JP5825494B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5825494B2
JP5825494B2 JP2013044489A JP2013044489A JP5825494B2 JP 5825494 B2 JP5825494 B2 JP 5825494B2 JP 2013044489 A JP2013044489 A JP 2013044489A JP 2013044489 A JP2013044489 A JP 2013044489A JP 5825494 B2 JP5825494 B2 JP 5825494B2
Authority
JP
Japan
Prior art keywords
mass
rolled
less
steel sheet
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013044489A
Other languages
Japanese (ja)
Other versions
JP2014173099A (en
Inventor
善彰 財前
善彰 財前
広朗 戸田
広朗 戸田
尾田 善彦
善彦 尾田
中西 匡
匡 中西
花澤 和浩
和浩 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013044489A priority Critical patent/JP5825494B2/en
Publication of JP2014173099A publication Critical patent/JP2014173099A/en
Application granted granted Critical
Publication of JP5825494B2 publication Critical patent/JP5825494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板とその製造方法に関し、具体的には、磁束密度と高周波域での鉄損特性のいずれにも優れる無方向性電磁鋼板とその製造方法に関するものである。   The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same, and more specifically to a non-oriented electrical steel sheet excellent in both magnetic flux density and iron loss characteristics in a high frequency region and a method for manufacturing the same.

近年、地球温暖化対策や省エネルギー化への要求から、自動車分野では、エンジンとモータを併用したハイブリッド電気自動車(HEV)、電動モータのみで駆動する電気自動車(EV)および燃料電池車(FCEV)などの開発が進められている。これらの自動車の回転機の駆動周波数は、年々増加する傾向にあり、現在では、基本周波数が数百〜数kHzが一般的となっている。加えて、高調波成分が重畳するため、モータの高効率化のためには、1〜10kHzの周波数域における鉄心の鉄損特性が重要視されるようになってきている。また、ハードディスクドライブの駆動用モータなどに使用されるマイクロモータにおいても、高速で回転駆動(〜数万rpm)されており、鉄心の高周波域での低鉄損化が重要になってきている。   In recent years, due to demands for global warming countermeasures and energy conservation, in the automotive field, hybrid electric vehicles (HEV) that use both an engine and a motor, electric vehicles (EV) that are driven only by an electric motor, and fuel cell vehicles (FCEV), etc. Development is underway. The driving frequency of these automobile rotating machines tends to increase year by year, and at present, the basic frequency is generally several hundred to several kHz. In addition, since harmonic components are superimposed, the core loss characteristics of the iron core in the frequency range of 1 to 10 kHz have come to be regarded as important in order to increase the efficiency of the motor. In addition, a micro motor used for a drive motor of a hard disk drive is also driven to rotate at high speed (up to several tens of thousands rpm), and it is important to reduce iron loss in a high frequency region of an iron core.

上記の要求に対応するため、従来は、SiやAlなどの合金元素を添加したり、板厚を低減したりすることなどで高周波域での低鉄損化を図ってきた。しかし、合金元素の添加は、飽和磁束密度の低下を招き、また、板厚の低減も冷延圧下率を上昇させる必要がある。冷延圧下率が高くなると、結晶方位は圧延安定方位に集積するので、一次再結晶集合組織が{111}方位に集積し、磁束密度の低下につながる。そのため、これらの方法だけでは、高周波域での鉄損低減は達成できても、磁束密度の低下は避けられない。また、磁束密度の低下は、モータの銅損増加を招くため、モータ効率の低下につながる。そのため、鉄心素材の高周波域での低鉄損化に加えて、高磁束密度化も重要であると考えられる。   In order to meet the above requirements, conventionally, an iron element in a high frequency region has been reduced by adding an alloy element such as Si or Al or reducing a plate thickness. However, the addition of the alloy element causes a decrease in the saturation magnetic flux density, and the reduction of the plate thickness needs to increase the cold rolling reduction ratio. As the cold rolling reduction increases, the crystal orientation accumulates in the rolling stable orientation, so that the primary recrystallization texture accumulates in the {111} orientation, leading to a decrease in magnetic flux density. Therefore, even with these methods alone, a reduction in magnetic flux density is inevitable even if iron loss reduction in a high frequency range can be achieved. In addition, a decrease in magnetic flux density leads to an increase in motor copper loss, leading to a decrease in motor efficiency. Therefore, in addition to reducing the iron loss in the high frequency region of the core material, it is considered that increasing the magnetic flux density is also important.

以上のことからわかるように、高磁束密度でかつ高周波域で低鉄損の無方向性電磁鋼板が開発できれば、電気機器の高効率化に大きく寄与できると考えられる。高周波域で低鉄損の無方向性電磁鋼板を製造する技術としては、例えば、特許文献1には、Si:2.5〜10mass%を含有し、C,Nを合計量で100massppm以下に低減した鋼に、Cr:1.5〜20mass%を添加し、鋼の固有抵抗を高めることで、高周波域での低鉄損を達成する方法が開示されている。   As can be seen from the above, if a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss in a high frequency region can be developed, it is considered that it can greatly contribute to the improvement of the efficiency of electrical equipment. As a technique for producing a non-oriented electrical steel sheet having a low iron loss in a high frequency range, for example, Patent Document 1 contains Si: 2.5 to 10 mass%, and C and N are reduced to 100 massppm or less in total. A method of achieving low iron loss in a high frequency region by adding 1.5 to 20 mass% of Cr to the obtained steel and increasing the specific resistance of the steel is disclosed.

特開平11−343544号公報JP-A-11-343544

しかしながら、Crは飽和磁束密度を低下させる元素であるため、高磁束密度と高周波域での低鉄損を両立することは難しく、昨今における方向性電磁鋼板に対する高度な要求に対しては、十分に応えることができていない。   However, since Cr is an element that lowers the saturation magnetic flux density, it is difficult to achieve both high magnetic flux density and low iron loss in a high frequency range. I have not been able to respond.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、高周波域においても低鉄損で、かつ、高磁束密度を達成した無方向性電磁鋼板を提供するとともに、その有利な製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide a non-oriented electrical steel sheet that achieves a high magnetic flux density with low iron loss even in a high frequency range. It is to propose an advantageous manufacturing method.

発明者らは、上記課題を解決するべく鋭意検討を行った。その結果、Alを低減し、かつ、PおよびCaを添加した鋼において、従来の冷延圧下率よりも高圧下とし、さらに、仕上焼鈍時の昇温速度を従来鋼よりも急速加熱することにより、従来材よりも磁気特性が著しく向上することを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, by reducing the Al content and adding P and Ca, the steel sheet is under a higher pressure than the conventional cold rolling reduction ratio, and the heating rate during finish annealing is higher than that of the conventional steel. The inventors have found that the magnetic properties are remarkably improved as compared with conventional materials, and have developed the present invention.

