JPS60197883A - Formation of insulating forsterite film on grain-oriented silicon steel sheet - Google Patents
Formation of insulating forsterite film on grain-oriented silicon steel sheetInfo
- Publication number
- JPS60197883A JPS60197883A JP5381984A JP5381984A JPS60197883A JP S60197883 A JPS60197883 A JP S60197883A JP 5381984 A JP5381984 A JP 5381984A JP 5381984 A JP5381984 A JP 5381984A JP S60197883 A JPS60197883 A JP S60197883A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- film
- steel
- forsterite
- orsterite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は高磁束密度一方向性珪素鋼板の表面にMgO−
S to2系絶縁皮膜を形成する方法−関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides an MgO-
The present invention relates to a method for forming an S to2 type insulating film.
(従来技術)
一方向性珪素鋼板表面の7オルステライトを主体とした
MgO−810□系絶縁皮膜は製品外観を整えるばかシ
でなく、鋼板間に必要な眉間抵抗を与え、また、鋼板と
7オルステライト皮膜間に働く引っ張シ応力によシ製品
鉄損を低下させるという磁気特性的にも重要な役割シを
持っている。(Prior art) The MgO-810□-based insulating film mainly composed of 7-orsterite on the surface of the unidirectional silicon steel plate does not just improve the appearance of the product, but also provides the necessary resistance between the steel plates and the 7-orsterite. It also plays an important role in terms of magnetic properties, reducing the iron loss of the product due to the tensile stress acting between the orsterite films.
この7オルステライト皮膜は通常、次のような方法で生
成される。まず、約3〜4重量%の珪素を含む一方向性
珪素鋼用素材を1回ないし、中間焼鈍をはさむ2回以上
の冷延によシ最終板厚にした後、湿水素中で700〜9
00℃の範囲で脱炭焼鈍を施し、同時に5j02を含む
酸化皮膜を鋼板表面に形成する。ついでMgOを主成分
とするスラリ−状の焼鈍分離材を鋼板表面に塗布した後
、コイル状に巻きと、シ、最終仕上焼鈍を行ない、この
間に起こるMgO−S i O2系同相反応を利用して
フォルステライ) (Mg25in4’ )を形成させ
る。This 7-orsterite film is usually produced by the following method. First, a material for unidirectional silicon steel containing about 3 to 4% by weight of silicon is cold-rolled once or twice or more with intermediate annealing to a final thickness, and then heated to a temperature of 700 to 700% by weight in wet hydrogen. 9
Decarburization annealing is performed in the range of 00°C, and at the same time an oxide film containing 5j02 is formed on the surface of the steel sheet. Next, a slurry-like annealing separation material containing MgO as the main component is applied to the surface of the steel plate, and then it is wound into a coil shape and subjected to final annealing, making use of the MgO-SiO2 system in-phase reaction that occurs during this process. forsterei) (Mg25in4').
しかしながら、この時生成される7オルステライト皮膜
の性質は脱炭酸化皮膜の性状、マグネシアの種類、マグ
ネシア/母ウダーへ、の微量添加物の量と性質、ちる仏
は仕上焼鈍時の雰囲気などに左右され、機械的・磁気的
に優れた特性を備えたフォルステライト皮膜の形成法に
関してこれまで多くの研究がなされてきた。However, the properties of the 7-orsterite film produced at this time depend on the properties of the decarboxylated film, the type of magnesia, the amount and nature of trace additives to magnesia/mother powder, and the atmosphere during final annealing for chirubutsu. Many studies have been conducted on methods for forming forsterite films with excellent mechanical and magnetic properties.
例えば特公昭51−12451号公報によればマグネシ
アパウダー中にTlO2を添加することによシ密着性、
均一性に優れたフォルステライト皮膜が得られることが
報告されてい、る。また特開昭54−66935号公報
では、平均粒径が細かいフォルステライト粒子からなる
密着性の良好な7オルステライト皮膜を得るためζマグ
ネシアパウダー中のCaOと水分量を適正管理すること
が開示さ五ている。さらに特開昭55−58331号公
報では使用するマグネシアの活性度を限定することによ
シ、良好なフォルステライル皮膜を得る方法が開示され
ている。For example, according to Japanese Patent Publication No. 51-12451, adhesion is improved by adding TlO2 to magnesia powder.
It has been reported that a forsterite film with excellent uniformity can be obtained. Furthermore, JP-A No. 54-66935 discloses that in order to obtain a 7-orsterite film with good adhesion consisting of forsterite particles with a small average particle size, the amount of CaO and water in ζ magnesia powder is appropriately controlled. There are five. Further, JP-A-55-58331 discloses a method for obtaining a good forsterail film by limiting the activity of magnesia used.
これらの方法に共通することは1、いずれもがマグネシ
アを主成分とする焼鈍分離材−の改良に関する提案であ
シ、それらはそれぞれ効果の認められるものも多いが、
工業的な面からはコスト高に結びついたシ、工程管理が
困難である場合が多い。What these methods have in common is 1. All of them are proposals for improving the annealing separation material whose main component is magnesia, and although many of them are recognized to be effective,
From an industrial perspective, process control is often difficult due to high costs.
さらに、よシ本質的な問題点は、鋼板表面のMgO−8
102系固相反応によシフオルステライト皮膜を形成す
る際、このように、焼鈍分離材、つまシMgOの側だけ
を一方的に規定しても、得られるフォルステライト皮膜
の特性向上には限界があるということである。例えば、
このような方法で得られるフォルステライト皮膜の鋼板
張力は高々40096ノ程度であシ、実際の工程では特
公゛昭53−28375号公報に開示されてるよう−に
、フォルステライト皮膜の上に゛さらにヨ四イダー化シ
リカ等を主成分とする二次コーティングを行ない鋼板張
力を向上させる必要がある。Furthermore, the essential problem is that MgO-8 on the surface of the steel plate
When forming a forsterite film by a 102-based solid phase reaction, even if only the annealing separation material and the MgO side are unilaterally defined, there is a limit to improving the properties of the resulting forsterite film. This means that there is. for example,
The steel plate tension of the forsterite film obtained by such a method is about 40,096 at most, and in the actual process, as disclosed in Japanese Patent Publication No. 53-28375, the forsterite film is Furthermore, it is necessary to improve the steel plate tension by applying a secondary coating mainly composed of silica iodine.
一方、仕上焼鈍中の雰囲気を規定するものとしては、特
開昭50−116998号公報、同55−110726
号公報に示された鉄及び鉄酸化物に対する不活性の中性
ガス通人法、あるいは特開昭53−5800号公報に見
られる露点の制御法などがある。On the other hand, as for regulating the atmosphere during finish annealing,
There are methods for controlling iron and iron oxides using inert neutral gas as shown in Japanese Patent Laid-Open No. 53-5800, and the dew point control method as shown in Japanese Patent Application Laid-Open No. 53-5800.
これらの方法は主に特開昭49−61019号公報に示
される磁束密度の高い一方向性珪素鋼板の製造方法にお
けるフォルステライト皮膜形成方法の問題点を解決する
ために提案されたものである。These methods were mainly proposed to solve the problems of the forsterite film forming method in the method for manufacturing unidirectional silicon steel sheets with high magnetic flux density, as disclosed in Japanese Patent Application Laid-open No. 49-61019.
すなわち、特開昭49−61019号公報に開示された
方法では最終仕上焼鈍中800〜920℃の間を一定温
度で10〜100時間加熱することが必要であるが、そ
の間、酸化スケール中の酸化鉄に対し、還元性の雰囲気
を与えるとフォルステライト皮膜の著しい不良が発生す
ることが判明し、そのため雰囲気を中性もしくは不活性
とすることが必要とされた(特開昭50−116998
号公報、同55−110726号公報)。また、800
〜920℃間の恒温保持後、1150〜1250℃まで
の昇温時の雰囲気を水素ガスとし、その時の露点を一2
0〜+20℃の範囲にし、さらにその後の平均露点を+
10℃以下にすることによシ、フォルステライト平均粒
径を0.7μm以下にする方法が特開昭53−5800
号公報によシ開示された。前者の提案はMgO−810
2反応時の鋼板側の適正5102量を確保するものであ
シ、後者の提案は反応開始時のフォルステライト粒の発
生とその後の粒成長を雰囲気の酸素分圧によ多制御しよ
うとするものである。That is, in the method disclosed in JP-A No. 49-61019, it is necessary to heat at a constant temperature of 800 to 920°C for 10 to 100 hours during final annealing, but during the final annealing, the oxidation in the oxide scale It was discovered that if a reducing atmosphere was applied to iron, the forsterite film would be severely damaged, and therefore it was necessary to make the atmosphere neutral or inert (Japanese Patent Application Laid-Open No. 116998-1983).
