JP2019116680A - Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof - Google Patents
Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP2019116680A JP2019116680A JP2018178699A JP2018178699A JP2019116680A JP 2019116680 A JP2019116680 A JP 2019116680A JP 2018178699 A JP2018178699 A JP 2018178699A JP 2018178699 A JP2018178699 A JP 2018178699A JP 2019116680 A JP2019116680 A JP 2019116680A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- slab
- steel sheet
- formula
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、方向性電磁鋼板用スラブ、方向性電磁鋼板およびその製造方法に係り、より詳しくは、スラブ内のSiの含有量に応じたMnおよびCの含有量を精密に調整することによって、優れた磁性を得る方向性電磁鋼板用スラブ、方向性電磁鋼板および方向性電磁鋼板の製造方法に関する。 The present invention relates to a slab for a directional electrical steel sheet, a directional electrical steel sheet, and a method of manufacturing the same, and more specifically, by precisely adjusting the contents of Mn and C according to the content of Si in the slab, The present invention relates to a slab for a directional magnetic steel sheet for obtaining excellent magnetism, a directional magnetic steel sheet, and a method of manufacturing the directional magnetic steel sheet.
方向性電磁鋼板は、鋼板面の結晶粒の方位が{110}面であり、圧延方向の結晶方位は<001>軸に平行な、いわゆるゴス(Goss)集合組織(texture)を形成して、鋼板の圧延方向に磁気特性を増大させた軟磁性材料である。一般に、磁気特性に優れているか否かは磁束密度と鉄損で表現され、高い磁束密度は結晶粒の方位を{110}<001>方位に正確に配列することにより得られる。磁束密度が高い電磁鋼板は、電気機器の鉄心材料の大きさを小さく抑えられるだけでなく、履歴損失が低下して電気機器の小型化と同時に高効率化をなすことができる。鉄損は、鋼板に任意の交流磁場を加えた時、熱エネルギーとして消費される電力損失であって、磁束密度と比抵抗が高いほど、そして板厚さと鋼板中の不純物の量が低いほど、鉄損が低下して電気機器の効率が増加する。
現在、全世界的にCO2の発生を低減して地球温暖化に対応するために、エネルギー節約と共に高効率の製品化を目指す傾向にあり、電気エネルギーを少なく使用する高効率化された電気機器の普及に対する需要増加に伴い、より優れた低鉄損特性を有する方向性電磁鋼板の開発に対する社会的要求が増大している。
The grain-oriented electrical steel sheet forms a so-called goss texture in which the crystal grain orientation of the steel sheet surface is {110} and the crystal orientation in the rolling direction is parallel to the <001> axis, It is a soft magnetic material whose magnetic properties are increased in the rolling direction of the steel sheet. In general, whether or not the magnetic properties are excellent is expressed by magnetic flux density and core loss, and high magnetic flux density can be obtained by correctly arranging the orientation of crystal grains in the {110} <001> orientation. The electromagnetic steel sheet having a high magnetic flux density not only can reduce the size of the core material of the electric device, but also the hysteresis loss can be reduced to achieve the miniaturization of the electric device and the high efficiency. Iron loss is a power loss consumed as thermal energy when an arbitrary alternating magnetic field is applied to a steel plate, and the higher the magnetic flux density and specific resistance, and the lower the thickness and the amount of impurities in the steel plate, Iron loss decreases and the efficiency of electrical devices increases.
Currently, in order to reduce CO 2 emissions worldwide and respond to global warming, we are aiming to commercialize products with high efficiency and energy efficiency, and use highly efficient electrical equipment that uses less electrical energy With the increasing demand for the spread of the steel, the social demand for the development of a directional electrical steel sheet having better low iron loss characteristics is increasing.
磁気特性に優れた方向性電磁鋼板は、鋼板の圧延方向に{110}<001>方位から15°以内の方位を有する結晶粒子でなるゴス組織(Goss texture)が強く発達しなければならず、このような集合組織を形成させるためには、ゴス方位の結晶粒が2次再結晶という特別な結晶粒成長を形成させなければならない。このような特別な結晶成長は、通常の結晶粒成長とは異なり、結晶粒成長が析出物、介在物や、あるいは固溶または粒界に偏析する元素によって通常成長する結晶粒界の移動が抑制された時に発生する。このように結晶粒成長を抑制する析出物や介在物などを、特に結晶粒成長抑制剤(inhibitor)と称し、{110}<001>方位の2次再結晶による方向性電磁鋼板の製造技術についての研究は、強力な結晶粒成長抑制剤を用いて{110}<001>方位に対する集積度が高い2次再結晶を形成して、優れた磁気特性を確保する方向に発展してきた。 In a grain-oriented electrical steel sheet excellent in magnetic properties, Goss texture consisting of crystal grains having an orientation within 15 ° from the {110} <001> orientation in the rolling direction of the steel sheet must be strongly developed, In order to form such texture, Goth-oriented crystal grains must form special grain growth called secondary recrystallization. Such special crystal growth is different from normal crystal grain growth, and the movement of the crystal grain boundary, which is usually grown by precipitates, inclusions, or elements that segregate in solid solution or grain boundaries, is suppressed. Occurs when the The precipitates and inclusions that suppress grain growth in this way are referred to as grain growth inhibitors, in particular, and the manufacturing technology of a grain-oriented electrical steel sheet by secondary recrystallization in the {110} <001> orientation. Research has developed to secure superior magnetic properties by forming secondary recrystallizations with high degree of integration to {110} <001> orientation using a strong grain growth inhibitor.
一方、熱間圧延のためにスラブを加熱する時、加熱温度を相対的に低くする、いわゆる低温加熱方向性電磁鋼板の製造方法が発展してきており、このように低温でスラブを加熱する場合には、主要結晶粒成長抑制剤としてAl系析出物を用いる方法が提案されている。具体的には、このようなスラブの低温加熱方法で抑制剤を形成する場合、Al系の窒化物が結晶粒成長を抑制する効果が強く、2次再結晶をより有利に形成させる製造方法として提案されている。
Al系の窒化物を形成するためのAlの含有量は一定水準以上に高めることが容易でなく、その含有量に制限がある。そして、Al系窒化物の主な形成元素であるSiとMnの含有量とこれらSiとMnの複合窒化物を形成するのに間接的に相互間で影響を及ぼすCの含有量を精密に制御する必要がある。
On the other hand, when heating a slab for hot rolling, a method of manufacturing a so-called low-temperature-oriented electrical steel sheet in which the heating temperature is relatively lowered has been developed, and in this case, the slab is heated at a low temperature. The method of using an Al-based precipitate as a main grain growth inhibitor is proposed. Specifically, when an inhibitor is formed by such a low temperature heating method for slabs, the effect of Al-based nitrides to suppress crystal grain growth is strong, and as a manufacturing method to form secondary recrystallization more advantageously Proposed.
It is not easy to increase the content of Al to form an Al-based nitride above a certain level, and the content is limited. And, precisely control the content of Si and Mn, which are the main forming elements of Al-based nitride, and the content of C which indirectly influences each other in forming the composite nitride of Si and Mn. There is a need to.