すなわち、本発明は、C:0.005mass%以下、Si:2〜4mass%、Mn:0.03〜3mass%、P:0.03〜0.2mass%、S:0.005mass%以下、Al:0.01mass%以下およびN:0.005mass%以下を含有し、さらに、CaをSに対する原子比((Ca(mass%)/40)/(S(mass%)/32))で0.5〜3.5の範囲で含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板厚が0.10〜0.20mmで、磁束密度B50が1.70T以上、かつ、鉄損W10/400が12W/kg以下である無方向性電磁鋼板である。 That is, the present invention is C: 0.005 mass% or less, Si: 2 to 4 mass%, Mn: 0.03 to 3 mass%, P: 0.03 to 0.2 mass%, S: 0.005 mass% or less, Al : 0.01 mass% or less and N: 0.005 mass% or less, and further Ca is an atomic ratio with respect to S ((Ca (mass%) / 40) / (S (mass%) / 32)). contained in the range of 5 to 3.5, it has a component composition and the balance being Fe and unavoidable impurities, in plate thickness 0.10~0.20Mm, the magnetic flux density B 50 is 1.70T or more and, It is a non-oriented electrical steel sheet having an iron loss W 10/400 of 12 W / kg or less.

本発明の無方向性電磁鋼板は、上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.003〜0.5mass%の範囲で含有することを特徴とする。   The non-oriented electrical steel sheet of the present invention is characterized by further containing one or two selected from Sn and Sb in the range of 0.003 to 0.5 mass% in addition to the above component composition. To do.

また、本発明は、上記いずれかに記載の成分組成を有する鋼スラブを、熱間圧延した後、冷延圧下率85%以上の冷間圧延で最終板厚の冷延板とし、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、上記冷延板の最終板厚を0.10〜0.20mmとし、上記仕上焼鈍における740℃までを平均昇温速度100℃/s以上で急速加熱することによって、磁束密度B50を1.70T以上、かつ、鉄損W10/400を12W/kg以下とすることを特徴とする無方向性電磁鋼板の製造方法を提案する。 In addition, the present invention, after hot-rolling a steel slab having any of the above-described component compositions, cold-rolled with a cold rolling reduction ratio of 85% or more to obtain a cold-rolled sheet having a final thickness, and finish annealing. In the manufacturing method of the non-oriented electrical steel sheet to be applied, the final thickness of the cold-rolled sheet is set to 0.10 to 0.20 mm, and rapid heating is performed at an average heating rate of 100 ° C./s or higher up to 740 ° C. in the finish annealing. Thus, a method for producing a non-oriented electrical steel sheet is proposed, in which the magnetic flux density B 50 is 1.70 T or more and the iron loss W 10/400 is 12 W / kg or less.

本発明によれば、優れた磁気特性を有する無方向性電磁鋼板を提供することができるので、ハイブリッド自動車等の駆動用モータのみならず、各種電気機器に使用されている小型モータや小型トランスなどの高効率化にも大きく寄与する。   According to the present invention, a non-oriented electrical steel sheet having excellent magnetic properties can be provided, so that not only a drive motor for a hybrid vehicle or the like, but also a small motor and a small transformer used in various electric devices, etc. Greatly contributes to higher efficiency.

磁束密度B50に及ぼす冷延圧下率の影響を示すグラフである。It is a graph showing the effect of cold rolling reduction ratio on the magnetic flux density B 50. 鉄損W10/400に及ぼす冷延圧下率の影響を示すグラフである。It is a graph which shows the influence of the cold rolling reduction ratio which has on the iron loss W 10/400 . 磁束密度B50に及ぼすP含有量の影響を示すグラフである。It is a graph showing the effect of P content on the magnetic flux density B 50. 鉄損W10/400に及ぼすP含有量の影響を示すグラフである。It is a graph which shows the influence of P content which gives to iron loss W 10/400 . 磁束密度B50に及ぼす原子比Ca/Sの影響を示すグラフである。It is a graph showing the effect of atomic ratio Ca / S on the magnetic flux density B 50. 鉄損W10/400に及ぼす原子比Ca/Sの影響を示すグラフである。It is a graph which shows the influence of atomic ratio Ca / S which has on iron loss W10 / 400 . 磁束密度B50に及ぼすAl含有量の影響を示すグラフである。It is a graph showing the effect of Al content on the magnetic flux density B 50. 鉄損W10/400に及ぼすAl含有量の影響を示すグラフである。It is a graph which shows the influence of Al content which gives to iron loss W10 / 400 . 磁束密度B50に及ぼす740℃までの昇温速度の影響を示すグラフである。Is a graph showing the effect of heating rate of up to 740 ° C. on the magnetic flux density B 50. 鉄損W10/400に及ぼす740℃までの昇温速度の影響を示すグラフである。It is a graph which shows the influence of the temperature increase rate to 740 degreeC which has on iron loss W10 / 400 .

まず、本発明を開発する契機となった実験について説明する。
磁気特性に及ぼす冷延圧下率の影響について調査するため、C:0.0025mass%、Si:3.5mass%、Mn:0.10mass%、P:0.05mass%、S:0.0020mass%、Al:0.001mass%、N:0.0024mass%およびCa:0.0025mass%を含有する鋼スラブを1100℃×30分の加熱後、熱間圧延して板厚0.8〜2.6mmの範囲の熱延板とし、1000℃×30秒の熱延板焼鈍を施し、次いで、1回の冷間圧延で板厚0.15mm(圧下率:81〜94%)の冷延板とした後、直接通電加熱炉で740℃までの昇温速度を30℃/sおよび300℃/sの2水準に変えて加熱し、さらに、30℃/sにて950℃まで加熱し、10秒間保持した後、冷却して冷延焼鈍板とした。
First, an experiment that triggered the development of the present invention will be described.
In order to investigate the influence of the cold rolling reduction ratio on the magnetic properties, C: 0.0025 mass%, Si: 3.5 mass%, Mn: 0.10 mass%, P: 0.05 mass%, S: 0.0020 mass%, A steel slab containing Al: 0.001 mass%, N: 0.0024 mass% and Ca: 0.0025 mass% was heated at 1100 ° C. for 30 minutes, and then hot-rolled to obtain a plate thickness of 0.8 to 2.6 mm. After forming a hot-rolled sheet in the range, annealing at 1000 ° C. for 30 seconds, and then forming a cold-rolled sheet having a thickness of 0.15 mm (reduction ratio: 81 to 94%) by one cold rolling In a direct electric heating furnace, the heating rate was increased to 740 ° C. by changing the heating rate to two levels of 30 ° C./s and 300 ° C./s, and further heated to 950 ° C. at 30 ° C./s and held for 10 seconds. After cooling and cold-rolled annealed plate did.

