JP6658150B2 - Magnetic steel sheet - Google Patents

Magnetic steel sheet Download PDF

Info

Publication number
JP6658150B2
JP6658150B2 JP2016052147A JP2016052147A JP6658150B2 JP 6658150 B2 JP6658150 B2 JP 6658150B2 JP 2016052147 A JP2016052147 A JP 2016052147A JP 2016052147 A JP2016052147 A JP 2016052147A JP 6658150 B2 JP6658150 B2 JP 6658150B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
magnetic
content
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016052147A
Other languages
Japanese (ja)
Other versions
JP2017166023A (en
Inventor
屋鋪 裕義
裕義 屋鋪
義顕 名取
義顕 名取
高橋 克
克 高橋
東根 和隆
和隆 東根
松本 卓也
卓也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016052147A priority Critical patent/JP6658150B2/en
Publication of JP2017166023A publication Critical patent/JP2017166023A/en
Application granted granted Critical
Publication of JP6658150B2 publication Critical patent/JP6658150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、モータおよび発電機等の回転機の性能向上に有効な電磁鋼板に関する。   The present invention relates to an electromagnetic steel sheet effective for improving the performance of a rotating machine such as a motor and a generator.

近年、地球温暖化問題、環境汚染問題、およびエネルギー問題が益々大きな関心を集めている。これらの諸問題の解決に向けて、電気機器に多数使用されるモータおよび発電機の効率向上が重要な課題となっている。具体的には、モータおよび発電機の鉄心材料である電磁鋼板の磁気特性の改善が求められている。   In recent years, global warming issues, environmental pollution issues, and energy issues have attracted increasing interest. In order to solve these problems, it has become an important issue to improve the efficiency of motors and generators used in many electric appliances. Specifically, there is a need to improve the magnetic properties of magnetic steel sheets, which are iron core materials for motors and generators.

また、パワーエレクトロニクスの進展により、モータおよび発電機の駆動周波数を従来の商用周波域を超える高周波域まで活用するものが増加している。このため、鉄心材料に用いられる電磁鋼板において、低周波域のみならず高周波域での鉄損が低い製品に対する要望が高まっている。特に、エアコンおよび冷蔵庫のコンプレッサーモータ、またはハイブリッド車(Hybrid Electric Vehicle:HEV)および電気自動車(Electric:Vehicle:EV)の駆動モータまたは発電機では、高周波域での鉄損が低く、かつ高磁束密度である電磁鋼板が望まれている。更に、高周波駆動時の高速回転に耐えうる電磁鋼板の材料強度に対する要求も、厳しさを増している。   Further, with the development of power electronics, the number of motors and generators that utilize the driving frequency of a motor and a generator in a high frequency range exceeding the conventional commercial frequency range is increasing. For this reason, there has been an increasing demand for electromagnetic steel sheets used for iron core materials that have low iron loss not only in a low frequency range but also in a high frequency range. In particular, in a compressor motor of an air conditioner and a refrigerator, or a drive motor or a generator of a hybrid electric vehicle (HEV) and an electric vehicle (Electric: Vehicle: EV), iron loss in a high frequency range is low and high magnetic flux density is high. Therefore, there is a demand for an electromagnetic steel sheet. Further, the demand for the material strength of an electromagnetic steel sheet that can withstand high-speed rotation during high-frequency driving is becoming increasingly severe.

鉄損(特に、高周波鉄損)を低減するためには、例えば、電磁鋼板を高合金化し、固有抵抗の増加によって渦電流損を低下させることが有効である。また、高合金化による固溶強化は、電磁鋼板の強度上昇にも寄与する。しかし、電磁鋼板の合金量の増加は、磁束密度を低下させるため、低鉄損および高強度と、高磁束密度との両立させることは困難であった。   In order to reduce iron loss (especially high-frequency iron loss), it is effective, for example, to make the magnetic steel sheet highly alloyed and reduce eddy current loss by increasing the specific resistance. Further, solid solution strengthening by high alloying also contributes to an increase in strength of the electromagnetic steel sheet. However, an increase in the amount of alloy in the magnetic steel sheet lowers the magnetic flux density, so that it was difficult to achieve both low iron loss and high strength and high magnetic flux density.

以上のような問題を解決するために、例えば、以下の特許文献1では、質量%で、Si:2.5%〜4.5%と、Mn:0.005%〜1.0%とを含み、かつAlの含有量が200ppm以下であり、S、NおよびOの含有量がそれぞれ30ppm以下であり、残部が実質的にFeである電磁鋼板であって、平均結晶粒径が0.05mm〜0.50mmであり、かつ{110}<001>方位からの方位差が20°以内である結晶粒の面積率が25%〜75%であり、さらに引張強度が400MPa以上であることを特徴とする、高周波磁気特性および機械強度特性に優れたモータ鉄心用の電磁鋼板が提案されている。   In order to solve the above problems, for example, in Patent Document 1 below, Si: 2.5% to 4.5% and Mn: 0.005% to 1.0% by mass%. An electromagnetic steel sheet containing, and having an Al content of 200 ppm or less, S, N, and O contents of 30 ppm or less, respectively, and the balance being substantially Fe, and having an average crystal grain size of 0.05 mm. 0.50 mm, and the area ratio of crystal grains having an azimuth difference from the {110} <001> orientation within 20 ° is 25% to 75%, and the tensile strength is 400 MPa or more. An electromagnetic steel sheet for a motor core having excellent high-frequency magnetic characteristics and mechanical strength characteristics has been proposed.

また、特許文献1では、上記の特徴に加えて、質量%で、P:0.005%〜0.20%、Ni:0.01%〜3.50%、Sn:0.01%〜0.20%、Sb:0.005%〜0.50%、Cu:0.01%〜0.50%、およびCr:0.01%〜1.50%のうちから選択された少なくとも一種以上の元素をさらに含有する電磁鋼板も提案されている。   In addition, in Patent Document 1, in addition to the above features, P: 0.005% to 0.20%, Ni: 0.01% to 3.50%, and Sn: 0.01% to 0% by mass%. .20%, Sb: 0.005% to 0.50%, Cu: 0.01% to 0.50%, and Cr: 0.01% to 1.50% Electrical steel sheets further containing elements have also been proposed.

また、以下の特許文献2では、質量%で、Si:0.8%〜2.5%、Mn:0.1%〜2.5%、sol.Al:1.5%以下を含有し、P:0.005%〜0.30%、またはNi:0.05%〜1.5%の少なくともいずれか1つ以上をさらに含有し、残部がFeおよび不可避的不純物よりなり、Feの質量分率と鋼の密度との積が7.35以上、磁束密度がB50で1.70T以上、降伏強度が300MPa以上、かつ、厚さが0.15mm以上0.40mm以下であることを特徴とする無方向性電磁鋼板が提案されている。 In the following Patent Document 2, in mass%, Si: 0.8% to 2.5%, Mn: 0.1% to 2.5%, sol. Al: 1.5% or less, P: 0.005% to 0.30%, or Ni: 0.05% to 1.5%. and consists of inevitable impurities, the product of the density of the mass fraction and the steel of Fe 7.35 or more, 1.70T or more flux density B 50, yield strength of 300MPa or more, and, 0.15 mm thick A non-oriented electrical steel sheet characterized by being at least 0.40 mm or less has been proposed.

特開2002−146491号公報JP-A-2002-146491 特開2002−371340号公報JP-A-2002-371340

しかし、上記特許文献1に開示された電磁鋼板は、Al含有量が少ないため、磁気特性のばらつきが大きかった。また、電磁鋼板の強度が高くなった場合、打抜き加工時の寸法精度が満足できる水準にならなかった。   However, the electromagnetic steel sheet disclosed in Patent Document 1 described above has a large variation in magnetic properties due to a low Al content. Also, when the strength of the magnetic steel sheet was increased, the dimensional accuracy at the time of punching was not at a satisfactory level.