本発明は上記の状況に鑑みてなされたものであって、その目的とするところは、方向性電磁鋼板用スラブ、方向性電磁鋼板および、その製造方法を提供することにある。具体的には、電磁鋼板を製造するための、スラブ内のSiの含有量に応じたMnおよびCの含有量を精密に調整することによって、結果的に優れた磁性を有する方向性電磁鋼板用スラブ、方向性電磁鋼板およびその製造方法を提供する。 This invention is made in view of said condition, Comprising: The place made into the objective is to provide the slab for directional electromagnetic steel plates, a directional electromagnetic steel plate, and its manufacturing method. Specifically, for a directional electrical steel sheet having excellent magnetism as a result by precisely adjusting the contents of Mn and C according to the content of Si in the slab for producing the magnetic steel sheet Provided are a slab, a grain-oriented electrical steel sheet, and a method of manufacturing the same.
上記目的を達成するための本発明の方向性電磁鋼板の製造方法は、質量%で、Si:3.0〜5.0%、C:0.01〜0.15%、Mn:0.1〜1.5%を含み、残部はFeおよびその他の不可避不純物からなり、下記式1および式2を満足するスラブを加熱する段階と、スラブを熱間圧延して熱延板を製造する段階と、熱延板を冷間圧延して冷延板を製造する段階と、冷延板を1次再結晶焼鈍する段階と、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階とを含むことを特徴とする。
式1:0.5≦[Si]/(100×[C]×[Mn])≦3
式2:(0.04×[Si]−0.075)−(0.045×[Mn])≦[C]≦(0.055×[Si]−0.1)−(0.055×[Mn])
式1および式2において、[Si]、[C]および[Mn]はそれぞれ、Si、CおよびMnの含有量(質量%)を示す。
The manufacturing method of the directionality electromagnetic steel sheet of the present invention for achieving the above object is, by mass%, Si: 3.0 to 5.0%, C: 0.01 to 0.15%, Mn: 0.1 Heating the slab containing 1.5% and the balance of Fe and other unavoidable impurities and satisfying the following formulas 1 and 2, and hot rolling the slab to produce a hot-rolled sheet , Cold-rolling a hot-rolled sheet to produce a cold-rolled sheet, primary re-crystallization annealing of the cold-rolled sheet, and secondary re-crystallization annealing of the cold-rolled sheet which has undergone primary recrystallization annealing And a stage.
Formula 1: 0.5 ≦ [Si] / (100 × [C] × [Mn]) ≦ 3
Formula 2: (0.04 × [Si] −0.075) − (0.045 × [Mn]) ≦ [C] ≦ (0.055 × [Si] −0.1) − (0.055 × [Mn])
In Formula 1 and Formula 2, [Si], [C], and [Mn] show content (mass%) of Si, C, and Mn, respectively.
スラブは、Al:0.01〜0.04質量%、SbおよびSnのうちの1種以上をそれぞれ単独または合量で0.03〜0.1質量%、N:0.01質量%以下(ただし、0質量%を除く)およびS:0.01%以下(ただし、0質量%を除く)をさらに含むことができる。
スラブを加熱する段階において、スラブの加熱温度は、1000℃〜1250℃であることがよい。
スラブを加熱する段階の後、スラブ内のオーステナイト体積分率が20〜40%であることが好ましい。
2次再結晶焼鈍する段階の後、{100}面が圧延面(ND面)となす角度が15°以下の結晶方位を有する集合組織の体積分率が3%以下であることがよい。
The slab is made of Al: 0.01 to 0.04% by mass, and one or more of Sb and Sn alone or in a total amount of 0.03 to 0.1% by mass, N: 0.01% by mass or less However, 0 mass% can be excluded and S: 0.01% or less (however, except 0 mass%) can further be included.
In the stage of heating the slab, the heating temperature of the slab may be 1000 ° C to 1250 ° C.
After heating the slab, the austenite volume fraction in the slab is preferably 20 to 40%.
After the secondary recrystallization annealing step, it is preferable that the volume fraction of the texture having a crystal orientation in which the angle formed by the {100} plane with the rolling plane (ND plane) is 15 ° or less is 3% or less.
本発明の方向性電磁鋼板スラブは、質量%で、Si:3.0〜5.0%、C:0.01〜0.15%、Mn:0.1〜1.5%を含み、残部はFeおよびその他の不可避不純物からなり、下記式1および式2を満足することを特徴とする。
式1:0.5≦[Si]/(100×[C]×[Mn])≦3
式2:(0.04×[Si]−0.075)−(0.045×[Mn])≦[C]≦(0.055×[Si]−0.1)−(0.055×[Mn])
式1および式2において、[Si]、[C]および[Mn]はそれぞれ、Si、CおよびMnの含有量(質量%)を示す。
The grain-oriented electrical steel sheet slab of the present invention contains, by mass%, Si: 3.0 to 5.0%, C: 0.01 to 0.15%, Mn: 0.1 to 1.5%, the balance Is composed of Fe and other unavoidable impurities, and is characterized by satisfying Formula 1 and Formula 2 below.
Formula 1: 0.5 ≦ [Si] / (100 × [C] × [Mn]) ≦ 3
Formula 2: (0.04 × [Si] −0.075) − (0.045 × [Mn]) ≦ [C] ≦ (0.055 × [Si] −0.1) − (0.055 × [Mn])
In Formula 1 and Formula 2, [Si], [C], and [Mn] show content (mass%) of Si, C, and Mn, respectively.
スラブは、Al:0.01〜0.04質量%、SbおよびSnのうちの1種以上をそれぞれ単独または合量で0.03〜0.1質量%、N:0.01質量%以下(ただし、0質量%を除く)およびS:0.01%以下(ただし、0質量%を除く)をさらに含むことができる。
スラブ内のオーステナイト体積分率が20〜40%であることがよい。
The slab is made of Al: 0.01 to 0.04% by mass, and one or more of Sb and Sn alone or in a total amount of 0.03 to 0.1% by mass, N: 0.01% by mass or less However, 0 mass% can be excluded and S: 0.01% or less (however, except 0 mass%) can further be included.
The austenite volume fraction in the slab is preferably 20 to 40%.
本発明の方向性電磁鋼板は、質量%で、Si:3.0〜5.0%、C:0.005%以下(0%を除く)、Mn:0.1〜1.5%を含み、残部はFeおよびその他の不可避不純物からなり、{100}面が圧延面(ND面)となす角度が15°以下の結晶方位を有する集合組織の体積分率が3%以下であることを特徴とする。
方向性電磁鋼板は、Al:0.01〜0.04質量%、SbおよびSnのうちの1種以上をそれぞれ単独または合量で0.03〜0.1質量%、N:0.01質量%以下(ただし、0質量%を除く)およびS:0.01%以下(ただし、0質量%を除く)をさらに含むことが好ましい。
The grain-oriented electrical steel sheet of the present invention contains, by mass%, Si: 3.0 to 5.0%, C: 0.005% or less (except 0%), and Mn: 0.1 to 1.5%. The remaining part is made of Fe and other unavoidable impurities, and the volume fraction of the texture having a crystal orientation in which the {100} plane makes an angle of 15 ° or less with the rolling plane (ND plane) is 3% or less. I assume.
The grain-oriented electrical steel sheet contains 0.01 to 0.04% by mass of Al, and 0.03 to 0.1% by mass or 0.01% by mass of one or more of Sb and Sn alone or in combination. It is preferable to further contain% or less (however, except 0 mass%) and S: 0.01% or less (however, except 0 mass%).