No. 55-110726). Also, 800
After maintaining the constant temperature between ~920°C, the atmosphere when raising the temperature to 1150~1250°C is hydrogen gas, and the dew point at that time is set to -2.
within the range of 0 to +20°C, and then increase the average dew point to +
A method for reducing the average grain size of forsterite to 0.7 μm or less by lowering the temperature to 10°C or lower is disclosed in JP-A-53-5800.
It was disclosed in the publication No. The former proposal is MgO-810
The second proposal is to ensure an appropriate amount of 5102 on the steel plate side during the reaction, and the latter proposal attempts to control the generation of forsterite grains at the start of the reaction and the subsequent grain growth by controlling the oxygen partial pressure of the atmosphere. It is.
これらの方法はいずれも特開昭49−61019号公報
に示された800〜920℃間の一定温度で恒温保持す
ることを特徴とする最終仕上焼鈍を前提として提案され
たフォルスナライト絶縁皮膜の形成方法であシ、その他
の仕上焼鈍サイクルに対して必ずしも一般性があるとは
言えない。また得られるフォルステライト皮膜の平均結
晶粒径が0.7μm以下であっても、皮膜の曲げ密着性
は最小はく離半径で1011程度であシ、必ずしも充分
な密着性が確保されたとは言えない。さらにこのような
方法では皮膜が鋼板に与える張力も不充分で、コ四イダ
ルシリカを主成分とした二次コーティングが必要とされ
る場合が多く、製造コストの上昇に結びついている。All of these methods are based on the forsnalite insulating film proposed in JP-A No. 49-61019 on the premise of final annealing, which is characterized by constant temperature maintenance at a constant temperature between 800 and 920°C. However, the formation method cannot necessarily be said to be general to other finish annealing cycles. Further, even if the average crystal grain size of the obtained forsterite coating is 0.7 μm or less, the bending adhesion of the coating is only about 1011 at the minimum peeling radius, and it cannot be said that sufficient adhesion is necessarily ensured. Furthermore, in such a method, the tension applied to the steel sheet by the coating is insufficient, and a secondary coating mainly composed of tetraidal silica is often required, leading to an increase in manufacturing costs.
(発明の目的)
本発明の目的は従来の7オルステライト皮膜製造方法に
おけるこれらの諸欠点を除去改善し、密着性と鋼板に与
える張力が大きく、さらに磁気特性の著しく擾れたフォ
ルステライト皮膜の製造法を提供することにある。(Objective of the Invention) The purpose of the present invention is to eliminate and improve these various drawbacks in the conventional 7-orsterite film manufacturing method, and to improve the forsterite film, which has high adhesion and tension to the steel plate, and has significantly deteriorated magnetic properties. The purpose is to provide a manufacturing method.
本発明に、よれiフォルステライトの発生する核が銅板
表面近傍の中にMnOとして形成されるために、フォル
ステライト組織が鋼板内部に喰い込んで極めて密着性が
良好となシ、この結果高い張力を鋼板に与えることが出
来、之によシ磁気特性を向上せしめうるのである。In the present invention, since the nucleus where forsterite is generated is formed as MnO near the surface of the copper plate, the forsterite structure digs into the inside of the steel plate, resulting in extremely good adhesion, resulting in high tension. can be imparted to the steel sheet, thereby improving its magnetic properties.
(発明の構成) 以下本発明の詳細な説明する。(Structure of the invention) The present invention will be explained in detail below.
本発明によシ得られるフォルステ、ライ14膜の特徴は
張力が500g//n112以上、7オルステライト平
均粒径0.5μm以下、そして最小はく離半径3朋に相
当する密着性を持つことである。第2図にこのよウナフ
ォルステライト皮膜による鉄損の向上式を従来材との比
較において示した。図中に示したように本発明で得られ
るフォルステライト皮膜による鉄損の向上式はB8=1
,910(T)の成品で約0、2 W/Kfであシ、こ
れは従来技術と比較して0. IW/Kf以上も大きい
。本発明者等はこのようなフォルステライト皮膜を得る
ためには、鋼中のMn活量を充分に高め、かつ、仕上焼
鈍中、Mn活量に応じて一定の酸素分圧を与えることが
重要であることを新規に見い出し、そのためにS+0.
405Se≦0.010かつ0.8≧Mn≧0.05+
7(S十〇、405 Se )とし、さらに仕上焼鈍中
850〜1100℃の温度範囲における適正酸素分圧は
Mn −1,,719(S + 0.405 S a
)に依存し、具体的には第1図の斜線の領域(図中AB
CDEで囲まれた領域)に確保することが必要であると
の結論に達したものである。The characteristics of the Forste, Rai 14 film obtained by the present invention are that the tension is 500 g//n112 or more, the average grain size of 7 orsterite is 0.5 μm or less, and the adhesion corresponds to the minimum peeling radius of 3 mm. . Figure 2 shows the formula for improving iron loss due to the unaforsterite film in comparison with conventional materials. As shown in the figure, the formula for improving iron loss due to the forsterite film obtained in the present invention is B8 = 1
, 910(T) product has approximately 0.2 W/Kf, which is 0.2 W/Kf compared to the conventional technology. It is also larger than IW/Kf. The present inventors believe that in order to obtain such a forsterite film, it is important to sufficiently increase the Mn activity in the steel and to apply a constant oxygen partial pressure according to the Mn activity during final annealing. We newly discovered that S+0.
405Se≦0.010 and 0.8≧Mn≧0.05+
7 (S 〇, 405 Se), and the appropriate oxygen partial pressure in the temperature range of 850 to 1100°C during final annealing is Mn -1,,719 (S + 0.405 Sa
), specifically the diagonally shaded area in Figure 1 (AB in the figure).
The conclusion was reached that it is necessary to secure the area in the area surrounded by the CDE.
更に本発明の詳細な説明する。Further, the present invention will be explained in detail.
方向性珪累鋼の表面のフォルステライト皮膜は脱炭焼鈍
時に形成された5io2を主体とする酸化スケールと、
その後に塗布されたMgOを主成分とする焼鈍分離材が
仕上焼鈍中、固相反応を起こすことによシ生成する。The forsterite film on the surface of grain-oriented silica steel is composed of an oxide scale mainly composed of 5io2 formed during decarburization annealing,
An annealing separation material mainly composed of MgO applied thereafter is produced by a solid phase reaction during final annealing.
本発明者等はこの7オルステライト皮膜の形状と結晶粒
度を走査型亀子顕微鏡(以下走査型電顕と略す)による
直接観察及び2段レプリカ法による透過電子顕微鏡を用
いた間接観察により調査し、フォルステライト平均結晶
粒径は鋼中のフリーMn量(MnS或いはMn8sとし
て固定されていないMn 量)及び仕上焼鈍中850℃
〜1100℃の雰囲気、特にその酸素分圧に依存するこ
とを新規に知見した。さらにフリーMn量とフォルステ
ライト皮膜の有する面張力との間にも明瞭な関係がある
ことを見出し、磁気特性向上効果の極めて優れたフォル
ステライト皮膜を形成するためには後述するような鋼中
のMn 、 S 、 Se量と仕上焼鈍穿囲気を限定す
ることが必要であることを確認した。The present inventors investigated the shape and crystal grain size of this 7-orsterite film by direct observation using a scanning Kameko microscope (hereinafter referred to as scanning electron microscope) and indirect observation using a transmission electron microscope using a two-stage replica method. The average grain size of forsterite is determined by the amount of free Mn in the steel (the amount of Mn that is not fixed as MnS or Mn8s) and the temperature at 850°C during final annealing.
It has been newly discovered that the temperature depends on the atmosphere at ~1100°C, especially its oxygen partial pressure. Furthermore, they found that there is a clear relationship between the amount of free Mn and the surface tension of the forsterite film, and found that in order to form a forsterite film that has an extremely excellent effect of improving magnetic properties, it is necessary to It was confirmed that it is necessary to limit the amounts of Mn, S, and Se and the perforation air for finishing annealing.