斯くして得た冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよびL:30mm×C:180mmのC方向サンプルを切り出し、エプスタイン試験によって磁界の強さ5000A/mにおける磁束密度(B50)および周波数400Hz、磁束密度1.0Tで励磁したときの鉄損(W10/400)を測定し、その結果を図1および図2に示した。 From the cold-rolled annealed plate thus obtained, an L direction sample of L: 180 mm × C: 30 mm and a C direction sample of L: 30 mm × C: 180 mm were cut out, and the magnetic flux density at a magnetic field strength of 5000 A / m was measured by an Epstein test. The iron loss (W 10/400 ) when excited at (B 50 ), a frequency of 400 Hz, and a magnetic flux density of 1.0 T was measured, and the results are shown in FIGS.

上記の図1および図2から、昇温速度30℃/sで加熱した鋼板は、冷延圧下率が高くなるに従い磁気特性が劣位になっていることがわかる。この原因は、冷延圧下率が高くなると、磁化困難軸である{111}方位への集積度が高くなるためであると考えられる。
これに対して、昇温速度300℃/sで加熱した鋼板では、冷延圧下率が高くなるのにともない磁気特性が向上している。この原因については、まだ十分に明らかとなっていないが、発明者らは、次のように考えている。
From FIG. 1 and FIG. 2, it can be seen that the steel sheet heated at a heating rate of 30 ° C./s has inferior magnetic properties as the cold rolling reduction ratio increases. This is considered to be because the degree of integration in the {111} orientation, which is the hard axis of magnetization, increases as the cold rolling reduction ratio increases.
On the other hand, in the steel plate heated at a heating rate of 300 ° C./s, the magnetic properties are improved as the cold rolling reduction ratio increases. Although the cause of this is not yet fully clarified, the inventors consider as follows.

PおよびCaを添加すると、磁化容易軸である{100}<012>方位や{411}<148>方位が増加する。一方、冷延圧下率を高くすると、磁化困難軸である{111}方位粒が発達するが、昇温速度を高めることで{111}方位の発達が抑制される。そのため、昇温直後は、磁化容易軸である{100}<012>方位や{411}<148>方位と磁化困難軸である{111}方位とがよいバランスで存在し、その後の均熱焼鈍時に{100}<012>方位や{411}<148>方位の粒が、{111}粒を蚕食して優先的に粒成長し、磁気特性が向上する。   When P and Ca are added, the {100} <012> orientation and {411} <148> orientation, which are easy axes of magnetization, increase. On the other hand, when the cold rolling reduction is increased, {111} oriented grains, which are hard axes of magnetization, develop, but by increasing the heating rate, the development of {111} orientation is suppressed. Therefore, immediately after the temperature rise, the {100} <012> orientation, which is the easy axis, and the {411} <148> orientation, and the {111} orientation, which is the hard axis, are present in a good balance. Sometimes grains with {100} <012> orientation or {411} <148> orientation phagocytos {111} grains and preferentially grow to improve magnetic properties.

次に、磁気特性に及ぼすP含有量の影響について調査するため、C:0.0028mass%、Si:3.6mass%、Mn:0.10mass%、S:0.0020mass%、Al:0.003mass%、N:0.0024mass%およびCa:0.0025mass%を含有する成分系に、Pを0.01〜0.5mass%の範囲で種々に変えて含有させた鋼スラブを1100℃×30分の加熱後、熱間圧延して板厚1.8mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施し、次いで、1回の冷間圧延で板厚0.15mm(圧下率:91.7%)の冷延板とした後、直接通電加熱炉で740℃までの昇温速度を30℃/sおよび250℃/sの2水準に変えて加熱し、さらに、30℃/sにて950℃まで加熱し、10秒間保持した後、冷却して冷延焼鈍板とした。なお、Pの添加量が0.35mass%と0.5mass%の鋼板は、冷間圧延時に破断したため、P:0.20mass%以下の鋼板についてのみ冷延焼鈍板とし、前述した実験と同様にして、エプスタイン試験によって磁気特性(磁束密度B50、鉄損W10/400)を測定し、その結果を図3および図4に示した。 Next, in order to investigate the influence of the P content on the magnetic properties, C: 0.0028 mass%, Si: 3.6 mass%, Mn: 0.10 mass%, S: 0.0020 mass%, Al: 0.003 mass. %, N: 0.0024 mass%, and Ca: 0.0025 mass% A steel slab in which P is variously changed in the range of 0.01 to 0.5 mass% and contained at 1100 ° C. for 30 minutes. After heating, the steel sheet is hot-rolled to obtain a hot-rolled sheet having a thickness of 1.8 mm, subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, and then cold-rolled once to a thickness of 0.15 mm (reduction rate) : 91.7%), and then heated in a direct current heating furnace with the temperature rising rate up to 740 ° C. changed to two levels of 30 ° C./s and 250 ° C./s, s to 950 ° C for 10 seconds After holding for a while, it was cooled to obtain a cold-rolled annealed plate. In addition, since the steel sheets with the addition amount of P of 0.35 mass% and 0.5 mass% were broken during cold rolling, only steel sheets with P: 0.20 mass% or less were cold-rolled annealed plates, and the same as in the experiment described above. The magnetic properties (magnetic flux density B 50 , iron loss W 10/400 ) were measured by the Epstein test, and the results are shown in FIGS. 3 and 4.

上記の図3および図4から、30℃/sおよび250℃/sのいずれの昇温速度でも、Pの含有量が0.03mass%以上で良好な磁気特性が得られていることがわかる。この原因は、上述したように、Pを添加することで磁化容易軸である{100}<012>方位や{411}<148>方位が増加し、磁気特性が向上したものと考えられる。   From FIG. 3 and FIG. 4 above, it can be seen that good magnetic properties are obtained when the P content is 0.03 mass% or more at any temperature increase rate of 30 ° C./s and 250 ° C./s. As described above, it is considered that the addition of P increases the {100} <012> orientation and {411} <148> orientation, which are easy magnetization axes, and improves the magnetic characteristics.