本発明によると、本発明により製造された方向性電磁鋼板は、Siの含有量に応じたMnおよびCの含有量を調整することによって、鋼板の比抵抗が高くかつゴス集合組織が多数形成され、磁気的特性に優れる方向性電磁鋼板となる効果がある。 According to the present invention, in the grain-oriented electrical steel sheet manufactured according to the present invention, by adjusting the contents of Mn and C according to the content of Si, the specific resistance of the steel sheet is high and a large number of Goss textures are formed. There is an effect to be a directional electromagnetic steel sheet excellent in magnetic properties.
本発明の方向性電磁鋼板の製造方法は、質量%で、Si:3.0〜5.0%、C:0.01〜0.15%、Mn:0.1〜1.5%を含み、残部はFeおよびその他の不可避不純物からなり、下記式1および式2を満足するスラブを加熱する段階と、スラブを熱間圧延して熱延板を製造する段階と、熱延板を冷間圧延して冷延板を製造する段階と、冷延板を1次再結晶焼鈍する段階と、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階とを含む。
式1:0.5≦[Si]/(100×[C]×[Mn])≦3
式2:(0.04×[Si]−0.075)−(0.045×[Mn])≦[C]≦(0.055×[Si]−0.1)−(0.055×[Mn])
式1および式2において、[Si]、[C]および[Mn]はそれぞれ、Si、CおよびMnの含有量(質量%)を示す。
The manufacturing method of the grain oriented electrical steel sheet of the present invention contains, by mass%, Si: 3.0 to 5.0%, C: 0.01 to 0.15%, Mn: 0.1 to 1.5%. The remaining portion consists of Fe and other unavoidable impurities, and the steps of heating the slab satisfying the following formulas 1 and 2; hot rolling the slab to produce a hot rolled sheet; and cold rolling the hot rolled sheet The steps of rolling to produce a cold rolled sheet, primary recrystallization annealing of the cold rolled sheet, and secondary recrystallization annealing of the cold rolled sheet having undergone primary recrystallization annealing are included.
Formula 1: 0.5 ≦ [Si] / (100 × [C] × [Mn]) ≦ 3
Formula 2: (0.04 × [Si] −0.075) − (0.045 × [Mn]) ≦ [C] ≦ (0.055 × [Si] −0.1) − (0.055 × [Mn])
In Formula 1 and Formula 2, [Si], [C], and [Mn] show content (mass%) of Si, C, and Mn, respectively.
以下、各段階別に詳細に説明する。
まず、スラブを加熱する。
スラブは、Si:3.0〜5.0%、C:0.01〜0.15%、Mn:0.1〜1.5%を含み、残部はFeおよびその他の不可避不純物からなる。
以下、スラブの各成分について説明する。
Each step will be described in detail below.
First, heat the slab.
The slab contains Si: 3.0 to 5.0%, C: 0.01 to 0.15%, Mn: 0.1 to 1.5%, the balance being composed of Fe and other unavoidable impurities.
Hereinafter, each component of the slab will be described.
Si:3.0〜5.0質量%
シリコン(Si)は、電磁鋼板の基本組成で、素材の比抵抗を増加させて鉄損を改善する役割を果たす。Siの含有量が少なすぎる場合、比抵抗が減少し、また、渦電流損が増加して鉄損特性に劣る。一方、Siが過度に多く添加される場合には、機械的特性のうち延性と靭性が低下して、圧延過程中に板破断が頻繁に発生するだけでなく、商業的生産のための連続焼鈍時、板間溶接性が低下して生産性が悪化する虞がある。結果的に、Siの含有量を上記した範囲に制御しなければ磁気的特性が損なわれるだけでなく、生産性が悪化する虞がある。したがって、上記した範囲でSiを含むことがよく、より好ましくは、Siを3.5〜5.0質量%であることがよい。
Si: 3.0 to 5.0% by mass
Silicon (Si) is a basic composition of a magnetic steel sheet, and plays a role in increasing core resistivity and improving core loss. If the content of Si is too low, the resistivity decreases, and the eddy current loss increases, resulting in poor core loss characteristics. On the other hand, when too much Si is added, the ductility and toughness of the mechanical properties decrease and not only plate breakage frequently occurs during the rolling process but also continuous annealing for commercial production At the same time, there is a possibility that the weldability between the plates is reduced to deteriorate the productivity. As a result, if the content of Si is not controlled to the above-mentioned range, not only the magnetic properties are impaired, but also the productivity may be deteriorated. Therefore, it is preferable to contain Si in the above-mentioned range, and more preferably, it is 3.5 to 5.0 mass% of Si.
C:0.01〜0.15質量%
炭素(C)は、オーステナイト安定化元素であって、スラブ中に添加され、連鋳過程に発生する粗大な柱状組織を微細化し、硫黄(S)のスラブ中心への偏析を抑制することができる。また、冷間圧延中に鋼板の加工硬化を促進して、鋼板内に{110}<001>方位の2次再結晶核生成を促進することができる。しかし、過度に多く添加されると、熱延中にエッジ−クラック(edge−crack)が発生する虞がある。したがって、上記した範囲でCを含むことが好ましい。
ただし、電磁鋼板の製造過程で、1次再結晶焼鈍中に脱炭焼鈍を経ることになり、脱炭焼鈍を経た最終方向性電磁鋼板内のCの含有量は0.005質量%以下であることが好ましく、0.003質量%以下であることがより好ましい。
C: 0.01 to 0.15 mass%
Carbon (C) is an austenite-stabilizing element, is added in the slab, and can refine coarse columnar structures generated in the continuous casting process and suppress segregation of sulfur (S) to the slab center . In addition, work hardening of the steel sheet can be promoted during cold rolling, and secondary recrystallization nucleation in the {110} <001> orientation can be promoted in the steel sheet. However, if too much is added, edge-cracks may occur during hot rolling. Therefore, it is preferable to contain C in the above-mentioned range.
However, in the production process of the magnetic steel sheet, decarburization annealing is to be performed during primary recrystallization annealing, and the content of C in the final oriented magnetic steel sheet that has undergone decarburization annealing is 0.005 mass% or less Is preferable and it is more preferable that it is 0.003 mass% or less.
Mn:0.1〜1.5質量%
マンガン(Mn)は、Siと同様に、比抵抗を増加させて渦電流損を減少させることによって、鉄損を減少させる効果がある。また、鋼中に存在するSと反応してMn系化合物を形成するか、Alおよび窒素と反応して(Al、Si、Mn)N形態の窒化物を形成することによって、結晶粒成長抑制する役割を果たす。Mnの含有量が少なすぎると、上記の効果が期待できず、Mnの含有量が多すぎると、2次再結晶焼鈍中にオーステナイト相変態率が増加してゴス集合組織が大量に損なわれて、磁気的特性が急激に低下する虞がある。
Mn: 0.1 to 1.5 mass%
Manganese (Mn), like Si, has the effect of reducing iron loss by increasing resistivity and reducing eddy current loss. Also, the crystal grain growth is suppressed by reacting with S present in the steel to form a Mn-based compound, or by reacting with Al and nitrogen to form a nitride of the (Al, Si, Mn) N form. Play a role. If the content of Mn is too small, the above effect can not be expected, and if the content of Mn is too large, the austenitic phase transformation rate increases during secondary recrystallization annealing and the Goss texture is largely damaged. There is a possibility that the magnetic characteristics may be rapidly reduced.
