは、ヒステリシス損Wh15/50がいずれも2.05W/kg以下の良好な磁気特性が得られていることがわかる。 From the results of Tables 1 and 2, it can be seen that the motor core manufactured under the conditions suitable for the present invention has good magnetic characteristics with a hysteresis loss Wh 15/50 of 2.05 W / kg or less.

本発明のモータコアは、歪取焼鈍における再結晶・粒成長性に優れるので、EPS用のモータコアの他、同様の特性が求められる、例えば、コンプレッサーモータ等のモータコアにも適用することができる。   Since the motor core of the present invention is excellent in recrystallization and grain growth in strain relief annealing, it can be applied to a motor core such as a compressor motor, which requires similar characteristics, in addition to an EPS motor core.

Claims (4)

C:0.005mass%、Si:4mass%以下、Mn:0.05〜3mass%、Al:3mass%以下、N:0.005mass%以下、P:0.2mass%以下、S:0.005mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避的不純物からなる無方向性電磁鋼板を積層してなるモータコアにおいて、
コア製造時に塑性変形を受けた加工部における歪取焼鈍後の結晶粒径が100μm以上で、転位密度が1×1013−2以下であることを特徴とするモータコア。
C: 0.005 mass%, Si: 4 mass% or less, Mn: 0.05 to 3 mass%, Al: 3 mass% or less, N: 0.005 mass% or less, P: 0.2 mass% or less, S: 0.005 mass% In the motor core formed by laminating a non-oriented electrical steel sheet containing the following and Se: 0.0010 mass% or less, and the balance being Fe and inevitable impurities,
A motor core characterized in that a crystal grain size after strain relief annealing in a processed part that has undergone plastic deformation during core manufacture is 100 μm or more and a dislocation density is 1 × 10 13 m −2 or less.
上記成分組成に加えてさらに、Sn:0.003〜0.5mass%、Sb:0.003〜0.5mass%およびCa:0.0010〜0.005mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のモータコア。 In addition to the above component composition, Sn: 0.003-0.5 mass%, Sb: 0.003-0.5 mass%, and Ca: 0.0010-0.005 mass%, one or two selected from The motor core according to claim 1, comprising the above. C:0.005mass%、Si:4mass%以下、Mn:0.05〜3mass%、Al:3mass%以下、N:0.005mass%以下、P:0.2mass%以下、S:0.005mass%以下およびSe:0.0010mass%以下を含有し、残部がFeおよび不可避不純物からなる無方向性電磁鋼板をコア形状に加工した後、積層し、歪取焼鈍してモータコアを製造する方法において、
前記無方向性電磁鋼板として結晶粒径が70μm以下のものを用いると共に、
前記コア製造時に塑性変形を受けた加工部の結晶粒径が100μm以上、かつ、転位密度が1×1013−2以下となる条件で歪取焼鈍を施すことを特徴とする磁気特性に優れたモータコアの製造方法。
C: 0.005 mass%, Si: 4 mass% or less, Mn: 0.05 to 3 mass%, Al: 3 mass% or less, N: 0.005 mass% or less, P: 0.2 mass% or less, S: 0.005 mass% In a method of manufacturing a motor core by processing a non-oriented electrical steel sheet containing the following and Se: 0.0010 mass% or less, the balance being Fe and inevitable impurities into a core shape, and then laminating and strain relief annealing,
While using the non-oriented electrical steel sheet having a crystal grain size of 70 μm or less,
Excellent magnetic properties, characterized by performing strain relief annealing under the condition that the crystal grain size of the processed part subjected to plastic deformation during the core production is 100 μm or more and the dislocation density is 1 × 10 13 m −2 or less. Motor core manufacturing method.
前記無方向性電磁鋼板は、上記成分組成に加えてさらに、Sn:0.003〜0.5mass%、Sb:0.003〜0.5mass%およびCa:0.0010〜0.005mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項3に記載のモータコアの製造方法。 In addition to the above component composition, the non-oriented electrical steel sheet further includes Sn: 0.003-0.5 mass%, Sb: 0.003-0.5 mass%, and Ca: 0.0010-0.005 mass%. The method for producing a motor core according to claim 3, comprising one or more selected from the group consisting of:
JP2012058432A 2012-03-15 2012-03-15 Manufacturing method of motor core Active JP6270305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058432A JP6270305B2 (en) 2012-03-15 2012-03-15 Manufacturing method of motor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058432A JP6270305B2 (en) 2012-03-15 2012-03-15 Manufacturing method of motor core

