JP4469268B2 - Manufacturing method of high strength electrical steel sheet - Google Patents

Manufacturing method of high strength electrical steel sheet Download PDF

Info

Publication number
JP4469268B2
JP4469268B2 JP2004367338A JP2004367338A JP4469268B2 JP 4469268 B2 JP4469268 B2 JP 4469268B2 JP 2004367338 A JP2004367338 A JP 2004367338A JP 2004367338 A JP2004367338 A JP 2004367338A JP 4469268 B2 JP4469268 B2 JP 4469268B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
electrical steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004367338A
Other languages
Japanese (ja)
Other versions
JP2006169611A (en
Inventor
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004367338A priority Critical patent/JP4469268B2/en
Priority to TW95121897A priority patent/TW200801208A/en
Publication of JP2006169611A publication Critical patent/JP2006169611A/en
Application granted granted Critical
Publication of JP4469268B2 publication Critical patent/JP4469268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、高強度電磁鋼板、特に高強度無方向性電磁鋼板に係わり、高速回転機用の低鉄損、かつ高磁束密度で強度の高い磁性材料および電磁開閉器用の耐摩耗性に優れた磁性材料とその製造方法に関する。   The present invention relates to a high-strength electrical steel sheet, particularly a high-strength non-oriented electrical steel sheet, and is excellent in low iron loss for high-speed rotating machines, high magnetic material with high magnetic flux density and high wear resistance for electromagnetic switches. The present invention relates to a magnetic material and a manufacturing method thereof.

従来、ローター(回転子)用材料には積層された電磁鋼板が用いられてきたが、最近、高速回転やローター径の大型化が要求される用途では、ローターに加わる遠心力が、電磁鋼板の強度を上回る可能性が出てきた。さらにローターに磁石を組み込む構造のモーターも多くなっており、回転数はそれほど高くなくともローターの回転中にローター材料自身に加わる荷重は大きなものとなっており、疲労強度の面でも材料の強さが問題となることが多くなっている。   Conventionally, laminated electromagnetic steel sheets have been used for rotor (rotor) materials. Recently, in applications where high-speed rotation or an increase in rotor diameter is required, the centrifugal force applied to the rotor is reduced. The possibility of exceeding the strength has come out. In addition, there are many motors with a structure that incorporates magnets in the rotor, and even if the rotation speed is not so high, the load applied to the rotor material itself during rotation of the rotor is large, and the strength of the material is also in terms of fatigue strength Is becoming a problem.

また、電磁開閉器はその用途上、使用するにつれて接触面が摩耗するため、電磁特性だけでなく耐摩耗性の優れた磁性材料が望まれる。   In addition, because the contact surface of the electromagnetic switch is worn as it is used, a magnetic material having excellent wear resistance as well as electromagnetic characteristics is desired.

このようなニーズに対応して、最近では強度が高い無方向性電磁鋼板について検討され、いくつか提案されている。例えば、特許文献1や特許文献2では、Si含有量を高め、さらにMn,Ni,Mo,Crなどの固溶体強化成分の1種または2種以上を含有させたスラブを素材とすることが提案されているが、圧延時に板破断の発生が頻発する恐れがあり、生産性の低下、歩留りの低下をもたらすなど改善の余地があり、しかもNiやMo,Crを多量に含有しているために極めて高価な材料となる。   In response to such needs, recently, non-oriented electrical steel sheets with high strength have been studied and several proposals have been made. For example, in Patent Document 1 and Patent Document 2, it is proposed to use a slab having a high Si content and further containing one or more solid solution strengthening components such as Mn, Ni, Mo, and Cr. However, there is a risk that sheet breakage may occur frequently during rolling, and there is room for improvement such as a decrease in productivity and a decrease in yield, and since it contains a large amount of Ni, Mo, and Cr, it is extremely It becomes an expensive material.

特開平1−162748号公報JP-A-1-162748 特開昭61−84360号公報JP-A-61-84360

以上のように、高強度の電磁鋼板について多くの提案がなされているが、必要な磁気特性を確保しつつ、通常の電磁鋼板製造設備を用いて、工業的に安定して製造するまでに到っていないというのが実情である。このような中で本発明者は鋼板中に加工組織を残存させた高強度電磁鋼板について特願2003−347084号で特許出願を行った。   As described above, many proposals have been made for high-strength electrical steel sheets, but it has been necessary to achieve stable industrial production using ordinary electrical steel sheet manufacturing equipment while ensuring necessary magnetic properties. The fact is that it is not. Under such circumstances, the present inventor has filed a patent application in Japanese Patent Application No. 2003-347084 for a high-strength electrical steel sheet in which a processed structure remains in the steel sheet.

この技術は結晶組織中に加工組織を残存させても、磁気特性はそれほど劣化するものではなく、強度の上昇効果を考慮すれば、従来の固溶元素や析出物で強化した材料に見劣りするものではないばかりか、生産性や磁気特性、特に磁束密度の板面内異方性を考慮すれば、非常に有用な技術であることを知見してなされたものである。しかし、加工組織を有する電磁鋼板については、磁気特性と機械的特性のバランスを如何にして向上させるかに関して、明確なメタラジーは確立されておらず、この点でこの技術が最適なものであるとの確証は得られていない。   Even if the processed structure remains in the crystal structure, this technology does not deteriorate the magnetic characteristics so much, and considering the effect of increasing the strength, it is inferior to the conventional material strengthened with solid solution elements and precipitates. Not only that, but it has been found out that it is a very useful technique in consideration of productivity and magnetic characteristics, particularly in-plane anisotropy of magnetic flux density. However, no clear metallurgy has been established for how to improve the balance between magnetic properties and mechanical properties for electrical steel sheets having a processed structure, and this technology is optimal in this respect. No confirmation has been obtained.

本発明者は、この点を明確にするため、特に圧延前の組織の影響に関して詳細な実験を行い、加工組織を有する電磁鋼板において、磁気特性と機械的特性の両立を図るに最適な領域があることを知見し、さらに生産性、特に鋼帯の通板性をも考慮して、工業的に最適な範囲を設定することに成功した。   In order to clarify this point, the present inventor conducted detailed experiments especially on the influence of the structure before rolling, and in an electrical steel sheet having a processed structure, there is an optimum region for achieving both magnetic properties and mechanical properties. As a result, we have succeeded in setting an industrially optimal range in consideration of productivity, especially the steel plate threadability.

本発明は、抗張力(TS)が例えば500MPa以上の高強度で、耐摩耗性を有するとともに、特に高速で回転するモーターなど高い周波数の磁場下で使用される際に磁束密度(B50)や鉄損など優れた磁気特性を兼ね備えた高強度無方向性電磁鋼板を例えば冷間圧延性や焼鈍作業性など通常の電磁鋼板と変わることなく、安定してオンラインで製造することを目的とする。 The present invention has a high tensile strength (TS) of, for example, 500 MPa or more, wear resistance, and magnetic flux density (B 50 ) or iron when used in a high frequency magnetic field such as a motor that rotates at high speed. It is an object of the present invention to stably manufacture a high-strength non-oriented electrical steel sheet having excellent magnetic properties such as loss and on-line without changing from a normal electrical steel sheet such as cold rolling property and annealing workability.

本発明は上記課題を解決するためになされたものであり、その要旨は以下のとおりである。
(1)質量%で、C:0.060%以下、Si:0.2〜4.0%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、鋼板内部に再結晶組織に蚕食されていない領域あるいは再結晶組織をさらに加工することで得られる組織である加工組織が残存する高強度電磁鋼板の製造方法において、最終的に鋼板内部に残存する前記加工組織を形成する工程の直前における鋼板の平均結晶粒径dを20μm以上とするとともに該鋼板の再結晶率を100%とし、前記加工組織が断面観察における面積率で20%以上であることを特徴とする電磁鋼板の製造方法。
(2)質量%で、C:0.060%以下、Si:0.2〜4.0%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、鋼板内部に再結晶組織に蚕食されていない領域あるいは再結晶組織をさらに加工することで得られる組織である加工組織が残存する高強度電磁鋼板の製造方法において、最終的に鋼板内部に残存する前記加工組織を形成する工程の直前における鋼板の平均結晶粒径d(μm)を、d≧(220−50×Si%)、とするとともに該鋼板の再結晶率を100%とし、前記加工組織が断面観察における面積率で20%以上であることを特徴とする電磁鋼板の製造方法。
(3)最終的に鋼板内部に残存する前記加工組織を形成する工程の直前における鋼板の平均結晶粒径d(μm)を、d≦(400−50×Si%)、かつ、d≦(820−200×Si%)、とすることを特徴とする(1)もしくは(2)に記載の電磁鋼板の製造方法。
)鋼成分が質量%で、さらに、Cu:0.1〜8.0%、Nb:0.03〜8.0%の一種以上を含有することを特徴とする(1)〜()のいずれかの項に記載の電磁鋼板の製造方法。
)鋼成分が質量%で、さらに、Ti:1.0%以下、B:0.010%以下、Ni:5.0%以下、Cr:15.0%以下の1種または2種以上を含有することを特徴とする(1)〜()のいずれかの項に記載の電磁鋼板の製造方法。
)鋼成分が質量%で、さらに、Sn,Ceの1種または2種以上を合計で0.5%以下含有することを特徴とする(1)〜()のいずれかの項に記載の電磁鋼板の製造方法。
)前記鋼板内部の前記加工組織における平均転位密度が1exp13/m2以上であることを特徴とする(1)〜()のいずれかの項に記載の電磁鋼板の製造方法。
The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.
(1) By mass%, C: 0.060% or less, Si: 0.2-4.0%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040 % Or less, Al: 2.50% or less, N: 0.020% or less, consisting of the remainder Fe and inevitable impurities, and further processing the region or recrystallized structure that is not eroded by the recrystallized structure inside the steel plate In the method for manufacturing a high-strength electrical steel sheet in which the processed structure that is the structure obtained by the process is left, the average crystal grain size d of the steel sheet immediately before the step of forming the processed structure finally remaining inside the steel sheet is 20 μm or more. And the recrystallization rate of the steel sheet is 100%, and the processed structure is 20% or more in terms of the area ratio in cross-sectional observation.
(2) By mass%, C: 0.060% or less, Si: 0.2-4.0%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040 % Or less, Al: 2.50% or less, N: 0.020% or less, consisting of the remainder Fe and inevitable impurities, and further processing the region or recrystallized structure that is not eroded by the recrystallized structure inside the steel plate In the method for producing a high-strength electrical steel sheet in which the processed structure that is the structure obtained by the process is left, the average crystal grain size d (μm) of the steel sheet immediately before the step of forming the processed structure finally remaining inside the steel sheet D ≧ (220-50 × Si%) , and the recrystallization rate of the steel sheet is 100%, and the processed structure is 20% or more in terms of the area ratio in cross-sectional observation. Production method.
(3) The average crystal grain size d (μm) of the steel plate immediately before the step of forming the processed structure finally remaining inside the steel plate is d ≦ (400−50 × Si%) and d ≦ (820). -200 * Si%), The manufacturing method of the electrical steel sheet as described in (1) or (2) characterized by the above-mentioned.
( 4 ) The steel component is mass%, and further contains one or more of Cu: 0.1 to 8.0% and Nb: 0.03 to 8.0% (1) to ( 3 The manufacturing method of the electromagnetic steel sheet as described in any one of the items).
( 5 ) Steel component is mass%, and further, Ti: 1.0% or less, B: 0.010% or less, Ni: 5.0% or less, Cr: 15.0% or less The method for producing an electrical steel sheet according to any one of (1) to ( 4 ), comprising:
( 6 ) In any one of the items (1) to ( 5 ), the steel component is contained by mass% and further contains one or more of Sn and Ce in a total amount of 0.5% or less. The manufacturing method of the electromagnetic steel plate as described.
( 7 ) The method for producing an electrical steel sheet according to any one of (1) to ( 6 ), wherein an average dislocation density in the processed structure inside the steel sheet is 1 exp13 / m 2 or more.