Al:0.01〜0.04質量%
アルミニウム(Al)は、1次再結晶焼鈍過程における窒化用の雰囲気ガスであるアンモニアガスによって導入された窒素イオンと結合してAlN形態の窒化物を形成するだけでなく、鋼中に固溶状態で存在するSi、Mn、および上記した窒素イオンと結合して(Al、Si、Mn)N形態の窒化物を形成し、これによって、結晶粒成長抑制剤の役割を果たす。その含有量が少なすぎると、上記の役割を期待できず、その含有量が多すぎると、非常に粗大な窒化物が形成され、これによって、結晶粒成長抑制力が急激に低下する虞がある。したがって、Alが追加的に含まれる場合、Alの含有量は、上記の範囲に調節することが好ましい。
Al: 0.01 to 0.04 mass%
Aluminum (Al) combines with nitrogen ions introduced by ammonia gas, which is an atmosphere gas for nitriding in the primary recrystallization annealing process, to form nitrides in the form of AlN as well as forming a solid solution state in the steel In combination with Si, Mn, and the above-described nitrogen ions to form a nitride of the (Al, Si, Mn) N form, thereby playing the role of a grain growth inhibitor. When the content is too small, the above-mentioned role can not be expected, and when the content is too large, a very coarse nitride is formed, which may cause the crystal grain growth suppressing power to be sharply reduced. . Therefore, when Al is additionally contained, the content of Al is preferably adjusted to the above range.
SbおよびSn:0.03〜0.1質量%
スズ(Sn)を添加すると、{110}<001>方位の2次結晶粒核の数を増加することによって、鉄損を向上させることができる。また、Snは、結晶粒界に偏析を通して結晶粒成長を抑制するのに重要な役割を果たす。これは、2次焼鈍段階で昇温率が低くなる時、AlNおよびMnS析出物が粗大化されて結晶粒成長を抑制する効果が弱まることを補償する。しかし、Snの含有量が多すぎると、脆性が増加する問題が発生する虞がある。
アンチモン(Sb)は、結晶粒界に偏析して1次再結晶粒の過度な成長を抑制する作用がある。Sbを添加して1次再結晶焼鈍段階で粒成長を抑制することによって、鋼板の厚さ方向に沿った1次再結晶粒の大きさの不均一性を除去し、同時に2次再結晶を安定的に形成させることによって、磁性がさらに優れた方向性電磁鋼板を作ることができる。Sbの含有量が少なすぎると、抑制力効果が不足し、Sbの含有量が多すぎると、1次再結晶焼鈍時の脱炭を妨げて磁気的特性を低下させる虞がある。
このようなSnとSbはそれぞれ単独または共に含まれてもよい。SbおよびSnのうちの1種以上が追加的に含まれる場合、SbおよびSnのうちのいずれかをそれぞれ単独または合計で0.03〜0.1質量%含むことができる。つまり、Sbのみを単独で0.03〜0.1質量%含むか、Snのみを単独で0.03〜0.1質量%含むか、またはSbおよびSnを同時に含み、その合計が0.03〜0.1質量%であることができる。
Sb and Sn: 0.03 to 0.1% by mass
The addition of tin (Sn) can improve the core loss by increasing the number of secondary grain nuclei of {110} <001> orientation. Sn also plays an important role in suppressing grain growth through segregation at grain boundaries. This compensates for the fact that the AlN and MnS precipitates are coarsened and the effect of suppressing grain growth is weakened when the temperature rising rate becomes low in the secondary annealing stage. However, when the content of Sn is too large, there is a possibility that the problem of increased brittleness may occur.
Antimony (Sb) is segregated at grain boundaries and has an effect of suppressing excessive growth of primary recrystallized grains. By suppressing grain growth in the primary recrystallization annealing stage by adding Sb, the nonuniformity of the size of the primary recrystallized grain along the thickness direction of the steel plate is removed, and at the same time secondary recrystallization is performed. By forming it stably, it is possible to make a grain-oriented electrical steel sheet with even more excellent magnetism. When the content of Sb is too small, the suppressing effect is insufficient, and when the content of Sb is too large, decarburization at the time of primary recrystallization annealing may be hindered to deteriorate the magnetic properties.
Such Sn and Sb may be included alone or together. When one or more of Sb and Sn are additionally contained, any one of Sb and Sn can be contained alone or in a total amount of 0.03 to 0.1% by mass. In other words, only Sb alone is contained 0.03 to 0.1% by mass, only Sn alone is contained 0.03 to 0.1% by mass alone, or Sb and Sn are simultaneously contained, and the total is 0.03 It can be ̃0.1 mass%.
N:0.01質量%以下
窒素(N)は、AlおよびMnと反応してAlNおよび(Al、Mn、Si)Nなどの化合物を形成する元素であって、Nが追加的に含まれる場合、スラブ内に0.01質量%以下で含むことができる。もし、Nを過度に多く添加すると、熱延後の工程で窒素拡散によるブリスター(blister)のような表面欠陥を誘発するだけでなく、スラブ状態で過剰の窒化物が形成されるため、圧延が容易でなく、製造単価が上昇する原因になる。したがって、Nの含有量は0.01質量%以下に制限することが好ましい。この後、ゴス集合組織の2次再結晶形成のための窒化物の補強は、脱炭焼鈍工程中にアンモニアガスを雰囲気ガスとして導入し、窒素が鋼中に拡散するようにする窒化処理を施して補強する。この後、2次再結晶焼鈍で窒素が一部除去されて、最終的に製造される鋼板内でもNの含有量は0.01質量%以下になる。具体的には、スラブおよび鋼板は、Nを0.005質量%以下で含むよう制御することがよい。
N: 0.01 mass% or less Nitrogen (N) is an element which reacts with Al and Mn to form a compound such as AlN and (Al, Mn, Si) N, and N is additionally contained. And 0.01% by mass or less in the slab. If too much N is added, it will not only induce surface defects such as blisters due to nitrogen diffusion in the process after hot rolling, but also excessive nitride will be formed in the slab state, so It is not easy and causes a rise in manufacturing cost. Accordingly, the content of N is preferably limited to 0.01% by mass or less. After that, reinforcement of nitride for secondary recrystallization formation of Goss texture is carried out by nitriding treatment which introduces ammonia gas as atmosphere gas during decarburizing annealing process so that nitrogen diffuses into steel. To reinforce. After this, nitrogen is partially removed by secondary recrystallization annealing, and the content of N becomes 0.01 mass% or less even in the steel plate finally manufactured. Specifically, the slab and the steel plate may be controlled to contain N at 0.005% by mass or less.