Publications (2)

Publication Number Publication Date
JP2013192417A true JP2013192417A (en) 2013-09-26
JP6270305B2 JP6270305B2 (en) 2018-01-31

Family

ID=49392126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058432A Active JP6270305B2 (en) 2012-03-15 2012-03-15 Manufacturing method of motor core

Country Status (1)

Country Link
JP (1) JP6270305B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
WO2017082392A1 (en) * 2015-11-12 2017-05-18 ダイキン工業株式会社 Motor core, motor using same, and compressor
JP2017133100A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
US10554107B2 (en) 2016-11-25 2020-02-04 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rotor core and manufacturing method for motor core
US11368057B2 (en) 2018-09-28 2022-06-21 Nidec Servo Corporation Motor having stator including respective laminations having protrusions of caulking dowel portions to secure said laminations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269532A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Method of refining steel for nonoriented silicon steel sheet
JPH09283316A (en) * 1996-04-17 1997-10-31 Nippon Steel Corp Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JPH1171650A (en) * 1997-06-27 1999-03-16 Nkk Corp Nonoriented silicon steel sheet low in core loss
JP2001323344A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in workability and recyclability
JP2006104530A (en) * 2004-10-06 2006-04-20 Jfe Steel Kk Method for producing nonoriented silicon steel sheet having excellent magnetic property
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269532A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Method of refining steel for nonoriented silicon steel sheet
JPH09283316A (en) * 1996-04-17 1997-10-31 Nippon Steel Corp Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JPH1171650A (en) * 1997-06-27 1999-03-16 Nkk Corp Nonoriented silicon steel sheet low in core loss
JP2001323344A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in workability and recyclability
JP2006104530A (en) * 2004-10-06 2006-04-20 Jfe Steel Kk Method for producing nonoriented silicon steel sheet having excellent magnetic property
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3095887A4 (en) * 2014-01-14 2017-04-05 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
WO2017082392A1 (en) * 2015-11-12 2017-05-18 ダイキン工業株式会社 Motor core, motor using same, and compressor
JP2017099266A (en) * 2015-11-12 2017-06-01 ダイキン工業株式会社 Motor core and motor using the same, and compressor
CN108352736A (en) * 2015-11-12 2018-07-31 大金工业株式会社 Electric machine iron core and the motor and compressor for using the electric machine iron core
JP2017133100A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
US10554107B2 (en) 2016-11-25 2020-02-04 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rotor core and manufacturing method for motor core
US11368057B2 (en) 2018-09-28 2022-06-21 Nidec Servo Corporation Motor having stator including respective laminations having protrusions of caulking dowel portions to secure said laminations

Also Published As

Publication number Publication date
JP6270305B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
KR101591222B1 (en) Method of producing non-oriented electrical steel sheet
JP5273235B2 (en) Method for producing non-oriented electrical steel sheet
JP6008157B2 (en) Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
JP5533958B2 (en) Non-oriented electrical steel sheet with low iron loss degradation by punching
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
EP3572545B1 (en) Non-oriented electromagnetic steel sheet and production method therefor
WO2015107967A1 (en) Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3533890A1 (en) Nonoriented electromagnetic steel sheet and method for producing same
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP6319574B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP6270305B2 (en) Manufacturing method of motor core
WO2017056383A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JP5573147B2 (en) Method for producing non-oriented electrical steel sheet
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP6623795B2 (en) Electrical steel sheet and method for manufacturing electrical steel sheet
JP2001316778A (en) Nonoriented silicon steel sheet excellent in workability and its production method
JP2011256426A (en) Method for manufacturing nondirectional electromagnetic steel sheet excellent in magnetic characteristics in rolling direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161031

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250