本発明によれば、硬質で磁気特性の優れた高強度電磁鋼板を安定して製造することができる。すなわち本発明は固溶強化、析出強化のために用いられる添加元素が比較的低くても目的とする強度を得ることができることから、冷延性が向上し、冷間圧延工程の生産性が向上するとともに、通常操業範囲内での焼鈍が可能となるため、焼鈍工程の作業性も向上する。また、焼鈍後に再冷延を行うことにより、従来では製造が困難であった極薄材料を簡単に生産することも可能となる。   According to the present invention, a high-strength electrical steel sheet that is hard and excellent in magnetic properties can be stably manufactured. That is, the present invention can obtain the intended strength even if the additive element used for solid solution strengthening and precipitation strengthening is relatively low, so that the cold rolling property is improved and the productivity of the cold rolling process is improved. At the same time, since annealing within the normal operating range is possible, the workability of the annealing process is also improved. In addition, by performing re-cold rolling after annealing, it becomes possible to easily produce an ultrathin material that has been difficult to manufacture.

以上により、強度、疲労強度、耐磨耗性の確保が可能となるため、超高速回転モーターやローターに磁石を組み込んだモーターおよび電磁開閉器用材料の高効率化、小型化、超寿命化などが達成される。   As a result, strength, fatigue strength, and wear resistance can be ensured. Therefore, high-speed rotating motors, motors incorporating magnets in rotors, and electromagnetic switch materials can be made more efficient, smaller, and have a longer life. Achieved.

本発明者らは、前記目的を達成すべく種々実験し検討を重ねてきた。即ち本発明は、C:0.060%以下、Si:0.5〜4.0%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有する鋼板であって、さらに必要に応じ、Cu:0.1〜8.0%、またはNb:0.05〜8.0%のいずれか一種以上を含有した鋼材において、
(1)鋼板組織に加工組織を存在させ転位強化により高強度化を図る、
(2)最終的に鋼板内に残存する加工組織を形成する直前の結晶組織を粗大化させる、
(3)上記の結晶組織をSi量との観点で制限することで通板性を向上させる、
ことにより、電磁鋼板内に加工組織を残存・生成させた鋼板において、作業性などのトラブルを起こすことなく高生産性にて強度−磁気特性のバランスを向上させ得るものである。
The present inventors have conducted various experiments and studies in order to achieve the above object. That is, the present invention is C: 0.060% or less, Si: 0.5-4.0%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040% or less , Al: 2.50% or less, N: 0.020% or less, and further, if necessary, Cu: 0.1-8.0%, or Nb: 0.05-8.0 In steel materials containing one or more of
(1) A processed structure is present in the steel sheet structure to increase the strength by strengthening dislocations.
(2) finally coarsening the crystal structure immediately before forming the processed structure remaining in the steel sheet;
(3) Improve the plate-passability by limiting the above crystal structure in terms of the amount of Si.
As a result, the strength-magnetic property balance can be improved with high productivity without causing troubles such as workability in the steel sheet in which the processed structure remains in the electromagnetic steel sheet.

先ず、本発明による高強度電磁鋼板の成分組成について説明する。   First, the component composition of the high strength electrical steel sheet according to the present invention will be described.

Cは磁気特性を劣化させるので0.060%以下とする。高強度化、特に降伏応力の上昇や温間強度、クリープ強度の向上、温間での疲労特性を向上させる観点から、またNb含有鋼の場合にはNbCにより再結晶を遅延させる効果も有することから、好ましくは0.0031〜0.0301%、さらに好ましくは0.0051〜0.0221%、さらに好ましくは0.0071〜0.0181%、さらに好ましくは0.0081〜0.0151%である。   Since C deteriorates the magnetic characteristics, it is set to 0.060% or less. From the standpoint of increasing strength, particularly increasing yield stress, improving warm strength and creep strength, and improving fatigue properties in warm conditions, and in the case of Nb-containing steels, NbC also has the effect of delaying recrystallization. Therefore, it is preferably 0.0031 to 0.0301%, more preferably 0.0051 to 0.0221%, still more preferably 0.0071 to 0.0181%, and still more preferably 0.0081 to 0.0151%. .

Cによる上述のような効果が特に重要視されない場合には、スラブの段階までは脱酸効率の観点からより高いCを含有させておき、コイルとした後の脱炭焼鈍によりCを減じることも可能である。含有量を0.010%程度以下まで低減する場合には製造コストの観点からは溶鋼段階で脱ガス設備によりC量を低減しておくことが有利である。特に0.0020%以下とすれば鉄損低減の効果が著しく、高強度化のために炭化物等の非金属析出物を必須としない本発明鋼においては0.0015%以下としても高強度化が可能であり、さらに0.0010%以下としても十分な高強度化が可能である。   When the above-mentioned effects by C are not particularly regarded as important, higher C is contained from the viewpoint of deoxidation efficiency until the slab stage, and C may be reduced by decarburization annealing after forming the coil. Is possible. When the content is reduced to about 0.010% or less, it is advantageous to reduce the amount of C by degassing equipment at the molten steel stage from the viewpoint of manufacturing cost. In particular, if it is 0.0020% or less, the effect of reducing iron loss is remarkable, and in the steel of the present invention that does not require non-metallic precipitates such as carbides for high strength, the strength can be increased even if it is 0.0015% or less. It is possible, and even if it is 0.0010% or less, sufficient strength can be increased.

Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低下せしめるとともに、抗張力を高めるが、添加量が0.2%未満ではその効果が小さい。好ましくは1.0%以上、さらに好ましくは1.5%以上、さらに好ましくは2.0%以上、さらに好ましくは2.5%以上とする。一般に高周波磁場下で用いられる場合には渦電流による損失が大きくなるが、加工組織を含有する本発明鋼においても特にこの渦電流損失を抑制するため、Si含有量を高めることが有効である。ただし4.0%を超えると鋼を著しく脆化させ、さらに製品の磁束密度を低下させるため4.0%以下とする。最適なSi量範囲は、後述のように、本発明の重要な要因である、最終的に鋼板内に残存する加工組織を形成する直前の結晶組織も考慮して決定されるものである。この結晶組織にもよるが、脆化の懸念を小さくするには3.7%以下が好ましく、3.2%以下であれば他の元素量との兼ね合いもあるが脆化に関してはほとんど考慮する必要がなくなる。   Si increases the specific resistance of steel, reduces eddy currents, lowers iron loss, and increases tensile strength, but the effect is small when the amount added is less than 0.2%. Preferably it is 1.0% or more, More preferably, it is 1.5% or more, More preferably, it is 2.0% or more, More preferably, you may be 2.5% or more. Generally, when used under a high-frequency magnetic field, the loss due to eddy current increases. However, in the steel of the present invention containing a processed structure, it is effective to increase the Si content particularly in order to suppress this eddy current loss. However, if it exceeds 4.0%, the steel is remarkably embrittled and the magnetic flux density of the product is further reduced, so the content is made 4.0% or less. As will be described later, the optimum Si amount range is determined in consideration of the crystal structure immediately before forming the processed structure finally remaining in the steel sheet, which is an important factor of the present invention. Although it depends on this crystal structure, it is preferably 3.7% or less to reduce the fear of embrittlement. If it is 3.2% or less, there is a balance with the amount of other elements. There is no need.

Mnは鋼の強度を高めるため積極的に添加してもよいが、高強度化の主たる手段として加工組織を活用する本発明鋼ではこの目的のためには特に必要としない。固有抵抗を高め渦電流損失を低減させることで鉄損を低減させる目的で添加するが、過剰な添加は磁束密度を低下させるので、0.05〜3.0%とする。0.05〜3.0%とする。好ましくは0.5%〜2.5%、さらに好ましくは0.8%〜2.0%である。   Mn may be positively added to increase the strength of the steel, but it is not particularly necessary for this purpose in the steel of the present invention that utilizes the processed structure as the main means for increasing the strength. Although it adds for the purpose of reducing a core loss by raising a specific resistance and reducing an eddy current loss, since excessive addition reduces a magnetic flux density, it is made 0.05 to 3.0%. 0.05 to 3.0%. Preferably they are 0.5%-2.5%, More preferably, they are 0.8%-2.0%.

Pは抗張力を高める効果の著しい元素であるが、上記のMnと同様、本発明鋼ではあえて添加する必要はない。0.3%を超えると脆化が激しく、工業的規模での熱延、冷延等の処理が困難になるため、上限を0.30%とする。好ましくは0.20%以下、さらに好ましくは0.15%以下である。   P is an element having a remarkable effect of increasing the tensile strength, but like the above Mn, it is not necessary to add it to the steel of the present invention. If it exceeds 0.3%, the embrittlement is severe and processing such as hot rolling and cold rolling on an industrial scale becomes difficult, so the upper limit is made 0.30%. Preferably it is 0.20% or less, More preferably, it is 0.15% or less.

Sは本発明鋼で必要に応じ添加するCuと結合し易く、Cu添加の目的として重要となるCuを主体とする金属相の形成挙動に影響を及ぼし、強化効率を低下させる場合があるので多量に含有させる場合には注意が必要である。また熱処理条件によっては微細なCu硫化物を積極的に形成させ、高強度化を促進させることも可能である。生成された硫化物は磁気特性、特に鉄損を劣化させる場合がある。特に鉄損の管理値が厳格な場合、Sの含有量は低いことが好ましく、0.040%以下と限定する。好ましくは0.020%以下、さらに好ましくは0.010%以下である。SeもSとほぼ同様な効果がある。   S is easy to combine with the Cu added if necessary in the steel of the present invention, affects the formation behavior of the metal phase mainly composed of Cu, which is important for the purpose of Cu addition, and may reduce the strengthening efficiency. Care must be taken when it is contained in the. In addition, depending on the heat treatment conditions, it is possible to actively form fine Cu sulfide to promote high strength. The produced sulfide may degrade the magnetic properties, particularly the iron loss. In particular, when the control value of iron loss is strict, the S content is preferably low, and is limited to 0.040% or less. Preferably it is 0.020% or less, More preferably, it is 0.010% or less. Se also has almost the same effect as S.

Alは通常、脱酸剤として添加されるが、Alの添加を抑えSiにより脱酸を図ることも可能である。Al量が0.005%程度以下のSi脱酸鋼ではAlNが生成しないため、鉄損を低減する効果もある。逆に積極的に添加しAlNの粗大化を促進するとともに固有抵抗増加により鉄損を低減させることもできるが、2.50%を超えると脆化が問題になるため、2.50%以下とする。   Al is usually added as a deoxidizing agent, but it is also possible to suppress the addition of Al and deoxidize with Si. Since SiN deoxidized steel with an Al content of about 0.005% or less does not produce AlN, it also has an effect of reducing iron loss. On the contrary, it can be actively added to promote the coarsening of AlN and the iron loss can be reduced by increasing the specific resistance. However, if it exceeds 2.50%, embrittlement becomes a problem. To do.

NはCと同様、磁気特性を劣化させるので0.040%以下とする。Alが0.005%程度以下のSi脱酸鋼ではCと同様に高強度化、特に降伏応力の上昇や温間強度、クリープ強度の向上、温間での疲労特性を向上させ、またNb含有鋼の場合にはNbNにより再結晶を遅延させる効果も有する他に、集合組織改善の観点から有効な元素である。この観点からは好ましくは0.0031〜0.0301%、さらに好ましくは0.0051〜0.0221%、さらに好ましくは0.0071〜0.0181%、さらに好ましくは0.0081〜0.0151%である。Alが0.010%程度以上の場合には多量のNを含有させることで微細なAlNを形成し再結晶遅延効果を高めることが可能であるが、本発明の主たる機構であるCu金属相に比較すると再結晶遅延の効率が悪く、また磁気特性への悪影響も比較的大きいため、あえて添加する必要はない。Al脱酸鋼においては0.0040%以下とすべきで、窒化物による強度上昇や再結晶遅延効果を期待しない本発明鋼では低いほど好ましく、0.0027%以下とすれば磁気時効やAl含有鋼でのAlNによる特性劣化の抑制効果は顕著で、さらに好ましくは0.0022%、さらに好ましくは0.0015%以下とする。   N, like C, degrades the magnetic properties, so it is set to 0.040% or less. Si deoxidized steel with an Al content of about 0.005% or less increases strength like C, especially increases yield stress, improves warm strength and creep strength, improves warm fatigue properties, and contains Nb. In the case of steel, it has an effect of delaying recrystallization by NbN, and is an effective element from the viewpoint of texture improvement. From this viewpoint, preferably 0.0031 to 0.0301%, more preferably 0.0051 to 0.0221%, more preferably 0.0071 to 0.0181%, and still more preferably 0.0081 to 0.0151%. It is. When Al is about 0.010% or more, it is possible to form a fine AlN by adding a large amount of N to enhance the recrystallization delay effect, but in the Cu metal phase which is the main mechanism of the present invention. In comparison, the recrystallization delay efficiency is poor and the adverse effect on the magnetic properties is relatively large, so there is no need to add it. In Al deoxidized steel, it should be 0.0040% or less. The lower the steel of the present invention which does not expect the strength increase and recrystallization delay effect due to nitride, the lower the content, 0.0027% or less is preferable. The effect of suppressing deterioration of characteristics due to AlN in steel is remarkable, more preferably 0.0022%, and further preferably 0.0015% or less.

Cuは本発明では必要に応じて添加される。固溶Cuとしてのみならず、鋼板中にCuを主体とする金属相(以降、本明細書では「Cu金属相」と記述)を形成させ、鋼板の再結晶を遅延させるために活用される。また微細なCu金属相により磁気特性に悪影響を及ぼさない範囲で高強度化を図る効果も有する。この範囲として0.1〜8.0%に限定する。好ましくは1.0〜6.0%である。Cuの含有量が低いと再結晶遅延効果が小さくなるとともに、再結晶遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなることもある。一方、Cuの含有量が過度に高いと磁気特性への影響が大きくなり、特に鉄損の上昇が著しくなることもある。特に好ましい範囲は2.0〜5.5%である。   In the present invention, Cu is added as necessary. It is used not only as solute Cu but also for forming a metal phase mainly composed of Cu in the steel sheet (hereinafter referred to as “Cu metal phase” in this specification) and delaying recrystallization of the steel sheet. In addition, the fine Cu metal phase has the effect of increasing the strength within a range that does not adversely affect the magnetic properties. This range is limited to 0.1 to 8.0%. Preferably it is 1.0 to 6.0%. When the Cu content is low, the recrystallization delay effect is reduced, and the heat treatment conditions for obtaining the recrystallization delay effect are limited to a narrow range, and the degree of freedom in management of production conditions and production adjustment may be reduced. On the other hand, if the Cu content is excessively high, the magnetic properties are greatly affected, and the iron loss may be particularly increased. A particularly preferable range is 2.0 to 5.5%.

NbもCuと同様、本発明では必要に応じて添加される。固溶Nbとしてのみならず、鋼板中にNbの主として炭・窒化物(以降、本明細書では「Nb析出物」と記述)を形成させ、鋼板の再結晶を遅延させるために活用される。また微細なNb析出物により磁気特性に悪影響を及ぼさない範囲で高強度化を図る効果も有する。この範囲として0.05〜8.0%に限定する。好ましくは0.08〜2.0%である。   Nb is added as necessary in the present invention, as is Cu. It is used not only as solute Nb but also to form mainly Nb charcoal / nitrides (hereinafter referred to as “Nb precipitates” in the present specification) in the steel sheet and delay the recrystallization of the steel sheet. In addition, the fine Nb precipitate has the effect of increasing the strength within a range that does not adversely affect the magnetic properties. This range is limited to 0.05 to 8.0%. Preferably it is 0.08 to 2.0%.

本発明者は、すでに電磁鋼板中にCu金属相を形成し高強度化を図る技術を出願しているが、Cu金属相に関してはこの出願との組合わせを行うことは本発明の効果を何ら損なうものではない。特に限定するものではないが、本発明鋼中に存在させるCu金属相またはNb析出物の直径は0.20μm以下程度が好ましい。これを超えると再結晶遅延の効率が低下し、多量の金属相が必要となるだけでなく磁気特性への悪影響が大きくなりやすい。また同様に特に限定するものではないが、Cu金属相またはNb析出物の数密度は、Cu,NbやC含有量と析出相のサイズとの関係により取りうる範囲に制限があり、20個/μm3以上程度が好ましい。 The present inventor has already applied for a technique for forming a Cu metal phase in a magnetic steel sheet to increase the strength. However, combining the Cu metal phase with this application has no effect on the present invention. There is no loss. Although not particularly limited, the diameter of the Cu metal phase or Nb precipitate present in the steel of the present invention is preferably about 0.20 μm or less. Beyond this, the recrystallization delay efficiency is reduced, and not only a large amount of metal phase is required, but also the adverse effect on the magnetic properties tends to increase. Similarly, although not particularly limited, the number density of the Cu metal phase or Nb precipitate is limited in the range that can be taken depending on the relationship between the Cu, Nb or C content and the size of the precipitated phase, and is 20 / μm 3. The above degree is preferable.

その他、従来技術における高強度電磁鋼板で高強度化のために利用されている殆どの元素は、添加コストが問題視されるだけではなく、磁気特性に少なからず悪影響を及ぼすため、あえて添加する必要はない。積極的に添加する場合には再結晶遅延効果、高強度化効果、コスト上昇と磁気特性劣化との兼ね合いから、Ti,B,Ni,Crの1種または2種以上を添加するが、その添加量は、Ti:1.0%以下、B:0.010%以下、Ni:5.0%以下、Cr:15.0%以下程度とする。   In addition, most of the elements used to increase the strength of conventional high-strength electrical steel sheets are not only problematic in terms of the cost of addition, but also have a detrimental effect on magnetic properties. There is no. In the case of positive addition, one or more of Ti, B, Ni, and Cr are added in consideration of recrystallization delay effect, strengthening effect, cost increase and magnetic property deterioration. The amounts are Ti: 1.0% or less, B: 0.010% or less, Ni: 5.0% or less, and Cr: 15.0% or less.

Tiは鋼板中で炭化物、窒化物または硫化物等の微細な析出物を形成し、高強度化に効果を有する元素ではあるが、Nbに比較するとその効果は小さい割に、鉄損を劣化させる傾向が強い。また冷延後の焼鈍工程において部分再結晶組織とする場合には、磁束密度向上には不利な{111}方位への集積を促進する効果が強いため、本発明鋼ではむしろ有害な元素ともなる。このため上限をそれぞれ1.0%とする。好ましくは0.50%以下、さらに好ましくは0.30%以下で、全く添加することなく不可避的に混入する0.0050%以下とすることで良好な鉄損を得ることが可能となる。   Ti is an element that forms fine precipitates such as carbides, nitrides or sulfides in the steel sheet and is effective in increasing the strength. However, compared with Nb, the effect is small, but iron loss is degraded. The tendency is strong. Further, when a partially recrystallized structure is used in the annealing process after cold rolling, it has a strong effect of promoting accumulation in the {111} orientation, which is disadvantageous for improving the magnetic flux density. . Therefore, the upper limit is set to 1.0%. Preferably it is 0.50% or less, more preferably 0.30% or less, and good iron loss can be obtained by setting it to 0.0050% or less, which is inevitably mixed without any addition.

Bは結晶粒界に偏折し、Pの粒界偏折による脆化を抑制する効果があるが、本発明鋼では従来の固溶強化主体の高強度電磁鋼板のように脆化が特に問題とはならないことから、この目的での添加は重要ではない。むしろ固溶Bによる再結晶温度への影響により再結晶を遅延させる目的で添加する。0.010%を超えると著しく脆化するため、上限を0.010%とする。   B is bent at the crystal grain boundary and has the effect of suppressing embrittlement due to the P grain boundary deflection. The addition for this purpose is not important. Rather, it is added for the purpose of delaying the recrystallization due to the influence of the solid solution B on the recrystallization temperature. If it exceeds 0.010%, the material is significantly brittle, so the upper limit is made 0.010%.

Niは本発明鋼で必要に応じ添加される元素であるCuによる熱延時の表面荒れ(Cuヘゲ)の防止に有効であることが知られており、この目的を兼ねて積極的に添加することもできる。また、磁気特性への悪影響が比較的小さく、磁束密度向上効果も有し、さらに高強度化にも効果が認められるため、高強度電磁鋼板では使用されることが多い元素である。また、耐食性の向上にも有効であるが、添加コストや磁気特性への悪影響を考え上限を5.0%とすることが好ましい。   Ni is known to be effective in preventing surface roughness (Cu hege) during hot rolling by Cu, which is an element added as necessary in the steel of the present invention, and is actively added for this purpose. You can also. Further, since it has a relatively small adverse effect on magnetic properties, has an effect of improving magnetic flux density, and is also effective in increasing strength, it is an element often used in high-strength electrical steel sheets. Moreover, although it is effective also in improving corrosion resistance, it is preferable to set the upper limit to 5.0% in consideration of the adverse effect on the addition cost and magnetic properties.

Crは耐食性の向上や、高周波域での磁気特性向上のため添加される元素であるが、やはり添加コストや磁気特性への悪影響を考え上限を15.0%とすることが好ましい。   Cr is an element added for improving the corrosion resistance and improving the magnetic characteristics in the high frequency range. However, the upper limit is preferably made 15.0% in consideration of the adverse effect on the addition cost and the magnetic characteristics.

また、その他の微量元素については、鉱石やスクラップなどから不可避的に含まれる程度の量に加え、公知の様々な目的で添加しても本発明の効果は何ら損なわれるものではない。また、量は少なくとも微細な炭化物、硫化物、窒化物、酸化物等を形成し、少なからざる再結晶遅延効果や高強度化効果を示す元素もあるが、これらの微細な析出物は磁気特性への悪影響も大きく、また本発明鋼では残留させた加工・回復組織により十分な再結晶遅延効果が得られるため、これらの元素をあえて添加する必要もない。   Moreover, about the other trace element, in addition to the quantity contained inevitably from an ore or a scrap, even if it adds for a well-known various objective, the effect of this invention is not impaired at all. In addition, there are some elements that form at least fine carbides, sulfides, nitrides, oxides, etc., and have a considerable recrystallization delay effect and strengthening effect. In addition, the steel of the present invention can provide a sufficient recrystallization delay effect due to the remaining processed / recovered structure, so that it is not necessary to add these elements.

前記成分を含む鋼は、通常の電磁鋼板と同様に転炉で溶製され、連続鋳造でスラブとされ、ついで熱間圧延、熱延板焼鈍、冷間圧延、仕上焼鈍などの工程で製造される。これらの工程に加え絶縁皮膜の形成や脱炭工程などを経ることも本発明の効果を何ら損なうものではない。また、通常の工程ではなく急冷凝固法による薄帯の製造や熱延工程を省略する薄スラブ、連続鋳造法などの工程によって製造しても問題ない。   The steel containing the above components is melted in a converter in the same manner as a normal electromagnetic steel sheet, is made into a slab by continuous casting, and then manufactured by processes such as hot rolling, hot rolled sheet annealing, cold rolling, and finish annealing. The In addition to these steps, the formation of an insulating film and a decarburization step do not impair the effects of the present invention. Moreover, there is no problem even if it is manufactured not by a normal process but by a process such as a thin slab or a continuous casting process in which the production of a ribbon by the rapid solidification method or the hot rolling process is omitted.

本発明では、本発明で「加工組織」と呼ぶ特別な組織を鋼板内に形成することが必要である。本発明における「加工組織」とは、通常の電磁鋼板で鋼板のほぼ全量を占めている「再結晶組織」と区別したものである。一般的には冷延加工等により鋼板内に蓄積された歪が十分に消失していない組織を指す。より具体的には、冷延した鋼板を焼鈍する過程において、冷延で変形され高密度の転位を含有した組織が、焼鈍工程での高温保持により発生する転位密度が低い組織(「再結晶組織」)に蚕食されることで再結晶が進行するが、この「再結晶組織」に蚕食されていない領域を「加工組織」とする。この加工組織は、一般には焼鈍中にいわゆる回復等により転位密度は低くなっている場合もあるが、再結晶組織ほどには低くなっておらず、歪の分布としては「加工組織」と「再結晶組織」で不均一な状況となっている。また、「加工組織」は、再結晶組織をさらに加工することでも得ることができる。この場合は全体的に見れば組織に均一な歪が残存した状態となる。本発明ではこの加工組織を活用することで目的とする高強度化を図るものである。   In the present invention, it is necessary to form a special structure called “processed structure” in the steel sheet in the present invention. The “processed structure” in the present invention is distinguished from a “recrystallized structure” that occupies almost the entire amount of steel sheet with a normal electromagnetic steel sheet. Generally, it refers to a structure in which the strain accumulated in the steel sheet due to cold rolling or the like has not sufficiently disappeared. More specifically, in the process of annealing a cold-rolled steel sheet, a structure that is deformed by cold rolling and contains high-density dislocations is a structure having a low dislocation density generated by holding at a high temperature in the annealing process (“recrystallized structure”). The region that is not engulfed by this “recrystallized structure” is defined as “processed structure”. This processed structure generally has a dislocation density that is low during annealing because of so-called recovery, but it is not as low as the recrystallized structure. The crystal structure is uneven. The “processed structure” can also be obtained by further processing the recrystallized structure. In this case, uniform strain remains in the tissue as a whole. In the present invention, this processed structure is utilized to increase the intended strength.

次に本発明の特徴的である、最終的に鋼板内部に残存する加工組織を形成する工程直前の鋼板の平均結晶粒径dについて説明する。以下、この粒径を「加工前粒径」と記述する。本発明では基本的に「加工前粒径」を粗大化させることで、加工後の特性、特に強度−鉄損バランスを大幅に改善させる。「加工前粒径」は、熱延板を冷延し、その後の焼鈍時の再結晶を抑制することで、最終的な製品に加工組織を残存させる場合には、熱延板時点での粒径となる。この時、電磁鋼板で一般的に行われる熱延板焼鈍を施していれば、熱延板焼鈍後の粒径が「加工前粒径」となる。また、冷延後、再結晶した鋼板を再冷延して、最終的な製品に加工組織を残存させる場合には、焼鈍板時点での粒径となる。さらに、例えば冷延後、焼鈍工程において加工組織を残存させたまま再冷延を行う場合は、実質的に再冷延での加工の影響が大きい場合も考えられるが、冷延で形成された加工組織が完全には消失することなく、再冷延加工を受けて再冷延後まで残存するものであるから、冷延前の粒径、すなわち通常の工程であれば熱延板粒径が「加工前粒径」となる。   Next, the average crystal grain size d of the steel sheet immediately before the step of forming a processed structure finally remaining inside the steel sheet, which is a characteristic of the present invention, will be described. Hereinafter, this particle diameter is referred to as “particle diameter before processing”. In the present invention, by basically increasing the “particle diameter before processing”, the characteristics after processing, particularly the strength-iron loss balance, is greatly improved. “Pre-process grain size” refers to the grain size at the time of hot-rolling when cold-rolling the hot-rolled sheet and suppressing the recrystallization during subsequent annealing to leave the processed structure in the final product. It becomes the diameter. At this time, if the hot-rolled sheet annealing generally performed on the electromagnetic steel sheet is performed, the particle diameter after the hot-rolled sheet annealing becomes the “particle diameter before processing”. Further, when the recrystallized steel sheet is re-cold rolled after cold rolling to leave the processed structure in the final product, the grain size at the time of annealing plate is obtained. Furthermore, for example, when re-rolling is performed with the processed structure remaining in the annealing process after cold rolling, the effect of processing in the re-rolling may be substantially large, but it was formed by cold rolling. Since the processed structure does not completely disappear and remains after re-rolling after re-rolling, the grain size before cold rolling, that is, the diameter of hot-rolled sheet is the usual process. It becomes “particle diameter before processing”.

本発明ではこの「加工前粒径」d(μm)をSi量との関係で特定範囲に規定する。すなわち、以下の式(1)もしくは(2)、さらに(3)と(4)を満たすことで、本発明の特徴である優れた強度−鉄損バランスが達成される。   In the present invention, this “particle diameter before processing” d (μm) is defined in a specific range in relation to the amount of Si. That is, by satisfying the following formula (1) or (2) and further (3) and (4), an excellent strength-iron loss balance that is a feature of the present invention is achieved.

d≧20μm・・・(1)
d≧(220−50×Si%)・・・(2)
d≦(400−50×Si%)・・・(3)
かつ、
d≦(820−200×Si%)・・・(4)
式(1)は単純に「加工前粒径」が、特定の大きさより粗大な場合を示す。通常の鋼板の結晶粒径は数μmから数100μm程度の範囲で制御されるが、本発明の効果を得るには20μm以上とする必要がある。好ましくは50μm以上、さらに好ましくは100μm以上、さらに好ましくは150μm以上、さらに好ましくは200μm以上、さらに好ましくは250μm以上である。
d ≧ 20 μm (1)
d ≧ (220-50 × Si%) (2)
d ≦ (400-50 × Si%) (3)
And,
d ≦ (820−200 × Si%) (4)
Formula (1) simply indicates a case where the “particle diameter before processing” is coarser than a specific size. The crystal grain size of a normal steel sheet is controlled in the range of several μm to several hundred μm, but it is necessary to be 20 μm or more in order to obtain the effect of the present invention. Preferably they are 50 micrometers or more, More preferably, they are 100 micrometers or more, More preferably, they are 150 micrometers or more, More preferably, they are 200 micrometers or more, More preferably, they are 250 micrometers or more.

式(2)は発明の効果が得られる「加工前粒径」をSi量との関係で規定したものである。一般的にSi量が高い鋼板ほど、強度−鉄損バランスは向上するため、高Si材ほど「加工前粒径」が小さくても、良好な強度−鉄損バランスを得やすいためである。   Formula (2) defines the “particle diameter before processing” at which the effect of the invention can be obtained in relation to the amount of Si. This is because, generally, the steel sheet having a higher Si content has a higher strength-iron loss balance, and the higher the Si material, the easier it is to obtain a good strength-iron loss balance even if the “particle diameter before processing” is smaller.

式(3)および(4)式は「加工前粒径」の上限の目安を与えるものである。一般に高Si材ほど材料が脆くなるが、「加工前粒径」が過度に粗大な場合、さらに脆くなり、冷延等の加工が困難になるため、上限が必要な場合が生ずる。この上限はSi量以外の鋼成分や加工までの熱履歴に加え、鋼板の加工方法や狙いとする特性等にも依存するものである。   Equations (3) and (4) give an upper limit of the “particle diameter before processing”. In general, the higher the Si material, the more fragile the material is. However, when the “particle diameter before processing” is excessively coarse, the material becomes more fragile and difficult to process such as cold rolling, so an upper limit may be required. This upper limit depends on the steel component other than the Si amount and the heat history up to processing, as well as the processing method of the steel sheet and the target characteristics.

「加工前粒径」を上述の範囲に制御する具体的な条件は、鋼成分や加工までの熱履歴にも依存するため、特定範囲に限定することはできないが、通常の知識を有する当業者であれば、目的とする鋼板に相当する成分および熱履歴である鋼板対し、数度の熱処理試験を行うことで、適当な条件を決定することは困難なものではない。要は、その鋼板の再結晶および粒成長挙動を確認し、狙いとする組織になるように熱履歴を制御するだけのものである。   Specific conditions for controlling the “particle diameter before processing” within the above-mentioned range depend on the steel composition and the heat history until processing, and thus cannot be limited to a specific range, but those skilled in the art having ordinary knowledge If so, it is not difficult to determine appropriate conditions by performing several heat treatment tests on the steel sheet that has the component corresponding to the target steel sheet and the thermal history. In short, it is only necessary to confirm the recrystallization and grain growth behavior of the steel sheet and to control the thermal history so as to obtain a target structure.

なお、条件によっては、最終的に鋼板内部に残存する加工組織を形成する工程直前の鋼板に、加工組織が残存する場合がある。このような場合に、本発明の効果を得るには、加工組織をできるだけ残存させないことが好ましく、再結晶率rを、
r≧50%・・・(5)
とするのが好ましい。さらに好ましくはrが90%以上であり、完全再結晶組織で、かつ上の(1)〜(4)式を満たすことが好ましいことは言うまでもない。
なお、本発明では、最終的に鋼板内部に残存する加工組織を形成する工程直前の鋼板の再結晶率を、より好ましい完全再結晶組織となる100%とした。
Depending on the conditions, the processed structure may remain on the steel sheet immediately before the step of forming the processed structure finally remaining inside the steel sheet. In such a case, in order to obtain the effect of the present invention, it is preferable not to leave the processed structure as much as possible.
r ≧ 50% (5)
It is preferable that Further, it is needless to say that it is preferable that r is 90% or more, a completely recrystallized structure, and satisfy the above expressions (1) to (4).
In the present invention, the recrystallization rate of the steel sheet immediately before the step of forming the processed structure finally remaining inside the steel sheet is set to 100% at which a more preferable complete recrystallization structure is obtained.

なお、結晶粒および再結晶率は、通常、鉄鋼材料の組織観察で行われる、エッチングによる板断面の組織観察により求めるものとする。粒径は観察される結晶粒1個あたりの面積から、粒の断面積を円と仮定した場合の直径、また再結晶率は観察面積中の未再結晶部の面積率から求めるものである。言うまでもないが、測定は偏りのない十分に平均的な領域について行われる必要がある。 The crystal grain size and the recrystallization rate are usually determined by observing the structure of the cross section of the plate by etching, which is performed by observing the structure of the steel material. The grain size is obtained from the area per observed crystal grain, the diameter when the cross-sectional area of the grain is assumed to be a circle, and the recrystallization rate is obtained from the area ratio of the unrecrystallized portion in the observed area. Needless to say, measurements need to be made on a sufficiently average area without bias.

「加工前粒径」の効果についてのメカニズムは明確ではないが、転位構造の変化、集合組織の変化、さらには加工前の集合組織の差による加工後の転位構造の変化、等の影響が考えられる。詳細は不明であるが、最終的には加工組織中の転位構造が、外部応力により移動しようとする転位に対しては強力な障害物として作用し、かつ外部磁場により移動しようとする磁壁に対しては障害物として作用しにくいような構造に変化するためであると予想される。   The mechanism for the effect of “grain size before processing” is not clear, but the effects of changes in dislocation structure, changes in texture, and changes in dislocation structure after processing due to differences in texture before processing are considered. It is done. Details are unknown, but eventually the dislocation structure in the processed structure acts as a powerful obstacle to dislocations that are going to move due to external stress, and against domain walls that are going to move due to an external magnetic field. This is expected to change to a structure that hardly acts as an obstacle.

本発明が対象とする鋼板は500MPa以上の引張強度を有するものとする。引張強度がこれより低い程度の鋼板であれば通常のSi、Mn等の固溶元素を主体として強化し、組織的には完全に再結晶組織で占められている鋼板でも、生産性をそれほど劣化させず製造することが可能であり、その材料の方が磁気特性的には顕著に優れたものが得られるためである。本発明は通常の固溶体強化を主体として、生産性を劣化させずに製造が不可能な高強度の材料に限定する。本発明のメリットをより大きく享受するには、好ましくは600MPa以上の鋼板に適用されるべきで、さらに好ましくは700MPa以上、さらに好ましくは800MPa以上の鋼板を対象とし、現在は全く製造されたことがない900MPa以上の鋼板も製造可能であり、さらに従来では想像もされていない1000MPa以上の鋼板でも高生産性で製造することが可能になる。   The steel plate targeted by the present invention shall have a tensile strength of 500 MPa or more. If the steel sheet has a lower tensile strength than this, it is strengthened mainly by solid solution elements such as ordinary Si and Mn, and even in steel sheets that are completely occupied by a recrystallized structure, the productivity deteriorates so much. This is because it is possible to manufacture without using the material, and the material is significantly superior in terms of magnetic properties. The present invention is limited to a high-strength material that cannot be manufactured without deteriorating productivity, mainly with normal solid solution strengthening. In order to enjoy the merits of the present invention to a greater extent, it should preferably be applied to a steel plate of 600 MPa or more, more preferably 700 MPa or more, more preferably 800 MPa or more. It is possible to manufacture a steel plate of 900 MPa or higher, and even a steel plate of 1000 MPa or higher, which has not been imagined in the past, can be manufactured with high productivity.

なお、モーターのローターとして使用するような場合には、わずかな変形が部品としての寿命の終わりを意味することから、引張強度ではなく降伏応力で評価すべきであろう。本発明鋼は加工組織を残留させているため、固溶体強化鋼や析出強化鋼と比べ、同じ強度であれば、降伏応力は高く、これらの従来材との比較においては、より好ましい特性を発揮する。すなわち、降伏比が0.7〜1.0程度と比較的高い値となり、降伏応力と引張強度の相関が極めて強い材料になっている。このため、降伏応力で評価しても本発明鋼の優位性は全く変わるものではないし、ローターのような降伏応力が問題となる用途に対しても発明の効果は問題なく発揮される。   When used as a motor rotor, slight deformation means the end of the service life of the part, so it should be evaluated by yield stress rather than tensile strength. Since the steel of the present invention has a processed structure remaining, the yield stress is high if the strength is the same as that of solid solution reinforced steel and precipitation reinforced steel, and more favorable characteristics are exhibited in comparison with these conventional materials. . That is, the yield ratio is a relatively high value of about 0.7 to 1.0, and the material has a very strong correlation between the yield stress and the tensile strength. For this reason, even if it evaluates with a yield stress, the predominance of this invention steel does not change at all, and the effect of the invention is exhibited without a problem also for the use which yield stress becomes a problem like a rotor.

この加工組織は鋼板の断面組織観察における面積率で1%以上存在するものとする。断面組織観察は本発明においては断面の一辺が鋼板圧延方向、もう一辺が鋼板板厚方向となる断面で行うものとする。通常の鋼板で行われるナイタール等の薬品を用い、エッチングにより組織を現出させる方法を用いるが、特に観察方法に限定されるものではなく、再結晶組織と加工組織を区別できる手法であればよい。   This processed structure is assumed to be 1% or more in terms of the area ratio in the cross-sectional structure observation of the steel sheet. In the present invention, the cross-sectional structure observation is performed in a cross section in which one side of the cross section is the steel plate rolling direction and the other side is the steel plate thickness direction. Uses chemicals such as Nital, which are performed on ordinary steel plates, and uses a method of revealing the structure by etching. However, the method is not particularly limited to the observation method, and any technique that can distinguish the recrystallized structure and the processed structure is acceptable. .

加工組織の面積率が1%以下では高強度化の効果が小さくなる。加工組織が実質的に0%の場合は通常の鋼板そのものであり、0〜1%の範囲に制御することは高強度化の効果が小さい割には焼鈍の温度制御等を非常に厳格にする必要があり現実的ではない。実際には必要とする強度レベルを得るように加工組織の面積率を制御するが、好ましくは5%以上、さらに好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは50%以上、さらに好ましくは70%以上である。実質的に再結晶組織が観察されない加工組織100%としても何ら問題はない。この場合はまったく焼鈍しないいわゆるフルハードの状態か、または焼鈍を行うが再結晶開始以前の回復組織の状況となる。   When the area ratio of the processed structure is 1% or less, the effect of increasing the strength is reduced. When the processed structure is substantially 0%, it is a normal steel plate itself, and controlling within the range of 0 to 1% makes the temperature control of annealing very strict for the effect of increasing the strength is small. Needed and not realistic. In practice, the area ratio of the processed structure is controlled so as to obtain the required strength level, but preferably 5% or more, more preferably 10% or more, more preferably 20% or more, more preferably 30% or more, Preferably it is 50% or more, more preferably 70% or more. There is no problem even if the processed structure is 100% in which substantially no recrystallized structure is observed. In this case, the state is a so-called full-hard state in which annealing is not performed at all, or a state of a recovery structure in which annealing is performed but before recrystallization starts.

本発明の鋼板では必要とする強度と磁気特性に応じて組織の調整を行うが、この調整は鋼成分、熱延履歴、冷延率、焼鈍温度、焼鈍時間や加熱速度、冷却速度等により行うことが可能で、当業者であれば数度の試行により何ら問題なく行うことが可能なものである。または、焼鈍を行って再結晶組織が全量を占めている鋼板に、再冷延等により歪を付与することで加工組織を形成することも可能である。この場合は通常、歪は巨視的に均一に付与されるため、組織の全量が加工組織となり加工組織100%に相当する。この場合は加工前の鋼成分、熱履歴、特性等を考慮し加工量により強度、磁気特性が制御されるが、これも当業者であれば数度の試行により何ら問題なく行うことが可能なものである。   In the steel sheet of the present invention, the structure is adjusted according to the required strength and magnetic properties, and this adjustment is made by the steel composition, hot rolling history, cold rolling rate, annealing temperature, annealing time, heating rate, cooling rate, etc. It is possible for those skilled in the art to do this without any problems after several trials. Alternatively, it is possible to form a processed structure by imparting strain to a steel sheet that has been annealed to occupy the entire amount of the recrystallized structure by recold rolling or the like. In this case, since strain is generally applied uniformly macroscopically, the entire amount of the tissue becomes a processed structure, which corresponds to 100% of the processed structure. In this case, the strength and magnetic properties are controlled by the amount of processing in consideration of the steel composition, heat history, characteristics, etc. before processing, but those skilled in the art can also perform this without any problems by several trials. Is.

目安としてはSi量が1%程度以下のいわゆる通常の低級電磁鋼板では700℃を超えない程度、Si量が3%程度のいわゆる通常の高級電磁鋼板でも800℃を超えない程度の温度であるが、例えばCu、Nb等を適量添加することで、900℃程度以上の温度でも全く再結晶しない完全回復組織である発明鋼を得ることもできる。一方で通常の電磁鋼板とは大きく異なる温度で焼鈍を行うことは炉温の大幅な変更が必要で、作業性の低下を招くばかりでなく、未燃焼ガスの発生により前述のように安全性にも問題を生ずる場合がある。極低温焼鈍に起因するこれらの課題を避けるための焼鈍温度の下限は、400℃程度以上である。   As a guideline, the so-called ordinary low-grade electrical steel sheet having a Si content of about 1% or less does not exceed 700 ° C., and the so-called normal high-grade electrical steel sheet having a Si content of about 3% does not exceed 800 ° C. For example, by adding an appropriate amount of Cu, Nb or the like, it is possible to obtain an invented steel having a complete recovery structure that does not recrystallize at all even at a temperature of about 900 ° C. or higher. On the other hand, annealing at a temperature significantly different from that of normal electrical steel sheets requires a significant change in furnace temperature, which not only reduces workability but also improves safety as described above due to the generation of unburned gas. May also cause problems. The lower limit of the annealing temperature for avoiding these problems caused by cryogenic annealing is about 400 ° C. or higher.

焼鈍時間の目安は温度にもよるが、焼鈍の効果を及ぼすためには少なくとも5秒程度は必要である。焼鈍時間は成分や熱処理までの製造履歴等に依存するため一義的に明示はできないが、目安は850℃であれば5分以内、750℃であれば1時間以内、600℃であれば10時間以内程度である。上述のように、これらの温度および時間の条件は、当業者であれば数度の試行により何ら問題なく発明の効果を享受できる条件を見出すことが可能なものであり、要は、対象となる鋼板の再結晶挙動を確認することである。   The standard of the annealing time depends on the temperature, but at least about 5 seconds is necessary to exert the effect of annealing. The annealing time depends on the components and the manufacturing history up to the heat treatment and cannot be clearly specified. However, the standard is within 5 minutes at 850 ° C, within 1 hour at 750 ° C, and 10 hours at 600 ° C. Is within. As described above, these temperature and time conditions can be found by those skilled in the art through a few trials and can find out the conditions for enjoying the effects of the invention without any problems. It is to confirm the recrystallization behavior of the steel sheet.

再冷延等により加工組織を新たに形成した場合、加工量が低いと上述の組織観察法では明確に加工組織の存在を示すことが困難な場合があるが、発明の効果を十分に得る目安として断面組織観察における(板厚方向の結晶粒の大きさ)/(圧延方向の結晶粒の大きさ)を用いても良く、この値を0.9以下とする。0.8以下であれば高強度化の効果が明確に得られ、好ましくは0.7以下、さらに好ましくは0.6以下、さらに好ましくは0.5以下、さらに好ましくは0.3以下である。ただし、この値が過剰に低くなると、磁気特性の劣化が顕著となるので注意が必要である。   When a new processed structure is formed by re-cold rolling, etc., if the processing amount is low, it may be difficult to clearly show the presence of the processed structure by the above-described structure observation method, but it is a guideline that sufficiently obtains the effects of the invention. As (crystal grain size in the plate thickness direction) / (crystal grain size in the rolling direction) in cross-sectional structure observation may be used, and this value is set to 0.9 or less. If it is 0.8 or less, the effect of increasing the strength is clearly obtained, preferably 0.7 or less, more preferably 0.6 or less, more preferably 0.5 or less, and further preferably 0.3 or less. . However, it should be noted that if this value becomes excessively low, the magnetic characteristics will deteriorate significantly.

以上の加工は通常、冷間圧延で行われるが、歪量または材質の変化が本発明の規定内であればこれにこだわる必要はなく、温間圧延、加工組織が消失しない程度の熱間圧延、さらには張力を付与することによる引張変形、レベラー等による曲げ変形、ショットブラストや鍛造など方法は問わない。むしろ歪の付与の方法により、転位構造が後述する本発明にとって好ましいものに変化させられるため、さらなる特性の向上も可能である。   The above processing is usually performed by cold rolling, but it is not necessary to stick to this as long as the amount of strain or material change is within the rules of the present invention, warm rolling, hot rolling to such an extent that the work structure is not lost. Furthermore, any method such as tensile deformation by applying tension, bending deformation by a leveler, shot blasting, forging, etc. may be used. Rather, since the dislocation structure is changed to a preferable one for the present invention described later by the method of imparting strain, further improvement in characteristics can be achieved.

この加工を冷延で行う場合、圧下率の目安としては、上述の結晶粒の大きさの比から容易に推定可能であるが、10〜70%程度である。このように焼鈍工程である程度軟質化した材料をさらに再冷延で硬質化する場合には簡単に材料の薄手化が可能となり、従来難製造材であった極薄電磁鋼板の生産性も向上する。本発明によるこのような超極薄電磁鋼板は、特に高周波磁場下で使用される場合の渦電流損失を抑制できるため、鉄損低減に有効となるというメリットもある。   When this processing is performed by cold rolling, the rolling reduction can be easily estimated from the above-described ratio of crystal grain sizes, but is approximately 10 to 70%. In this way, when the material softened to some extent in the annealing process is further hardened by re-cooling, the material can be easily thinned, and the productivity of the ultra-thin electrical steel sheet, which was conventionally difficult to manufacture, is also improved. . Such an ultra-thin electromagnetic steel sheet according to the present invention can suppress eddy current loss particularly when used under a high-frequency magnetic field, and thus has an advantage of being effective in reducing iron loss.

なお、現状でも本発明の一方法のように、再結晶焼鈍を行った鋼板に1〜20%程度のスキンパス圧延を行い製品として出荷されている電磁鋼板、いわゆるセミプロセス電磁鋼板がある。これはスキンパスを施した板が製品として出荷され、モーターメーカーでモーターの部品として加工された後、再結晶が十分に起きるような条件で焼鈍を行い、歪誘起粒成長を起こさせることで粗大な再結晶組織を得、磁気特性の改善を図る手段で、スキンパス法とよばれることもあるが、この方法においては部材としての使用時には加工組織を残存させることはない。   At present, there is an electrical steel sheet, so-called semi-process electrical steel sheet, which is shipped as a product by performing skin pass rolling of about 1 to 20% on a recrystallized annealed steel sheet as in the method of the present invention. This is because a skin-passed plate is shipped as a product, processed as a motor part by a motor manufacturer, and then annealed under conditions that cause sufficient recrystallization to cause strain-induced grain growth. A means for obtaining a recrystallized structure and improving magnetic properties is sometimes referred to as a skin pass method, but in this method, the processed structure is not left at the time of use as a member.

本発明は本質的にこの鋼板および方法とは異なっており、電気機器の部品として加工した後には基本的には熱処理は行わない。鋼板の接着や表面制御等で何らかの熱処理を行う場合にも本発明で規定する加工組織が消失せず、本発明の規定内にとどまるものに限定する。これは加工組織が消失または本発明の規定範囲から外れると、実モーターとして使用している状況で必要となる鋼板の特に強度が不足することになるからである。この熱処理の温度の目安は、上述の鋼板焼鈍工程における温度条件と同一である。最適な条件は鋼板を製造する当業者の協力の下で、または協力がなくとも通常の電気機器の製造者であれば数度の試行により何ら問題なく発明の効果を享受できる条件を見出すことが可能なものである。   The present invention is essentially different from the steel plate and method, and basically no heat treatment is performed after being processed as a part of an electrical device. Even when any heat treatment is performed for adhesion or surface control of a steel plate, the processed structure defined in the present invention is not lost, and the present invention is limited to those that remain within the definition of the present invention. This is because when the processed structure disappears or deviates from the specified range of the present invention, the strength of the steel sheet required in the situation where it is used as an actual motor will be insufficient. The standard of the temperature of this heat processing is the same as the temperature conditions in the above-mentioned steel plate annealing process. Optimal conditions are those with the cooperation of those skilled in the art of manufacturing steel sheets, or those who are ordinary electrical equipment manufacturers without cooperation can find the conditions that can enjoy the effects of the invention without any problems after several trials. It is possible.

以上で述べた「加工組織」の効果は、「加工組織」中の転位密度によって評価することも可能である。加工組織における平均転位密度が1exp13/m2以上、さらに好ましくは3exp13/m2以上、さらに好ましくは1exp14/m2以上、さらに好ましくは3exp14/m2以上である。この転位密度は透過型電子顕微鏡等により計測される。鋼板全量が再結晶組織である通常の電磁鋼板においては、平均転位密度が1exp12/m2程度以下であることから、加工組織の分別には十分な差として10倍以上としている。 The effect of the “processed structure” described above can also be evaluated by the dislocation density in the “processed structure”. The average dislocation density in the processed structure is 1 exp13 / m 2 or more, more preferably 3 exp13 / m 2 or more, more preferably 1 exp14 / m 2 or more, and further preferably 3 exp14 / m 2 or more. This dislocation density is measured by a transmission electron microscope or the like. In an ordinary electrical steel sheet in which the total amount of the steel sheet is a recrystallized structure, the average dislocation density is about 1 exp12 / m 2 or less, and therefore, the difference is set to 10 times or more as a sufficient difference for sorting the processed structures.

なお、厳密には通常の電磁鋼板においても様々な部材として使用するにはメーカー等において剪断やかしめ等の加工が行われ、これにより鋼板中に導入された歪が少なからず残存し、部材特性に影響を及ぼすことが知られている。このような歪は鋼板の加工部位のみに入るもので、本発明で鋼板全面に意識的に残存させる歪とは異なり、部材全体としての高強度化にはほとんど寄与しないものである。   Strictly speaking, in order to use various members in ordinary electromagnetic steel sheets, processing such as shearing and caulking is performed by a manufacturer or the like, so that a considerable amount of distortion introduced into the steel sheets remains, and the characteristics of the members are reduced. It is known to affect. Such strains enter only the processed portion of the steel sheet, and unlike the strain that consciously remains on the entire surface of the steel sheet in the present invention, it hardly contributes to increasing the strength of the entire member.

本発明のように、材料中に加工組織を残存させても良好な磁気特性を維持できる原因には明確ではないが、以下のように考えられる。従来、加工組織は磁気特性を大きく劣化させるものとして材料の高強度化の手段としては顧みられず、高強度化は結晶粒微細化、固溶強化、析出強化等により行われてきた。しかし、材料の高強度化への要求は高まる一方であり、従来の高強度化手段は顕著に磁気特性を劣化させるような条件の領域にまで踏み込まざるを得なくなっており、このような状況で改めて加工組織を活用した高強度化手段を見た場合、それほど不利な方法とは言えなくなっていることが一面ではあると思われる。   The reason why good magnetic characteristics can be maintained even if the processed structure remains in the material as in the present invention is not clear, but is considered as follows. Conventionally, the processed structure is not considered as a means for increasing the strength of the material because it greatly deteriorates the magnetic properties, and the increase in the strength has been performed by crystal grain refinement, solid solution strengthening, precipitation strengthening and the like. However, the demand for higher strength of materials is increasing, and conventional strength enhancement means have to step into the area of conditions that significantly deteriorates magnetic properties. If we look at the means for strengthening using the processed structure again, it seems to be one aspect that it is no longer a disadvantageous method.

また、従来検討されていたのは、加工組織の影響は材料に冷間加工を施し、歪量が比較的小さい範囲のみであり、このような条件では材料中の転位構造は比較的均一で、いわゆるセル構造や回復組織のような比較的安定な転位配置を形成したものとはなっていなかったと予想される。この程度の加工量では高強度化手段としては全く魅力がないものであったうえに、このような転位構造では転位は磁壁移動の障害としかならず磁気特性の劣化は著しく、実用化されなかったものと思われる。   In addition, what has been studied in the past is that the effect of the processed structure is cold working on the material and the strain amount is only in a relatively small range. Under such conditions, the dislocation structure in the material is relatively uniform, It is expected that a relatively stable dislocation arrangement such as a so-called cell structure or recovery structure was not formed. In this amount of processing, it was not attractive at all as a means of increasing the strength, and in such a dislocation structure, the dislocation only became an obstacle to the domain wall movement and the deterioration of the magnetic properties was remarkable and was not put into practical use. I think that the.

一方、本発明のように比較的高歪量の冷間加工を行った場合や、焼鈍により回復した加工組織においては、転位は比較的安定なセル構造を形成している。セルの大きさは通常直径1μm以下で0.1μm程度にもなっており、セルの境界は転位で形成されており、隣接するセルとの結晶方位差が小さいことを除けば一般の結晶粒と同様の構造を有しており、一種の超微細結晶粒と見ることが可能で磁壁移動の障害とはなりにくくなったものと考えられる。またこのような超微細結晶粒は強度も高く、加工が必要な場合の延性もそれなりに有しており、強度と磁性のバランスを考えると十分に実用化が可能なレベルにあると考える。   On the other hand, dislocations form a relatively stable cell structure when a relatively high strain amount of cold working is performed as in the present invention, or in a processed structure recovered by annealing. The size of the cell is usually less than 1 μm in diameter and is about 0.1 μm, and the cell boundary is formed by dislocations, except that the crystal orientation difference between adjacent cells is small. It has a similar structure, and can be regarded as a kind of ultrafine crystal grains, and is considered to be less likely to be an obstacle to domain wall movement. Further, such ultrafine crystal grains have high strength and have a certain degree of ductility when processing is necessary. Considering the balance between strength and magnetism, the ultrafine crystal grains are considered to be sufficiently practical.

また、加工組織が存在する本発明鋼においても鉄損において特に渦電流損失の寄与が大きくなる高周波磁場下で使用されるような用途においては、Si,Mn,Al,Cr,Ni等の添加は重要なものであり、加工硬化挙動や再結晶挙動などの転位挙動に大きな影響を及ぼすため、電磁鋼板をベースとした転位強化鋼の開発は、自動車や容器等に用いられるいわゆる加工用普通鋼におけるものとは全く異なった意味を有する。   In addition, in the steel of the present invention in which a processed structure exists, addition of Si, Mn, Al, Cr, Ni, etc. is not necessary in applications where the iron loss is used in a high-frequency magnetic field where the contribution of eddy current loss is particularly large The development of dislocation strengthened steels based on electrical steel sheets has become important for so-called ordinary steels for processing used in automobiles and containers, because they are important and have a great influence on dislocation behavior such as work hardening behavior and recrystallization behavior. It has a completely different meaning.

なお、本発明の効果は通常電磁鋼板の表面に形成される表面皮膜の有無および種類によらず、さらに製造工程にはよらないため無方向性または方向性の電磁鋼板に適用できる。特に本発明鋼は特性の面内異方性において従来の再結晶組織による鋼板とは大きく異なった特徴を付与することができる。磁束密度について見ると、冷延ままのフルハードの状態ではコイルの圧延方向から45°方向(D方向)の特性が圧延方向(L方向)またはコイル幅方向(C方向)の特性より高いものとなっている。通常の再結晶組織を有する電磁鋼板ではほとんどの場合、D方向の特性はLまたはC方向の特性より低くなっていることを考えると、再結晶・回復の程度を適当に調整し中間的な再結晶段階に制御することにより、面内異方性がほとんどない鋼板を得ることが容易に可能となる。面内異方性がほとんどないことは回転機等、用途によっては非常に好ましい特性を発揮できる特徴を有する鋼板である。   The effect of the present invention can be applied to a non-oriented or directional electrical steel sheet because it does not depend on the manufacturing process, regardless of the presence and type of a surface film usually formed on the surface of the electrical steel sheet. In particular, the steel according to the present invention can impart characteristics that are greatly different from those of steel sheets having a conventional recrystallization structure in the in-plane anisotropy of characteristics. Looking at the magnetic flux density, the characteristics in the 45 ° direction (D direction) from the coil rolling direction are higher than the characteristics in the rolling direction (L direction) or the coil width direction (C direction) in the fully hard state as cold rolled. It has become. In most cases of electrical steel sheets having a normal recrystallized structure, the characteristics in the D direction are lower than those in the L or C direction. By controlling to the crystallization stage, it is possible to easily obtain a steel sheet having almost no in-plane anisotropy. The fact that there is almost no in-plane anisotropy is a steel sheet having a feature that can exhibit very favorable characteristics depending on applications such as a rotating machine.

用途も特に限定されるものではなく、家電または自動車等で用いられるモーターのローター用途の他、強度と磁気特性が求められる全ての用途に適用される。
参考例
The use is not particularly limited, and the present invention is applicable to all uses where strength and magnetic properties are required in addition to the use of a rotor of a motor used in home appliances or automobiles.
[ Reference example ]

0.002%C−3.0%Si−0.5%Mn−0.03%P−0.001%S−0.3%Al−0.002%Nなる成分を有する200mm厚の鋼片から、スラブ加熱温度1100℃、巻取温度700℃の熱延を行い、熱延板焼鈍を800、950、1050℃と変化させ、粒径を10、100、200μmと変化させた。それぞれの熱延板を冷延後、焼鈍なし、および400〜1000℃30秒の焼鈍を行い、再結晶率および強度が異なる板厚0.5mmの製品板を製造した。これらについて、JIS5号試験片による機械的特性、および55mm角のSST試験による鉄損W10/400を評価した。機械的特性および磁気特性ともコイルの圧延方向、45°方向およびその直角方向について、以下の式で平均値を求めた。
X=(X0+2×X45+X90)/4
ここで、X0、X45、X90はコイルの圧延方向、45°方向およびその直角方向の特性である。
200 mm thick steel slab having a component of 0.002% C-3.0% Si-0.5% Mn-0.03% P-0.001% S-0.3% Al-0.002% N Then, hot rolling at a slab heating temperature of 1100 ° C. and a coiling temperature of 700 ° C. was performed, the hot-rolled sheet annealing was changed to 800, 950, and 1050 ° C., and the particle size was changed to 10, 100, and 200 μm. Each hot-rolled sheet was cold-rolled and then annealed at 400 to 1000 ° C. for 30 seconds to produce a product sheet having a thickness of 0.5 mm with different recrystallization rate and strength. About these, the mechanical characteristic by a JIS5 test piece and the iron loss W10 / 400 by the SST test of a 55 mm square were evaluated. For both the mechanical characteristics and the magnetic characteristics, the average value was determined by the following formula for the rolling direction of the coil, the 45 ° direction, and the direction perpendicular thereto.
X = (X 0 + 2 × X 45 + X 90 ) / 4
Here, X 0 , X 45 , and X 90 are characteristics of the coil rolling direction, 45 ° direction, and its perpendicular direction.

結果を図1に示す。結果から明らかなように、熱延板粒径が粗大な材料は強度−鉄損バランスが良好である。 The results are shown in FIG. As is clear from the results, the material having a large hot-rolled plate particle size has a good strength-iron loss balance.

表1の成分を有する200mm厚の鋼片から、表2に示す製造条件で製品板を製造した。一部の材料についてはモーター製造メーカーでの熱処理を想定した熱処理(ユーザー焼鈍)を行った。これらについて、JIS5号試験片による機械的特性、および55mm角のSST試験による鉄損W10/400と磁束密度B25で特性を評価した。機械的特性および磁気特性ともコイルの圧延方向、45°方向およびその直角方向について、以下の式で平均値を求めた。
X=(X0+2×X45+X90)/4
ここで、X0、X45、X90はコイルの圧延方向、45°方向およびその直角方向の特性である。
Product plates were produced from the 200 mm thick steel pieces having the components shown in Table 1 under the production conditions shown in Table 2. Some materials were heat-treated (user annealed) assuming heat treatment at the motor manufacturer. These characteristics were evaluated in mechanical properties, and 55mm angle iron loss W 10/400 and the magnetic flux density B 25 by SST test by JIS5 No. specimen. For both the mechanical characteristics and the magnetic characteristics, the average value was determined by the following formula for the rolling direction of the coil, the 45 ° direction, and the direction perpendicular thereto.
X = (X 0 + 2 × X 45 + X 90 ) / 4
Here, X 0 , X 45 , and X 90 are characteristics of the coil rolling direction, 45 ° direction, and its perpendicular direction.

結果を表2に示す。結果から明らかなように、本発明の条件にて製造した材料は硬質で、さらに磁気特性も優れている。注意を要するのは、一般に電磁鋼板は含有するSi量によりグレード分けされ販売されるように、Si量で特性が大きく異なる。また、板厚によっても鉄損は大きく異なる。高Si材は低Si材と比べて、Si含有量の差によって鉄損が大幅に低下し、また板厚が薄いものも鉄損が低下するので、本発明の効果を評価する際は、Si量や板厚の差を念頭に、Si量、板厚が同等なもので比較することが必要である。   The results are shown in Table 2. As is apparent from the results, the material produced under the conditions of the present invention is hard and has excellent magnetic properties. It should be noted that, in general, electrical steel sheets have different characteristics depending on the amount of Si so that grades are sold according to the amount of Si contained. The iron loss varies greatly depending on the plate thickness. The high Si material has a significantly reduced iron loss due to the difference in Si content compared to the low Si material, and the iron loss is also reduced in the case of a thin plate, so when evaluating the effect of the present invention, Si In consideration of the difference in the amount and thickness, it is necessary to compare with the same amount of Si and thickness.

Figure 0004469268
Figure 0004469268

Figure 0004469268
Figure 0004469268

冷延前粒径に依存する強度−鉄損バランスを示す図である。It is a figure which shows the intensity | strength-iron loss balance depending on the particle size before cold rolling.

Claims (7)

質量%で、C:0.060%以下、Si:0.2〜4.0%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、鋼板内部に再結晶組織に蚕食されていない領域あるいは再結晶組織をさらに加工することで得られる組織である加工組織が残存する高強度電磁鋼板の製造方法において、最終的に鋼板内部に残存する前記加工組織を形成する工程の直前における鋼板の平均結晶粒径dを20μm以上とするとともに該鋼板の再結晶率を100%とし、前記加工組織が断面観察における面積率で20%以上であることを特徴とする電磁鋼板の製造方法。 In mass%, C: 0.060% or less, Si: 0.2-4.0%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040% or less, By further processing a region or recrystallized structure containing Al: 2.50% or less, N: 0.020% or less, consisting of the remainder Fe and unavoidable impurities and not eroded by the recrystallized structure inside the steel sheet. in the method of producing a high strength electrical steel sheet is obtained tissue processing tissue remains, the average crystal grain size d of the steel sheet immediately before the step of forming the worked structure to finally remain inside the steel sheet with a higher 20μm A method for producing an electrical steel sheet, wherein a recrystallization rate of the steel sheet is 100%, and the processed structure is 20% or more in terms of an area ratio in cross-sectional observation. 質量%で、C:0.060%以下、Si:0.2〜4.0%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、鋼板内部に再結晶組織に蚕食されていない領域あるいは再結晶組織をさらに加工することで得られる組織である加工組織が残存する高強度電磁鋼板の製造方法において、
最終的に鋼板内部に残存する前記加工組織を形成する工程の直前における鋼板の平均結晶粒径d(μm)を、
d≧(220−50×Si%)
とするとともに該鋼板の再結晶率を100%とし、前記加工組織が断面観察における面積率で20%以上であることを特徴とする電磁鋼板の製造方法。
In mass%, C: 0.060% or less, Si: 0.2-4.0%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040% or less, By further processing a region or recrystallized structure containing Al: 2.50% or less, N: 0.020% or less, consisting of the remainder Fe and unavoidable impurities and not eroded by the recrystallized structure inside the steel sheet. In the method for producing a high-strength electrical steel sheet in which the processed structure that is the resulting structure remains,
The average crystal grain size d (μm) of the steel sheet immediately before the step of forming the processed structure finally remaining inside the steel sheet,
d ≧ (220-50 × Si%) ,
And the recrystallization rate of the steel sheet is 100%, and the processed structure is 20% or more in terms of the area ratio in cross-sectional observation.
最終的に鋼板内部に残存する前記加工組織を形成する工程の直前における鋼板の平均結晶粒径d(μm)を、
d≦(400−50×Si%)、
かつ、
d≦(820−200×Si%)、
とすることを特徴とする請求項1もしくは2に記載の電磁鋼板の製造方法。
The average crystal grain size d (μm) of the steel sheet immediately before the step of forming the processed structure finally remaining inside the steel sheet,
d ≦ (400-50 × Si%),
And,
d ≦ (820−200 × Si%),
The method for producing an electrical steel sheet according to claim 1 or 2, wherein:
鋼成分が質量%で、さらに、Cu:0.1〜8.0%、Nb:0.03〜8.0%の一種以上を含有することを特徴とする請求項1〜のいずれかの項に記載の電磁鋼板の製造方法。 In mass% steel composition, further, Cu: 0.1~8.0%, Nb: 0.03~8.0% of any of claims 1-3, characterized in that it contains one or more The manufacturing method of the electromagnetic steel sheet as described in a term. 鋼成分が質量%で、さらに、Ti:1.0%以下、B:0.010%以下、Ni:5.0%以下、Cr:15.0%以下の1種または2種以上を含有することを特徴とする請求項1〜のいずれかの項に記載の電磁鋼板の製造方法。 Steel component is mass%, and further contains one or more of Ti: 1.0% or less, B: 0.010% or less, Ni: 5.0% or less, Cr: 15.0% or less. The method for producing an electrical steel sheet according to any one of claims 1 to 4 , wherein: 鋼成分が質量%で、さらに、Sn,Ceの1種または2種以上を合計で0.5%以下含有することを特徴とする請求項1〜のいずれかの項に記載の電磁鋼板の製造方法。 In steel ingredients by weight%, further, Sn, the electrical steel sheet according to any one of claims 1-5, characterized in that it contains less than 0.5% in total of one or more of Ce Production method. 前記鋼板内部の前記加工組織における平均転位密度が1exp13/m2以上であることを特徴とする請求項1〜のいずれかの項に記載の電磁鋼板の製造方法。 The method for producing an electrical steel sheet according to any one of claims 1 to 6 , wherein an average dislocation density in the processed structure inside the steel sheet is 1 exp13 / m 2 or more.
JP2004367338A 2004-12-20 2004-12-20 Manufacturing method of high strength electrical steel sheet Active JP4469268B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004367338A JP4469268B2 (en) 2004-12-20 2004-12-20 Manufacturing method of high strength electrical steel sheet
TW95121897A TW200801208A (en) 2004-12-20 2006-06-19 A high strength electrical steel sheet and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367338A JP4469268B2 (en) 2004-12-20 2004-12-20 Manufacturing method of high strength electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006169611A JP2006169611A (en) 2006-06-29
JP4469268B2 true JP4469268B2 (en) 2010-05-26

Family

ID=36670667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367338A Active JP4469268B2 (en) 2004-12-20 2004-12-20 Manufacturing method of high strength electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4469268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007144964A1 (en) * 2006-06-16 2009-10-29 新日本製鐵株式会社 High strength electrical steel sheet and manufacturing method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710465B2 (en) * 2005-07-25 2011-06-29 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
JP4710458B2 (en) * 2005-07-19 2011-06-29 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
JP4779474B2 (en) * 2005-07-07 2011-09-28 住友金属工業株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP4586669B2 (en) * 2005-08-01 2010-11-24 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
JP4506664B2 (en) * 2005-12-15 2010-07-21 住友金属工業株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5194535B2 (en) * 2006-07-26 2013-05-08 新日鐵住金株式会社 High strength non-oriented electrical steel sheet
JP5126787B2 (en) * 2008-07-11 2013-01-23 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet for rotor
JP5333415B2 (en) * 2010-11-08 2013-11-06 新日鐵住金株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
EP2612942B1 (en) * 2012-01-05 2014-10-15 ThyssenKrupp Steel Europe AG Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
EP2883975B1 (en) 2012-08-08 2019-09-18 JFE Steel Corporation High-strength non-oriented electricomagnetic steel sheet and method for producing same
IN2015DN02550A (en) 2012-09-27 2015-09-11 Nippon Steel & Sumitomo Metal Corp
JP5716811B2 (en) * 2013-11-07 2015-05-13 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP6606988B2 (en) * 2015-11-12 2019-11-20 日本製鉄株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP6658150B2 (en) * 2016-03-16 2020-03-04 日本製鉄株式会社 Magnetic steel sheet
KR101918720B1 (en) * 2016-12-19 2018-11-14 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US20220064751A1 (en) 2019-01-24 2022-03-03 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007144964A1 (en) * 2006-06-16 2009-10-29 新日本製鐵株式会社 High strength electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006169611A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4546713B2 (en) Final product of high-strength electrical steel sheet with excellent magnetic properties, its use and manufacturing method
KR101177161B1 (en) High-strength electromagnetic steel sheet and process for producing the same
RU2398894C1 (en) Sheet of high strength electro-technical steel and procedure for its production
JP5000136B2 (en) High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof
JP4469268B2 (en) Manufacturing method of high strength electrical steel sheet
KR101011965B1 (en) Highly strong, non-oriented electrical steel sheet and method for manufacture thereof
JP5223190B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007039721A (en) Method for producing non-oriented electrical steel sheet for rotor
WO2004050934A1 (en) Non-oriented magnetic steel sheet and method for production thereof
JP4833523B2 (en) Electrical steel sheet and manufacturing method thereof
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP2004084053A (en) Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP4414727B2 (en) Magnetic steel sheet with excellent magnetic properties and deformation resistance and manufacturing method thereof
JP4510559B2 (en) High-strength electrical steel sheet and manufacturing method and processing method thereof
WO2012141206A1 (en) High-strength non-oriented magnetic steel sheet
JP2005264328A (en) High-strength steel plate having excellent workability and method for manufacturing the same
JP5445194B2 (en) Manufacturing method and processing method of high strength electrical steel sheet
JP5397252B2 (en) Electrical steel sheet and manufacturing method thereof
JP2020169369A (en) Nonoriented electromagnetic steel sheet
JP4157454B2 (en) High strength electrical steel sheet and its manufacturing method
JP6801464B2 (en) Non-oriented electrical steel sheet
JP2018111847A (en) Nonoriented electromagnetic steel sheet
JP4932782B2 (en) Electrical steel sheet, electrical parts using the same, and manufacturing method thereof
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP6852965B2 (en) Electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R151 Written notification of patent or utility model registration

Ref document number: 4469268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350