S:0.01質量%以下
硫黄(S)は、鋳造時、スラブ中心部に偏析して脆性を引き起こし、さらに鋼中のMnと反応してMn系硫化物を形成することによって、微細組織を不均一にし、圧延性を悪化させる。したがって、Sが不可避に含有される含有量以上に添加されて析出することは好ましくない。Sが追加的に含まれる場合であっても、Sの含有量は0.01質量%以下に制御することが好ましい。
S: 0.01 mass% or less Sulfur (S) segregates in the center of the slab during casting to cause brittleness, and further reacts with Mn in the steel to form a Mn-based sulfide to form a microstructure. Make it uneven and worsen the rollability. Therefore, it is not preferable that S be added and precipitated more than the content which is contained unavoidable. Even when S is additionally contained, the content of S is preferably controlled to 0.01 mass% or less.
本発明の一実施例において、スラブは、下記式1および式2を満足することがよい。
式1:0.5≦[Si]/(100×[C]×[Mn])≦3
式2:(0.04×[Si]−0.075)−(0.045×[Mn])≦[C]≦(0.055×[Si]−0.1)−(0.055×[Mn])
(ただし、式1および式2において、[Si]、[C]および[Mn]はそれぞれ、Si、CおよびMnの含有量(質量%)を示す。)
以下、式1および式2の成分の制限に関する内容について説明する。
In one embodiment of the present invention, the slab may satisfy Formula 1 and Formula 2 below.
Formula 1: 0.5 ≦ [Si] / (100 × [C] × [Mn]) ≦ 3
Formula 2: (0.04 × [Si] −0.075) − (0.045 × [Mn]) ≦ [C] ≦ (0.055 × [Si] −0.1) − (0.055 × [Mn])
(However, in Formula 1 and Formula 2, [Si], [C] and [Mn] respectively indicate the content (mass%) of Si, C and Mn.)
Hereafter, the content regarding the restriction | limiting of the component of Formula 1 and Formula 2 is demonstrated.
方向性電磁鋼板の製造工程中、スラブの加熱が行われる温度で鋼板の微細組織はフェライト組織とオーステナイト組織が同時に存在する。この時、オーステナイト組織の体積分率が全領域の20%〜40%の範囲の時、最終方向性電磁鋼板の磁性特性が最も優れる。オーステナイト体積分率が20%未満の時は、スラブ中心部に{100}結晶面を有する延伸組織が無くならず、最終製品段階まで残留して磁束密度および鉄損特性が劣ることになる。オーステナイト体積分率が40%を超過する時は、相変態が多く生じて熱間圧延過程中に生成されるゴス組織の量を減少させ、磁性特性に劣る鋼材となる虞がある。したがって、スラブ加熱時、オーステナイト組織の体積分率を20〜40%の範囲に維持することが重要である。 During the manufacturing process of the grain-oriented electrical steel sheet, the microstructure of the steel sheet has a ferrite structure and an austenite structure simultaneously at the temperature at which the slab is heated. At this time, when the volume fraction of the austenitic structure is in the range of 20% to 40% of the whole area, the magnetic properties of the final directionality electrical steel sheet are most excellent. When the austenite volume fraction is less than 20%, the stretched structure having a {100} crystal plane does not disappear at the center of the slab, and the magnetic flux density and the core loss characteristics are deteriorated until the final product stage. When the austenite volume fraction exceeds 40%, many phase transformations occur to reduce the amount of Goss texture generated during the hot rolling process, which may result in a steel material inferior in magnetic properties. Therefore, it is important to maintain the volume fraction of austenite structure in the range of 20 to 40% at the time of slab heating.
スラブのオーステナイト組織の分率は、添加する合金元素の量に応じて変化する。一般に、Siは、フェライト分率を高める元素であり、CとMnは、オーステナイト分率を高める元素である。そのため、鋼板の比抵抗を高めるためにSiの含有量を高めると、スラブのフェライト分率が増加するので、CまたはMnを添加して適正なオーステナイト分率を維持するよう制御しなければならない。
このため、Siの含有量に応じたCおよびMnの含有量の調節が必要であり、その範囲は上記式1のように表すことができる。式1の左辺が0.5未満の時は、オーステナイト相分率が適正水準を超えることになり、式1の右辺が3を超える場合、オーステナイト分率が適正水準未満になる。
The fraction of the austenitic structure of the slab varies with the amount of alloying elements added. In general, Si is an element that enhances the ferrite fraction, and C and Mn are elements that enhance the austenite fraction. Therefore, if the content of Si is increased to increase the specific resistance of the steel plate, the ferrite fraction of the slab increases, so C or Mn must be added to control to maintain an appropriate austenite fraction.
For this reason, adjustment of content of C and Mn according to content of Si is required, The range can be represented like said Formula 1. FIG. When the left side of Formula 1 is less than 0.5, the austenite phase fraction exceeds the appropriate level, and when the right side of Formula 1 exceeds 3, the austenite fraction becomes less than the appropriate level.
一方、上記式2は、SiとMnの含有量に応じたCの含有量の範囲を表す式である。本発明では、鋼板の比抵抗を高めて磁性に優れた方向性電磁鋼板を作ることを目的とする。Cの場合、方向性電磁鋼板の比抵抗の上昇とは関連がなく、前述のとおり、1次再結晶焼鈍段階で脱炭過程により初期のスラブにあったCを0.003質量%以下に低下させなければならない。
一方、Mnは、添加量が増加するほど、鋼板の比抵抗を高める元素である。したがって、スラブの加熱時、適正なオーステナイト組織を作りながら鋼板の比抵抗を高めるためには、Cを入れるよりは、Mnの含有量を高めることが効果的である。この時、Mnの含有量を高めるほど、Cの含有量は低くならなければならない。これは前述のとおり、CとMnがいずれもオーステナイト分率を高める元素であるからである。また、Siの含有量が増加するほど、適正なオーステナイト分率を維持するためのMnおよびCの含有量の範囲は変化するので、Cの範囲は、式2のようにSiとMnの含有量の複合的な関係で表すことが好ましい。
On the other hand, the above-mentioned formula 2 is a formula showing the range of content of C according to content of Si and Mn. An object of the present invention is to make a grain-oriented electrical steel sheet excellent in magnetism by increasing the specific resistance of the steel sheet. In the case of C, there is no relationship with the increase in specific resistance of the grain-oriented electrical steel sheet, and as described above, C in the initial slab is reduced to 0.003 mass% or less by the decarburization process in the primary recrystallization annealing step I have to let it go.
On the other hand, Mn is an element which raises the specific resistance of the steel plate as the amount of addition increases. Therefore, in order to increase the specific resistance of the steel sheet while forming an appropriate austenite structure at the time of heating the slab, it is more effective to increase the content of Mn rather than adding C. At this time, the content of C should be lowered as the content of Mn is increased. This is because both C and Mn are elements that increase the austenite fraction, as described above. Further, as the content of Si increases, the range of the content of Mn and C for maintaining an appropriate austenite fraction changes, so the range of C is the content of Si and Mn as shown in Formula 2. It is preferable to express in the complex relation of
スラブを加熱する段階での温度について説明する。スラブを1250℃以下の温度で加熱すると、スラブの柱状晶組織が粗大に成長するのを防止して、熱間圧延工程で板のクラックが生じるのを防止することができる。温度が1000℃未満の場合には、熱間圧延温度が低くて鋼板の変形抵抗が大きくなるので、圧延負荷が増加する。したがって、スラブの加熱温度は、1000℃〜1250℃であることが好ましい。
次に、スラブを熱間圧延して熱延板を製造する。熱間圧延温度は制限されず、一実施例として、950℃以下で熱延を終了する。この後、水冷して600℃以下で巻取ることができる。熱間圧延によって1.5〜5.0mmの厚さの熱延板に製造することができる。
熱間圧延された熱延板は、必要に応じて、熱延板焼鈍を行うか、熱延板焼鈍を行わずに冷間圧延を行うことができる。熱延板焼鈍を行う場合、熱延組織を均一にするために、900℃以上の温度で加熱し、均熱した後、冷却することがよい。
The temperature at the stage of heating the slab will be described. By heating the slab at a temperature of 1250 ° C. or less, it is possible to prevent the columnar crystal structure of the slab from growing coarsely and to prevent the plate from being cracked in the hot rolling process. When the temperature is less than 1000 ° C., the rolling load is increased because the hot rolling temperature is low and the deformation resistance of the steel sheet is increased. Therefore, it is preferable that the heating temperature of a slab is 1000 degreeC-1250 degreeC.