第3図には3.3チ81鋼中の異なったMn及びS量を
持つ脱炭焼鈍表面に5%TlO2を含むマグネシアを塗
布した後、PII2o/PH□=4×10−3の雰囲気
下で仕上焼鈍した時の7オルステライト皮膜の面張力と
鋼中Mn量(トータルMn量)との関係を示したもので
ある。このように鋼中Mn量の増加によシ5501/m
2以上の面張力が得られることを実験的に確認した。さ
らに同図中にも示された通シ、鋼中S量の低下によJ)
Mnによ、る張力増大効果は一層顕著となることが明ら
かとなった。このことは鋼中のMn量、特にMnSやM
n 3 eの形でドラッグされている以外のフリーMn
量、よシ正確にはMn活量が7オルステライトの性質を
決める上で重要であることを示すものである。この実験
でMn量が重要であ之ことは判明したが、MniとSあ
るいはSe等のトラッゾ元素との関係については一応の
傾向は認められたものの、定量的な判定には至らず、次
に走査型電顕及び2段レプリカによるフォルステライト
皮膜の観察を行なった結果、フォルステライト粒径が条
件によって変ることを見出した。Figure 3 shows that after applying magnesia containing 5% TlO2 to the decarburized annealed surface of 3.3-81 steel with different amounts of Mn and S, under an atmosphere of PII2o/PH□ = 4 x 10-3. 7 shows the relationship between the surface tension of the orsterite film and the amount of Mn in the steel (total amount of Mn) when finish annealing. In this way, by increasing the amount of Mn in steel, 5501/m
It was experimentally confirmed that a surface tension of 2 or more can be obtained. Furthermore, due to the decrease in S content in the steel, as shown in the same figure,
It has become clear that the tension increasing effect of Mn becomes even more remarkable. This indicates that the amount of Mn in steel, especially MnS and
Free Mn other than being dragged in the form n 3 e
This shows that the amount, or more precisely the Mn activity, is important in determining the properties of 7 orsterite. This experiment revealed that the amount of Mn is important, but although some trends were observed regarding the relationship between Mni and trazzo elements such as S or Se, a quantitative determination could not be made. As a result of observing the forsterite film using a scanning electron microscope and a two-stage replica, it was found that the forsterite particle size changes depending on the conditions.
一般に7オルステライト粒径はグラス張力に極めて大き
な影響を持つ。Generally, the 7-orsterite particle size has a very large effect on glass tension.
鋼板に及ばずグラス張力が生じる機構は次のように考え
られる。The mechanism by which the glass tension is generated without reaching the steel plate is thought to be as follows.
仕上焼鈍の冷却過程で鋼板は収縮しようとするのに対し
、収縮量の小さい7オルステライト結晶は鋼板の収縮に
対して抵抗となシ、結果として鋼板に張力を与えること
になる。この抵抗はフォルステライト組織の高温強度の
高いもの、即ち、7オルステライト結晶粒径の小さい場
合に大きくなシ1.鋼板に強い張力を与えることになる
。実験の結果、フォルステライト結晶粒径が0.5μm
以下であれば5001/vrm以上の鋼板張力を与える
ことができる。While the steel plate tends to shrink during the cooling process of final annealing, the 7-orsterite crystals, which have a small amount of shrinkage, do not resist the shrinkage of the steel plate, and as a result, give tension to the steel plate. This resistance is large when the forsterite structure has high high temperature strength, that is, when the 7 orsterite crystal grain size is small. This will give a strong tension to the steel plate. As a result of the experiment, the forsterite crystal grain size was 0.5 μm.
If it is below, a steel plate tension of 5001/vrm or more can be applied.
但し、かかる条件下でグラスが剥離しないことが必須条
件であるが、本発明では前述のように密着性が極めて良
いのでこの条件を満足できる。However, it is an essential condition that the glass does not peel off under such conditions, and this condition can be satisfied in the present invention because the adhesiveness is extremely good as described above.
第4図にはMn及びS量の異なった鋼板の7オルステラ
イト皮膜の走査型電顕像及び2段レプリカ写真を示した
( Mn及びS量は第5図(a)〜(d)に対応する。Figure 4 shows scanning electron microscopy images and two-stage replica photographs of 7-orsterite films on steel sheets with different amounts of Mn and S (the amounts of Mn and S correspond to Figures 5 (a) to (d)). do.
)。この時用いたマグネシア・やウダーは5%TlO2
を含有し、また、仕上焼鈍時の酸素分圧はPH2o/P
H2=4XIO−3である。このように7オルステライ
ト皮膜の外観及び結晶粒度は鋼中のMn及びS量に強く
依存することが明らかとなった。). The magnesia powder used at this time was 5% TlO2.
and the oxygen partial pressure during final annealing is PH2o/P
H2=4XIO-3. Thus, it has become clear that the appearance and grain size of the 7-orsterite film strongly depend on the Mn and S contents in the steel.
第5図はこのような解析を他のMn及びS量のものにつ
いて広く行なった結果を、一括して示したものである。FIG. 5 collectively shows the results of a wide range of such analyzes conducted for other Mn and S contents.
図中に示したように7オルステライト結晶粒度を0.5
μm以下とするためにはMn≧0.05+78 (Mn
、 S :重量%)であることが必要である。As shown in the figure, the 7 orsterite grain size is 0.5
In order to make it less than μm, Mn≧0.05+78 (Mn
, S: weight %).
次に仕上焼鈍中の雰囲気の効果を調べるため、鋼中の7
!j−Mn量に対し、雰囲気の酸素分圧を種種の値に
変えて仕上焼鈍を行ない、得られたフォルステライト皮
膜の特性を調べた。−例として第6図にMn = 0.
2 wt% 、 S = 0.005 wt% の素材
を850〜1lOO℃の間、(a)PH2o/PH□=
2.5XIOt(b)pH2゜/PH2= 1.5 X
10−2で焼鈍した時の7オルステライト皮膜の2段
レノリカ写真を示した。また、表1にはこの例で得られ
たフォルステライト皮膜の特性を示した。Next, in order to investigate the effect of the atmosphere during finish annealing,
! Finish annealing was performed by changing the atmospheric oxygen partial pressure to various values with respect to the amount of j-Mn, and the characteristics of the obtained forsterite films were investigated. - As an example, in FIG. 6 Mn = 0.
2 wt%, S = 0.005 wt% material at 850 to 1100°C, (a) PH2o/PH□=
2.5XIOt(b) pH2゜/PH2= 1.5X
A two-stage Lenorica photograph of the 7 orsterite film annealed at 10-2 is shown. Further, Table 1 shows the characteristics of the forsterite film obtained in this example.
このように仕上焼鈍温度域をPH2゜/PH2= 1.
5 X10−2の弱酸化性にすることによシ、7オルス
テライト結晶粒径は小さくなシ皮膜張力も向上すること
が判明した。In this way, the final annealing temperature range is set to PH2°/PH2=1.
It was found that by making it weakly oxidizing to 5.times.10@-2, the 7.orsterite crystal grain size was small and the film tension was also improved.
以上の実験結果から、結晶粒径が0.5μm以下で張力
、密着性に富んだフォルステライト皮膜を形成するため
には鋼中のMn活量と仕上焼鈍[H気の組み合わせが重
要であることが明らかとなった。From the above experimental results, the combination of Mn activity in the steel and finish annealing [H gas] is important in order to form a forsterite film with a grain size of 0.5 μm or less and high tension and adhesion. became clear.
本発明者等はこれらの結果を次のように考察、検討し1
良好な7オルステライト皮膜を得るために必要なMn
、 S及びSe等の元素の限定範囲とそれに対応する仕
上、焼鈍雰囲気(特に酸素分圧)をめるに至った。The inventors considered and examined these results as follows.1
Mn required to obtain a good 7-orsterite film
, the limited range of elements such as S and Se, and the corresponding finishes and annealing atmosphere (particularly oxygen partial pressure) were established.