また、上記特許文献2に開示された電磁鋼板では、Si含有量が少ないため、高周波鉄損と機械特性との両立が満足できる水準にならなかった。また、電磁鋼板の強度が高くなった場合、打抜き加工時の寸法精度も満足できる水準にならなかった。   Further, in the electromagnetic steel sheet disclosed in Patent Document 2, since the content of Si is small, compatibility between high-frequency iron loss and mechanical properties was not at a satisfactory level. Further, when the strength of the magnetic steel sheet was increased, the dimensional accuracy at the time of punching was not at a satisfactory level.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、鉄損が低く、高磁束密度かつ高強度であり、打抜き加工時の寸法精度に優れた電磁鋼板を提供することにある。   Therefore, the present invention has been made in view of the above-described problems, and it is an object of the present invention to provide an electromagnetic coil having low iron loss, high magnetic flux density and high strength, and excellent dimensional accuracy during punching. It is to provide a steel plate.

本発明者らは、電気抵抗の増加による鉄損低減効果、および固溶強化能が高いSiを3.0質量%以上4.0質量%以下で添加し、固溶強化能および磁束密度改善効果が高いPを0.03質量%以上0.15質量%以下で添加したうえで、更にAlおよびMnを適量添加して、3.5質量%≦Si+Al+0.5×Mn≦5.0質量%の高合金材とすることにより、磁束密度の低減を抑えつつ、高周波鉄損の改善と高強度化とを達成可能であることを把握した。   The present inventors added an iron having a high solid solution strengthening ability in an amount of 3.0% by mass or more and 4.0% by mass or less by adding an iron having a high solid solution strengthening ability by increasing an electric resistance, thereby improving a solid solution strengthening ability and a magnetic flux density improving effect. Is added in an amount of 0.03% by mass or more and 0.15% by mass or less, and an appropriate amount of Al and Mn is further added, whereby 3.5% by mass ≦ Si + Al + 0.5 × Mn ≦ 5.0% by mass. It has been found that by using a high alloy material, it is possible to improve high-frequency iron loss and increase strength while suppressing a reduction in magnetic flux density.

しかし、降伏強度が400MPa以上の電磁鋼板では、打抜き加工時の寸法精度が劣ることが判明したため、打抜き加工時の寸法精度への対応も含めてさらに検討を行った。その結果、鋼板表面で測定したX線回折プロファイルにおいて、(211)面のピーク半価幅を0.16°以下に制御することにより、打抜き加工時の寸法精度の改善に目処が得られることを見出した。これらの知見を参照することにより、本発明者らは、磁気特性、機械特性及び寸法精度に優れた電磁鋼板が得られることを見出した。   However, it has been found that the dimensional accuracy at the time of punching is inferior to the electromagnetic steel sheet having a yield strength of 400 MPa or more. Therefore, further investigation was performed including the dimensional accuracy at the time of punching. As a result, in the X-ray diffraction profile measured on the steel sheet surface, by controlling the peak half width of the (211) plane to 0.16 ° or less, improvement in dimensional accuracy at the time of punching can be obtained. I found it. By referring to these findings, the present inventors have found that an electromagnetic steel sheet having excellent magnetic properties, mechanical properties, and dimensional accuracy can be obtained.

上記知見に基づき完成された本発明の要旨は、以下の通りである。   The gist of the present invention completed based on the above findings is as follows.

(1)質量%で、C:0.005%以下、Si:3.0%以上4.0%以下、Mn:3.0%以下、S:0.004%以下、sol.Al:0.1%以上1.5%以下、P:0.03%以上0.15%以下を含有し、残部がFe及び不純物からなり、3.5%≦Si+Al+0.5×Mn≦5.0%であり、降伏強度が400MPa以上であり、鋼板表面で測定したX線回折プロファイルにおける(211)面のピーク半価幅が0.16°以下である、電磁鋼板。   (1) In mass%, C: 0.005% or less, Si: 3.0% or more and 4.0% or less, Mn: 3.0% or less, S: 0.004% or less, sol. Al: 0.1% or more and 1.5% or less, P: 0.03% or more and 0.15% or less, the balance being Fe and impurities, 3.5% ≦ Si + Al + 0.5 × Mn ≦ 5. 0%, the yield strength is 400 MPa or more, and the peak half width of the (211) plane in the X-ray diffraction profile measured on the steel sheet surface is 0.16 ° or less.

(2)質量%で、C:0.005%以下、Si:3.0%以上4.0%以下、Mn:3.0%以下、S:0.004%以下、sol.Al:0.1%以上1.5%以下、P:0.03%以上0.15%以下、Sn:0.001〜0.15%を含有し、残部がFe及び不純物からなり、3.5%≦Si+Al+0.5×Mn≦5.0%であり、降伏強度が400MPa以上であり、鋼板表面で測定したX線回折プロファイルの(211)面のピーク半価幅が0.16°以下である、電磁鋼板。   (2) In mass%, C: 0.005% or less, Si: 3.0% or more and 4.0% or less, Mn: 3.0% or less, S: 0.004% or less, sol. 2. Al: 0.1% or more and 1.5% or less, P: 0.03% or more and 0.15% or less, Sn: 0.001 to 0.15%, the balance being Fe and impurities. 5% ≦ Si + Al + 0.5 × Mn ≦ 5.0%, the yield strength is 400 MPa or more, and the peak half width at (211) plane of the X-ray diffraction profile measured on the steel sheet surface is 0.16 ° or less. There is an electrical steel sheet.

以上説明したように本発明によれば、磁束密度が高く、高周波鉄損が低く、かつ高強度であり、打抜き加工時の寸法精度が良好な、電磁鋼板を提供することが可能である。   As described above, according to the present invention, it is possible to provide an electromagnetic steel sheet having high magnetic flux density, low high-frequency iron loss, high strength, and good dimensional accuracy at the time of punching.

X線回折プロファイルにおけるピーク半価幅を説明する模式図である。FIG. 4 is a schematic diagram illustrating a peak half width in an X-ray diffraction profile. 打抜き加工時の寸法精度に対する降伏強度、および(211)面のピーク半価幅の影響を示すグラフ図である。It is a graph which shows the influence of the yield strength on the dimensional accuracy at the time of a punching process, and the peak half value width of a (211) plane.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明者らは、化学組成と、鋼板表面で測定したX線回折プロファイルの形状とを抜本的に見直すことにより、磁気特性、機械特性および加工性がともに優れた電磁鋼板を得ることに成功した。   The present inventors have succeeded in obtaining an electrical steel sheet having excellent magnetic properties, mechanical properties and workability by drastically reviewing the chemical composition and the shape of the X-ray diffraction profile measured on the steel sheet surface. .

本発明の一実施形態に係る電磁鋼板は、以下のとおりである。本実施形態に係る電磁鋼板は、具体的には、以下の特徴を有する無方向性電磁鋼板である。   The electromagnetic steel sheet according to one embodiment of the present invention is as follows. The electrical steel sheet according to the present embodiment is specifically a non-oriented electrical steel sheet having the following features.