Next, the slab is hot-rolled to produce a hot-rolled sheet. The hot rolling temperature is not limited, and in one embodiment, the hot rolling is completed at 950 ° C. or less. After that, it can be water cooled and wound up at 600 ° C. or less. It can be manufactured to a hot-rolled sheet with a thickness of 1.5 to 5.0 mm by hot rolling.
The hot-rolled hot-rolled sheet can be subjected to hot-rolled sheet annealing or cold-rolled without being subjected to hot-rolled sheet annealing, as necessary. When performing hot-rolled sheet annealing, in order to make the hot-rolled structure uniform, it is preferable to heat at a temperature of 900 ° C. or higher, and to cool after being equalized.
続いて、熱延板を冷間圧延して冷延板を製造する。冷間圧延は、リバース(Reverse)圧延機あるいはタンデム(Tandem)圧延機を用いて、1回の冷間圧延、複数回の冷間圧延、または中間焼鈍を含む複数回の冷間圧延法で0.1mm〜0.5mmの厚さの冷延板を製造することができる。さらに、冷間圧延中に鋼板の温度を100℃以上に維持する温間圧延を行うことが好ましい。冷間圧延による最終圧下率は50〜95%になる。 Subsequently, the hot-rolled sheet is cold-rolled to produce a cold-rolled sheet. Cold rolling is performed by multiple cold rolling methods including single cold rolling, multiple cold rolling, or intermediate annealing using a reverse rolling mill or a tandem (Tandem) rolling mill. A cold rolled sheet having a thickness of 1 mm to 0.5 mm can be manufactured. Furthermore, it is preferable to perform warm rolling which maintains the temperature of a steel plate at 100 degreeC or more during cold rolling. The final rolling reduction by cold rolling is 50 to 95%.
次いで、冷間圧延された冷延板を1次再結晶焼鈍する。1次再結晶焼鈍段階でゴス結晶粒の核となる1次再結晶が起こる。1次再結晶焼鈍過程で鋼板の脱炭および窒化が行われる。脱炭および窒化のためには、水蒸気、水素、およびアンモニアの混合ガス雰囲気下で1次再結晶焼鈍をすることが好ましい。
窒化のためにアンモニアガスを用いて、鋼板に窒素イオンを導入して主析出物の(Al、Si、Mn)NおよびAlNなどの窒化物を形成するにあたり、脱炭を終えて窒化処理する方法、あるいは脱炭と同時に窒化処理を一緒にできるように同時に窒化処理を行う方法、あるいは窒化処理を最初に行ってから脱炭を行う方法があるが、いずれの方法も本発明の効果を発揮する上で問題がない。
Next, the cold rolled cold rolled sheet is subjected to primary recrystallization annealing. At the primary recrystallization annealing stage, primary recrystallization which becomes a nucleus of Goss grains occurs. In the primary recrystallization annealing process, decarburization and nitriding of the steel plate are performed. For decarburization and nitriding, primary recrystallization annealing is preferably performed in a mixed gas atmosphere of water vapor, hydrogen, and ammonia.
A method of decarburizing and nitriding in forming nitrides such as (Al, Si, Mn) N and AlN of the main precipitates by introducing nitrogen ions into a steel plate using ammonia gas for nitriding Alternatively, there is a method of simultaneously performing nitriding treatment so as to simultaneously carry out nitriding treatment simultaneously with decarburizing, or a method of performing decarburization after first performing nitriding treatment, but any method exhibits the effect of the present invention There is no problem with the above.
最後に、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する。この時、1次再結晶焼鈍が完了した冷延板に焼鈍分離剤を塗布した後、2次再結晶焼鈍することが好ましい。この時の焼鈍分離剤は、特に制限されず、MgOを主成分として含む焼鈍分離剤を用いることができる。
本発明の一実施例は、方向性電磁鋼板スラブを提供する。方向性電磁鋼板スラブについては、前述した方向性電磁鋼板の製造方法過程のうちスラブの加熱段階で詳細に説明したので、重複する説明は省略する。
Finally, the secondary recrystallization annealing is performed on the cold-rolled sheet on which the primary recrystallization annealing has been completed. At this time, it is preferable that secondary recrystallization annealing be performed after the annealing separator is applied to the cold-rolled sheet on which the primary recrystallization annealing has been completed. The annealing separator at this time is not particularly limited, and an annealing separator containing MgO as a main component can be used.
One embodiment of the present invention provides a directional electrical steel sheet slab. The directional electromagnetic steel plate slab has been described in detail in the heating step of the slab in the process of manufacturing the directional electromagnetic steel plate described above, and thus the overlapping description will be omitted.
最終的に製造された方向性電磁鋼板は、{100}面が圧延面(ND面)となす角度が15°以下の結晶方位を有する集合組織の体積分率が3%以下であることがよい。
本発明の一実施例において、スラブ内のSi、C、Mnの含有量を精密に制御することによって、スラブの加熱後、スラブ内のオーステナイト分率を適切に制御することができ、それによって{100}結晶面を有する延伸組織を最小化することができる。窮極的に磁性に優れた方向性電磁鋼板を製造することができる。
具体的には、本発明の一実施例により製造される方向性電磁鋼板の1.7T(Tは磁束密度のSI単位:Tesla)、50Hzの条件で、鉄損は0.85W/kg以下であることがよい。より具体的に、鉄損は0.73〜0.83W/kgであることが好ましい。
It is preferable that the volume fraction of the texture having a crystal orientation in which the angle between the {100} plane and the rolling plane (ND plane) is 15 ° or less is 3% or less .
In one embodiment of the present invention, by precisely controlling the content of Si, C and Mn in the slab, it is possible to properly control the austenite fraction in the slab after heating the slab, thereby Stretched texture with 100} crystal faces can be minimized. It is possible to manufacture a grain-oriented electrical steel sheet which is extremely excellent in magnetism.
Specifically, iron loss is 0.85 W / kg or less under the conditions of 1.7 T (T is SI unit of magnetic flux density: Tesla) and 50 Hz of the grain-oriented electrical steel sheet manufactured according to one embodiment of the present invention Good to have. More specifically, the core loss is preferably 0.73 to 0.83 W / kg.