Mgo−5to□系固相反応を促進させるためにはマグ
ネジアノ4ウダー中にTiO2やMnO等の微量添加物
を加えることが有用であることは特公昭51−1245
0号公報等で公知である。これらTiO2r MnO等
が固相反応の進行に際して触媒的作用を有する理由は必
ずしも明らかではないが、その−因としてはTiO2や
MnOの近傍ではMgO−8102反応に寄与する物質
の融点が低下し、Mg++等の拡散速度が速ま択結果と
してTiO2やMnOの近傍はフォルステライトが生成
されやすい状況、すなわち一種の不均一核生成の榮件が
満たされていることが考えられる。It was reported in Japanese Patent Publication No. 51-1245 that it is useful to add trace amounts of additives such as TiO2 and MnO to magnesian powder in order to promote the Mgo-5to□ system solid phase reaction.
It is publicly known from Publication No. 0 and the like. The reason why these TiO2r MnO etc. have a catalytic effect during the progress of the solid phase reaction is not necessarily clear, but the reason is that the melting point of the substance that contributes to the MgO-8102 reaction decreases in the vicinity of TiO2 and MnO, and the Mg++ As a result of the rapid diffusion rate of TiO2 and MnO, it is thought that forsterite is likely to be generated in the vicinity of TiO2 and MnO, that is, a kind of condition for heterogeneous nucleation is satisfied.
そしてこの融点の低下が大きい場合、仕上焼鈍温度域(
900℃〜1200℃)でMgO−8(02−TiO□
−MnO系等の液相が生成し、フォルステライトの焼結
に著しい効果を及はすものと推測される。If the melting point decreases significantly, the final annealing temperature range (
MgO-8 (02-TiO□
It is presumed that a -MnO-based liquid phase is generated and has a significant effect on the sintering of forsterite.
これまでMgQ )#ウダー中に種々の微量添加物を加
える公知の技術はMgO−S i O2固相反応界面の
うち鋼板の外側、すなわちMgOサイドに7オルステラ
イト核を生成するもので、その皮瞑特イ生の向上に対す
る寄与の度合には自ずと限界があった。しかるに本発明
によシ、鋼中Mn活量と仕上焼鈍雰囲気の選択によシ5
i02スケール中に高温酸化によるMnOを形成するこ
とによって7オルステライト核を鋼板サイドに生成する
ことが可能となシ、最終成品の7オルステライト皮膜の
張力、密着性等の特性を大幅に向上させることが可能に
なったものと理解できる。Until now, the known technology of adding various trace additives to MgQ There was naturally a limit to the extent to which meditation students could contribute to their improvement. However, according to the present invention, the Mn activity in the steel and the selection of the final annealing atmosphere are
By forming MnO in the i02 scale through high-temperature oxidation, it is possible to generate 7-orsterite nuclei on the side of the steel plate, which greatly improves the properties such as tension and adhesion of the 7-orsterite film in the final product. I can understand that this has become possible.
このようなMnO生成の条件は鋼中Mn活量と仕上焼鈍
中の酸素分圧によって整理できる。すなわち、Mn+H
20=MnO+H2,ΔG −(1)ΔG=ΔG’+R
Ttnξ−’ ・(2)ΔG0は反応(1)の標準生成
自白エネルギー変化である。(Rはガス定数、Tは絶対
温度))において反応(すが左に進行するためには、Δ
G〈0となることが必要であシ、そのためには(2)式
から明らか々ようにMn活量に対し;て酸素分圧PH2
o/P□2を一定値以上に保つ必要がある。第1図には
フォルステライト形成が開始されると考えうる最も低い
温度850℃におけるこのような領域をフリーMn量、
Mn−1,719(S+0.405Se) 、に対し図
示した。図中には第6図(a) j(b)で示したレプ
リカ写真に対応する皮膜形成時の雰囲気に相当する点も
示した。このように第6図や表1に示されたフォルステ
ライト皮膜の性状の差はMnO生成の有無によシ合理的
に説明されることが判明した。Conditions for such MnO formation can be arranged based on the Mn activity in the steel and the oxygen partial pressure during final annealing. That is, Mn+H
20=MnO+H2,ΔG-(1)ΔG=ΔG'+R
Ttnξ−' (2) ΔG0 is the standard production confession energy change of reaction (1). (R is the gas constant, T is the absolute temperature)) In order for the reaction to proceed to the left, Δ
It is necessary that G〈0, and for that purpose, as is clear from equation (2), the oxygen partial pressure PH2 with respect to the Mn activity;
It is necessary to maintain o/P□2 above a certain value. Figure 1 shows the free Mn content,
Illustrated for Mn-1,719(S+0.405Se). In the figure, points corresponding to the atmosphere at the time of film formation corresponding to the replica photographs shown in FIGS. 6(a) and 6(b) are also shown. Thus, it has been found that the differences in the properties of the forsterite films shown in FIG. 6 and Table 1 can be rationally explained by the presence or absence of MnO formation.
以上のような実験結果と考察によシ本発明者等は仕上焼
鈍中の必要酸素分圧の最低値を第1図に示したようにめ
るに至ったのである。Based on the above experimental results and considerations, the present inventors have arrived at the minimum value of the required oxygen partial pressure during finish annealing as shown in FIG.
ところで、このように鋼中のMn活量を充分確保するた
めにはS 、 Ss等のMnをMnS 、 MnSe等
析出物の形でドラッグする元素を低減する必要がある。By the way, in order to ensure sufficient Mn activity in steel as described above, it is necessary to reduce elements such as S and Ss that drag Mn in the form of precipitates such as MnS and MnSe.
このことは二次再結晶の安定性という面では従来の知見
と相反するものである。例えば特公昭30−3651号
公報、同47−25250号公報ではMnSの利用が二
次再結晶の安定のためには必須とされている。またAt
Nを用いた一回冷延法による高磁束密度一方向性珪素鋼
板の製造法においてもSの必要性は特公昭40−156
44号公報に示されるように適用されていた。しかるに
本発明者等はS+0.405Se≦o、o i oの範
囲であっても二次再結晶を充分安定して行なわせること
が可能であることを別途見い出したのである。即ち、主
要インヒビター成分としては酸可溶性AtとNが望まし
いが、その他のインヒビシ゛−機能のある例えばTiN
、 NbC。This is contrary to conventional knowledge in terms of the stability of secondary recrystallization. For example, in Japanese Patent Publication Nos. 30-3651 and 47-25250, the use of MnS is essential for stabilizing secondary recrystallization. Also At
Even in the manufacturing method of high magnetic flux density unidirectional silicon steel sheets by a single cold rolling method using N, the necessity of S was established in Japanese Patent Publication No. 40-156.
It was applied as shown in Publication No. 44. However, the present inventors have separately discovered that it is possible to carry out secondary recrystallization in a sufficiently stable manner even in the range of S+0.405Se≦o, o io. That is, acid-soluble At and N are desirable as the main inhibitor components, but other inhibitor components, such as TiN, can also be used.
, NbC.
NbN等で二次再結晶させることができればこれらを使
用してもよい。このAtNを主体とするインヒビターと
仕上焼鈍の組み合わせにょシ、本発明の実施例に示すよ
うに88= 1.9 (T)以上の磁束密度の確保は可
能である。If secondary recrystallization can be performed using NbN or the like, these may be used. By combining this AtN-based inhibitor and finish annealing, it is possible to secure a magnetic flux density of 88=1.9 (T) or more, as shown in the examples of the present invention.
次に本発明の構成要件の限定理由を述べる。Next, the reasons for limiting the constituent elements of the present invention will be described.
S+Se量がS量に換算して0.010wt%を超える
と必要なMn活量を得るのに無意味に多量のMnを出鋼
時に加える必要が生じ、経済的ではない。(ここで、S
eはMnをドラッグするという意味ではSと同様の効果
を持つ。従って、必要なMn活量を確保するためにはS
e量も規制しなければならない。If the amount of S+Se exceeds 0.010 wt% in terms of the amount of S, it becomes necessary to add a meaningless amount of Mn at the time of steel tapping in order to obtain the necessary Mn activity, which is not economical. (Here, S
e has the same effect as S in the sense of dragging Mn. Therefore, in order to secure the necessary Mn activity, S
The amount of e must also be regulated.
SsのS当量はその原子量から0.405 Ss (S
e :重量%)であるからS+0,405Seに対して
Mn量を規制した。)さらに純化焼鈍中S及びSeは成
品の7オルステライト皮膜中にMgS # MnS I
MnSeの形で混在し、皮膜の密着性、均一性を損う
のでS及びSe量はS量に換算して0.010 wt%
以下、すなわち、S+0.405Se≦0.010(w
t%)にする必要がある。さらに望ましくはS+0.4
05Se≦0.007(vrt%)にすることにより第
3図に示す通シ、皮膜張力は安定し、密着性、均一性は
向上する。。The S equivalent of Ss is 0.405 Ss (S
e: weight %), the amount of Mn was regulated relative to S+0,405Se. ) Furthermore, during purification annealing, S and Se are added to MgS # MnS I in the 7-orsterite film of the finished product.