次に、磁気特性に及ぼすCaの影響について調査を行うため、C:0.0023mass%、Si:3.4mass%、Mn:0.50mass%、P:0.08mass%、S:0.0024mass%、Al:0.004mass%およびN:0.0022mass%を含有する成分系に、Caを0.0001〜0.015mass%の範囲で種々に変えて含有させた鋼スラブを1080℃×30分の加熱後、熱間圧延して板厚1.6mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施し、次いで、1回の冷間圧延で板厚0.15mm(圧下率:90.6%)の冷延板とした後、直接通電加熱炉で740℃までの昇温速度を30℃/sおよび300℃/sの2水準に変えて加熱し、さらに、30℃/sにて940℃まで加熱し、10秒間保持した後、冷却して冷延焼鈍板とし、前述した実験と同様にして、エプスタイン試験によって磁気特性(磁束密度B50、鉄損W10/400)を測定し、その結果を図5および図6に示した。 Next, in order to investigate the influence of Ca on magnetic characteristics, C: 0.0023 mass%, Si: 3.4 mass%, Mn: 0.50 mass%, P: 0.08 mass%, S: 0.0024 mass% Steel slab containing Ca: 0.0001 to 0.015 mass% in various amounts in a component system containing Al: 0.004 mass% and N: 0.0022 mass% at 1080 ° C. for 30 minutes After heating, it is hot-rolled to obtain a hot-rolled sheet having a thickness of 1.6 mm, subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, and then cold-rolled once to a thickness of 0.15 mm (reduction ratio: 90.6%), and then heated in a direct current heating furnace at a heating rate of up to 740 ° C. at two levels of 30 ° C./s and 300 ° C./s. To 940 ° C. and 10 After holding for 2 seconds, it was cooled to form a cold-rolled annealed plate, and the magnetic properties (magnetic flux density B 50 , iron loss W 10/400 ) were measured by the Epstein test in the same manner as the above-described experiment, and the results are shown in FIG. This is shown in FIG.

上記の図5および図6から、30℃/sおよび300℃/sのいずれの昇温速度でも、((Ca(mass%)/40)/(S(mass%)/32)、すなわち、Sに対するCaの原子比が0.5〜3.5の範囲で良好な磁気特性が得られていることがわかる。この原因は、Caは鋼中でSを固定し、CaSとして析出することで熱延板焼鈍時の粒成長を改善し、冷延前の粒径を粗大化するため、冷間圧延後の再結晶集合組織として、磁化困難軸である{111}<112>方位が減少し、磁気特性が向上したものと考えられる。しかし、(Ca/40)/(S/32)が0.5未満では、その効果が小さく、一方、(Ca/40)/(S/32)が3.5を超えると、CaSの析出量が多くなり過ぎて、粒成長が阻害され、鉄損が増加するためと考えられる。この結果から、Caは、(Ca/40)/(S/32)で0.5〜3.5の範囲で添加するのが有効であるといえる。   From the above FIG. 5 and FIG. 6, at any heating rate of 30 ° C./s and 300 ° C./s, ((Ca (mass%) / 40) / (S (mass%) / 32), that is, S It can be seen that good magnetic properties are obtained when the atomic ratio of Ca to Ca is in the range of 0.5 to 3.5 because Ca fixes S in steel and precipitates as CaS. In order to improve grain growth during sheet annealing and coarsen the grain size before cold rolling, as the recrystallized texture after cold rolling, the {111} <112> orientation, which is the hard axis of magnetization, decreases. However, if (Ca / 40) / (S / 32) is less than 0.5, the effect is small, while (Ca / 40) / (S / 32) is 3 If it exceeds .5, the precipitation amount of CaS becomes excessive, grain growth is inhibited, and iron loss increases. Presumably because. The results, Ca can be said to be effective to add a range of 0.5 to 3.5 in (Ca / 40) / (S / 32).

次に、磁気特性に及ぼすAlの影響について調査するため、C:0.0025mass%、Si:3.2mass%、Mn:0.50mass%、P:0.08mass%、N:0.0022mass%、S:0.0024mass%、N:0.0022mass%およびCa:0.0025mass%を含有する成分系に、Alを0.001〜1.0mass%の範囲で種々に変えて含有させた鋼スラブを1080℃×30分の加熱後、熱間圧延して板厚1.6mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施し、次いで、1回の冷間圧延で板厚0.15mm(圧下率:90.6%)の冷延板とした後、直接通電加熱炉で740℃までの昇温速度を30℃/sおよび300℃/sの2水準に変えて加熱し、さらに、30℃/sにて940℃まで加熱し、10秒間保持した後、冷却して冷延焼鈍板とし、前述した実験と同様にして、エプスタイン試験によって磁気特性(磁束密度B50、鉄損W10/400)を測定し、その結果を図7および図8に示した。 Next, in order to investigate the influence of Al on the magnetic properties, C: 0.0025 mass%, Si: 3.2 mass%, Mn: 0.50 mass%, P: 0.08 mass%, N: 0.0022 mass%, A steel slab in which Al is variously changed in a range of 0.001 to 1.0 mass% in a component system containing S: 0.0024 mass%, N: 0.0022 mass%, and Ca: 0.0025 mass%. After heating at 1080 ° C. for 30 minutes, it is hot-rolled to obtain a hot-rolled sheet having a thickness of 1.6 mm, subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, and then cold-rolled once to obtain a thickness of 0 After making a cold-rolled sheet of .15 mm (rolling rate: 90.6%), the heating rate was changed to two levels of 30 ° C./s and 300 ° C./s in a direct current heating furnace, and heated. Furthermore, 9 at 30 ° C./s Heat to 40 ° C., hold for 10 seconds, then cool to cold-rolled annealed plate, and measure magnetic properties (magnetic flux density B 50 , iron loss W 10/400 ) by Epstein test in the same way as the experiment described above. The results are shown in FIG. 7 and FIG.