本発明の一実施例により製造される方向性電磁鋼板の800A/mの磁場下で誘導される磁束密度は1.90T以上であってよい。より具体的には1.90〜1.95Tであることができる。
最終的に製造された方向性電磁鋼板の合金組成については、前述したスラブの合金組成で詳細に説明したので、重複する説明は省略する。
以下、本発明の好ましい実施例および比較例を記載する。しかし、下記の実施例は本発明の好ましい一実施例に過ぎず、本発明が下記の実施例に限定されるものではない。
The magnetic flux density induced under a magnetic field of 800 A / m of the grain-oriented electrical steel sheet manufactured according to an embodiment of the present invention may be 1.90 T or more. More specifically, it can be 1.90 to 1.95T.
The alloy composition of the finally manufactured grain-oriented electrical steel sheet has been described in detail in the above-mentioned alloy composition of the slab, and therefore, redundant description will be omitted.
Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following embodiments are only preferred embodiments of the present invention, and the present invention is not limited to the following embodiments.
実施例
下記表1に示した合金元素の組成および残部はFeとその他不可避に混入する不純物からなるスラブを準備した。スラブを1150℃の温度で90分間加熱し、オーステナイト分率を測定した。その後、熱間圧延して2.3mmの厚さの熱延板を製造した。この熱延板を1050℃以上の温度で加熱した後、910℃で70秒間維持し、水冷した後、酸洗した。次に、リバース(Reverse)圧延機を用いて、計6回のパスを経て0.23mmの厚さに冷間圧延した。冷間圧延された鋼板は、炉中で昇温した後、水素:50体積%および窒素:50体積%の混合ガス雰囲気、露点温度60℃、並びに、焼鈍温度850℃で120秒間維持して1次再結晶焼鈍をした。この後、MgOを塗布した後、コイル状に巻取って2次再結晶焼鈍した。2次再結晶焼鈍は、窒素:25体積%および水素:75体積%の混合ガス雰囲気で1200℃まで昇温し、1200℃到達後には水素:100体積%のガス雰囲気で20時間維持後、炉冷した。
EXAMPLES The composition of the alloying elements and the balance shown in Table 1 below prepared a slab consisting of Fe and other unavoidable impurities. The slab was heated at a temperature of 1150 ° C. for 90 minutes and the austenite fraction was measured. Then, it hot-rolled and manufactured the 2.3-mm-thick hot-rolled sheet. The hot-rolled sheet was heated at a temperature of 1050 ° C. or higher, maintained at 910 ° C. for 70 seconds, water-cooled and then pickled. Next, a reverse rolling mill was used to cold-roll to a thickness of 0.23 mm after a total of six passes. A cold-rolled steel plate is heated in a furnace and then maintained at a mixed gas atmosphere of hydrogen: 50% by volume and nitrogen: 50% by volume, a dew point temperature of 60 ° C., and an annealing temperature of 850 ° C. for 120 seconds. Next recrystallization annealing was performed. Thereafter, after MgO was applied, it was wound into a coil and subjected to secondary recrystallization annealing. The secondary recrystallization annealing is performed by raising the temperature to 1200 ° C. in a mixed gas atmosphere of nitrogen: 25% by volume and hydrogen: 75% by volume, and after reaching 1200 ° C., maintaining it in a hydrogen: 100% by volume gas atmosphere for 20 hours It was cold.
最終的に得られた鋼板を表面洗浄後、絶縁コーティング液を塗布して、830℃で30秒焼鈍した。その後に、Single sheet測定法を利用して、1.7T、50Hzの条件で鉄損を測定し、800A/mの磁場下で誘導される磁束密度の大きさ(Tesla)を測定した。各鉄損値は条件別の平均を示したものである。
また、最終的に得られた鋼板の{100}結晶面を有する集合組織の分率を分析した。
After finally cleaning the surface of the steel plate obtained, the insulating coating solution was applied and annealed at 830 ° C. for 30 seconds. Thereafter, the core loss was measured under the conditions of 1.7 T and 50 Hz using the single sheet measurement method, and the magnitude (Tesla) of the magnetic flux density induced under a magnetic field of 800 A / m was measured. Each iron loss value shows the average according to conditions.
Also, the fraction of texture having the {100} crystal face of the finally obtained steel plate was analyzed.
本発明は、上記の実施例に限定されるものではなく、互いに異なる多様な形態に製造され、本発明の属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態で実施可能であることを理解するであろう。そのため、以上に述べた実施例はあらゆる面で例示的なものであり、限定的ではないと理解しなければならない。 The present invention is not limited to the above-described embodiments, but is manufactured in various forms different from each other, and those having ordinary knowledge in the technical field to which the present invention belongs can understand the technical idea and essentials of the present invention. It will be understood that it can be implemented in other specific forms without changing the features. Therefore, it should be understood that the embodiments described above are illustrative in all aspects and not limiting.
Claims (10)
前記スラブを熱間圧延して熱延板を製造する段階と、
前記熱延板を冷間圧延して冷延板を製造する段階と、
前記冷延板を1次再結晶焼鈍する段階と、
前記1次再結晶焼鈍が完了した前記冷延板を2次再結晶焼鈍する段階と、を含むことを特徴とする方向性電磁鋼板の製造方法。
式1:0.5≦[Si]/(100×[C]×[Mn])≦3
式2:(0.04×[Si]−0.075)−(0.045×[Mn])≦[C]≦(0.055×[Si]−0.1)−(0.055×[Mn])
(ただし、式1および式2において、[Si]、[C]および[Mn]はそれぞれ、Si、CおよびMnの含有量(質量%)を示す。) Si: 3.0 to 5.0%, C: 0.01 to 0.15%, Mn: 0.1 to 1.5% by mass, the balance being composed of Fe and other unavoidable impurities, Heating the slab satisfying the following formulas 1 and 2;
Hot rolling the slab to produce a hot rolled sheet;
Cold rolling the hot rolled sheet to produce a cold rolled sheet;
Performing primary recrystallization annealing on the cold rolled sheet;
And D. secondary recrystallization annealing of the cold-rolled sheet on which the primary recrystallization annealing has been completed.
Formula 1: 0.5 ≦ [Si] / (100 × [C] × [Mn]) ≦ 3
Formula 2: (0.04 × [Si] −0.075) − (0.045 × [Mn]) ≦ [C] ≦ (0.055 × [Si] −0.1) − (0.055 × [Mn])
(However, in Formula 1 and Formula 2, [Si], [C] and [Mn] respectively indicate the content (mass%) of Si, C and Mn.)
式1:0.5≦[Si]/(100×[C]×[Mn])≦3
式2:(0.04×[Si]−0.075)−(0.045×[Mn])≦[C]≦(0.055×[Si]−0.1)−(0.055×[Mn])
(ただし、式1および式2において、[Si]、[C]および[Mn]はそれぞれ、Si、CおよびMnの含有量(質量%)を示す。) Si: 3.0 to 5.0%, C: 0.01 to 0.15%, Mn: 0.1 to 1.5% by mass, the balance being composed of Fe and other unavoidable impurities, A slab for a directional electrical steel sheet characterized by satisfying the following Formula 1 and Formula 2.
Formula 1: 0.5 ≦ [Si] / (100 × [C] × [Mn]) ≦ 3
Formula 2: (0.04 × [Si] −0.075) − (0.045 × [Mn]) ≦ [C] ≦ (0.055 × [Si] −0.1) − (0.055 × [Mn])
(However, in Formula 1 and Formula 2, [Si], [C] and [Mn] respectively indicate the content (mass%) of Si, C and Mn.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170179232A KR102079771B1 (en) | 2017-12-26 | 2017-12-26 | Grain oriented electrical steel sheet and method for manufacturing the same |
KR10-2017-0179232 | 2017-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019116680A true JP2019116680A (en) | 2019-07-18 |
Family
ID=67023210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018178699A Pending JP2019116680A (en) | 2017-12-26 | 2018-09-25 | Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019116680A (en) |
KR (1) | KR102079771B1 (en) |
CN (1) | CN109957640A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102305718B1 (en) * | 2019-12-18 | 2021-09-27 | 주식회사 포스코 | Grain oriented electrical steel sheet and method of manufacturing the same |
KR102438476B1 (en) * | 2020-12-21 | 2022-09-01 | 주식회사 포스코 | Grain oreinted electrical steel steet and manufacturing method for the same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5956522A (en) * | 1982-09-24 | 1984-04-02 | Nippon Steel Corp | Manufacture of anisotropic electrical steel plate with improved iron loss |
JPS5956523A (en) * | 1982-09-24 | 1984-04-02 | Nippon Steel Corp | Manufacture of anisotropic silicon steel plate having high magnetic flux density |
JPS60197883A (en) * | 1984-03-21 | 1985-10-07 | Nippon Steel Corp | Formation of insulating forsterite film on grain-oriented silicon steel sheet |
JPH06145802A (en) * | 1992-11-05 | 1994-05-27 | Nippon Steel Corp | Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic |
JPH06228646A (en) * | 1992-12-08 | 1994-08-16 | Nippon Steel Corp | Stable production of grain-oriented silicon steel sheet excellent in magnetic property |
JP2003193135A (en) * | 2001-12-26 | 2003-07-09 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet |
KR20050066236A (en) * | 2003-12-26 | 2005-06-30 | 주식회사 포스코 | Method for manufacturing the grain-oriented electrical steel sheets having an excellent magnetic property |
JP2015537112A (en) * | 2012-09-27 | 2015-12-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | Manufacturing method of high magnetic flux density general-purpose directional silicon steel |
CN105274427A (en) * | 2015-11-24 | 2016-01-27 | 武汉钢铁(集团)公司 | High-magnetic-induction oriented silicon steel and production method |
JP2016505706A (en) * | 2012-11-26 | 2016-02-25 | バオシャン アイアン アンド スティール カンパニー リミテッド | Directional silicon steel and method for producing the same |
JP2017106111A (en) * | 2015-12-04 | 2017-06-15 | Jfeスチール株式会社 | Manufacturing method of oriented electromagnetic steel sheet |
JP2017133086A (en) * | 2016-01-29 | 2017-08-03 | Jfeスチール株式会社 | Manufacturing method of oriented electromagnetic steel sheet |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0774388B2 (en) * | 1989-09-28 | 1995-08-09 | 新日本製鐵株式会社 | Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density |
JP4123629B2 (en) * | 1999-04-23 | 2008-07-23 | Jfeスチール株式会社 | Electrical steel sheet and manufacturing method thereof |
KR100435455B1 (en) * | 1999-11-30 | 2004-06-10 | 주식회사 포스코 | Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating |
IT1316030B1 (en) * | 2000-12-18 | 2003-03-26 | Acciai Speciali Terni Spa | PROCEDURE FOR THE MANUFACTURE OF ORIENTED GRAIN SHEETS. |
KR101509637B1 (en) * | 2013-06-26 | 2015-04-14 | 주식회사 포스코 | Oriented electrical steel sheet and method for manufacturing the same |
-
2017
- 2017-12-26 KR KR1020170179232A patent/KR102079771B1/en active IP Right Grant
-
2018
- 2018-09-25 JP JP2018178699A patent/JP2019116680A/en active Pending
- 2018-10-12 CN CN201811189516.XA patent/CN109957640A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5956522A (en) * | 1982-09-24 | 1984-04-02 | Nippon Steel Corp | Manufacture of anisotropic electrical steel plate with improved iron loss |
JPS5956523A (en) * | 1982-09-24 | 1984-04-02 | Nippon Steel Corp | Manufacture of anisotropic silicon steel plate having high magnetic flux density |
JPS60197883A (en) * | 1984-03-21 | 1985-10-07 | Nippon Steel Corp | Formation of insulating forsterite film on grain-oriented silicon steel sheet |
JPH06145802A (en) * | 1992-11-05 | 1994-05-27 | Nippon Steel Corp | Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic |
JPH06228646A (en) * | 1992-12-08 | 1994-08-16 | Nippon Steel Corp | Stable production of grain-oriented silicon steel sheet excellent in magnetic property |
JP2003193135A (en) * | 2001-12-26 | 2003-07-09 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet |
KR20050066236A (en) * | 2003-12-26 | 2005-06-30 | 주식회사 포스코 | Method for manufacturing the grain-oriented electrical steel sheets having an excellent magnetic property |
JP2015537112A (en) * | 2012-09-27 | 2015-12-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | Manufacturing method of high magnetic flux density general-purpose directional silicon steel |
JP2016505706A (en) * | 2012-11-26 | 2016-02-25 | バオシャン アイアン アンド スティール カンパニー リミテッド | Directional silicon steel and method for producing the same |
CN105274427A (en) * | 2015-11-24 | 2016-01-27 | 武汉钢铁(集团)公司 | High-magnetic-induction oriented silicon steel and production method |
JP2017106111A (en) * | 2015-12-04 | 2017-06-15 | Jfeスチール株式会社 | Manufacturing method of oriented electromagnetic steel sheet |
JP2017133086A (en) * | 2016-01-29 | 2017-08-03 | Jfeスチール株式会社 | Manufacturing method of oriented electromagnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
CN109957640A (en) | 2019-07-02 |
KR20190077774A (en) | 2019-07-04 |
KR102079771B1 (en) | 2020-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6496411B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP6236466B2 (en) | Oriented electrical steel sheet with excellent iron loss and method for producing the same | |
JP5782527B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP6663999B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
CN110100023B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JP2022514794A (en) | Directional electrical steel sheet and its manufacturing method | |
KR20190077890A (en) | Grain oriented electrical steel sheet method for manufacturing the same | |
JP6808830B2 (en) | Electrical steel sheet and its manufacturing method | |
JP2019116680A (en) | Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof | |
CN113166892B (en) | Oriented electrical steel sheet and method for manufacturing same | |
KR20140084893A (en) | Oriented electrical steel steet and method for the same | |
JP2021509445A (en) | Directional electrical steel sheet and its manufacturing method | |
JP7037657B2 (en) | Directional electrical steel sheet and its manufacturing method | |
US11530462B2 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
JP2023507952A (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR101351957B1 (en) | Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same | |
JP6228956B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP7221480B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR102319831B1 (en) | Method of grain oriented electrical steel sheet | |
JP2022509867A (en) | Directional electrical steel sheet and its manufacturing method | |
KR101263798B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same | |
KR20120072925A (en) | Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density | |
KR20120008189A (en) | Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density | |
KR20140131788A (en) | Oriented electrical steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200617 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201117 |