Since S and Se are mixed in the form of MnSe and impair the adhesion and uniformity of the film, the amount of S and Se is 0.010 wt% in terms of S amount.
Below, that is, S+0.405Se≦0.010(w
t%). More preferably S+0.4
By setting 05Se≦0.007 (vrt%), the film tension shown in FIG. 3 is stabilized, and the adhesion and uniformity are improved. .
Mnは第5図の結果からも明らかな通シ、必要なMn活
量を得るために鋼中のS及びSe量に対し、Mn量0.
05+7(S+0.405Se )でなければならない
。Mn量の上限は皮膜の性質からではなく、方向性珪素
鋼の二次再結晶の安定度から決められる。すなわち、第
7図に示したよりにMn量を増加していくと二次再結晶
粒の方向性の集積度が劣化し、磁束密度の確保が困難と
なる。As is clear from the results in FIG. 5, Mn is a constant, and in order to obtain the necessary Mn activity, the amount of Mn is 0.
05+7 (S+0.405Se). The upper limit of the amount of Mn is determined not from the properties of the film but from the stability of secondary recrystallization of grain-oriented silicon steel. That is, as the amount of Mn increases beyond that shown in FIG. 7, the degree of directional integration of secondary recrystallized grains deteriorates, making it difficult to ensure magnetic flux density.
この原因は明らかではないが、現時点でMnを必要量以
上、入れることは有害であp 、Mnの上限値は9、8
wtチとした。The cause of this is not clear, but at present it is harmful to add more than the required amount of Mn, and the upper limit of Mn is 9.8.
It was wt Chi.
フォルステライト結晶の核発生からその成長が行われる
温度は仕上焼鈍昇温中の#デぼ850〜1100℃であ
る。従って、この温度範囲の雰囲気が7オルステライト
性状を決定することになる。The temperature at which forsterite crystals undergo nucleation and growth is approximately 850 to 1100° C. during final annealing. Therefore, the atmosphere within this temperature range determines the properties of the 7-orsterite.
以下に、この温度範囲の雰囲気について詳細に述べる。The atmosphere in this temperature range will be described in detail below.
以上仕上焼鈍雰囲気は(2)式をaMaについて解くこ
とによシ得られ、その下限値は
(2)式中の熱力学的諸数値は文献(0,Kuboie
hewski& Cm /L Alcook 、 Ms
tallurgical Thermocbs+m1a
try5 tL ed、 (1979) Pergam
on Press 、 294頁)よシ引用した。ここ
で困難なのはMn活量、aMllの評価である。今、問
題としてるのはMgO−8102系固相反応に寄与する
最低限必要な量のMnOの生成条件であシ、珪素鋼中の
一般的なMn活量とは異なると考えられる。とのような
理由から本発明者等はこれを次のように実験的にめた。The final annealing atmosphere can be obtained by solving equation (2) for aMa, and its lower limit value is based on the literature (0, Kuboie et al.
hewski & Cm/L Alcook, Ms
tallurgical thermocbs+m1a
try5 tL ed, (1979) Pergam
on Press, p. 294). What is difficult here is the evaluation of Mn activity and aMll. What is now at issue is the conditions for producing the minimum necessary amount of MnO that contributes to the MgO-8102 solid phase reaction, and it is thought that this is different from the general Mn activity in silicon steel. For these reasons, the present inventors determined this experimentally as follows.
まず、Hsnryの法則を仮定し、
alla = r ” 11& ・・’ (3)Mn
とおいた。ここでl)Mn量(Mn−1,719(S十
〇、405S*))X O,01である( Mn a
S * Se :重量%)。次にbMl。First, assuming Hsnry's law, alla = r ''11&...' (3) Mn. Here l) Mn amount (Mn-1,719 (S 10, 405 S *)) X O, 01 There is (Mn a
S*Se: weight %). Next, bMl.
の異なった脱炭焼鈍板にマダネシアを塗布し、1O−1
〜1O−4の範囲の種々のPH2o/P 12の雰囲気
下で仕上焼鈍をし、生成したフォルステライト結晶粒の
平均結晶粒径を調べた。そして、得られた7オルステシ
イト平均粒径の変化からr1=5を得、この値をもって
(3)式を(2)式に代入した。(2)式を適用する温
度は、フォルステライト形成初期段階、850℃からで
あシ、この温度におけるPH2o/Pg□の値を下限値
とした。この値が第1図において直11Bcで示された
値である。仕上焼鈍雰囲気のPH2o/P[2の値をこ
れ以上に保持することにょシ、フォルステライト生成時
点において必要量のMnOカSlO□スケール中に存在
可能となシ、微細々結晶粒でかつ縦書な7オルステライ
ト皮膜が得られる。Madanesia was applied to different decarburized annealed plates, and 1O-1
Finish annealing was performed in various PH2o/P12 atmospheres in the range of ~1O-4, and the average crystal grain size of the produced forsterite crystal grains was investigated. Then, r1=5 was obtained from the change in the average particle diameter of the 7 orstessites obtained, and this value was used to substitute equation (3) into equation (2). The temperature to which equation (2) is applied was from 850° C. at the initial stage of forsterite formation, and the value of PH2o/Pg□ at this temperature was taken as the lower limit. This value is the value indicated by line 11Bc in FIG. It is necessary to maintain the value of PH2o/P[2 in the final annealing atmosphere above this value, so that the required amount of MnO and SlO□ can exist in the scale at the time of forsterite formation, and fine crystal grains and vertical writing. A 7-orsterite film is obtained.
なお、鋼中成分を考える上でのMn OS及びS・に対
する規制としてMn量0.05+7 (S+0.405
Se)としたのに対し、必要臨界分圧を考える上での
Mn活量はamn=r、、 (Mn−1,719(S+
0.405S*))Xo、O+とした。ことで8+0.
4058mについての係数が異なるが、本発明における
その意味はMn≧o、o s + 7 (8+0.40
Qe)を満たすMn 、 S及びSe量に対して、フォ
ルステライト性状に影響を及ばす凪活量を酸素分圧との
効果において考える時、&Mm=rカ・(Mn−1,7
19(S十〇、405 Sa ))Xo、01と表わさ
れるというものであり、矛盾を内包するものではない。In addition, when considering the components in steel, the Mn amount 0.05 + 7 (S + 0.405
Se), whereas the Mn activity when considering the necessary critical partial pressure is amn=r, (Mn-1,719(S+
0.405S*))Xo, O+. That's 8+0.
Although the coefficient for 4058m is different, its meaning in the present invention is Mn≧o, o s + 7 (8+0.40
When considering the calm activity that affects forsterite properties in terms of the effect of oxygen partial pressure, &Mm=rka・(Mn-1,7
19 (S 〇, 405 Sa )) Xo, 01, which does not imply any contradiction.
PR□。72M2の上限値DEは、これ以上Mn活量を
高くしたシ、雰囲気を酸化性にすると過剰に生成した液
相に起因すると思われる皮膜不良部が発生し、成品の層
間抵抗を劣化させるので、図中に示したように設定した
。また、上限値AIは現場操業における問題から限定さ
れる。すなわちpH□。/PH□を5×10−2以上で
仕上焼鈍を行なうためには大容量の加湿器が必要であル
、さらにコイル幅方向、長手方向に均等に酸素分圧を与
えることが難しくなシ、不均一な皮膜の生成が避けられ
なくなシ、成品歩留シも低下するので上限値はAEとす
る必要がある。PR□. The upper limit value DE of 72M2 is set at 72M2 because if the Mn activity is increased further or the atmosphere is made oxidizing, film defects will occur which are thought to be caused by the excessively generated liquid phase, which will deteriorate the interlayer resistance of the product. The settings were made as shown in the figure. Further, the upper limit AI is limited due to problems in on-site operations. That is, pH□. /PH□ of 5 x 10-2 or more requires a large-capacity humidifier to perform finish annealing, and furthermore, it is difficult to apply oxygen partial pressure evenly in the width and length directions of the coil. Since the formation of a non-uniform film becomes unavoidable and the product yield also decreases, the upper limit must be set at AE.