(1)質量%で、C:0.005%以下、Si:3.0%以上4.0%以下、Mn:3.0%以下、S:0.004%以下、sol.Al:0.1%以上1.5%以下、P:0.03%以上0.15%以下を含有し、残部がFe及び不純物からなり、3.5%≦Si+Al+0.5×Mn≦5.0%であり、降伏強度が400MPa以上であり、鋼板表面で測定したX線回折プロファイルにおける(211)面のピーク半価幅が0.16°以下である、電磁鋼板。   (1) In mass%, C: 0.005% or less, Si: 3.0% or more and 4.0% or less, Mn: 3.0% or less, S: 0.004% or less, sol. Al: 0.1% or more and 1.5% or less, P: 0.03% or more and 0.15% or less, the balance being Fe and impurities, 3.5% ≦ Si + Al + 0.5 × Mn ≦ 5. 0%, the yield strength is 400 MPa or more, and the peak half width of the (211) plane in the X-ray diffraction profile measured on the steel sheet surface is 0.16 ° or less.

(2)質量%で、C:0.005%以下、Si:3.0%以上4.0%以下、Mn:3.0%以下、S:0.004%以下、sol.Al:0.1%以上1.5%以下、P:0.03%以上0.15%以下、Sn:0.001%以上0.15%以下を含有し、残部がFe及び不純物からなり、3.5%≦Si+Al+0.5×Mn≦5.0%であり、降伏強度が400MPa以上であり、鋼板表面で測定したX線回折プロファイルにおける(211)面のピーク半価幅が0.16°以下である、電磁鋼板。   (2) In mass%, C: 0.005% or less, Si: 3.0% or more and 4.0% or less, Mn: 3.0% or less, S: 0.004% or less, sol. Al: 0.1% to 1.5%, P: 0.03% to 0.15%, Sn: 0.001% to 0.15%, the balance being Fe and impurities, 3.5% ≦ Si + Al + 0.5 × Mn ≦ 5.0%, the yield strength is 400 MPa or more, and the peak half width of the (211) plane in the X-ray diffraction profile measured on the steel sheet surface is 0.16 °. The following is an electrical steel sheet.

<1.鋼の化学組成について>
以下では、まず、本実施形態に係る電磁鋼板の鋼の化学組成について、詳細に説明する。なお、以下では特に断りのない限り、「%」との表記は「質量%」を表わすものとする。また、本実施形態に係る電磁鋼板の鋼の化学組成において、以下で説明する元素以外の残部は、Feおよび不純物からなる。
<1. Chemical composition of steel>
Hereinafter, first, the chemical composition of the steel of the electromagnetic steel sheet according to the present embodiment will be described in detail. In the following, unless otherwise specified, the notation “%” means “% by mass”. In the chemical composition of the steel of the electromagnetic steel sheet according to the present embodiment, the balance other than the elements described below consists of Fe and impurities.

[C:0.005%以下]
C(炭素)は、鉄損劣化を引き起こす元素である。そこで、本実施形態に係る電磁鋼板では、Cの含有量の上限を0.005%とする。Cの含有量が0.005%超過となる場合、電磁鋼板において鉄損劣化が生じ、良好な磁気特性を得ることができないため、好ましくない。Cの含有量は、望ましくは0.004%以下であり、更に望ましくは0.003%以下である。なお、Cの含有量は、少ないほどよく、Cの含有量の下限値は特に限定されないが、例えば、0.0001%である。
[C: 0.005% or less]
C (carbon) is an element that causes iron loss deterioration. Therefore, in the magnetic steel sheet according to the present embodiment, the upper limit of the content of C is set to 0.005%. If the content of C exceeds 0.005%, iron loss is deteriorated in the electromagnetic steel sheet, and good magnetic properties cannot be obtained, which is not preferable. The content of C is desirably 0.004% or less, and more desirably 0.003% or less. The lower the C content, the better. The lower limit of the C content is not particularly limited, but is, for example, 0.0001%.

[Si:3.0%以上4.0%以下]
Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、電磁鋼板の高強度化にも有効な元素である。これらの効果を十分に発揮させるためには、3.0%以上のSiを含有させることが必要である。ただし、Siの含有量が4.0%超過となる場合、電磁鋼板の加工性が著しく劣化するため、例えば、電磁鋼板の冷間圧延が困難になる。そのため、Siの含有量の上限は、4.0%とする。Siの含有量は、望ましくは3.1%以上3.9%以下であり、更に望ましくは3.2%以上3.8%以下である。
[Si: 3.0% or more and 4.0% or less]
Si (silicon) is an element that increases the electrical resistance of steel to reduce eddy current loss and improve high-frequency iron loss. Further, Si has a large solid solution strengthening ability, and is therefore an effective element for increasing the strength of an electromagnetic steel sheet. In order to sufficiently exhibit these effects, it is necessary to contain 3.0% or more of Si. However, when the content of Si exceeds 4.0%, the workability of the magnetic steel sheet is significantly deteriorated, and thus, for example, it becomes difficult to cold-roll the magnetic steel sheet. Therefore, the upper limit of the content of Si is set to 4.0%. The content of Si is desirably from 3.1% to 3.9%, and more desirably from 3.2% to 3.8%.

[Mn:3.0%以下]
Mn(マンガン)は、鋼の電気抵抗を上昇させて渦電流損を低減し、高周波鉄損を改善するために有効な元素である。ただし、Mnの含有量が3.0%超過となる場合、磁束密度の低下が顕著となるため、Mnの含有量の上限は、3.0%とする。Mnの含有量は、望ましくは2.6%以下であり、更に望ましくは2.2%以下である。なお、Mnの含有量が少ない場合でも、SiおよびAlの含有量を高めて電気抵抗を高めれば、電磁鋼板の高周波鉄損を低減することができるので、Mnの含有量の下限値は特に限定されないが、例えば、0.01%である。
[Mn: 3.0% or less]
Mn (manganese) is an element effective for increasing the electric resistance of steel to reduce eddy current loss and improve high frequency iron loss. However, when the content of Mn exceeds 3.0%, the magnetic flux density is remarkably reduced, so the upper limit of the content of Mn is set to 3.0%. The Mn content is desirably 2.6% or less, and more desirably 2.2% or less. In addition, even when the content of Mn is small, if the electrical resistance is increased by increasing the content of Si and Al, the high-frequency iron loss of the magnetic steel sheet can be reduced, so the lower limit of the content of Mn is particularly limited. Although not performed, for example, it is 0.01%.

[sol.Al(酸可溶性Al):0.1%以上1.5%以下]
Al(アルミニウム)は、電磁鋼板の電気抵抗を上昇させることで渦電流損を低減し、高周波鉄損を改善するために有効な元素である。sol.Al(単に、Alとも称する)の含有量が0.1%未満である場合、電気抵抗上昇の効果が小さく、また、AlNが電磁鋼板中に微細に析出するため、結晶粒が微細となることで鉄損低減に悪影響を及ぼす。従って、Alの含有量の下限値は、0.1%とする。一方、Alの含有量が1.5%を超える場合、電磁鋼板の磁束密度の低下が著しい。従って、Alの含有量は、0.1%以上1.5%以下とした。Alの含有量は、望ましくは0.2%以上1.4%以下であり、更に望ましくは0.3%以上1.3%以下である。
[Sol. Al (acid-soluble Al): 0.1% or more and 1.5% or less]
Al (aluminum) is an element effective for increasing eddy current loss by increasing the electrical resistance of the electromagnetic steel sheet and improving high-frequency iron loss. sol. When the content of Al (also simply referred to as Al) is less than 0.1%, the effect of increasing the electric resistance is small, and AlN is finely precipitated in the magnetic steel sheet, so that the crystal grains become fine. Adversely affects iron loss. Therefore, the lower limit of the Al content is 0.1%. On the other hand, when the content of Al exceeds 1.5%, the magnetic flux density of the magnetic steel sheet significantly decreases. Therefore, the content of Al is set to 0.1% or more and 1.5% or less. The content of Al is desirably 0.2% or more and 1.4% or less, and more desirably 0.3% or more and 1.3% or less.