上記の図7から、30℃/sおよび300℃/sのいずれの昇温速度でも、Al含有量が0.01mass%以下の範囲内で磁束密度が向上しており、特に、300℃/sの昇温速度での向上代が大きいことがわかる。Alを低減することで、急速加熱を伴う仕上焼鈍後の磁束密度が大きく改善される理由はまだ明らかではないが、Alを低減することによって、粒界方位差角による粒界の易動度差が生じ、それによって、急速加熱を伴う仕上焼鈍時に、磁化容易軸である{100}<012>方位や{411}<148>方位が{111}方位を蚕食する形で優先的に粒成長したものと考えられる。
なお、Alを低減したときの鉄損は、図8からわかるように、若干、増加する傾向にある。これは、鋼の固有抵抗を高めて鉄損を改善する効果のあるAlを低減したため、上記急速加熱による効果が相殺されたためであると考えられる。
From FIG. 7 above, the magnetic flux density is improved within a range where the Al content is 0.01 mass% or less at any rate of temperature increase of 30 ° C./s and 300 ° C./s. It can be seen that there is a large margin for improvement at the heating rate. The reason why the magnetic flux density after finish annealing with rapid heating is greatly improved by reducing Al is not yet clear, but by reducing Al, the difference in mobility of grain boundaries due to the grain boundary misorientation angle. As a result, during finish annealing with rapid heating, the {100} <012> orientation and {411} <148> orientation, which are easy axes of magnetization, preferentially grow in a form that engulf the {111} orientation. It is considered a thing.
The iron loss when Al is reduced tends to increase slightly as can be seen from FIG. This is presumably because the effect of rapid heating was offset because Al, which has the effect of improving the iron loss by increasing the specific resistance of steel, was reduced.

次に、磁気特性に及ぼす昇温速度の影響について調査するため、C:0.0025mass%、Si:3.3mass%、Mn:0.20mass%、P:0.10mass%、S:0.0020mass%、Al:0.001mass%、N:0.0025mass%およびCa:0.0030mass%を含有する鋼スラブを鋼スラブを1100℃×30分の加熱後、熱間圧延して板厚1.6mmの熱延板とし、980℃×30秒の熱延板焼鈍を施し、次いで、1回の冷間圧延で板厚0.15mm(圧下率:90.6%)の冷延板とした後、直接通電加熱炉で740℃までの昇温速度を30〜300℃/sの範囲で種々に変化させて加熱し、さらに、30℃/sにて960℃まで加熱し、10秒間保持した後、冷却して冷延焼鈍板とし、前述した実験と同様にして、エプスタイン試験によって磁気特性(磁束密度B50、鉄損W10/400)を測定し、その結果を図9および図10に示した。 Next, in order to investigate the influence of the heating rate on the magnetic properties, C: 0.0025 mass%, Si: 3.3 mass%, Mn: 0.20 mass%, P: 0.10 mass%, S: 0.0020 mass. %, Al: 0.001 mass%, N: 0.0025 mass% and Ca: 0.0030 mass% Steel slab is heated at 1100 ° C for 30 minutes and then hot-rolled to a thickness of 1.6 mm After subjecting to hot-rolled sheet annealing at 980 ° C. for 30 seconds and then forming a cold-rolled sheet having a sheet thickness of 0.15 mm (reduction ratio: 90.6%) by one cold rolling, In the direct electric heating furnace, the heating rate was varied in the range of 30 to 300 ° C./s in a range of 30 to 300 ° C./s, and then heated to 960 ° C. at 30 ° C./s and held for 10 seconds. Cool to cold rolled annealed plate, front Similarly to the experiment described above, magnetic properties (magnetic flux density B 50 , iron loss W 10/400 ) were measured by the Epstein test, and the results are shown in FIGS.

上記の図9および図10から、740℃までの昇温速度を100℃/s以上として加熱し、仕上焼鈍することで良好な磁気特性が得られていることがわかる。これは昇温速度を上昇させることで{111}粒の再結晶が抑制され、{110}粒、{100}粒の再結晶が促進されて、相対的に磁化容易軸の方位が上昇したため、急熱、仕上焼鈍後に磁気特性が向上したものと考えられる。以上のことより、昇温速度は100℃/s以上とするのが望ましいといえる。
本発明は、上記の実験結果に基づき、なされたものである。
From FIG. 9 and FIG. 10 above, it can be seen that good magnetic properties are obtained by heating at a temperature increase rate of up to 740 ° C. at 100 ° C./s or more and then performing finish annealing. This is because the recrystallization of {111} grains is suppressed by increasing the temperature rising rate, the recrystallization of {110} grains and {100} grains is promoted, and the orientation of the easy axis of magnetization is relatively increased. It is thought that the magnetic properties were improved after rapid heating and finish annealing. From the above, it can be said that the rate of temperature rise is desirably 100 ° C./s or more.
The present invention has been made based on the above experimental results.

次に、本発明の無方向性電磁鋼板(製品)の成分組成について説明する。
C:0.005mass%以下
Cは、製品鋼板中に0.005mass%を超えて含有していると、磁気時効を起こして鉄損特性を劣化させるので、上限は0.005mass%とする。好ましくは0.003mass%以下である。
Next, the component composition of the non-oriented electrical steel sheet (product) of the present invention will be described.
C: 0.005 mass% or less If C is contained in the product steel plate in an amount exceeding 0.005 mass%, magnetic aging is caused to deteriorate the iron loss characteristics, so the upper limit is made 0.005 mass%. Preferably it is 0.003 mass% or less.

Si:2〜4mass%
Siは、鋼の固有抵抗を高め、鉄損を低減するのに有効な元素であり、斯かる効果を得るためには2mass%以上の添加が必要である。一方、4mass%を超えて添加すると、磁束密度が低下したり、圧延して製造することが難しくなるので、上限は4mass%とする。
Si: 2 to 4 mass%
Si is an element effective in increasing the specific resistance of steel and reducing iron loss. In order to obtain such an effect, addition of 2 mass% or more is necessary. On the other hand, if added over 4 mass%, the magnetic flux density decreases or it becomes difficult to produce by rolling, so the upper limit is made 4 mass%.

Mn:0.03〜3mass%
Mnは、熱間加工性を改善するのに必要な元素であるが、0.03mass%未満では十分な効果が得られず、一方、3mass%を超える添加は、原料コストの上昇を招くので、0.03〜3mass%の範囲とする。好ましくは0.05〜2mass%の範囲である。
Mn: 0.03 to 3 mass%
Mn is an element necessary for improving hot workability, but if it is less than 0.03 mass%, a sufficient effect cannot be obtained. On the other hand, addition of more than 3 mass% leads to an increase in raw material cost. The range is 0.03 to 3 mass%. Preferably it is the range of 0.05-2 mass%.

P:0.03〜0.2mass
Pは、鋼の固有抵抗を高め、鉄損を低減するのに有効な元素であるとともに、磁化容易軸である{100}<012>方位や{411}<148>方位を増加し、磁気特性が向上する元素である。斯かる効果は、先述した図3,図4からわかるように、0.03mass%以上の添加で得られる。一方、0.2mass%を超えて添加すると、鋼が硬質化し、圧延することが難しくなるので、上限は0.2mass%とする。好ましくは0.04〜0.1mass%の範囲である。
P: 0.03-0.2 mass
P is an element effective in increasing the specific resistance of steel and reducing iron loss, and increases the {100} <012> orientation and {411} <148> orientation, which are easy magnetization axes, to increase magnetic properties. Is an element that improves. Such an effect can be obtained by adding 0.03 mass% or more, as can be seen from FIGS. 3 and 4 described above. On the other hand, if added over 0.2 mass%, the steel becomes hard and difficult to roll, so the upper limit is made 0.2 mass%. Preferably it is the range of 0.04-0.1 mass%.

S:0.005mass%以下
Sは、不可避的に混入してくる不純物元素であり、0.005mass%超え含有すると、硫化物系析出物を形成し、歪取焼鈍時の粒成長を阻害して磁気特性を劣化させるので、上限は0.005mass%とする。好ましくは0.004mass%以下である。
S: 0.005 mass% or less S is an impurity element which is inevitably mixed in. If it exceeds 0.005 mass%, it forms a sulfide-based precipitate and inhibits grain growth during strain relief annealing. Since the magnetic properties are deteriorated, the upper limit is set to 0.005 mass%. Preferably it is 0.004 mass% or less.

Al:0.01mass%以下
Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減するのに有効な元素であるが、本発明においては、0.01mass%以下に制限する。これは、先述した図7や図8からわかるように、Alを低減することで、急速加熱を伴う仕上焼鈍後の磁気特性(磁束密度)が改善されるからである。
Al: 0.01 mass% or less Al, like Si, is an element effective for increasing the specific resistance of steel and reducing iron loss, but in the present invention, it is limited to 0.01 mass% or less. This is because, as can be seen from FIG. 7 and FIG. 8, the magnetic characteristics (magnetic flux density) after finish annealing accompanied by rapid heating is improved by reducing Al.

N:0.005mass%以下
Nは、不可避的に混入してくる不純物元素であり、0.005mass%を超えて含有すると、窒化物系析出物を形成し、歪取焼鈍時の粒成長を阻害して磁気特性を劣化させるので、上限は0.005mass%とする。好ましくは0.004mass%以下である。
N: 0.005 mass% or less N is an impurity element that is inevitably mixed. When N exceeds 0.005 mass%, a nitride-based precipitate is formed, and grain growth during strain relief annealing is inhibited. Therefore, the upper limit is set to 0.005 mass%. Preferably it is 0.004 mass% or less.

(Ca(mass%)/40)/(S(mass%)/32):0.5〜3.5
Caは、鋼中でSを固定し、CaSとして析出することで熱延板焼鈍時の粒成長を改善して冷延前の粒径を粗大化し、磁気特性を向上する効果を有する。斯かる効果を得るためには、(Ca/40)/(S/32)、すなわち、Sに対するCaの原子比で0.5以上の添加が必要である。一方、(Ca/40)/(S/32)で3.5を超えて添加すると、CaSの析出量が多くなり過ぎ、却って鉄損が増加する。よって、Caは、(Ca/40)/(S/32)で0.5〜3.5の範囲とする。好ましくは0.5〜3.0の範囲である。
(Ca (mass%) / 40) / (S (mass%) / 32): 0.5 to 3.5
Ca has the effect of fixing S in steel and precipitating as CaS to improve grain growth during hot-rolled sheet annealing, coarsening the grain size before cold rolling, and improving magnetic properties. In order to obtain such an effect, it is necessary to add (Ca / 40) / (S / 32), that is, an atomic ratio of Ca to S of 0.5 or more. On the other hand, if it is added in excess of 3.5 at (Ca / 40) / (S / 32), the amount of precipitated CaS becomes excessive, and the iron loss increases. Therefore, Ca is (Ca / 40) / (S / 32) in the range of 0.5 to 3.5. Preferably it is the range of 0.5-3.0.

本発明の無方向性電磁鋼板は、上記必須とする成分の他に、以下の成分を適宜含有することができる。
Sn,Sb:それぞれ0.003〜0.5mass%
SnおよびSbは、集合組織を改善して磁束密度を向上させるだけでなく、鋼板表層の酸化や窒化、それに伴う表層微細粒の生成を抑制することによって、磁気特性の劣化を防止する種々の作用効果を有する元素である。斯かる効果を得るためには、SnおよびSbのいずれか1以上を0.003mass%以上添加するのが好ましい。一方、0.5mass%を超えて添加すると、逆に、結晶粒の成長が阻害されて磁気特性の低下を招くおそれがある。よって、SnおよびSbは、それぞれ0.003〜0.5mass%の範囲で添加するのが好ましい。
The non-oriented electrical steel sheet of the present invention can appropriately contain the following components in addition to the essential components.
Sn, Sb: 0.003 to 0.5 mass% respectively
Sn and Sb not only improve the texture by improving the texture, but also various effects of preventing the deterioration of magnetic properties by suppressing the oxidation and nitridation of the steel sheet surface layer and the accompanying generation of surface fine grains. It is an element that has an effect. In order to acquire such an effect, it is preferable to add 0.003 mass% or more of any one or more of Sn and Sb. On the other hand, if added over 0.5 mass%, on the contrary, the growth of crystal grains may be hindered, leading to a decrease in magnetic properties. Therefore, it is preferable to add Sn and Sb in the range of 0.003 to 0.5 mass%, respectively.

なお、本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害しない範囲内であれば、他の元素の含有を拒むものではない。   In the non-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of other elements is not rejected.

次に、本発明の無方向性電磁鋼板の板厚について説明する。
先述したように、鋼板の板厚を薄くすることは、高周波域での鉄損低減、特に、渦電流損の低減に有効である。しかし、板厚が0.1mm未満となると、冷間圧延が困難となるだけでなく、モータのローター、ステーター組立時に鋼板積層枚数の増大につながり、生産効率が低下する。一方、板厚が0.2mmを超えると、渦電流損の増大に伴う鉄損の増大につながる。よって、本発明では、板厚を0.1〜0.2mmの範囲とする。
Next, the thickness of the non-oriented electrical steel sheet of the present invention will be described.
As described above, reducing the thickness of the steel sheet is effective for reducing iron loss in a high frequency region, particularly for reducing eddy current loss. However, when the plate thickness is less than 0.1 mm, not only cold rolling becomes difficult, but also the number of laminated steel plates is increased at the time of assembling the rotor and stator of the motor, and the production efficiency is lowered. On the other hand, if the plate thickness exceeds 0.2 mm, it leads to an increase in iron loss accompanying an increase in eddy current loss. Therefore, in this invention, plate | board thickness shall be the range of 0.1-0.2 mm.

次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板の製造方法は、先ず、本発明に適合する上記成分組成を有する鋼を転炉や電気炉、真空脱ガス装置などを用いた通常の精錬プロセスで溶製し、連続鋳造法あるいは造塊−分塊圧延法で鋼スラブとする。
Next, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated.
The method for producing a non-oriented electrical steel sheet according to the present invention first involves melting a steel having the above-mentioned composition suitable for the present invention in a normal refining process using a converter, an electric furnace, a vacuum degassing apparatus, etc. A steel slab is formed by a continuous casting method or an ingot-bundling rolling method.

次いで、上記鋼スラブを通常の方法で熱間圧延して、熱延板とした後、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍は、本発明においては必須の工程ではないが、磁気特性の向上に有効であるため、適宜採用するのが好ましい。熱延板焼鈍を施す場合の焼鈍温度は、750〜1050℃の範囲とするのが好ましい。焼鈍温度が750℃未満では、未再結晶組織が残存する可能性があり、一方、1050℃を超えると焼鈍設備に多大な負荷がかかるためである。より好ましくは800〜1000℃の範囲である。   Next, the steel slab is hot-rolled by a normal method to form a hot-rolled sheet, and then subjected to hot-rolled sheet annealing as necessary. Although this hot-rolled sheet annealing is not an essential step in the present invention, it is preferably employed as appropriate because it is effective in improving magnetic properties. The annealing temperature when hot-rolled sheet annealing is performed is preferably in the range of 750 to 1050 ° C. If the annealing temperature is less than 750 ° C., an unrecrystallized structure may remain. On the other hand, if it exceeds 1050 ° C., a great load is applied to the annealing equipment. More preferably, it is the range of 800-1000 degreeC.

上記熱間圧延後、あるいは、熱延板焼鈍後の鋼板は、その後、酸洗した後、1回の冷間圧延により最終板厚の冷延板とする。この際の冷延圧下率は、先述した図1および図2からわかるように、85%以上とする必要がある。85%未満では、急速加熱による磁気特性の改善効果が十分に得られないからである。また、上記ように冷延圧下率を高めるためには、1回の冷間圧延で最終板厚とするのが好ましい。なお、その他の圧延条件については、通常の無方向性電磁鋼板の製造条件と同様で構わない。   The steel sheet after the hot rolling or after the hot-rolled sheet annealing is then pickled and made into a cold-rolled sheet having a final thickness by one cold rolling. The cold rolling reduction ratio at this time needs to be 85% or more as can be seen from FIGS. 1 and 2 described above. This is because if it is less than 85%, the effect of improving the magnetic properties by rapid heating cannot be obtained sufficiently. Further, in order to increase the cold rolling reduction ratio as described above, it is preferable to obtain the final thickness by one cold rolling. In addition, about other rolling conditions, it may be the same as the manufacturing conditions of a normal non-oriented electrical steel sheet.

次いで、上記冷延後の鋼板は、再結晶焼鈍を施す。この再結晶焼鈍は、本発明において、重要な工程であり、加熱条件として、再結晶温度域までを急速加熱する、具体的には、室温〜740℃までの平均昇温速度を100℃/s以上とする急速加熱を行うことが必要である。
なお、急速加熱する終点温度は少なくとも再結晶が完了する温度である740℃であればよく、740℃を超える温度としてもよい。しかし、終点温度が高温になるほど、加熱に要する設備コストや電力コストが増大するため、安価に製造する上では好ましくない。なお、100℃/s以上で急速加熱する方法についても、特に制限はなく、例えば、直接通電加熱法あるいは誘導加熱法などを好適に用いることができる。
Next, the steel sheet after the cold rolling is subjected to recrystallization annealing. This recrystallization annealing is an important step in the present invention. As heating conditions, rapid heating is performed up to the recrystallization temperature range. Specifically, an average temperature increase rate from room temperature to 740 ° C. is set to 100 ° C./s. It is necessary to perform rapid heating as described above.
The end point temperature for rapid heating may be at least 740 ° C., which is the temperature at which recrystallization is completed, or may be a temperature exceeding 740 ° C. However, the higher the end point temperature, the higher the equipment cost and power cost required for heating. In addition, there is no restriction | limiting in particular also about the method of rapid heating at 100 degrees C / s or more, For example, a direct current heating method or an induction heating method etc. can be used suitably.

急速加熱して再結晶させた鋼板は、その後、均熱焼鈍を適宜施した後、冷却して、製品板とする。なお、上記均熱までの昇温速度や、均熱温度、均熱時間およびその後の冷却条件は、通常の無方向性電磁鋼板で行われている条件に従って行えばよく、特に制限はないが、均熱温度は800〜1100℃の範囲とするのが好ましい。より好ましい均熱温度は900〜1050℃の範囲である。   The steel plate rapidly recrystallized is then subjected to soaking annealing as appropriate and then cooled to obtain a product plate. In addition, the heating rate until the above soaking, the soaking temperature, the soaking time and the subsequent cooling conditions may be performed in accordance with the conditions performed in a normal non-oriented electrical steel sheet, although there is no particular limitation, The soaking temperature is preferably in the range of 800 to 1100 ° C. A more preferable soaking temperature is in the range of 900 to 1050 ° C.

表1に示した各種成分組成を有する鋼スラブを、1080×30分加熱した後、熱間圧延して板厚1.6〜2.0mmの熱延板とし、800℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で、同じく表1に示した板厚の冷延板とした。その後、上記冷延板を、直接通電加熱炉で昇温速度および昇温到達温度を、同じく表1に示したように変化させて加熱し、その後30℃/sで、同じく表1に示した均熱温度まで昇温し、10秒間保持した後、冷却し、冷延焼鈍板とした。   A steel slab having various composition shown in Table 1 was heated for 1080 × 30 minutes, and then hot-rolled to obtain a hot rolled sheet having a thickness of 1.6 to 2.0 mm, and hot rolled at 800 ° C. for 30 seconds. After the sheet annealing, cold-rolled sheets having the thicknesses shown in Table 1 were obtained by one cold rolling. Thereafter, the cold-rolled sheet was heated in a direct current heating furnace while changing the rate of temperature rise and the temperature reached at the same temperature as shown in Table 1, and then at 30 ° C./s, also shown in Table 1. The temperature was raised to a soaking temperature, held for 10 seconds, then cooled to obtain a cold-rolled annealed plate.

斯くして得た冷延焼鈍板から、L:180mm×C:30mmのL方向サンプルおよびL:30mm×C:180mmのC方向サンプルを切り出し、エプスタイン試験によって磁界の強さ5000A/mにおける磁束密度(B50)および周波数400Hz、磁束密度1.0Tで励磁したときの鉄損(W10/400)を測定し、その結果を表1中に示した。
表1から、本発明の条件を満たして製造した鋼板は、いずれも磁束密度B50が1.70T以上でかつ鉄損W10/400を12W/kg以下の優れた磁気特性を有していることがわかる。
From the cold-rolled annealed plate thus obtained, an L direction sample of L: 180 mm × C: 30 mm and a C direction sample of L: 30 mm × C: 180 mm were cut out, and the magnetic flux density at a magnetic field strength of 5000 A / m was measured by an Epstein test. The iron loss (W 10/400 ) when excited at (B 50 ), a frequency of 400 Hz, and a magnetic flux density of 1.0 T was measured, and the results are shown in Table 1.
From Table 1, all the steel plates manufactured satisfying the conditions of the present invention have excellent magnetic properties in which the magnetic flux density B 50 is 1.70 T or more and the iron loss W 10/400 is 12 W / kg or less. I understand that.

Figure 0005825494
Figure 0005825494

Figure 0005825494
Figure 0005825494

Claims (3)

C:0.005mass%以下、Si:2〜4mass%、Mn:0.03〜3mass%、P:0.03〜0.2mass%、S:0.005mass%以下、Al:0.01mass%以下およびN:0.005mass%以下を含有し、さらに、CaをSに対する原子比((Ca(mass%)/40)/(S(mass%)/32))で0.5〜3.5の範囲で含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板厚が0.10〜0.20mmで、磁束密度B50が1.70T以上、かつ、鉄損W10/400が12W/kg以下である無方向性電磁鋼板。 C: 0.005 mass% or less, Si: 2 to 4 mass%, Mn: 0.03 to 3 mass%, P: 0.03 to 0.2 mass%, S: 0.005 mass% or less, Al: 0.01 mass% or less And N: 0.005 mass% or less, and further Ca to an atomic ratio to S ((Ca (mass%) / 40) / (S (mass%) / 32)) of 0.5 to 3.5 In the range, the balance is composed of Fe and inevitable impurities, the plate thickness is 0.10 to 0.20 mm, the magnetic flux density B 50 is 1.70 T or more, and the iron loss W 10/400 Is a non-oriented electrical steel sheet having 12 W / kg or less. 上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.003〜0.5mass%の範囲で含有することを特徴とする請求項1に記載の無方向性電磁鋼板。 In addition to the said component composition, it further contains 1 type or 2 types chosen from Sn and Sb in the range of 0.003-0.5 mass%, respectively, The non-directional property of Claim 1 characterized by the above-mentioned. Electrical steel sheet. 請求項1または2に記載の成分組成を有する鋼スラブを、熱間圧延した後、冷延圧下率85%以上の冷間圧延で最終板厚の冷延板とし、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、
上記冷延板の最終板厚を0.10〜0.20mmとし、
上記仕上焼鈍における740℃までを平均昇温速度100℃/s以上で急速加熱することによって、
磁束密度B50を1.70T以上、かつ、鉄損W10/400を12W/kg以下とすることを特徴とする無方向性電磁鋼板の製造方法。
The steel slab having the component composition according to claim 1 or 2 is hot-rolled, then cold-rolled with a cold rolling reduction ratio of 85% or more to obtain a cold-rolled sheet having a final thickness, and subjected to finish annealing. In the manufacturing method of electrical steel sheet,
The final plate thickness of the cold-rolled plate is 0.10 to 0.20 mm,
By rapidly heating up to 740 ° C. in the finish annealing at an average rate of temperature increase of 100 ° C./s or more,
A method for producing a non-oriented electrical steel sheet, wherein the magnetic flux density B 50 is 1.70 T or more and the iron loss W 10/400 is 12 W / kg or less.
JP2013044489A 2013-03-06 2013-03-06 Non-oriented electrical steel sheet and manufacturing method thereof Active JP5825494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044489A JP5825494B2 (en) 2013-03-06 2013-03-06 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044489A JP5825494B2 (en) 2013-03-06 2013-03-06 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014173099A JP2014173099A (en) 2014-09-22
JP5825494B2 true JP5825494B2 (en) 2015-12-02

Family

ID=51694668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044489A Active JP5825494B2 (en) 2013-03-06 2013-03-06 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5825494B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067568A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
JP6048699B2 (en) 2015-02-18 2016-12-21 Jfeスチール株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and motor core
WO2016136095A1 (en) * 2015-02-24 2016-09-01 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheets
JP6390876B2 (en) * 2015-08-04 2018-09-19 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP6651759B2 (en) * 2015-09-16 2020-02-19 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6402865B2 (en) * 2015-11-20 2018-10-10 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
BR112018009722B1 (en) 2015-11-20 2022-04-05 Jfe Steel Corporation Method for producing an unoriented electrical steel sheet
JP6406522B2 (en) * 2015-12-09 2018-10-17 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP6804291B2 (en) * 2016-01-27 2020-12-23 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
TWI683009B (en) * 2017-07-19 2020-01-21 日商日本製鐵股份有限公司 Non-oriented electrical steel sheet
WO2020071048A1 (en) * 2018-10-02 2020-04-09 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing cast slab constituting material thereof
JP7311739B2 (en) * 2018-12-20 2023-07-20 日本製鉄株式会社 Non-oriented electrical steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854182B2 (en) * 2010-08-30 2016-02-09 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP5668460B2 (en) * 2010-12-22 2015-02-12 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP5817115B2 (en) * 2010-12-28 2015-11-18 Jfeスチール株式会社 Manufacturing method of high strength electrical steel sheet
JP5884153B2 (en) * 2010-12-28 2016-03-15 Jfeスチール株式会社 High strength electrical steel sheet and manufacturing method thereof
JP5780013B2 (en) * 2011-06-28 2015-09-16 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2014173099A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP5273235B2 (en) Method for producing non-oriented electrical steel sheet
KR101591222B1 (en) Method of producing non-oriented electrical steel sheet
JP6226072B2 (en) Electrical steel sheet
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP6057082B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP5076510B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
TWI532854B (en) Nonoriented electromagnetic steel sheet with excellent magnetic property
KR20150093807A (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP6319574B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP6270305B2 (en) Manufacturing method of motor core
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP2004183002A (en) Non-oriented silicon steel sheet for automobile, and its production method
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011256426A (en) Method for manufacturing nondirectional electromagnetic steel sheet excellent in magnetic characteristics in rolling direction
JP6658150B2 (en) Magnetic steel sheet
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5825494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250