以上、PH□。/P、□とaMnに対する制約によル仕
上焼鈍中850〜1100℃間の酸素分圧は第1図AB
CDEに示される範囲内に保持する必要がある。That's all, PH□. Due to the constraints on /P, □ and aMn, the oxygen partial pressure between 850 and 1100°C during finish annealing is as shown in Figure 1AB.
It is necessary to maintain it within the range shown in the CDE.
この範囲に鋼中Ma r 8及びSe量と雰囲気とを限
定する仁とによシ、仕上焼鈍中SiO□スケール中にM
nOを適正量生成することが可能となシ、その結果、結
晶粒径0.5μm以下で張力50017wx2以上の密
着性の良いフォルステライト皮膜が得られるのである。In order to limit the amount of Mar 8 and Se in the steel and the atmosphere within this range, it is necessary to limit the amount of Mar 8 and Se in the steel and the atmosphere.
It is possible to generate an appropriate amount of nO, and as a result, a forsterite film with a crystal grain size of 0.5 μm or less and a tensile strength of 50017wx2 or more and good adhesion can be obtained.
(実施例)
実施例1
C:0.060%、81:3.30%、P:0.036
チ、゛S:0.004チ、酸可溶性A4:Q、030チ
。(Example) Example 1 C: 0.060%, 81: 3.30%, P: 0.036
Ch, ゛S: 0.004 chi, acid soluble A4: Q, 030 chi.
N : 0.0082 %を含有する溶鋼に対しMnを
(a)0.0051b ) (b) 0.02チs (
c) 0. l Ofb s (d) 0.20 %添
加しインゴットを作成した。1200℃で加熱後、熱延
によシ厚さ2.3 mtnの熱延板を作った。これらの
熱延板を1120℃X2m1n、焼鈍後最終板厚0.3
0龍まで冷延し、焼鈍後、湿潤水素中850℃×1,5
m1nの脱炭焼鈍を行なった。ひき続き5%TiO□を
含有するマグネシアを塗布した後、N22 s fb
PH27s % 1露点−1O℃(PR20/P[2=
3.78 X 1O−3)の雰囲気中で600℃〜1
100℃までの昇温速度を8℃/hrで1200℃まで
仕上焼鈍し、その後同温度で水素雰囲気中20時間保定
しだ。得られた成品の磁束密度、鉄損及びフォルステラ
イト皮膜゛の性状等は表2に示す通シであった。なおこ
の実施例で示した例の7オルステライト皮膜の外観の2
段レグリカ写真は第4図(a)〜(d)に、走査型電顕
像は第4図(a′)〜(d′)に示しである。N: For molten steel containing 0.0082%, Mn was added to (a) 0.0051b) (b) 0.02ts (
c) 0. l Ofbs (d) 0.20% was added to prepare an ingot. After heating at 1200° C., a hot rolled sheet with a thickness of 2.3 mtn was produced by hot rolling. These hot-rolled plates were annealed at 1120°C x 2m1n, with a final plate thickness of 0.3
After cold rolling to zero and annealing, 850℃×1.5 in wet hydrogen
Decarburization annealing of m1n was performed. After subsequently applying magnesia containing 5% TiO□, N22 s fb
PH27s% 1 dew point -1O℃ (PR20/P[2=
600℃~1 in an atmosphere of 3.78 x 1O-3)
Finish annealing was carried out to 1200°C at a heating rate of 8°C/hr to 100°C, and then the material was held at the same temperature for 20 hours in a hydrogen atmosphere. The magnetic flux density, iron loss, and properties of the forsterite film of the obtained product were as shown in Table 2. In addition, 2 of the appearance of the 7 orsterite film shown in this example.
Photographs of the step legica are shown in FIGS. 4(a) to 4(d), and scanning electron microscope images are shown in FIGS. 4(a') to 4(d').
表 2 (実施例1)
←本発明範囲→
実施例2
C:0.052%、81 :3.35%、 Mn :
Q、 20*、p:o、o+o%、s:o、oo4%、
酸可溶性At:0.0271N: 0.0090% 、
Cr:0.1 o%を含有する連続鋳造スラグを115
0cの温度に加熱した後、熱延して2.3fiの熱延板
を作った。Table 2 (Example 1) ← Scope of the present invention → Example 2 C: 0.052%, 81: 3.35%, Mn:
Q, 20*, p:o, o+o%, s:o, oo4%,
Acid soluble At: 0.0271N: 0.0090%,
Continuous casting slag containing Cr: 0.1o%
After heating to a temperature of 0C, it was hot rolled to produce a 2.3fi hot rolled sheet.
この熱延板を1080″CX2m1n焼鈍後、−同法に
よシ0.30 mgの最終板厚まで冷通し、湿水素雰囲
気中で850℃X2m1nの脱炭焼鈍を行なった。その
後2%TiO□を含有するマグネシアを塗布した後、N
225qb、H275%の雰囲気中で700〜1200
℃間の昇温速度6℃/h rで1200℃まで加熱し、
その後同温度で水素雰囲気中20時間保定した。この時
800℃〜1100℃までの露点を■−40℃(PH2
0/pH□= 2.49 X 10−’ ) 、■+1
0℃(PH207PH2=0.0163)とした。得ら
れた磁気特性及びフォルステライト皮膜の性状は表3に
示す通シであった。This hot-rolled sheet was annealed to 1080"CX2m1n, then cooled to a final plate thickness of 0.30mg by the same method, and decarburized at 850°Cx2m1n in a wet hydrogen atmosphere. Thereafter, 2% TiO After applying magnesia containing N
225qb, 700-1200 in H275% atmosphere
℃ heating up to 1200℃ at a temperature increase rate of 6℃/hr,
Thereafter, it was maintained at the same temperature in a hydrogen atmosphere for 20 hours. At this time, the dew point from 800℃ to 1100℃ is -40℃ (PH2
0/pH □ = 2.49 x 10-'), ■+1
The temperature was set at 0°C (PH207PH2=0.0163). The magnetic properties and properties of the forsterite film obtained were as shown in Table 3.
実施例3
C: o、 053 qbs S : a、 45 %
1Mn : 0.28 % tP:0.035チ、酸
可溶性At: 0.030チ、N:0.0085%を含
有する溶鋼に対しSを(a)Q、003fb s (b
) 0.009 To * (e) 0.015 To
、 (d) 0.020 T。Example 3 C: o, 053 qbs S: a, 45%
For molten steel containing 1Mn: 0.28%, tP: 0.035%, acid-soluble At: 0.030%, and N: 0.0085%, S (a) Q, 003fb s (b
) 0.009 To * (e) 0.015 To
, (d) 0.020 T.
添加し、イン−/、)を作成した。1350℃で加熱後
、熱延によ!12.51IIIIO熱延板を作った。こ
れらの熱延板を1.8 m厚まで冷延後、l 120’
CX2m1n焼鈍し、0.18mの最終板厚まで冷間圧
延した。to create in-/,). After heating at 1350℃, hot rolling! 12.51IIIO hot rolled sheet was made. After cold-rolling these hot-rolled sheets to a thickness of 1.8 m, l 120'
CX2mln annealed and cold rolled to a final thickness of 0.18m.
その後、湿潤水素中850℃X2m1nの脱炭焼鈍を行
ないさらに3 % TiO2を含有するマグネシアを塗
布し、仕上焼鈍を施した。この時の雰囲気dN275チ
、 N225チ、&i点−40℃(PH2゜/pH2=
7.5Xlo−’ )で、また600〜1200℃ま
での昇温速度紘lO℃/hrでありた。得られた成品の
磁束密度、鉄損及び7オルステライト皮膜の性状は表4
に示す通シであった。Thereafter, decarburization annealing was performed in wet hydrogen at 850° C. x 2 ml, magnesia containing 3% TiO2 was applied, and final annealing was performed. Atmosphere dN275, N225, & point i -40℃ (PH2゜/pH2=
The temperature increase rate from 600 to 1200°C was 10°C/hr. The magnetic flux density, iron loss, and properties of the 7-orsterite film of the obtained product are shown in Table 4.
The rules were as shown in .
表 4 (実施例3)
←本発明範囲→
実施例4
C: 0.059%、Sl:3.33%、Mn:0.3
5%。Table 4 (Example 3) ← Scope of the present invention → Example 4 C: 0.059%, Sl: 3.33%, Mn: 0.3
5%.