[P:0.03%以上0.15%以下]
P(リン)は、固溶強化能が大きく、加えて磁気特性の向上に有利な{100}集合組織を増加させる効果も有するため、高強度と高磁束密度とを両立するうえで極めて有効な元素である。更に、{100}集合組織の増加は、鋼板板面内の面内における機械特性の異方性を低減することに寄与するため、Pは、電磁鋼板の打抜き加工時の寸法精度を改善する効果も有する。このような強度、磁気特性、および寸法精度を改善する効果を得るためには、電磁鋼板にPを0.03%以上含有させることが必要である。ただし、Pの含有量が0.15%を超える場合、電磁鋼板の延性が著しく低下するため、Pの含有量の上限は、0.15%である。Pの含有量は、望ましくは0.04%以上0.14%以下であり、更に望ましくは0.05%以上0.13%以下である。
[P: 0.03% or more and 0.15% or less]
Since P (phosphorus) has a large solid solution strengthening ability and also has an effect of increasing {100} texture, which is advantageous for improving magnetic properties, it is extremely effective in achieving both high strength and high magnetic flux density. Element. Further, since the increase in the {100} texture contributes to reducing the anisotropy of the mechanical properties in the plane of the steel sheet, P is an effect of improving the dimensional accuracy at the time of punching of the electromagnetic steel sheet. Also have. In order to obtain the effect of improving such strength, magnetic properties, and dimensional accuracy, it is necessary that P be contained in the electromagnetic steel sheet in an amount of 0.03% or more. However, when the content of P exceeds 0.15%, the ductility of the magnetic steel sheet is significantly reduced, so the upper limit of the content of P is 0.15%. The content of P is desirably 0.04% or more and 0.14% or less, and more desirably 0.05% or more and 0.13% or less.

[S:0.004%以下]
S(硫黄)は、MnSを形成することで、電磁鋼板の磁気特性を劣化させる元素である。そのため、Sの含有量は0.004%以下とする。Sの含有量は、望ましくは0.003%以下であり、更に望ましくは0.002%以下である。Sの含有量は、少なければ少ないほどよく、Sの含有量の下限値は、特に限定されないが、例えば、0.0001%である。
[S: 0.004% or less]
S (sulfur) is an element that deteriorates the magnetic properties of the magnetic steel sheet by forming MnS. Therefore, the content of S is set to 0.004% or less. The content of S is desirably 0.003% or less, and more desirably 0.002% or less. The lower the content of S, the better. The lower limit of the content of S is not particularly limited, but is, for example, 0.0001%.

[Sn:0.001%以上0.15%以下]
Sn(スズ)は、仕上焼鈍時に、電磁鋼板の表層部の窒化および酸化の抑制することで、磁気特性を改善する元素である。そのため、本実施形態に係る電磁鋼板を構成する鋼は、さらにSnを含有してもよい。なお、上記の効果を得るためには、Snの含有量は、0.001%以上が必要である。一方、Snの含有量が0.15%超過となる場合、上記効果が飽和する。従って、本実施形態に係る電磁鋼板にSnが含有される場合、Snの含有量は、0.001%以上0.15%以下とする。Snの含有量は、望ましくは0.005%以上0.14%以下であり、更に望ましくは0.01%以上0.13%以下である。
[Sn: 0.001% or more and 0.15% or less]
Sn (tin) is an element that improves magnetic properties by suppressing nitriding and oxidation of the surface layer portion of the electromagnetic steel sheet during finish annealing. Therefore, the steel constituting the electromagnetic steel sheet according to the present embodiment may further contain Sn. In order to obtain the above effect, the content of Sn needs to be 0.001% or more. On the other hand, when the Sn content exceeds 0.15%, the above-described effect is saturated. Therefore, when Sn is contained in the electromagnetic steel sheet according to the present embodiment, the Sn content is 0.001% or more and 0.15% or less. The Sn content is desirably from 0.005% to 0.14%, and more desirably from 0.01% to 0.13%.

[Si+Al+0.5×Mn:3.5%以上5.0%以下]
鉄損(特に、高周波鉄損)を低減するためには、合金元素(Si、AlおよびMn)を添加して電気抵抗を高めることが有効である。そのため、本実施形態に係る電磁鋼板では、合金元素(Si、AlおよびMn)の含有量の和を上記範囲とすることが重要である。なお、Mnの含有量(単位%)当たりの電気抵抗の上昇量は、SiおよびAlに比べて約半分であるので、Si+Al+0.5×Mnを合金添加量の指標とした。Si+Al+0.5×Mnが3.5%未満となる場合、十分な電気抵抗が得られないため、電磁鋼板は、満足できるような高周波鉄損を実現することが困難になる。一方、Si+Al+0.5×Mnが5.0%を超える場合、合金元素が多すぎるため、電磁鋼板の磁束密度の低下が著しくなる。従って、Si+Al+0.5×Mnは、3.5%以上5.0%以下とする。Si+Al+0.5×Mnは、望ましくは3.6%以上4.9%以下であり、更に望ましくは3.7%以上4.8%以下である。
[Si + Al + 0.5 × Mn: 3.5% or more and 5.0% or less]
In order to reduce iron loss (especially high-frequency iron loss), it is effective to add an alloy element (Si, Al and Mn) to increase electric resistance. Therefore, in the electromagnetic steel sheet according to the present embodiment, it is important that the sum of the contents of the alloying elements (Si, Al, and Mn) is within the above range. Since the increase in electric resistance per Mn content (unit%) is about half that of Si and Al, Si + Al + 0.5 × Mn was used as an index of the alloy addition amount. If Si + Al + 0.5 × Mn is less than 3.5%, sufficient electrical resistance cannot be obtained, and it becomes difficult for the electromagnetic steel sheet to achieve satisfactory high-frequency iron loss. On the other hand, if Si + Al + 0.5 × Mn exceeds 5.0%, the alloy element is too large, and the magnetic flux density of the magnetic steel sheet is significantly reduced. Therefore, Si + Al + 0.5 × Mn is set to 3.5% or more and 5.0% or less. Si + Al + 0.5 × Mn is desirably 3.6% or more and 4.9% or less, and more desirably 3.7% or more and 4.8% or less.

なお、本実施形態に係る電磁鋼板において、上述した元素以外のNi(ニッケル)、Cr(クロム)、Cu(銅)、およびMo(モリブデン)等の元素の含有量に関しては、特に規定されない。本実施形態に係る電磁鋼板は、これらの元素を0.3%以下で含有しても特に問題はない。また、電磁鋼板の仕上焼鈍時の結晶粒成長を促進するために、本実施形態に係る電磁鋼板は、Ca(カルシウム)を30ppm以下の範囲で含有してもよく、希土類元素(Rare Earth Metal:REM)を100ppm以下の範囲で含有してもよい。さらに、本実施形態に係る電磁鋼板は、本発明の効果を妨げない範囲であれば、任意の元素を不純物として含有してもよい。   In the magnetic steel sheet according to this embodiment, the content of elements such as Ni (nickel), Cr (chromium), Cu (copper), and Mo (molybdenum) other than the above-described elements is not particularly limited. The electromagnetic steel sheet according to the present embodiment has no particular problem even if these elements are contained at 0.3% or less. Further, in order to promote crystal grain growth during finish annealing of the electrical steel sheet, the electrical steel sheet according to the present embodiment may contain Ca (calcium) in a range of 30 ppm or less, and rare earth elements (Rare Earth Metal: REM) in the range of 100 ppm or less. Furthermore, the electromagnetic steel sheet according to the present embodiment may contain any element as an impurity as long as the effect of the present invention is not impaired.

<2.降伏強度について>
[降伏強度:400MPa以上]
次に、本実施形態に係る電磁鋼板の降伏強度について説明する。
<2. About yield strength>
[Yield strength: 400 MPa or more]
Next, the yield strength of the electromagnetic steel sheet according to the present embodiment will be described.

近年、モータの小型化および高出力化のために、モータの回転数はますます増加する傾向にある。高速回転するロータ鉄心には、大きな遠心力、および繰り返し応力が付加されるため、ロータ鉄心の変形および疲労破壊の可能性が増大していた。   2. Description of the Related Art In recent years, the number of rotations of a motor tends to increase more and more in order to reduce the size and increase the output of the motor. Since a large centrifugal force and repetitive stress are applied to the rotor core rotating at high speed, the possibility of deformation and fatigue failure of the rotor core has increased.

このようなロータ鉄心の変形および疲労破壊を抑制するために、本実施形態に係る電磁鋼板の降伏強度は、400MPa以上とする。本実施形態に係る電磁鋼板の降伏強度は、望ましくは410MPa以上であり、更に望ましくは420MPa以上である。なお、ロータ鉄心の変形および疲労破壊をさらに抑制する観点から、電磁鋼板の降伏強度の上限は特に定めない。ただし、電磁鋼板の降伏強度が800MPaを超える場合、製造コストが高くなるため、望ましくない。   In order to suppress such deformation and fatigue fracture of the rotor core, the yield strength of the electromagnetic steel sheet according to the present embodiment is 400 MPa or more. The yield strength of the magnetic steel sheet according to the present embodiment is desirably 410 MPa or more, and more desirably 420 MPa or more. In addition, from the viewpoint of further suppressing the deformation and fatigue fracture of the rotor core, the upper limit of the yield strength of the magnetic steel sheet is not particularly defined. However, when the yield strength of the magnetic steel sheet exceeds 800 MPa, the manufacturing cost increases, which is not desirable.

電磁鋼板の降伏強度を高め、本発明の範囲とするためには、例えば、SiまたはPなどの固溶強化能が高い元素の含有量を増加させること、および電磁鋼板の結晶粒径を微細化することなどを用いればよい。ただし、結晶粒径を過度に微細化した場合、鉄損が劣化するため、結晶粒径は、強度と鉄損とが両立される適正な粒径に制御される必要がある。   In order to increase the yield strength of the electrical steel sheet and make it within the scope of the present invention, for example, it is necessary to increase the content of an element having a high solid solution strengthening ability such as Si or P, and to reduce the crystal grain size of the electrical steel sheet. May be used. However, if the crystal grain size is excessively reduced, iron loss deteriorates. Therefore, the crystal grain size needs to be controlled to an appropriate particle size that balances strength and iron loss.

なお、降伏強度は、例えばJIS Z 2241に記載された方法を用いることで測定することができる。例えば、電磁鋼板の上降伏点、または0.2%の永久伸びを起こすときの耐力である0.2%耐力を求めて、その値を用いればよい。   The yield strength can be measured, for example, by using a method described in JIS Z 2241. For example, the upper yield point of the electromagnetic steel sheet or the 0.2% proof stress that is the proof stress when a permanent elongation of 0.2% is caused may be obtained and used.

<3.X線回折プロファイルにおけるピーク半価幅について>
[(211)面のピーク半価幅:0.16°以下]
続いて、図1を参照して、本実施形態に係る電磁鋼板のX線回折プロファイルの形状について説明する。図1は、X線回折プロファイルにおけるピーク半価幅を説明する模式図である。
<3. Regarding peak half width in X-ray diffraction profile>
[Peak half width at (211) plane: 0.16 ° or less]
Subsequently, the shape of the X-ray diffraction profile of the magnetic steel sheet according to the present embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a peak half width in an X-ray diffraction profile.

半価幅とは、例えば、図1に示すようなX線回折プロファイルのピークにおいて、ピーク強度Ipの半分の強度(Ip/2)におけるピーク幅である。X線回折プロファイルにおけるピーク半価幅は、塑性歪みの発生と相関して増大することが知られている。上記相関は、様々な回折面で認められるが、本発明者らは、(211)面のピークにて鋭意検討したところ、ピーク半価幅の上限値を上記のようにすることが重要であることを見出した。   The half width is, for example, the peak width at half the peak intensity Ip (Ip / 2) in the peak of the X-ray diffraction profile as shown in FIG. It is known that the peak half width in the X-ray diffraction profile increases in correlation with the occurrence of plastic strain. Although the above correlation is observed on various diffraction planes, the present inventors have conducted intensive studies on the peak of the (211) plane, and it is important to set the upper limit of the peak half width as described above. I found that.

具体的には、質量%で、C:0.002%、Si:3.12%、Mn:0.26%、P:0.082%、S:0.001%、sol.Al:0.65%、Sn:0.03%を含有し、残部がFe及び不純物からなる0.30mm厚の電磁鋼板と、質量%で、C:0.002%、Si:3.10%、Mn:0.24%、P:0.010%、S:0.001%、sol.Al:0.62%、Sn:0.03%を含有し、残部がFe及び不純物からなる0.30mm厚の電磁鋼板とを打抜き加工して、打抜き加工後のロータ鉄心の寸法精度を調査した。   Specifically, in mass%, C: 0.002%, Si: 3.12%, Mn: 0.26%, P: 0.082%, S: 0.001%, sol. A 0.30 mm-thick electromagnetic steel sheet containing 0.65% of Al and 0.03% of Sn and the balance of Fe and impurities, C: 0.002%, and Si: 3.10% by mass% , Mn: 0.24%, P: 0.010%, S: 0.001%, sol. A 0.30 mm-thick electromagnetic steel sheet containing 0.62% of Al and 0.03% of Sn and the balance of Fe and impurities was punched, and the dimensional accuracy of the punched rotor core was investigated. .

なお、仕上焼鈍の温度、張力、および冷却速度を調整することで、前者の電磁鋼板の降伏強度を425MPa〜435MPaの範囲に制御し、後者の電磁鋼板の降伏強度を385MPa〜395MPaの範囲に制御した。また、それぞれ(211)面のピーク半価幅を変化させて電磁鋼板を製造し、それぞれ打抜き加工を行った。   The yield strength of the former magnetic steel sheet is controlled in a range of 425 MPa to 435 MPa, and the yield strength of the latter magnetic steel sheet is controlled in a range of 385 MPa to 395 MPa by adjusting the temperature, tension, and cooling rate of the finish annealing. did. In addition, magnetic steel sheets were manufactured by changing the peak half-value width of the (211) plane, respectively, and punching was performed.

その結果を図2に示す。図2は、打抜き加工時の寸法精度に対する降伏強度、および(211)面のピーク半価幅の影響を示すグラフ図である。   The result is shown in FIG. FIG. 2 is a graph showing the influence of the yield strength on the dimensional accuracy at the time of punching and the peak half width of the (211) plane.

図2に示すように、降伏強度が430MPa前後の電磁鋼板では、半価幅が0.16°を超える場合、鉄心の寸法精度のばらつきが大きくなることがわかった。一方、降伏強度が390MPa前後の電磁鋼板では、半価幅によって寸法精度に大きな差が認められなかった。すなわち、X線回折における(211)面のピーク半価幅は、仕上焼鈍時後の電磁鋼板に付与された不均一な歪みの大きさを示す指標と考えられる。   As shown in FIG. 2, it has been found that in the case of a magnetic steel sheet having a yield strength of around 430 MPa, when the half-value width exceeds 0.16 °, the dimensional accuracy of the iron core varies greatly. On the other hand, in the electrical steel sheet having a yield strength of about 390 MPa, no large difference in dimensional accuracy was recognized depending on the half width. That is, the peak half width of the (211) plane in the X-ray diffraction is considered to be an index indicating the magnitude of the non-uniform strain applied to the magnetic steel sheet after the finish annealing.

降伏強度が高い電磁鋼板では、打抜き加工時の荷重が増大するが、半価幅が大きい電磁鋼板では、さらに付与された不均一な歪みが大きいため、金型が当たる場所での荷重の変化が大きくなる。これにより、降伏強度が高く、かつ半価幅が大きい電磁鋼板では、打抜き加工時の寸法精度に差が生じる可能性があると考えられる。   In the case of magnetic steel sheets with high yield strength, the load at the time of punching increases, but in the case of magnetic steel sheets with a large half-value width, the applied non-uniform strain is large, so the load change at the place where the mold hits is large. growing. Thus, it is considered that there is a possibility that a difference in dimensional accuracy at the time of punching may occur in an electromagnetic steel sheet having a high yield strength and a large half-value width.

そこで、本発明では、電磁鋼板のX線回折プロファイルにおける(211)面のピーク半価幅の上限を0.16°とする。(211)面のピーク半価幅は、望ましくは0.15°以下であり、更に望ましくは0.14°以下である。(211)面のピーク半価幅の下限は特に定めないが、電磁鋼板に対して、仕上焼鈍後に750℃で2時間の歪取焼鈍を行った場合でも、(211)面のピーク半価幅は、0.05°未満とはならなかった。そのため、(211)面のピーク半価幅の下限は、例えば、0.05°としてもよい。   Therefore, in the present invention, the upper limit of the peak half width of the (211) plane in the X-ray diffraction profile of the magnetic steel sheet is set to 0.16 °. The peak half width of the (211) plane is desirably 0.15 ° or less, and more desirably 0.14 ° or less. Although the lower limit of the peak half width of the (211) plane is not particularly defined, the peak half width of the (211) plane can be obtained even when the magnetic steel sheet is subjected to strain relief annealing at 750 ° C. for 2 hours after finish annealing. Did not fall below 0.05 °. Therefore, the lower limit of the peak half width of the (211) plane may be, for example, 0.05 °.

また、電磁鋼板のX線回折プロファイルにおける(211)面のピーク半価幅は、例えば、仕上焼鈍の炉内張力または熱履歴等により、制御することが可能である。例えば、仕上焼鈍の炉内張力および冷却速度を低くすることによって、電磁鋼板の(211)面のピーク半価幅を小さくすることが可能である。   Further, the peak half width of the (211) plane in the X-ray diffraction profile of the magnetic steel sheet can be controlled by, for example, furnace tension or heat history of finish annealing. For example, the peak half-value width of the (211) plane of the magnetic steel sheet can be reduced by lowering the in-furnace tension and the cooling rate in the finish annealing.

なお、ロータ鉄心の打抜き加工の条件は、以下の通りである。打抜かれるロータ鉄心の形状は、8極の永久磁石埋め込み型モータのロータ鉄心の形状とし、外径160mmの円盤状とした。また、打抜き金型のクリアランスは、打抜く電磁鋼板の板厚の8%とした。打抜き加工後、打抜いたロータ鉄心の外径寸法を測定し、狙いの外径寸法160mmと、測定された外形寸法との差の最大値をロータ鉄心の外径バラツキと見なし、寸法精度の指標とした。   The conditions for punching the rotor core are as follows. The shape of the punched rotor core was the same as the rotor core of an 8-pole permanent magnet embedded motor, and was a disk shape with an outer diameter of 160 mm. The clearance of the punching die was 8% of the thickness of the magnetic steel sheet to be punched. After punching, the outer diameter of the punched rotor core is measured, and the maximum value of the difference between the target outer diameter 160 mm and the measured outer dimension is regarded as the outer diameter variation of the rotor core, and an index of dimensional accuracy. And

以上、本実施形態に係る電磁鋼板について、詳細に説明した。   As above, the electromagnetic steel sheet according to the present embodiment has been described in detail.

なお、本実施形態に係る電磁鋼板の製造方法については、特に限定されるものではなく、一般的な電磁鋼板の製造プロセスを適用することが可能である。すなわち、上記にて説明した成分を含有する鋼スラブを熱間圧延し、熱間圧延後そのままの熱延板、または熱間圧延した後、熱延板焼鈍した熱延板を冷間圧延し、仕上焼鈍を行った後、絶縁被膜の塗布を行うことにより、本実施形態に係る電磁鋼板を製造することができる。なお、冷間圧延は、一回の冷間圧延で行ってもよく、中間焼鈍を挟んだ二回の冷間圧延で行ってもよい。   The method for manufacturing the magnetic steel sheet according to the present embodiment is not particularly limited, and a general manufacturing process for a magnetic steel sheet can be applied. That is, the steel slab containing the components described above is hot-rolled, the hot-rolled sheet as it is after hot rolling, or hot-rolled, and then hot-rolled annealed hot-rolled sheet is cold-rolled, After performing the finish annealing, the electromagnetic steel sheet according to the present embodiment can be manufactured by applying the insulating coating. Note that the cold rolling may be performed by one cold rolling, or may be performed by two cold rollings sandwiching the intermediate annealing.

以下に、実験例を示しながら、本発明の一実施形態に係る電磁鋼板について、より具体的に説明する。なお、以下に示す実験例は、本実施形態に係る電磁鋼板のあくまでも一例に過ぎず、本実施形態に係る電磁鋼板が以下に示す実験例に限定されるものではない。   Hereinafter, the electromagnetic steel sheet according to an embodiment of the present invention will be described more specifically with reference to experimental examples. The experimental examples described below are merely examples of the electromagnetic steel sheet according to the present embodiment, and the electromagnetic steel sheets according to the present embodiment are not limited to the experimental examples described below.

ここで、以下で示す磁束密度B50、および鉄損W10/800といった磁気特性の測定方法については、特に限定されるものではなく、例えば、JIS C 2550に規定されているエプスタイン試験に基づく方法、またはJIS C 2556に規定されている単板磁気特性試験法(Single Sheet Tester:SST)など、公知の方法を用いることが可能である。なお、磁束密度B50は、5000A/mの磁化力での磁束密度であり、鉄損W10/800は、1.0T、800Hzの高周波での鉄損である。 Here, the method for measuring the magnetic properties such as the magnetic flux density B 50 and the iron loss W 10/800 shown below is not particularly limited. For example, a method based on the Epstein test specified in JIS C 2550 Or, a known method such as a single sheet tester (SST) specified in JIS C 2556 can be used. The magnetic flux density B 50 is the magnetic flux density at a magnetization force of 5000 A / m, and the iron loss W 10/800 is the iron loss at a high frequency of 1.0 T and 800 Hz.

以下の実施例では、55mm角に打抜いた試験片を用いた単板磁気測定(SST)によって、電磁鋼板の磁気特性(例えば、磁束密度および鉄損)を評価した。モータ鉄心では、電磁鋼板の板面の色々な方向に磁束が流れるため、モータ鉄心での磁気特性を評価するために、圧延方向に対して、0°、22.5°、45°、67.5°、90°の5方向の磁気特性を測定し、以下の式で全周平均の磁気特性を算出した。すなわち、以下の式で表される磁気特性が良好なほど、優れた無方向性電磁鋼板であり、モータ鉄心として好適であることを示す。   In the following examples, the magnetic properties (for example, magnetic flux density and iron loss) of the magnetic steel sheet were evaluated by single-plate magnetic measurement (SST) using a test piece punched into a 55 mm square. In the motor core, magnetic flux flows in various directions on the plate surface of the electromagnetic steel sheet. Therefore, in order to evaluate the magnetic characteristics of the motor core, 0 °, 22.5 °, 45 °, 67. The magnetic characteristics in five directions of 5 ° and 90 ° were measured, and the average magnetic characteristics over the entire circumference were calculated by the following equation. That is, the better the magnetic properties represented by the following formulas, the better the non-oriented electrical steel sheet, and the more suitable it is as a motor core.

磁気特性=(0°特性+2×22.5°特性+2×45°特性+2×67.5°特性+90°特性)/8   Magnetic property = (0 ° property + 2 × 22.5 ° property + 2 × 45 ° property + 2 × 67.5 ° property + 90 ° property) / 8

(実験例1)
以下の表1に示す組成を含有し、残部がFeおよび不純物からなる鋼スラブを、1150℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延板に1000℃で40秒の熱延板焼鈍を行った後、冷間圧延で0.25mm厚に圧延した。冷延板を1000℃で1秒間均熱した後に、900℃までの冷却速度を1℃/秒または30℃/秒とする仕上焼鈍を行った。更に、仕上焼鈍後の鋼板の両面に、リン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布および焼き付けし、複合絶縁被膜を形成することで電磁鋼板を製造した。
(Experimental example 1)
A steel slab containing the composition shown in Table 1 below, the balance being Fe and impurities, was heated to 1150 ° C. and then hot-rolled to a thickness of 2.0 mm. Subsequently, the hot-rolled sheet was annealed at 1000 ° C. for 40 seconds, and then cold-rolled to a thickness of 0.25 mm. After soaking the cold-rolled sheet at 1000 ° C. for 1 second, finish annealing was performed at a cooling rate of 1 ° C./sec or 30 ° C./sec to 900 ° C. Furthermore, on both surfaces of the steel sheet after the finish annealing, a solution mainly containing a metal phosphate and containing an emulsion of an acrylic resin was applied and baked on both sides of the steel sheet to form a composite insulating film, thereby producing an electromagnetic steel sheet.

なお、仕上焼鈍には、炉内フローターにより鋼板を浮上状態で走行させることが可能なフローティング式連続焼鈍炉を用いた。本実験例では、仕上焼鈍の冷却速度を変化させることで、電磁鋼板のX線回折におけるピーク半価幅を制御した。900℃以上の鋼板は、強度が低いため、鋼板面内で温度差がつきにくい低冷却速度の方が鋼板に歪みが付加されにくく、X線回折において低いピーク半価幅を確保することができる。本実施形態に係る電磁鋼板のピーク半価幅を達成するためには、仕上焼鈍の冷却速度は、20℃/秒以下が望ましく、15℃/秒以下がさらに望ましい。   For the finish annealing, a floating type continuous annealing furnace capable of running a steel sheet in a floating state by an in-furnace floater was used. In this experimental example, the peak half width in X-ray diffraction of the magnetic steel sheet was controlled by changing the cooling rate of the finish annealing. Since a steel sheet having a temperature of 900 ° C. or more has a low strength, a low cooling rate at which a temperature difference does not easily occur in the plane of the steel sheet is less likely to add distortion to the steel sheet, and a low peak half width in X-ray diffraction can be secured. . In order to achieve the peak half width of the magnetic steel sheet according to the present embodiment, the cooling rate of the finish annealing is desirably 20 ° C./sec or less, more desirably 15 ° C./sec or less.

Figure 0006658150
Figure 0006658150

なお、表1において、「Tr.」とは、該当する元素を意図して添加していないことを表す。   In Table 1, “Tr.” Indicates that the corresponding element was not added intentionally.

その後、製造した電磁鋼板を55mm角に打ち抜き、単板磁気測定(SST)により磁束密度B50および鉄損W10/800を評価した。また、寸法精度の評価に関しては、前述したように、製造した電磁鋼板を外径160mmのロータ鉄心の形状に打抜き、打抜いたロータ鉄心の外径寸法と、狙いの外径寸法である160mmとの差の最大値をロータ鉄心の外径バラツキとした。なお、打抜き金型のクリアランスは、打抜く電磁鋼板の板厚の8%に設定した。外径バラツキが32μm以下である場合を寸法精度が良好(○)であると評価し、外径バラツキが32μmを超える場合を寸法精度が不良(×)であると評価した。得られた結果を、以下の表2に示す。 Thereafter, punching electromagnetic steel plates manufactured in 55mm square was evaluated flux density B 50 and the iron loss W 10/800 by veneer magnetic measurements (SST). In addition, regarding the evaluation of the dimensional accuracy, as described above, the manufactured electromagnetic steel sheet was punched into a rotor core shape having an outer diameter of 160 mm, and the outer diameter of the punched rotor core and the target outer diameter of 160 mm. The maximum value of the difference was determined as the outer diameter variation of the rotor core. The clearance of the punching die was set to 8% of the thickness of the magnetic steel sheet to be punched. When the outer diameter variation was 32 μm or less, the dimensional accuracy was evaluated as good (○), and when the outer diameter variation exceeded 32 μm, the dimensional accuracy was evaluated as poor (×). The results obtained are shown in Table 2 below.

Figure 0006658150
Figure 0006658150

表2に示すように、鋼板の組成、ピーク半価幅、および降伏強度が本発明の範囲である試験番号1、3、6、7、および9〜11は、鉄損および磁束密度がともに優れ、打抜き加工時の寸法精度が良好であることがわかった。一方、鋼板の化学組成が本発明の範囲であっても、(211)面のピーク半価幅が本発明の範囲から高めに外れた試験番号2および4では、磁束密度に優れるものの、打抜き加工時の寸法精度が劣っていることがわかった。また、鋼板のSiの含有量と、Si+Al+0.5×Mnの含有量とが本発明の範囲より低く、降伏強度が本発明の範囲を下回る試験番号5は、鉄損も劣っていることがわかった。   As shown in Table 2, the test numbers 1, 3, 6, 7, and 9 to 11 in which the composition, the peak half width, and the yield strength of the steel sheet are in the range of the present invention have excellent iron loss and magnetic flux density. It was found that the dimensional accuracy at the time of punching was good. On the other hand, even when the chemical composition of the steel sheet is within the range of the present invention, in Test Nos. 2 and 4, in which the peak half-value width of the (211) plane deviated from the range of the present invention, the magnetic flux density was excellent, The dimensional accuracy at the time was found to be inferior. In addition, it was found that in Test No. 5 in which the content of Si and the content of Si + Al + 0.5 × Mn of the steel sheet were lower than the range of the present invention and the yield strength was lower than the range of the present invention, the iron loss was inferior. Was.

(実験例2)
以下の表3に示す組成を含有し、残部がFeおよび不純物からなる鋼スラブを、1100℃に加熱した後、熱間圧延にて1.8mm厚に圧延した。次に、熱延板に975℃で40秒の熱延板焼鈍を行った後、冷間圧延で0.20mm厚に圧延した。続いて、冷延板を950℃で80秒間均熱した後に、900℃までの冷却速度を2℃/秒とする仕上焼鈍を行った。更に、仕上焼鈍後の鋼板の両面に、リン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布および焼き付けし、複合絶縁被膜を形成することで電磁鋼板を製造した。なお、仕上焼鈍には、実験例1と同様のフローティング式連続焼鈍炉を用いた。
(Experimental example 2)
A steel slab containing the composition shown in Table 3 below, the balance being Fe and impurities, was heated to 1100 ° C. and then hot-rolled to a thickness of 1.8 mm. Next, the hot-rolled sheet was annealed at 975 ° C. for 40 seconds, and then cold-rolled to a thickness of 0.20 mm. Subsequently, after the cold-rolled sheet was soaked at 950 ° C. for 80 seconds, finish annealing was performed at a cooling rate of 2 ° C./sec to 900 ° C. Furthermore, a solution mainly containing a metal phosphate and containing an emulsion of an acrylic resin was applied and baked on both sides of the steel sheet after finish annealing on both sides of the steel sheet to form a composite insulating film, thereby producing an electromagnetic steel sheet. Note that, for the finish annealing, the same floating type continuous annealing furnace as that in Experimental Example 1 was used.

なお、実験例2は、実験例1よりも電磁鋼板の板厚が薄いため、渦電流損が小さく、鉄損がより小さい場合の実験例である。実験例2を参照すると、本発明の一実施形態に係る電磁鋼板は、板厚に関係なく、磁気特性、機械強度および打抜き加工時の寸法精度を改善可能であることがわかる。   Experimental Example 2 is an experimental example in which the eddy current loss is small and the iron loss is small because the thickness of the electromagnetic steel sheet is smaller than that of Experimental Example 1. Referring to Experimental Example 2, it can be seen that the magnetic steel sheet according to one embodiment of the present invention can improve magnetic properties, mechanical strength, and dimensional accuracy at the time of punching, regardless of the sheet thickness.

Figure 0006658150
Figure 0006658150

なお、表3において、「Tr.」とは、該当する元素を意図して添加していないことを表す。   In Table 3, “Tr.” Means that the corresponding element was not added intentionally.

その後、製造した電磁鋼板を55mm角に打ち抜き、実験例1と同様の方法で単板磁気測定(SST)により磁束密度B50および鉄損W10/800を評価した。また、実験例1と同様の方法で電磁化鋼板を打ち抜き加工し、実験例1と同様に寸法精度の評価を行った。得られた結果を以下の表4に示す。 Thereafter, punching electromagnetic steel plates manufactured in 55mm square was evaluated flux density B 50 and the iron loss W 10/800 by veneer magnetic measurements in the same manner as in Experimental Example 1 (SST). Further, the electromagnetic steel sheet was stamped out in the same manner as in Experimental Example 1, and the dimensional accuracy was evaluated as in Experimental Example 1. The results obtained are shown in Table 4 below.

Figure 0006658150
Figure 0006658150

表4に示すように、鋼板の組成、ピーク半価幅、および降伏強度が本発明の範囲である試験番号13、14および15は、鉄損および磁束密度がともに優れ、打抜き加工時の寸法精度が良好であることがわかった。一方、Si+Al+0.5×Mnの含有量が本発明の範囲よりも低めに外れた試験番号12は、鉄損が劣っていることがわかった。   As shown in Table 4, Test Nos. 13, 14 and 15, in which the composition, peak half width and yield strength of the steel sheet are within the scope of the present invention, are excellent in both iron loss and magnetic flux density, and have dimensional accuracy during punching. Was found to be good. On the other hand, in Test No. 12, in which the content of Si + Al + 0.5 × Mn was lower than the range of the present invention, it was found that iron loss was inferior.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
As described above, the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that those skilled in the art to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.

Claims (2)

質量%で、C:0.005%以下、Si:3.0%以上4.0%以下、Mn:3.0%以下、S:0.004%以下、sol.Al:0.1%以上1.5%以下、P:0.03%以上0.15%以下を含有し、残部がFe及び不純物からなり、
3.5%≦Si+sol.Al+0.5×Mn≦5.0%であり、
降伏強度が400MPa以上であり、
鋼板表面で測定したX線回折プロファイルにおける(211)面のピーク半価幅が0.16°以下である、電磁鋼板。
In mass%, C: 0.005% or less, Si: 3.0% or more and 4.0% or less, Mn: 3.0% or less, S: 0.004% or less, sol. Al: 0.1% or more and 1.5% or less, P: 0.03% or more and 0.15% or less, the balance being Fe and impurities,
3.5% ≦ Si + sol. Al + 0.5 × Mn ≦ 5.0%,
The yield strength is 400 MPa or more;
An electromagnetic steel sheet, wherein the peak half width of the (211) plane in the X-ray diffraction profile measured on the steel sheet surface is 0.16 ° or less.
質量%で、C:0.005%以下、Si:3.0%以上4.0%以下、Mn:3.0%以下、S:0.004%以下、sol.Al:0.1%以上1.5%以下、P:0.03%以上0.15%以下、Sn:0.001%以上0.15%以下を含有し、残部がFe及び不純物からなり、
3.5%≦Si+Al+0.5×Mn≦5.0%であり、
降伏強度が400MPa以上であり、
鋼板表面で測定したX線回折プロファイルにおける(211)面のピーク半価幅が0.16°以下である、電磁鋼板。

In mass%, C: 0.005% or less, Si: 3.0% or more and 4.0% or less, Mn: 3.0% or less, S: 0.004% or less, sol. Al: 0.1% to 1.5%, P: 0.03% to 0.15%, Sn: 0.001% to 0.15%, the balance being Fe and impurities,
3.5% ≦ Si + Al + 0.5 × Mn ≦ 5.0%,
The yield strength is 400 MPa or more;
An electromagnetic steel sheet, wherein the peak half width of the (211) plane in the X-ray diffraction profile measured on the steel sheet surface is 0.16 ° or less.

JP2016052147A 2016-03-16 2016-03-16 Magnetic steel sheet Active JP6658150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052147A JP6658150B2 (en) 2016-03-16 2016-03-16 Magnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052147A JP6658150B2 (en) 2016-03-16 2016-03-16 Magnetic steel sheet

Publications (2)

Publication Number Publication Date
JP2017166023A JP2017166023A (en) 2017-09-21
JP6658150B2 true JP6658150B2 (en) 2020-03-04

Family

ID=59912709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052147A Active JP6658150B2 (en) 2016-03-16 2016-03-16 Magnetic steel sheet

Country Status (1)

Country Link
JP (1) JP6658150B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469268B2 (en) * 2004-12-20 2010-05-26 新日本製鐵株式会社 Manufacturing method of high strength electrical steel sheet
JP5126787B2 (en) * 2008-07-11 2013-01-23 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet for rotor
BR112012004904B1 (en) * 2009-09-03 2018-09-25 Nippon Steel & Sumitomo Metal Corp non oriented electromagnetic steel sheet
JP2011084761A (en) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP5614063B2 (en) * 2010-03-11 2014-10-29 新日鐵住金株式会社 High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
US20140373340A1 (en) * 2011-09-16 2014-12-25 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof

Also Published As

Publication number Publication date
JP2017166023A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US11279985B2 (en) Non-oriented electrical steel sheet
JP6866935B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
JPWO2018164185A1 (en) Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2015199211A1 (en) Electrical steel sheet
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5699642B2 (en) Motor core
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP2010121150A (en) Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same
JP2020509184A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6606988B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP7143900B2 (en) Non-oriented electrical steel sheet
WO2014024222A1 (en) High-strength electromagnetic steel sheet and method for producing same
JP7143901B2 (en) Non-oriented electrical steel sheet
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
WO2020149405A1 (en) Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
JP3815336B2 (en) Non-oriented electrical steel sheet
JP5671869B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011236486A (en) Non-grain-oriented electrical steel sheet, and method of producing the same
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2004339603A (en) High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP6658150B2 (en) Magnetic steel sheet
JP6724478B2 (en) Non-oriented electrical steel sheet, motor core, and method for manufacturing non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151