P:0.038チ、S:0.008チ、酸可溶性At:
0.024 ’16 ) N : 0−0095 q6
t Cr : 0.205gを含有する連続鋳造スラブ
を1200℃の温度に加熱した後、熱延して2.311
mの熱延板とした。こQ熱延板を1120℃X2m1n
焼鈍後、1回冷延法で板厚(a) 0.30 ms j
(b) 0.23 m s (c) 0.17 m t
で冷延した後、湿潤雰囲気中850℃X2m1nの脱炭
焼鈍を行なった。そして5チTie2を含むマグネシア
を塗布し、N275チ、 N225%、jI点−20℃
(Pヨ2゜/PH□=4.96X10−5)の雰囲気下
で仕上焼鈍を施した。この時600〜1200℃の昇温
速度は15℃/h rであった。得られた成品の7オル
ステライト皮膜の性状は成品板厚に関係なく良好で平均
粒径0.2μm1最小はく離半径4皿で、外観も黒灰色
で緻密な感じであった。なお磁性(磁束密度B8及び鉄
損W17/!50で示す)はそれぞれk) 1.91
(T) s 0.98 (W/Kf) 。P: 0.038 thi, S: 0.008 thi, acid soluble At:
0.024'16) N: 0-0095 q6
A continuous casting slab containing tCr: 0.205g was heated to a temperature of 1200°C and then hot rolled to 2.311
It was made into a hot rolled sheet of m. This Q hot-rolled plate was heated at 1120°C x 2m1n.
After annealing, the plate thickness (a) is 0.30 ms j by one cold rolling method.
(b) 0.23 m s (c) 0.17 m t
After cold rolling, decarburization annealing was performed at 850° C. x 2 ml in a humid atmosphere. Then, apply magnesia containing 5% Tie2, N275%, N225%, jI point -20℃
Finish annealing was performed in an atmosphere of (Pyo2°/PH□=4.96×10−5). At this time, the temperature increase rate from 600 to 1200°C was 15°C/hr. The properties of the 7 orsterite film of the obtained product were good regardless of the thickness of the product, with an average grain size of 0.2 μm and a minimum peeling radius of 4 plates, and the appearance was blackish gray and dense. The magnetism (indicated by magnetic flux density B8 and iron loss W17/!50) is k) 1.91, respectively.
(T) s 0.98 (W/Kf).
(b) 1.92 (’r) 、 0.87 (W/K
f) 、 (o) 1.92 (T) 、 0.84(
w/Kf)であった。(b) 1.92 ('r), 0.87 (W/K
f), (o) 1.92 (T), 0.84(
w/Kf).
(発明の効果)
以上、詳述したように本発明はこれまで困難であった平
均結晶粒径0.5μm以下で密着性及び鋼板張力の極め
て優れたフォルステライト皮膜の製造を3%珪素鋼中の
Mn活量と仕上焼鈍時の臨界分圧との組み合わせによシ
可能にする方法を提供するもので、この方法によシ、皮
膜の張力効果による鉄損低減量は0.2 WACfに及
び、また、皮膜の密着性も最小はく離半径で31m1程
度のものが実現されたのである。従って、本発明はこの
ように磁気特性の優れた磁性材料を提供しうるので、産
業上稗益するところが極めて大である。(Effects of the Invention) As detailed above, the present invention enables the production of a forsterite film in 3% silicon steel with an average grain size of 0.5 μm or less and excellent adhesion and steel sheet tension, which has been difficult until now. This method provides a method that enables the reduction of iron loss due to the tension effect of the film by a combination of the Mn activity of Moreover, the adhesion of the film was also achieved with a minimum peeling radius of approximately 31 m1. Therefore, since the present invention can provide a magnetic material with excellent magnetic properties, it is of great industrial benefit.
第1図は、結晶粒径0.5μm以下、゛張力so。
17mm2以上の7オルステライト誓膜を得るために必
要な鋼中Mn 、 S 、 se量と仕上焼鈍中850
tl:〜1100℃間における雰囲気のPH20/PH
□との関係を示す図(なお図中(a) s (b)の符
号は第6図(a) I (bンに対応する)、第2図は
、7オルステライト皮膜の異なる試料についての磁束密
度(B8)と鉄損(W17AO)の関係を示す図、第3
図は鋼中Mn量と7オルステライト皮膜による張力との
関係を示す図、第4図は実施例1によって得られた成品
の7オルステライト皮膜の粒子構造を示す2段レグリカ
写真及び走査型電顕写真、第5図は3.3%St鋼中の
Mn及びS量と7オルステライト結晶粒径との関係を示
す図(図中の数字はフォルステライト粒の平均結晶′粒
径(μm)である)、第6図(&) (b)は表1に示
すフォルステライト皮膜の粒子構造を示す二段レグリカ
写真、第7図は鋼中Mn量と磁束密度、B8σ)、との
関係を示す図、第8図(&)〜(d)は実施例3によっ
て得られた成品の7オルステライト皮膜の粒子構造を示
す走査型電顕写真である。
竿2回
J*玄度 βa (Tesla)
フォルステライト總1:よる%l) (V/nnすS
Cwb%)
竿7図
Hn (wt%)
手続補正書 (自発)
昭和59年6月11日
特許庁長官若 杉 和 夫 殿
■、 事件の表示
昭和59年特許願第053819号
2、 発明の名称
一方向性珪素鋼板の7オルステライト絶縁皮膜の形成方
法
3、補正をする者
事件との関係 特許出願人
東京都千代田区大手町二丁目6番3号
(665)新日本製鐵株式會社
代表者 武 1) 豊
6、補正の対象
明細書の発明の詳細な説明の橢及び図面7、 補正の内
容
(1)明細書6頁5行r MgO−8102JをrMg
o−8102Jに補正する。
(2)同7頁10行「鋼・板表面近傍の中に」を「鋼板
表面酸化スケール中に」に補正する0(3)同11頁1
0行〜末行を下記の通シ補正する。
「ライト粒径が条件によって変わる仁とを見出したO
一般ニフォルステライト粒径はグラス張カニ極めて大き
な影響を持つが、この鋼板に及はずグラス張力が°生じ
る機構は次のように考えられる。」(4)同11頁10
行「できる。」を「できるこセ夫補正する。
(6)同19頁6〜7行「その成長が行われる」を「そ
の粒成長が起こる」に補正する。
(7)同19頁12行「以上仕上焼鈍雰囲気は(2)式
を」を「必要な仕上焼鈍雰囲気中の酸素分圧は(2)式
を」に補正する。
(8)同19頁下から5行rKuboach*vrsk
i JをrKubaschewski Jに補正する0
(9)同21頁5行「必要臨界分圧」を「必要臨界酸素
分圧」に補正する。
クリ同28頁15行「臨界分圧」を「酸素分圧」に補正
する。
α9第6図を別紙の通シ補正する◎Figure 1 shows a crystal grain size of 0.5 μm or less and a tension of so. The amount of Mn, S, and se in steel necessary to obtain a 7-orsterite membrane of 17 mm2 or more and the amount of 850 during final annealing.
tl: PH20/PH of atmosphere between ~1100℃
A diagram showing the relationship between Diagram showing the relationship between magnetic flux density (B8) and iron loss (W17AO), 3rd
The figure shows the relationship between the amount of Mn in the steel and the tension due to the 7-orsterite film, and Figure 4 is a two-stage leglica photograph and a scanning electron beam diagram showing the particle structure of the 7-orsterite film of the product obtained in Example 1. The photomicrograph, Figure 5, is a diagram showing the relationship between the Mn and S contents in 3.3%St steel and the 7-orsterite crystal grain size (the numbers in the figure are the average crystal grain size (μm) of the forsterite grains). ), Figure 6 (&) (b) is a two-stage leglica photograph showing the grain structure of the forsterite film shown in Table 1, and Figure 7 shows the relationship between the amount of Mn in the steel and the magnetic flux density, B8σ). The figures shown in FIGS. 8(&) to (d) are scanning electron micrographs showing the particle structure of the 7-orsterite film of the finished product obtained in Example 3. Rod twice J
Cwb%) Rod 7 Hn (wt%) Procedural amendment (spontaneous) June 11, 1980 Mr. Kazuo Wakasugi, Commissioner of the Patent Office■, Indication of the case 1982 Patent Application No. 053819 2, Title of the invention 7 Method for Forming Orsterite Insulating Film on Unidirectional Silicon Steel Sheet 3, Relationship with the Amendment Case Patent Applicant Representative of Nippon Steel Corporation, 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Take 1) Yutaka 6, Detailed explanation of the invention in the specification subject to amendment and Drawing 7, Contents of amendment (1) Page 6 line 5 r of the specification MgO-8102J was added to rMg
Corrected to o-8102J. (2) ``In the vicinity of the surface of the steel/plate'' on page 7, line 10 is corrected to ``in the oxidized scale on the surface of the steel plate'' 0 (3) 1, page 11 of the same
Make the following corrections for the 0th line to the last line. ``We discovered that the grain size of niforsterite varies depending on the conditions.''The grain size of general niforsterite has a very large effect on glass tension, but the mechanism by which glass tension occurs is thought to be as follows. (4) Same page 11, 10
Correct the line ``It is possible.'' to ``It is possible.'' (6) Correct the line 6-7 on page 19, ``The growth will occur'' to ``The grain growth will occur.'' (7) ``For the final annealing atmosphere, use equation (2)'' on page 19, line 12, is corrected to ``For the required oxygen partial pressure in the final annealing atmosphere, use equation (2).'' (8) 5 lines from the bottom of page 19 rKuboach*vrsk
i Correct J to rKubaschewski J 0
(9) Correct "Required critical partial pressure" to "Required critical partial pressure of oxygen" on page 21, line 5. Correct "critical partial pressure" to "oxygen partial pressure" on page 28, line 15. Correct α9 Figure 6 on the separate sheet◎
Claims (2)
、その鋼板の表面に5io2を含むサラスケールを生成
させ、次にMgOを主成分とする焼鈍分離材を塗布し、
最終仕上焼鈍を行なう一方向性珪素鋼板のフォルステラ
イト皮膜の形成方法において、鋼中のS I S@及び
Mn量を重量パーセントでS+0.405Se≦0.0
10 かツ0,8≧Mn≧0.05+7(S+0.405 S
o )とし、かつ上記仕上焼鈍中の850℃〜1100
℃の温度範囲の酸素分圧(PH2o/PH2で表わす)
をMn−1,719(S+0.4058e )に対して
第1図のABCDEに囲まれた領域に保持することを特
徴とする一方向性珪素鋼板の7オルステライト絶縁皮膜
の形成方法。(1) Decarburize a silicon-copper strip that has been cold-rolled to a desired final plate thickness, generate Sarascale containing 5io2 on the surface of the steel plate, and then apply an annealing separation material containing MgO as the main component,
In the method for forming a forsterite film on a unidirectional silicon steel sheet that undergoes final finish annealing, the amount of S I S@ and Mn in the steel is S+0.405Se≦0.0 in weight percent.
10 Katsu0,8≧Mn≧0.05+7(S+0.405 S
o) and 850°C to 1100°C during the above final annealing.
Oxygen partial pressure (expressed as PH2o/PH2) in the temperature range of °C
1. A method for forming a 7-orsterite insulating film on a unidirectional silicon steel sheet, characterized in that Mn-1,719 (S+0.4058e) is maintained in a region surrounded by ABCDE in FIG.
e≦0.007とする特許請求の範囲第1項記載の方法
。(2) The amount of S and So in steel is 8+0.4058 in weight%
The method according to claim 1, wherein e≦0.007.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5381984A JPS60197883A (en) | 1984-03-21 | 1984-03-21 | Formation of insulating forsterite film on grain-oriented silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5381984A JPS60197883A (en) | 1984-03-21 | 1984-03-21 | Formation of insulating forsterite film on grain-oriented silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60197883A true JPS60197883A (en) | 1985-10-07 |
JPS633007B2 JPS633007B2 (en) | 1988-01-21 |
Family
ID=12953395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5381984A Granted JPS60197883A (en) | 1984-03-21 | 1984-03-21 | Formation of insulating forsterite film on grain-oriented silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60197883A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145533A (en) * | 1989-03-31 | 1992-09-08 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having excellent magnetic characteristic |
US5288736A (en) * | 1992-11-12 | 1994-02-22 | Armco Inc. | Method for producing regular grain oriented electrical steel using a single stage cold reduction |
US5411605A (en) * | 1991-10-14 | 1995-05-02 | Nkk Corporation | Soft magnetic steel material having excellent DC magnetization properties and corrosion resistance and a method of manufacturing the same |
JPH07316831A (en) * | 1994-05-23 | 1995-12-05 | Kaisui Kagaku Kenkyusho:Kk | Ceramic coating film forming agent and its production |
JPH10152780A (en) * | 1996-11-21 | 1998-06-09 | Kawasaki Steel Corp | Insulating film for grain oriented silicon steel sheet, and its formation |
JP2003166019A (en) * | 2001-12-03 | 2003-06-13 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor |
JP2006137971A (en) * | 2004-11-10 | 2006-06-01 | Jfe Steel Kk | Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor |
JP2010140968A (en) * | 2008-12-09 | 2010-06-24 | Toyota Motor Corp | Soft magnetic material and method of manufacturing the same |
CN109957640A (en) * | 2017-12-26 | 2019-07-02 | Posco公司 | Oriented electrical steel and preparation method thereof |
-
1984
- 1984-03-21 JP JP5381984A patent/JPS60197883A/en active Granted
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145533A (en) * | 1989-03-31 | 1992-09-08 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having excellent magnetic characteristic |
US5411605A (en) * | 1991-10-14 | 1995-05-02 | Nkk Corporation | Soft magnetic steel material having excellent DC magnetization properties and corrosion resistance and a method of manufacturing the same |
US5288736A (en) * | 1992-11-12 | 1994-02-22 | Armco Inc. | Method for producing regular grain oriented electrical steel using a single stage cold reduction |
JPH07316831A (en) * | 1994-05-23 | 1995-12-05 | Kaisui Kagaku Kenkyusho:Kk | Ceramic coating film forming agent and its production |
EP0684322A3 (en) * | 1994-05-23 | 1996-05-22 | Kaisui Kagaku Kenkyujo Kk | Ceramic coating-forming agent and process for the production thereof. |
JPH10152780A (en) * | 1996-11-21 | 1998-06-09 | Kawasaki Steel Corp | Insulating film for grain oriented silicon steel sheet, and its formation |
JP2003166019A (en) * | 2001-12-03 | 2003-06-13 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor |
JP2006137971A (en) * | 2004-11-10 | 2006-06-01 | Jfe Steel Kk | Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor |
JP2010140968A (en) * | 2008-12-09 | 2010-06-24 | Toyota Motor Corp | Soft magnetic material and method of manufacturing the same |
CN109957640A (en) * | 2017-12-26 | 2019-07-02 | Posco公司 | Oriented electrical steel and preparation method thereof |
JP2019116680A (en) * | 2017-12-26 | 2019-07-18 | ポスコPosco | Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS633007B2 (en) | 1988-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5512110A (en) | Process for production of grain oriented electrical steel sheet having excellent magnetic properties | |
EP1992708B1 (en) | Process for producing grain-oriented magnetic steel sheet with excellent magnetic property | |
KR20090007763A (en) | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density | |
JPH0774388B2 (en) | Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density | |
JPS60197883A (en) | Formation of insulating forsterite film on grain-oriented silicon steel sheet | |
JPH10130726A (en) | Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density | |
JPS6160895B2 (en) | ||
JPH08188824A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density | |
JP3846064B2 (en) | Oriented electrical steel sheet | |
JPH10130727A (en) | Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density | |
WO1999046416A1 (en) | Unidirectional magnetic steel sheet and method of its manufacture | |
JPH02274813A (en) | Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability | |
JP2663229B2 (en) | Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties | |
JP2599069B2 (en) | Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties | |
JPH08143975A (en) | Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics | |
JP2706020B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPH08165525A (en) | Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic | |
JPH02305921A (en) | Production of grain-oriented steel sheet having excellent magnetic characteristic | |
JPS633008B2 (en) | ||
JP7582455B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JPH0832928B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties | |
JP2781524B2 (en) | Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties | |
JPH04350124A (en) | Production of grain-oriented silicon steel sheet reduced in thickness | |
JPH02259017A (en) | Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property | |
JPH04235221A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |