JPH10130726A - Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density - Google Patents

Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density

Info

Publication number
JPH10130726A
JPH10130726A JP8284932A JP28493296A JPH10130726A JP H10130726 A JPH10130726 A JP H10130726A JP 8284932 A JP8284932 A JP 8284932A JP 28493296 A JP28493296 A JP 28493296A JP H10130726 A JPH10130726 A JP H10130726A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
flux density
magnetic flux
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284932A
Other languages
Japanese (ja)
Other versions
JP3496067B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP28493296A priority Critical patent/JP3496067B2/en
Publication of JPH10130726A publication Critical patent/JPH10130726A/en
Application granted granted Critical
Publication of JP3496067B2 publication Critical patent/JP3496067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the magnetic flux density of a steel sheet and to reduce core loss therein by coating the surface of a steel sheet with a separation agent for annealing contg. specified components and thereafter executing secondary recrystallization finish annealing. SOLUTION: Immediately before a sheet subjected to decarburizing annealing is coiled round a coil, the surface of the steel sheet is coated with water slurry obtd. by incorporating the chloride of Bi into a separation agent for annealing, and the surface of the steel sheet is subjected to mirror finishing while secondary recrystallization is secured. The chloride of Bi is incorporated by 0.2 to 15 pts.wt. by chlorine pts.wt. to 100 pts.wt. separation agent for annealing. Concretely, it is suitably added as BiCl, BiOCl or the like. Furthermore, as the separation agent for annealing, a high m.p. compound generating no burning between sheets even at about 1200 deg.C such as MgO is effective, and, in the case the Bi chloride is added, the formation of secondarily recrystallized crystals and the mirror finishing are satisfactorily executed. In this way, the mirror finishing in the high temp. region in the secondary recrystallization finish annealing can realize low core loss as well in the combination with the attainment of high magnetic flux density by the conventional addition of Bi.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主として変圧器その
他の電気機器等の鉄心として利用される方向性電磁鋼板
の製造方法に関するものである。特に、{110}〈0
01〉方位すなわちゴス方位を高度に発達させたBi添
加高磁束密度一方向性電磁鋼板の製造方法とその表面の
鏡面化手段、及び磁区細分化手段を効果的に導入するこ
とにより、鉄損特性の向上を工業的に低コストで達成す
る製造方法を開示するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, {110} <0
01> Orientation, that is, a method for producing a Bi-added high magnetic flux density unidirectional magnetic steel sheet with a highly developed Goss orientation, and a method for effectively introducing a mirror-polishing means and a magnetic domain refining means on the surface thereof, thereby improving iron loss characteristics. It is intended to disclose a production method which achieves the improvement of the production at low cost industrially.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては励磁特性と鉄損特性が良
好でなくてはならない。この励磁特性を表す指標とし
て、通常は磁束密度B8 (磁場の強さ800A/mにお
ける磁束密度)が用いられ、鉄損特性を表す指標とし
て、W17/50 (50Hzで1.7Tまで磁化させたときの
単位重量あたりの鉄損)が用いられる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as a soft magnetic material for core materials of transformers and other electric equipment, and must have good magnetic properties such as excitation properties and iron loss properties. No. Normally, magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is used as an index representing the excitation characteristics, and W 17/50 (magnetization up to 1.7 T at 50 Hz) is used as an index representing iron loss characteristics. (Iron loss per unit weight at the time of the application).

【0003】一方向性電磁鋼板は、Siを0.8〜4.
8%含有し、製造工程の最終段階の900℃以上の温度
での仕上焼鈍工程で二次再結晶を起こさせ、鋼板面に
{110}面、圧延方向に〈001〉軸をもったいわゆ
るゴス組織を発達させることによって得られている。そ
のなかでも、磁束密度B8 が1.88T以上の優れた励
磁特性をもつものは高磁束密度一方向性電磁鋼板とよば
れている。高磁束密度電磁鋼板の代表的製造方法として
は、特公昭40−15644号公報、特公昭51−13
469号公報等があげられる。現在世界的規模で生産さ
れている高磁束密度一方向性電磁鋼板は、上記2特許を
基本として生産されていると云える。しかし上記特許に
基ずく製品の磁束密度B8 は1.88Tから高々1.9
5T程度であり、例えば3%Si鋼の飽和磁束密度2.
03Tの95%程度の値を示しているに過ぎない。そし
て、近年省エネルギー、省資源への社会的要求は益々厳
しくなり、一方向性電磁鋼板の鉄損低減、磁化特性改善
への要求も熾烈になってきている。
[0003] The grain-oriented electrical steel sheet contains 0.8 to 4.
8%, secondary recrystallization occurs in the final annealing step at a temperature of 900 ° C. or more in the final stage of the manufacturing process, so-called goss having a {110} plane on the steel sheet surface and a <001> axis in the rolling direction. Obtained by developing tissue. Among them, the magnetic flux density B 8 those with more excellent excitation characteristics 1.88T is called high flux density grain-oriented electrical steel sheet. Representative methods for producing high magnetic flux density electromagnetic steel sheets include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13.
No. 469, and the like. It can be said that the high magnetic flux density unidirectional electrical steel sheet currently produced on a worldwide scale is produced based on the above two patents. However, the magnetic flux density B 8 of the product based on the above patent is 1.88 T to 1.9 at most.
About 5T, for example, the saturation magnetic flux density of 3% Si steel
It only shows a value of about 95% of 03T. In recent years, social demands for energy savings and resource savings have become increasingly severe, and demands for reduction of iron loss and improvement of magnetic properties of the grain-oriented electrical steel sheets have also become fierce.

【0004】ところで、一般に磁束密度B8 が高くなる
とともに製品の結晶粒が大きくなる傾向があり、高磁束
密度電磁鋼板によりB8 を高くしても180°磁区巾が
大きくなるために渦電流損が増大し、冶金学的にはこれ
以上の鉄損改善の期待が望まれない。この観点から技術
的な鉄損低減化の手法としてレーザー照射等を用いた磁
区制御技術が特公昭57−2252号公報、特公昭58
−5968号公報、特開昭58−26405号公報等に
より確立された。また、該方法による鉄損の低減はレー
ザー照射によって導入された歪に起因するので、トラン
スに成形したのちに歪取り焼鈍を必要とする巻鉄心トラ
ンス用としては使用することができないため、例えば特
公昭62−53579号公報、特公昭63−44804
号公報、特公平04−48847号公報等において、仕
上焼鈍後に歯車型ロールにより溝を導入すると共に、加
工歪を加え微細粒を形成させて磁区細分化する方法が開
示されている。しかし、歯車型ロール等の機械加工によ
って鋼板表面に溝を形成する方法は、方向性電磁鋼板の
一次皮膜(グラス皮膜)と呼ばれる表面セラミックス層
を破砕する必要があるために歯車ロール等の摩耗が大き
く、製造コストに問題を生じる。
By the way, in general, there is a tendency that the magnetic flux density B 8 increases and the crystal grains of the product tend to increase. Even if B 8 is increased by a high magnetic flux density magnetic steel sheet, the magnetic domain width increases by 180 °, so that eddy current loss And the expectation of further improvement in iron loss is not desired in metallurgy. From this viewpoint, a magnetic domain control technique using laser irradiation or the like as a technique for reducing iron loss is disclosed in Japanese Patent Publication No. 57-2252 and Japanese Patent Publication No. Sho 58-58.
-5968, JP-A-58-26405 and the like. In addition, since the reduction of iron loss by this method is caused by strain introduced by laser irradiation, it cannot be used for a wound core transformer that requires strain relief annealing after forming into a transformer. JP-B-62-53579, JP-B-63-44804
And Japanese Patent Publication No. 04-48847 disclose a method in which grooves are introduced by a gear-type roll after finish annealing, and processing strain is applied to form fine grains to refine magnetic domains. However, the method of forming grooves on the surface of a steel sheet by machining a gear-type roll, etc., requires grinding the surface ceramic layer called the primary film (glass film) of the grain-oriented electrical steel sheet. Large, causing a problem in manufacturing cost.

【0005】一方、これら磁区細分化処理を施した鋼板
の磁区の動きを詳細に観察すると、静的には細分化した
磁区のなかには動かない磁区も存在していることが分か
った。方向性電磁鋼板の鉄損値を更に低減させるために
は、上記方法による磁区細分化技術と合わせて磁区の動
きを阻害する要因を排除する技術(磁区の活性化技術)
を導入する必要がある。すなわち、磁区の動きを阻害す
る大きな要因である鋼板表面の一次被膜等を除去し表面
を鏡面化する方法が有効である。その手段として、仕上
げ焼鈍後に一次被膜を酸洗等により除去した後、化学研
磨或いは電解研磨を行い表面を鏡面化させる方法が、例
えば特開昭64−83620号公報に開示されている。
しかしながら、化学研磨・電解研磨等の方法は、研究室
レベルでの少試料の材料を加工することは可能である
が、工業的規模で行うには薬液の濃度管理、温度管理、
公害設備の付与等の点で大きな問題があり、更にこのよ
うな工程を付加することにより製造コストが高くなって
しまうために、いまだ実用化されるに至っていない。
On the other hand, when the movement of the magnetic domains of the steel sheet subjected to the magnetic domain refining treatment was observed in detail, it was found that some of the statically subdivided magnetic domains did not move. In order to further reduce the iron loss value of grain-oriented electrical steel sheets, in addition to the magnetic domain refining technology according to the above method, a technology that eliminates factors that hinder the movement of magnetic domains (magnetic domain activation technology)
Need to be introduced. That is, it is effective to remove the primary coating or the like of the steel sheet surface, which is a major factor that hinders the movement of the magnetic domain, and to make the surface mirror-finished. For example, Japanese Patent Application Laid-Open No. 64-83620 discloses a method of removing the primary film by pickling or the like after finish annealing and then performing chemical polishing or electrolytic polishing to mirror-finish the surface.
However, methods such as chemical polishing and electrolytic polishing can process a small sample of material at the laboratory level. However, for industrial scale, chemical concentration control, temperature control,
There is a major problem in the provision of pollution equipment and the like, and the addition of such a step increases the production cost, and has not yet been put to practical use.

【0006】これに対して本出願人は、工業的規模で安
価に鋼板表面を鏡面化する方法を開発した(例えば特開
平6−346247号公報、特開平7−18333号公
報、特開平7−54155号公報)。これらは、脱炭焼
鈍後の鋼板表面にBiの塩化物を含有した焼鈍分離剤を
塗布し二次再結晶仕上焼鈍を行うことにより二次再結晶
に悪影響を及ぼさない約900℃以上で発生するCl2
ガスの気相エッチングにより一次皮膜を剥離し、その後
の高温焼鈍で表面をサーマルエッチングし表面化する方
法である。すなわち、鋼板表面の鏡面化と高磁束密度の
二次再結晶形成を両立させるものである。これらの技術
は、磁区細分化処理のために鋼板表面に機械加工を加え
る際に歯車ロール等の磨耗が少ないため、主に巻鉄心ト
ランス用の磁区制御材製造の低コスト化に適している。
On the other hand, the present applicant has developed a method for mirror-finishing the surface of a steel sheet on an industrial scale at low cost (for example, JP-A-6-346247, JP-A-7-18333, JP-A-7-183). No. 54155). These are generated at about 900 ° C. or more, which does not adversely affect the secondary recrystallization by applying an annealing separator containing Bi chloride to the steel sheet surface after decarburizing annealing and performing secondary recrystallization finish annealing. Cl 2
This is a method in which a primary film is peeled off by gas phase etching of gas, and the surface is thermally etched by high-temperature annealing to form a surface. In other words, both the mirror finishing of the steel sheet surface and the formation of secondary recrystallization with a high magnetic flux density are achieved. These techniques are suitable mainly for reducing the cost of manufacturing a magnetic domain control material for a wound iron core transformer because abrasion of a gear roll or the like is small when machining is performed on a steel sheet surface for magnetic domain subdivision processing.

【0007】しかるに、これら磁区制御、鏡面化等の周
辺技術の成熟に伴い、高磁束密度電磁鋼板を用いた低鉄
損化が容易となるとともに、超低鉄損電磁鋼板を狙うに
は更なる高磁束密度を有する素材が必須条件として期待
されてきている。これに対して本発明者らは、一方向性
電磁鋼板の溶鋼中にBiを含有させることにより、工業
的手段により磁束密度を従来の高磁束密度一方向性電磁
鋼板レベルから超高磁束密度一方向性電磁鋼板レベルま
で高める方法を特開平6−8814号公報、特開平6−
88173号公報等で提案した。この方法により初めて
磁束密度B8 が1.96Tを越える超高磁束密度一方向
性電磁鋼板が工場規模で生産できるようになったが、従
来の一次皮膜を形成する条件のなかで工場実験を繰り返
した結果、コイルの全域に渡って安定に超高磁束密度を
得ることは困難であった。一般に一次皮膜形成条件が磁
気特性に大きな影響を及ぼすことは知られているが、B
i添加材の場合はその影響が顕著であることが想定され
た。そこで、このBi添加による超磁束密度化と一次皮
膜を形成しない鏡面化技術を効果的に組み合わせること
により、超磁束密度一方向性電磁鋼板を工場規模でより
安定的に製造し、さらに磁区制御技術を組み合わせるこ
とにより従来にない超低鉄損一方向電磁鋼板を製造する
ことが、本発明の狙いである。
However, with the maturation of peripheral technologies such as magnetic domain control and mirror finishing, it is easy to reduce iron loss using a high magnetic flux density electromagnetic steel sheet, and it is further necessary to aim for an ultra-low iron loss electromagnetic steel sheet. A material having a high magnetic flux density is expected as an essential condition. On the other hand, the present inventors have found that by including Bi in the molten steel of the grain-oriented electrical steel sheet, the magnetic flux density can be reduced by industrial means from the level of the conventional high magnetic flux density unidirectional magnetic steel sheet to the ultra-high magnetic flux density. JP-A-6-8814 and JP-A-6-8814 disclose a method for increasing the level of grain-oriented electrical steel sheets.
88173. While ultra-high magnetic flux density grain-oriented electrical steel sheet for the first time the magnetic flux density B 8 exceeds 1.96T by this method can now be produced at plant scale, repeated plant experiments within the conditional forming a conventional primary coating As a result, it was difficult to stably obtain an ultra-high magnetic flux density over the entire area of the coil. It is generally known that the conditions for forming the primary film greatly affect the magnetic properties.
In the case of the i additive, it was assumed that the effect was remarkable. Therefore, by effectively combining the super-flux density by adding Bi and the mirror finishing technology that does not form a primary film, a super-flux density unidirectional magnetic steel sheet can be more stably manufactured on a factory scale, and the magnetic domain control technology is further improved. It is an object of the present invention to produce a non-conventional ultra-low iron loss unidirectional electrical steel sheet by combining the above.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来のBi
添加技術と鏡面化技術とを有機的に組み合わせることに
より極めて磁束密度の高い高磁束密度一方向性鏡面電磁
鋼板素材を工場的規模で安定に製造することを可能と
し、さらに磁区制御技術を組み合わせることにより極め
て鉄損の低い超低鉄損一鏡面方向性電磁鋼板を低コスト
で製造することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a conventional Bi
By organically combining the addition technology and the mirror finishing technology, it is possible to stably produce high magnetic flux density unidirectional mirror-oriented magnetic steel sheet material with extremely high magnetic flux density on a factory scale, and further combine magnetic domain control technology Accordingly, it is an object of the present invention to manufacture an ultra-low iron loss-specular grain oriented electrical steel sheet having extremely low iron loss at low cost.

【0009】[0009]

【課題を解決するための手段】本発明の特徴とする処
は、以下のとおりである。 (1)重量で、C:0.02〜0.1%、Si:2.0
〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.0030〜0.0150%、Bi:0.0
005〜0.03%を基本成分とし、残部はFeおよび
不可避的不純物をからなる溶鋼を鋳造し、熱間圧延し、
65〜95%の最終強冷延を含む1回あるいは中間焼鈍
を介入する2回以上の冷間圧延により最終板厚とし、一
次再結晶を兼ねた脱炭焼鈍を施し、脱炭焼鈍から二次再
結晶仕上焼鈍の工程間で必要に応じて窒化処理を行い、
二次再結晶仕上焼鈍を行う工程からなる一方向性電磁鋼
板の製造方法において、鋼板表面に、焼鈍分離剤100
重量部に対してBiの塩化物が塩素重量部で0.2〜1
5重量部含有する焼鈍分離剤を塗布後、コイル巻きし、
二次再結晶仕上焼鈍することを特徴とする磁束密度の高
い鏡面一方向性電磁鋼板の製造方法。
The features of the present invention are as follows. (1) By weight, C: 0.02 to 0.1%, Si: 2.0
4.8%, acid-soluble Al: 0.012 to 0.050
%, N: 0.0030 to 0.0150%, Bi: 0.0
005-0.03% as a basic component, the remainder is cast molten steel comprising Fe and unavoidable impurities, hot-rolled,
The final sheet thickness is obtained by cold rolling one or more times including intermediate strong annealing of 65 to 95% and intermediate annealing is performed, decarburizing annealing combined with primary recrystallization is performed, and secondary from decarburizing annealing is performed. Nitriding treatment is performed as necessary between the steps of recrystallization finish annealing,
In a method for producing a grain-oriented electrical steel sheet comprising a step of performing a secondary recrystallization finish annealing, an annealing separator 100
Bi chloride is 0.2 to 1 parts by weight of chlorine based on parts by weight.
After applying the annealing separator containing 5 parts by weight, coil winding,
A method for producing a mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density, which is subjected to secondary recrystallization finish annealing.

【0010】(2)焼鈍分離剤の主成分が、MgO,A
2 3 ,SiO2 ,ZrO,BaO,CaO,SrO
の1種あるいは2種以上の混合物であることを特徴とす
る請求項1記載の鉄損の低い鏡面一方向性電磁鋼板の製
造方法。 (3)(1)記載の鋼板に局部的な歪みを導入すること
により、磁区細分化処理を施すことを特徴とする鉄損の
低い鏡面一方向性電磁鋼板の製造方法。
(2) The main component of the annealing separator is MgO, A
l 2 O 3 , SiO 2 , ZrO, BaO, CaO, SrO
The method for producing a specularly-oriented electrical steel sheet having a low iron loss according to claim 1, characterized in that it is one kind or a mixture of two or more kinds. (3) A method for producing a mirror-oriented unidirectional electrical steel sheet having a low iron loss, which comprises subjecting the steel sheet according to (1) to local distortion to perform magnetic domain refining treatment.

【0011】(4)(1)記載の鋼板にコーティング処
理による張力皮膜を形成した後、局部的な歪みを導入す
ることにより、磁区細分化処理を施すことを特徴とする
鉄損の低い鏡面一方向性電磁鋼板の製造方法。 (5)(1)記載の鋼板に圧延方向に対して直角もしく
は直角から45度の範囲内で間隔2〜10mmで幅10〜
300μm、深さ5〜50μmの範囲で連続的、不連続
または点状の溝あるいは局部的な溝を形成し、併せてコ
ーティング処理による張力皮膜を形成することにより磁
区細分化させることを特徴とする鉄損の低い鏡面一方向
性電磁鋼板の製造方法。
(4) After forming a tension film by coating on the steel sheet as described in (1), a magnetic domain refinement treatment is performed by introducing local strain, whereby a mirror surface with low iron loss is characterized. Manufacturing method of grain-oriented electrical steel sheet. (5) The steel sheet described in (1) is perpendicular to the rolling direction or within a range of 45 degrees from the perpendicular to the rolling direction at an interval of 2 to 10 mm and a width of 10 to 10 mm.
A continuous, discontinuous or point-like groove or a local groove is formed in a range of 300 μm and a depth of 5 to 50 μm, and the magnetic domain is subdivided by forming a tension film by a coating process. A method for manufacturing mirror-oriented unidirectional electrical steel sheets with low iron loss.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者らは、特開平6−8814号公報、特開平6−
88173公報等に示しているとおり、実験室での実験
により、窒化アルミニウムを主インヒビターとする一方
向性電磁鋼板用の素材に、Biを添加含有せしめること
により、現在市販されている高磁束密度電磁鋼板のB8
=1.93T程度をはるかに超える1.95T以上、2
Tにおよび超高磁束密度一方向性電磁鋼板を得た。超高
磁束密度を得る機構はまだ明らかではないが、Biは鋼
中の拡散定数が極めて小さいため、熱的に安定なインヒ
ビター強化元素として機能していると推定している。す
なわち、超高磁束密度を実現するためには一定量以上の
鋼中Bi含有量が必要である一方、二次再結晶の進行中
に適度にインヒビター強度を弱める必要があり、鋼中B
iを鋼板表面から徐々に気化させて除去する必要があ
る。これに関して、実験室規模の板状の小試験片の場合
は板間のガス通気性が良好であるため、二次再結晶仕上
焼鈍中にBiを除去することは容易である。しかし、工
場的規模で製造する場合、コイル状に巻いた鋼板を箱形
焼鈍炉で焼鈍することが前提となるので、特にコイル内
部においてはガスの通気性が悪いため、Bi蒸気が鋼板
間に滞在し鋼中Biの除去が困難となる。そのため超高
磁束密度が得られ難く、またBiが一次皮膜と地鉄の界
面で濃化しBiCl3 等を形成し一次皮膜がエッチング
剥離されることも推定される。逆にコイル端部では比較
的ガスの通気性が良好なのでBi蒸気も濃化せず、超高
磁束密度が得られ易いと推定される。すなわち、工場的
規模におけるコイルフォームでの焼鈍では、特にコイル
中心部とエッジにおけるガス通気性の制御が困難であ
り、コイル全域で安定して超高磁束密度が得られにくい
可能性があった。そこで、本発明者らは、Bi添加によ
る二次再結晶仕上焼鈍中における板間のガス通気性の影
響を定量的に把握するため次の実験を行った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present inventors have disclosed JP-A-6-8814 and JP-A-6-8814.
As shown in the publication 88173 and the like, by conducting experiments in a laboratory, Bi is added to and contained in a material for a grain-oriented electrical steel sheet having aluminum nitride as a main inhibitor, so that a commercially available high magnetic flux density electromagnetic material is obtained. B 8 of steel plate
= 1.95T or more, far exceeding 1.93T, 2
An ultra-high magnetic flux density unidirectional magnetic steel sheet was obtained. The mechanism for obtaining an ultra-high magnetic flux density is not yet clear, but it is presumed that Bi has a very small diffusion constant in steel and thus functions as a thermally stable inhibitor-enhancing element. That is, while achieving a very high magnetic flux density requires a Bi content in the steel of a certain amount or more, it is necessary to moderately reduce the inhibitor strength during the progress of the secondary recrystallization.
It is necessary to gradually evaporate and remove i from the steel sheet surface. In this regard, it is easy to remove Bi during the secondary recrystallization finish annealing in the case of a laboratory-scale plate-shaped small test piece because the gas permeability between the plates is good. However, in the case of manufacturing on a factory scale, it is premised that the steel sheet wound in a coil shape is annealed in a box-type annealing furnace. In particular, since gas permeability is poor inside the coil, Bi vapor is generated between the steel sheets. It becomes difficult to remove Bi from the steel. Therefore, it is presumed that it is difficult to obtain an ultra-high magnetic flux density, and that Bi is concentrated at the interface between the primary film and the ground iron to form BiCl 3 or the like, and the primary film is peeled off by etching. Conversely, since the gas permeability is relatively good at the coil end, Bi vapor is not concentrated, and it is estimated that an ultra-high magnetic flux density is easily obtained. That is, in the case of annealing with a coil form on a factory scale, it is difficult to control gas permeability particularly at the center and the edge of the coil, and there is a possibility that an ultra-high magnetic flux density cannot be stably obtained over the entire coil. Therefore, the present inventors conducted the following experiment in order to quantitatively grasp the effect of gas permeability between the plates during the secondary recrystallization finishing annealing by adding Bi.

【0013】C:0.05%、Si:3.25%、M
n:0.10%、S:0.007%、P:0.025
%、酸可溶性Al:0.029%、N:0.007%、
Cr:0.12%を含有する珪素鋼を溶製し、Bi含有
量を0,0.007%、0.013%、0.025%と
し、それぞれ鋳片に分注鋳造後、1150℃に加熱し、
抽出後直ちに2.3mm板厚まで熱延し、熱延後水冷し5
50℃で保定した。その後熱延板を1120℃の温度で
30秒、引き続き900℃で90秒焼鈍し、750℃ま
で空冷後80℃の水中に焼き入れた。次いで酸洗し0.
23mmまで途中で250℃での時効処理を5回はさんで
冷延した。引き続き、窒素と水素の混合ガスにおいて酸
化度が0.40(PH2 O/PH2 )になるように導入
水蒸気を調整し、脱炭・一次再結晶焼鈍を行い、引き続
いてNH3 雰囲気でN含有量が200ppmになるよう
窒化焼鈍を行った。通常のMgOを主成分とする焼鈍分
離剤を塗布後、二次再結晶仕上焼鈍を行った。板間のガ
ス通気性の影響をみるため、100mm×500mmの鋼板
を約50枚積層した試料を鉄薄膜で梱包し炉内に挿入し
たのち、窒素分圧が25%の湿水素雰囲気のガスを導入
し、その流量を1,5,10,15Nm3 /分としながら
1200℃まで15℃/hrで中で昇温し、引き続いて乾
水素雰囲気中で1200℃で20時間の純化焼鈍を行っ
た。このときの焼鈍炉の炉内容積は0.06m3 であっ
た。炉内導入ガス流量と得られた鋼板の酸素量および磁
束密度B8 との関係を図1に示す。鋼板の酸素量は一義
的には一次皮膜の生成量を示し、酸素量が低いものは一
次皮膜の剥離または弱体化が観察された。
C: 0.05%, Si: 3.25%, M
n: 0.10%, S: 0.007%, P: 0.025
%, Acid-soluble Al: 0.029%, N: 0.007%,
Cr: Silicon steel containing 0.12% is melted, and the Bi content is set to 0, 0.007%, 0.013%, and 0.025%. Heating,
Immediately after extraction, hot-rolled to a thickness of 2.3 mm, and water-cooled after hot-rolling.
It was kept at 50 ° C. Thereafter, the hot rolled sheet was annealed at a temperature of 1120 ° C. for 30 seconds and subsequently at 900 ° C. for 90 seconds, air-cooled to 750 ° C., and quenched in 80 ° C. water. Then, pickling was carried out.
Cold rolling was performed five times with aging treatment at 250 ° C. halfway to 23 mm. Subsequently, the introduced steam was adjusted so that the degree of oxidation was 0.40 (PH 2 O / PH 2 ) in the mixed gas of nitrogen and hydrogen, decarburization and primary recrystallization annealing were performed, and subsequently N 2 was introduced in an NH 3 atmosphere. Nitriding annealing was performed so that the content became 200 ppm. After applying an ordinary annealing separator containing MgO as a main component, secondary recrystallization finish annealing was performed. In order to see the effect of gas permeability between the plates, a sample in which about 50 100 mm x 500 mm steel plates were stacked was packed in an iron thin film and inserted into the furnace, and then a gas in a wet hydrogen atmosphere with a nitrogen partial pressure of 25% was removed. The temperature was increased to 1200 ° C. at 15 ° C./hr while the flow rate was set to 1, 5, 10, 15 Nm 3 / min, followed by purification annealing at 1200 ° C. for 20 hours in a dry hydrogen atmosphere. . At this time, the inner volume of the annealing furnace was 0.06 m 3 . FIG. 1 shows the relationship between the flow rate of the gas introduced into the furnace and the oxygen content and the magnetic flux density B 8 of the obtained steel sheet. The oxygen content of the steel sheet basically indicates the amount of the primary film formed, and when the oxygen content was low, peeling or weakening of the primary film was observed.

【0014】その結果、Biを添加した超高磁束密度一
方向性電磁鋼板は、従来の窒化アルミニウムを主インヒ
ビターとする高磁束密度一方向性電磁鋼板に比較して、
二次再結晶仕上焼鈍中のガスの通気性が悪い場合は磁束
密度がばらつき、安定して高磁束密度が得られ難いとい
う上述の仮定を示唆する結論が得られた。この工場生産
上の問題を解決するためには、例えば工場の焼鈍炉の導
入ガス流量を増加せしめればよいが、工場規模の箱形焼
鈍設備の炉内容積は通常約30m3 であり、単純に計算
しても蒸気の実験室焼鈍炉の導入ガス流量の500倍の
導入ガスが必要である。これは設備費を圧迫し、原単位
等のコストの観点からも困難であるため、Bi添加によ
り超高磁束密度一方向性電磁鋼板を工業規模で安定して
製造するためには、一次皮膜形成に頼らない鏡面化技術
の適用が有効である可能性を見出した。
As a result, the ultra-high magnetic flux density unidirectional magnetic steel sheet to which Bi is added is compared with the conventional high magnetic flux density unidirectional magnetic steel sheet mainly using aluminum nitride.
When the gas permeability during the secondary recrystallization finishing annealing is poor, the magnetic flux density varies, and the conclusion suggesting the above-mentioned assumption that stable high magnetic flux density is difficult to obtain is obtained. In order to solve this problem in factory production, for example, the flow rate of gas introduced into the annealing furnace in the factory may be increased, but the furnace volume of a box-scale annealing facility on a factory scale is usually about 30 m 3 , Even if the calculation is performed as described above, an introduction gas of 500 times the introduction gas flow rate of the laboratory annealing furnace for steam is required. This puts pressure on equipment costs and is difficult from the viewpoint of cost per unit, etc. Therefore, in order to stably produce ultra-high magnetic flux density unidirectional magnetic steel sheets on an industrial scale by adding Bi, it is necessary to form a primary film. It is found that the application of mirroring technology that does not rely on the image is effective.

【0015】以下に本発明に至った実験結果について説
明する。本発明者らは、Bi添加技術に鏡面化技術を適
用した場合について、二次再結晶仕上焼鈍中の炉内導入
ガス流量が磁束密度B8 と鏡面状態におよぼす影響を定
量的に把握するため、次の実験を行った。すなわち、上
述の実験と同じ成分の素材を窒化焼鈍まで同一の工程条
件で処理を行ったのち、MgO100重量部に対しBi
OClを5重量部を添加した焼鈍分離剤を塗布後、二次
再結晶仕上焼鈍を行った。そして上記の実験と同様に、
100mm×500mmの鋼板を約50枚積層した試料を鉄
薄膜で梱包し炉内に挿入したのち、窒素分圧が25%の
湿水素雰囲気のガスを導入し、その流量を1,5,1
0,15Nm3 /分としながら11200℃まで15℃/
hrで昇温し、引き続いて1200℃で20時間の純化焼
鈍を行った。炉内導入ガス流量と得られた鋼板の酸素量
および磁束密度B8 の関係を図2に示す。鋼板の酸素量
はすべて200ppm 以下であり、一次皮膜が無い良好な
鏡面状態を呈していた。
Hereinafter, the results of the experiment which led to the present invention will be described. The present inventors have, for the case of applying the mirror technique to Bi doping techniques, in order to quantitatively assess the effect of furnace Flow rate of introduced gas in the secondary recrystallization finish annealing on mirror surface state and the magnetic flux density B 8 The following experiment was performed. That is, a material having the same components as in the above-described experiment was treated under the same process conditions until nitriding annealing, and then Bi was added to 100 parts by weight of MgO.
After applying an annealing separator containing 5 parts by weight of OCl, secondary recrystallization finishing annealing was performed. And like the above experiment,
A sample in which about 50 steel plates of 100 mm × 500 mm are stacked is packed with an iron thin film and inserted into a furnace. Then, a gas in a wet hydrogen atmosphere having a nitrogen partial pressure of 25% is introduced, and the flow rate is set to 1,5,1.
Up to 11200 ° C with 15/15 Nm 3 / min.
The temperature was raised in hr, followed by purification annealing at 1200 ° C. for 20 hours. Oxygen of the steel sheet obtained as furnace Flow rate of introduced gas and shows the relationship between the magnetic flux density B 8 in FIG. The oxygen content of the steel sheet was 200 ppm or less in all cases, and the steel sheet exhibited a good mirror surface without a primary film.

【0016】図2で明らかなように、鏡面化技術を適用
することにより、磁束密度は二次再結晶仕上焼鈍中のガ
ス流量に影響されず、Bi添加による磁束密度向上の効
果が安定して得られた。このように二次再結晶仕上焼鈍
中のガス流量に影響されないことは、コイル内位置にお
けるガス通気性のバラツキに二次再結晶過程が影響され
にくいことから、工場規模のコイルフォームでの二次再
結晶仕上焼鈍による製造に有利であることを示してい
る。また、図2でBi添加量とともに鏡面化鋼板表面に
微量に付着した酸素が減少していることから、Bi添加
は鏡面化を促進させる作用があることが期待される。
As is apparent from FIG. 2, by applying the mirror finishing technique, the magnetic flux density is not affected by the gas flow rate during the secondary recrystallization finishing annealing, and the effect of improving the magnetic flux density by adding Bi is stabilized. Obtained. As described above, since the secondary recrystallization process is not affected by the gas flow rate during the secondary recrystallization finishing annealing, the secondary recrystallization process is hardly affected by the variation in gas permeability at the position in the coil. This shows that it is advantageous for production by recrystallization finish annealing. In addition, in FIG. 2, since the amount of oxygen adhering to the mirror-finished steel sheet in a small amount decreases along with the amount of Bi added, it is expected that the addition of Bi has an effect of promoting mirror polishing.

【0017】さらに本発明者らは、図2で得られた試料
を850℃の温度で2時間の歪み取り焼鈍を行ったの
ち、圧延方向と直角方向に5mm間隔でレーザー照射処理
を行い、磁区制御を試みた。得られた試料についての素
材(磁区制御前)に磁束密度B 8 と1.0kgf /mm2
張力下で測定した磁区制御後の鉄損W17/50 の関係を図
3に示す。
Further, the present inventors have studied the sample obtained in FIG.
Was subjected to strain relief annealing at a temperature of 850 ° C. for 2 hours.
And laser irradiation at 5mm intervals in the direction perpendicular to the rolling direction
And tried to control the magnetic domain. The element of the obtained sample
Magnetic flux density B (before magnetic domain control) 8And 1.0kgf / mmTwoof
Iron loss W after domain control measured under tension17/50Diagram of the relationship
3 is shown.

【0018】図3から次のことが判る。まず、Bi添加
を行い0.007%から0.025%にBi含有量を調
整すれば、磁束密度B8 が1.96T以上の超高磁束密
度一方向性電磁鋼板が発現し、また磁区制御との組み合
わせで超抵鉄損電磁鋼板が得られる。また、B8 とW
17/50 の関係を示す直線はBi添加とともに下がってお
り、Bi添加材の鉄損は磁束密度の向上から期待される
鉄損よりも更に改善されていることがわかる。これは、
図2で説明したように、Bi添加は鏡面化を促進させる
作用のためであると推定される。本発明は従来のBi添
加法とによる超高磁束密度一方向性電磁鋼板製造方法と
鏡面化技術による低鉄損一方向性電磁鋼板製造法の単な
る組み合わせでなく、前者の工業化における欠点と後者
の安定促進化を極めて効果的に解決する方法を提供する
ものである。
The following can be seen from FIG. First, by adjusting the Bi content of 0.007% or perform Bi added to 0.025%, the magnetic flux density B 8 is expressed more ultra-high magnetic flux density grain-oriented electrical steel sheet 1.96T, also the magnetic domain control A super-iron-loss magnetic steel sheet can be obtained in combination with the above. Also, B 8 and W
The straight line indicating the 17/50 relationship decreases with the addition of Bi, indicating that the iron loss of the Bi-added material is further improved from the iron loss expected from the improvement in magnetic flux density. this is,
As described with reference to FIG. 2, Bi addition is presumed to be due to the effect of promoting mirror finishing. The present invention is not merely a combination of a conventional method of manufacturing a high magnetic flux density unidirectional magnetic steel sheet by a Bi addition method and a method of manufacturing a low iron loss unidirectional magnetic steel sheet by a mirror finishing technique, but also the drawbacks in the former industrialization and the latter. It is intended to provide a method for solving the enhancement of stability very effectively.

【0019】次に、本発明に必要な構成要素とその限定
理由について述べる。本発明において、素材が含有する
成分は、重量%で、C:0.02〜0.1%、Si:
2.0〜4.8%、酸可溶性Al:0.012〜0.0
50%、N:0.0030〜0.0150%、Bi:
0.0005〜0.03%、残部Fe及び不可避的不純
物であり、これらを必須成分としてそれ以外は限定しな
い。
Next, the components necessary for the present invention and the reasons for limiting them will be described. In the present invention, the components contained in the material are, by weight%, C: 0.02 to 0.1%, Si:
2.0-4.8%, acid-soluble Al: 0.012-0.0
50%, N: 0.0030 to 0.0150%, Bi:
0.0005 to 0.03%, the balance being Fe and unavoidable impurities, and these are essential components and the other components are not limited.

【0020】基本的な製造法としては、小松等による
(Al,Si)Nを主インヒビターとして用いる製造法
(例えば特公昭62−45285号公報)、または田口
・坂倉等によるAlNとMnSを主インヒビターとして
用いる製造法(例えば特公昭40−15644号公報)
を適用すれば良い。Cはγ域開放型元素であり、熱間圧
延から脱炭焼鈍の工程でα→γ変態、または固溶Cの存
在により二次再結晶に有利な集合組織を形成する重要な
元素である。Cが0.02%以下ではα→γ変態が生じ
ないので好ましくない。また、0.1%を超えると脱炭
焼鈍工程に負荷がかかり、コストアップとなるため好ま
しくない。
As a basic production method, a production method using (Al, Si) N as a main inhibitor by Komatsu et al. (For example, Japanese Patent Publication No. 62-45285) or a main inhibitor using AlN and MnS by Taguchi / Sakakura et al. (For example, Japanese Patent Publication No. 40-15644)
Should be applied. C is a γ-region open type element, and is an important element that forms a texture advantageous for secondary recrystallization due to the α → γ transformation or the presence of solid solution C in the steps from hot rolling to decarburizing annealing. If C is 0.02% or less, α → γ transformation does not occur, which is not preferable. On the other hand, if it exceeds 0.1%, a load is applied to the decarburization annealing step, which increases the cost, which is not preferable.

【0021】Siは電気抵抗を高め、鉄損を下げる上で
重要な元素である。含有量が4.8%を超えると、冷間
圧延時に材料が割れ易くなり、圧延不可能となる。一
方、2.0%未満では製品の渦電流損が増大するととも
に、仕上げ焼鈍時にα→γ変態を生じ、結晶の方向性が
損なわれる。酸可溶性AlはNと結合してAlNを形成
し、高磁束密度一方向性電磁鋼板製造のための主インヒ
ビター構成元素である。0.012%未満では量的に不
足し、インヒビター強度が不足する。一方、0.050
%超ではAlNが粗大化し、結果としてインヒビター強
度を低下させるので二次再結晶が起こらなくなる。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material is easily cracked during cold rolling, and cannot be rolled. On the other hand, if it is less than 2.0%, the eddy current loss of the product increases, and the α → γ transformation occurs at the time of finish annealing, and the directionality of the crystal is impaired. Acid-soluble Al combines with N to form AlN and is a main inhibitor constituent element for producing a high magnetic flux density unidirectional magnetic steel sheet. If it is less than 0.012%, the amount is insufficient, and the inhibitor strength is insufficient. On the other hand, 0.050
%, AlN becomes coarse, and as a result, the inhibitor strength is reduced, so that secondary recrystallization does not occur.

【0022】素材に含有するNはSi,Al等の窒化物
を形成し、低温スラブ加熱を前提とする場合は特に1次
再結晶のインヒビターとして影響する。N含有量は一次
再結晶粒径を制御する観点から工程の熱履歴や必要な一
次再結晶焼鈍温度から決定される。一方、高温スラブ加
熱により前段階でAlNを微細分散させる場合は二次再
結晶焼鈍の雰囲気条件等を考慮する必要がある。0.0
030%未満では脱窒のため溶製段階のコストアップと
なり、0.0150%超ではブリスターと呼ばれる欠陥
が発生するので0.0030〜0.0150%の範囲と
した。
N contained in the material forms a nitride such as Si, Al, etc., and has an effect particularly as an inhibitor of primary recrystallization when low-temperature slab heating is assumed. The N content is determined from the heat history of the process and the necessary primary recrystallization annealing temperature from the viewpoint of controlling the primary recrystallization particle size. On the other hand, in the case where AlN is finely dispersed in a previous stage by high-temperature slab heating, it is necessary to consider the atmosphere conditions of secondary recrystallization annealing and the like. 0.0
If it is less than 030%, the cost of the smelting step is increased due to denitrification, and if it exceeds 0.0150%, a defect called a blister is generated.

【0023】その他のインヒビター構成元素として、M
n,S,Se,V,N,B,Nb,Sn,Cu,Ti,
Zr,Ta,Mo,Sn等を複合して添加することがで
きる。Biは超高速密度を得るための必須元素であり、
添加含有量は、0.0005〜0.03%の範囲が有効
である。0.0005%未満では効果がわずかであり、
また0.03%超では磁束密度向上の効果が飽和すると
ともに熱延板の端部に割れが発生するので上限を0.0
3%に限定する。
As another inhibitor constituent element, M
n, S, Se, V, N, B, Nb, Sn, Cu, Ti,
Zr, Ta, Mo, Sn and the like can be added in combination. Bi is an essential element for obtaining an ultra-high-speed density,
The effective content of the additive is in the range of 0.0005 to 0.03%. Less than 0.0005% has little effect,
If it exceeds 0.03%, the effect of improving the magnetic flux density is saturated and cracks occur at the end of the hot-rolled sheet.
Limited to 3%.

【0024】次に、製造プロセス条件について説明す
る。上記のごとく成分を調整した超高磁束密度一方向性
電磁鋼板用素材は通常の如何なる溶解法、造塊法を用い
た場合でも本願発明の素材とすることが出来る。次いで
この電磁鋼板用素材は通常の熱間圧延により熱延コイル
に圧延される。小松等による(Al,Si)Nを主イン
ヒビターとして用いる製造法(例えば特公昭62−45
285号公報)では、熱間圧延時の温度確保の観点より
1100℃以上、またAlNの完全容体化しない128
0℃以下の温度で加熱を行った後に熱間圧延を行う。ま
た、田口・坂倉等によるAlNとMnSを主インヒビタ
ーとして用いる製造法(例えば特公昭40−15644
号公報)では完全容体化する1300℃以上の温度で加
熱した後に熱延を行えば良い。
Next, the manufacturing process conditions will be described. The material for an ultra-high magnetic flux density unidirectional electrical steel sheet whose components are adjusted as described above can be used as the material of the present invention regardless of any ordinary melting method or ingot making method. Next, the magnetic steel sheet material is rolled into a hot-rolled coil by ordinary hot rolling. Production method using (Al, Si) N as main inhibitor by Komatsu et al. (For example, JP-B-62-45)
No. 285), in view of securing the temperature during hot rolling, the temperature is 1100 ° C. or higher, and AlN is not completely encapsulated.
After performing heating at a temperature of 0 ° C. or lower, hot rolling is performed. A production method using AlN and MnS as main inhibitors by Taguchi and Sakakura (for example, Japanese Patent Publication No. 40-15644).
In Japanese Patent Application Laid-Open No. H10-260, it is only necessary to perform hot rolling after heating at a temperature of 1300 ° C. or higher for complete volumeization.

【0025】引き続いて1ステージの冷間圧延または中
間焼鈍を含む複数ステージの冷間圧延によって最終板厚
とするが、磁束密度が高い一方向性電磁鋼板を得ること
から最終冷延の圧延率(1ステージの冷間圧延の場合は
その圧延率)は65〜95%の強圧下が好ましい。最終
圧延以外のステージの圧延率は特に規定しなくてもよ
い。また、AlNを強化するため、最終冷延前に焼鈍お
よび冷却を行ってもよい。焼鈍は750〜1200℃の
温度域で30秒〜30分間行われ、この焼鈍は製品の磁
気特性を高めるために有効である。望む製品の特性レベ
ルとコストを勘案して採否を決めるとよい。
Subsequently, the final sheet thickness is obtained by one-stage cold rolling or a plurality of stages of cold rolling including intermediate annealing. However, since a unidirectional magnetic steel sheet having a high magnetic flux density is obtained, the final cold rolling rate ( In the case of one-stage cold rolling, the rolling reduction is preferably from 65 to 95%. The rolling rates of stages other than the final rolling need not be particularly defined. Further, in order to strengthen AlN, annealing and cooling may be performed before final cold rolling. Annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. It is advisable to decide whether or not to take into account the desired product characteristic level and cost.

【0026】最終製品厚に圧延した冷延板は、一次再結
晶焼鈍と鋼中に含まれる炭素を除去する目的で湿潤な水
素または水素と窒素の混合雰囲気中で、750〜900
℃の温度範囲で30秒〜30分間脱炭焼鈍を行う。この
脱炭焼鈍は良好な一次皮膜を形成するための公知技術を
適用することができる。また、使用する焼鈍分離剤に応
じて適正な条件を適用する必要がある。たとえばMgO
を焼鈍分離剤とする場合、過度なFe系の酸化物(Fe
2 SiO4 ,FeO等)は追加酸化や窒素透過が促進し
やすくAlN等のインヒビターを熱的に不安定にするの
で、過度なFe系酸化物を形成させない酸化度で焼鈍を
行うことが望ましい。通常脱炭焼鈍が行われる800〜
900℃の温度域においては、雰囲気ガスの酸化度を調
整することにより、Fe系酸化物の生成を抑制すること
ができる。また、Al2 3 を焼鈍分離剤とする場合は
FeOがないSiO2 のみの酸化物の方がAl2 3
鋼板への焼き付きが少ないので低い酸化度の雰囲気で焼
鈍することが望ましい。一方、脱炭焼鈍温度は主に最適
な一次再結晶粒径を得る観点から決定される。
The cold-rolled sheet rolled to the final product thickness is subjected to primary recrystallization annealing and 750 to 900 in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for the purpose of removing carbon contained in steel.
Decarburization annealing is performed in a temperature range of 30C for 30 seconds to 30 minutes. For this decarburization annealing, a known technique for forming a good primary film can be applied. Further, it is necessary to apply appropriate conditions according to the annealing separator used. For example, MgO
When using as an annealing separator, excessive Fe-based oxide (Fe
(2 SiO 4 , FeO, etc.) facilitates additional oxidation and nitrogen permeation, and makes inhibitors such as AlN thermally unstable. Therefore, it is desirable to perform annealing at a degree of oxidation that does not cause excessive formation of Fe-based oxides. Normally 800 ~
In the temperature range of 900 ° C., the generation of Fe-based oxides can be suppressed by adjusting the degree of oxidation of the atmospheric gas. When Al 2 O 3 is used as an annealing separator, it is desirable to perform annealing in an atmosphere having a low oxidation degree, since the oxide of only SiO 2 without FeO has less seizure of Al 2 O 3 to a steel sheet. On the other hand, the decarburization annealing temperature is determined mainly from the viewpoint of obtaining an optimum primary recrystallized grain size.

【0027】この脱炭焼鈍板の(Al,Si)Nインヒ
ビターを強化する必要がある場合、または(Al,S
i)Nを主インヒビターとして用いる製造法(例えば特
公昭62−45285号公報)においては、脱炭焼鈍か
ら二次再結晶仕上焼鈍の工程間で窒化処理を施す。この
窒化処理の方法は特に限定するものではなく、アンモニ
ア等の窒化能のある雰囲気ガス中で行う方法等がある。
量的には0.005%以上、望ましくは全窒素量として
鋼中のAl当量以上窒化すれば良い。
When it is necessary to strengthen the (Al, Si) N inhibitor of the decarburized annealed sheet, or when (Al, S
i) In a production method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285), a nitriding treatment is performed between the steps of decarburizing annealing and secondary recrystallization finishing annealing. The method of the nitriding treatment is not particularly limited, and there is a method of performing the nitriding treatment in an atmosphere gas having a nitriding ability such as ammonia.
Nitrogen may be nitrided in an amount of 0.005% or more, desirably the equivalent of Al in steel as a total nitrogen amount.

【0028】これらの脱炭焼鈍板をコイルフォームに巻
く直前に、焼鈍分離剤にBiの塩化物を含有した水スラ
リーを鋼板表面に塗布し、二次再結晶を確保しながら鋼
板表面を鏡面化させることが本発明のポイントである。
二次再結晶と表面の鏡面化の機構はまだ明らかでない
が、コイルを二次再結晶仕上焼鈍する過程で1000℃
までは一次皮膜が形成し、二次再結晶に必要なAlN等
のインヒビターの変質を抑制する。そして、焼鈍分離剤
に含有するBiとClは焼鈍中に水と反応しBiOCl
となり、更に昇温中にBiCl3 の蒸気を生成しつつ分
解する。BiCl 3 は平衡解離塩素分圧が非常に高いの
で、他の塩化物に比較してコイル板間でClガスを発生
させやすい。発生したClガスは鋼板表面の酸化層を拡
散し、地鉄に達するとFe+2Cl→FeCl2 の反応
に従ってFeCl2 の気体を発生する。酸化膜と地鉄の
界面である程度のFeCl2 ガスが生成されると地鉄表
面は酸化層と分離するため、表面Fe原子の移動が容易
になり1000℃以上の高温で鏡面状態になるものと推
定される。このように二次再結晶仕上焼鈍の高温域で鏡
面化することは、上述したように工場規模でコールフォ
ームによりBi添加超高磁束密度一方向性電磁鋼板製造
方法する欠点を補うため極めて有効である。また、図2
でBi添加量とともに鏡面化鋼板表面に微量に付着した
酸素が減少しているように、Bi添加は鏡面化を促進さ
せる作用があることが期待される。この原因については
まだ明らかではないが、製鋼段階で添加した鋼中のBi
が鋼板表面から気化されるときに、一次皮膜の剥離やそ
の後のサーマルエッチングに対し有利に作用しているも
のと推定している。すなわち、本発明は従来のBi添加
法とによる超高磁束密度化と鏡面化技術による低鉄損化
を極めて効果的に組み合わせたものである。
These decarburized annealed sheets are wound into a coil form.
Immediately before, a water slurry containing Bi chloride in the annealing separator
Is applied to the surface of the steel plate to secure the secondary recrystallization.
The point of the present invention is to make the plate surface mirror-finished.
The mechanism of secondary recrystallization and surface mirroring is not yet clear
However, in the process of secondary recrystallization finish annealing of the coil at 1000 ° C.
Until the primary film is formed, AlN etc. necessary for secondary recrystallization
Inhibits the deterioration of inhibitors. And annealing separator
Bi and Cl contained in BiOCl react with water during annealing.
And furthermore, BiClThreeMin while generating steam
Understand. BiCl ThreeHas a very high equilibrium dissociated chlorine partial pressure
Generates Cl gas between coil plates compared to other chlorides
Easy to make. The generated Cl gas spreads the oxide layer on the steel sheet surface.
Scattered, and when it reaches the ground iron, Fe + 2Cl → FeClTworeaction
According to FeClTwoOf gas. Oxide film and ground iron
Some FeCl at the interfaceTwoWhen the gas is generated
Since the surface is separated from the oxide layer, the movement of surface Fe atoms is easy
It is assumed that the surface becomes a mirror surface at a high temperature of 1000 ° C or higher.
Is determined. In this way, the mirror is used in the high temperature region of the secondary recrystallization finish annealing.
Surface area is a call-for-
Production of Bi-added ultra high magnetic flux density unidirectional electrical steel sheet
It is very effective to make up for the disadvantages of the method. FIG.
A small amount adhered to the mirror-finished steel sheet surface with the amount of Bi added
Bi addition promotes specularization as oxygen is reduced
It is expected to have the effect of causing About this cause
Although not yet clear, Bi in the steel added during the steelmaking stage
When the gas is vaporized from the steel sheet surface, the primary coating peels off and
Has a favorable effect on the subsequent thermal etching
It is estimated that. That is, the present invention uses the conventional Bi addition
Of high magnetic flux density by using the method and low iron loss by using mirror surface finishing technology
Are very effectively combined.

【0029】焼鈍分離剤としては、コイル板間に塗布さ
れて1200℃程度の温度でも板間の焼き付きを生じさ
せない公知の高融点化合物、たとえばMgO,Al2
3 ,SiO2 ,ZrO,BaO,CaO,SrOが有効
でその一種あるいは2種以上の混合物を用いる。これら
の酸化物にBi塩化物を添加すると、いずれにおいても
二次再結晶形成と鏡面化が満足できる。
As the annealing separating agent, a known high melting point compound which is applied between coil plates and does not cause seizure between the plates even at a temperature of about 1200 ° C., for example, MgO, Al 2 O
3 , SiO 2 , ZrO, BaO, CaO, SrO are effective, and one kind or a mixture of two or more kinds is used. When Bi chloride is added to these oxides, secondary recrystallization formation and mirror finishing can be satisfied in any case.

【0030】焼鈍分離剤中にBi塩化物を形成させるた
めには、BiCl,BiOCl,BiCl2 として添加
することが適切である。また、特開平7−54155号
公報に記載されるように、Biの単位あるいはBiの化
合物と金属の塩素化合物を複合添加する場合でも同等の
効果が得られる。焼鈍分離剤に含有されるBi塩化物が
焼鈍分離剤100重量部に対し塩素重量部で0.2部よ
り少ない場合には、エッチング効果が不足しコイル幅方
向全域に渡って酸化膜を除去することができない。一方
添加量を多くしても板間に存在し得るClガスの体積は
一定であるので、余分に添加されたBi塩化物はコイル
板間より流出し、効果を持たない。また、二次再結晶焼
鈍中に鋼板の焼き付きが発生しないためには、Bi塩化
物が蒸発した後に分離剤が残存していることも必要であ
る。従って、Bi塩化物の添加量上限は、塩素重量部と
して15部とした。
In order to form Bi chloride in the annealing separator, it is appropriate to add BiCl, BiOCl and BiCl 2 . Further, as described in JP-A-7-54155, the same effect can be obtained even when a unit of Bi or a compound of Bi and a chlorine compound of a metal are added in combination. If the Bi chloride contained in the annealing separator is less than 0.2 parts by weight of chlorine relative to 100 parts by weight of the annealing separator, the etching effect is insufficient and the oxide film is removed over the entire area in the coil width direction. Can not do. On the other hand, even if the amount of addition is increased, the volume of Cl gas that can be present between the plates is constant, so that the Bi chloride added extra flows out from between the coil plates and has no effect. Further, in order to prevent the steel sheet from burning during the secondary recrystallization annealing, it is necessary that the separating agent remains after the Bi chloride evaporates. Therefore, the upper limit of the amount of Bi chloride added was 15 parts by weight as chlorine.

【0031】二次再結晶仕上焼鈍条件については、特開
平7−18333号公報に開示されるように昇温中の窒
素分圧を制御して(Al,Si)Nインヒビターを安定
化する方法や、特開平2−258929号公報に開示さ
れる様に一定の温度で保持したり昇温速度を制御する手
段により二次再結晶を所定の温度域で行うことは磁束密
度を上げるうえで有効である。そして二次再結晶完了後
は、窒化物等の不純物の純化とサーマルエッチングによ
り表面の平滑化をおこなうために100%水素で110
0以上の温度で焼鈍する。
Regarding the secondary recrystallization finish annealing conditions, as disclosed in Japanese Patent Application Laid-Open No. 7-18333, a method of stabilizing the (Al, Si) N inhibitor by controlling the partial pressure of nitrogen during temperature rise, As disclosed in Japanese Patent Application Laid-Open No. 2-258929, performing secondary recrystallization in a predetermined temperature range by maintaining a constant temperature or controlling a heating rate is effective in increasing the magnetic flux density. is there. After the completion of the secondary recrystallization, 100% hydrogen is applied in order to purify impurities such as nitrides and smoothen the surface by thermal etching.
Anneal at a temperature of 0 or more.

【0032】二次再結晶仕上焼鈍後引き続き余分の焼鈍
分離剤を除去後、コイル巻きぐせ等を矯正するための連
続張力焼鈍を行い、同時に絶縁皮膜コーティングを塗
布、焼き付けする。このとき必要に応じて、該鋼板にレ
ーザー照射、機械的溝形成、張力被膜コーティング等の
磁区細分化処理を施す。本発明はBi添加により超高磁
束密度化を行うと同時に二次再結晶粒径を大きくするも
のであるため、鉄損特性を改善する意味から磁区細分化
処理は有効である。磁区細分化の方法は特に限定する必
要はない。
After the secondary recrystallization finish annealing, the excess annealing separating agent is continuously removed, followed by continuous tension annealing for correcting coil winding and the like, and at the same time, an insulating coating is applied and baked. At this time, if necessary, the steel sheet is subjected to magnetic domain refining treatment such as laser irradiation, mechanical groove formation, and tension film coating. Since the present invention increases the secondary recrystallized grain size at the same time as increasing the magnetic flux density by adding Bi, the magnetic domain refining treatment is effective from the viewpoint of improving iron loss characteristics. There is no particular limitation on the method of magnetic domain subdivision.

【0033】局部的な歪みを導入することで磁区細分化
を行う場合、例えば特公昭57−2252号公報等に記
載されるレーザー光照射を行う方法や、特開昭62−1
51511号公報、特公平6−45824号公報等に記
載されるプラズマ炎照射を行う方法等を用いれば良い。
局部的な溝を形成することで磁区細分化を行う場合、歯
車ロール法(例えば特公平4−48847号公報)や金
型プレス法(例えば特公平6−63037号公報)等の
機械的な塑性加工による方法、フォトエッチング法(例
えば特公平5−69284号公報)やレジストインキエ
ッチング法(特公平2−46673号公報、特公平3−
69968号公報)等の化学エッチングや電解エッチン
グを用いる方法などを採用すればよい。鋼板に形成する
溝は圧延方向に対して直角もしくは直角から45度の範
囲内でその間隔は2〜10mmが鉄損低下の観点から好ま
しい。溝の形状は連続的、不連続または点状のいずれで
も良い。溝の幅、及び深さはそれぞれ10〜300μ
m,5〜50μmの範囲が鉄損低下の観点から好まし
い。溝の幅を狭くすると曲率半径の小さな曲げ加工を施
す際に折れの起点となりやすい。また溝の幅を広くする
と磁束密度が低下してしまう。溝の深さも同様にあまり
深くすると磁束密度が低下してしまう。また、このよう
な局部的な溝を形成する工程は、冷延以降の工程であれ
ばいずれの工程でも良い。
In the case of performing magnetic domain subdivision by introducing local distortion, for example, a method of irradiating a laser beam described in Japanese Patent Publication No. 57-2252 or the like,
A method for performing plasma flame irradiation described in Japanese Patent No. 51511 and Japanese Patent Publication No. 6-45824 may be used.
In the case of performing magnetic domain subdivision by forming local grooves, mechanical plasticity such as a gear roll method (for example, Japanese Patent Publication No. 4-48847) and a die pressing method (for example, Japanese Patent Publication No. 6-63037). Processing method, photo etching method (for example, Japanese Patent Publication No. 5-69284) and resist ink etching method (for example, Japanese Patent Publication No. 2-46673, Japanese Patent Publication
No. 69968), a method using chemical etching or electrolytic etching, or the like may be employed. The groove formed in the steel plate is perpendicular to the rolling direction or within a range of 45 degrees from the perpendicular, and the interval is preferably 2 to 10 mm from the viewpoint of reducing iron loss. The shape of the groove may be continuous, discontinuous or point-like. The width and depth of the groove are each 10 to 300μ
m, the range of 5 to 50 μm is preferable from the viewpoint of reducing iron loss. When the width of the groove is reduced, the groove tends to be a starting point when bending with a small radius of curvature. In addition, if the width of the groove is increased, the magnetic flux density decreases. Similarly, if the depth of the groove is too large, the magnetic flux density will decrease. Further, the step of forming such a local groove may be any step after the cold rolling.

【0034】張力コーティングとしては、例えば特開昭
48−39338号公報によるコロイド状シリカとリン
酸アルミニウムを主体とするコーティング液、特開昭5
0−79442号公報によるコロイド状シリカとリン酸
マグネシウムを主体とするコーティング液、または特願
平4−222849号公報によるアルミナ・ゾルとホウ
酸を主成分とするコーティング液を焼き付ける方法等を
採用すればよい。
As the tension coating, for example, a coating solution mainly composed of colloidal silica and aluminum phosphate disclosed in JP-A-48-39338;
A method of baking a coating solution mainly containing colloidal silica and magnesium phosphate according to Japanese Patent Application Laid-Open No. 0-79442 or a coating solution mainly containing alumina sol and boric acid according to Japanese Patent Application No. 4-22849 is adopted. I just need.

【0035】[0035]

【実施例】【Example】

(実施例1)重量%で、C:0.05%、Si:3.3
%、Mn:0.1%、S:0.01%、酸可溶性Al:
0.03%、N:0.008%、を基本成分とし、
(A:Bi添加)Bi:0.01%と(B:従来法)B
i:0%の2水準の珪素鋼を溶製し、それぞれ鋳片に分
注鋳造後、1200℃に加熱し、抽出後直ちに2.3mm
板厚まで熱間圧延した。その後、酸洗し0.23mmまで
冷延した。この冷延板を窒素と水素の混合ガス中におい
て酸化度0.1(C)および0.4(D)で830℃の
温度で100秒焼鈍し一次再結晶させた。次いでアンモ
ニア雰囲気中で焼鈍することにより、窒素量を0.02
%に増加して、インヒビターの強化を行った。
(Example 1) By weight%, C: 0.05%, Si: 3.3
%, Mn: 0.1%, S: 0.01%, acid-soluble Al:
0.03%, N: 0.008% as a basic component,
(A: Bi added) Bi: 0.01% and (B: conventional method) B
i: Two levels of 0% silicon steel were melted, each was cast into a slab, heated to 1200 ° C., and immediately extracted to 2.3 mm.
It was hot rolled to the sheet thickness. Thereafter, it was pickled and cold rolled to 0.23 mm. This cold rolled sheet was annealed at a temperature of 830 ° C. for 100 seconds at a degree of oxidation of 0.1 (C) and 0.4 (D) in a mixed gas of nitrogen and hydrogen for primary recrystallization. Then, by annealing in an ammonia atmosphere, the nitrogen amount is reduced to 0.02.
% To increase the inhibitor.

【0036】これらの鋼板をその後、(C:鏡面化)A
2 3 +BiOCl(5重量部)、及び(D:従来
法)MgOの水スラリーを塗布した後鋼板を積層し、窒
素分圧が25%の湿水素雰囲気で低いガス流量のもとで
二次再結晶仕上焼鈍を施した。これらの試料に歯車ロー
ルで圧延方向と直角方向から10度の方向で、幅50μ
m、深さ50μmの溝を形成した後、コロイド状シリカ
とリン酸塩を主成分とするコーティング液を塗布して8
50℃で2分間焼き付けた。これらの試料の磁気特性を
測定した後、更に800℃で4時間の歪取り焼鈍を行っ
た。得られた製品の磁気特性を表1に示す。
These steel sheets were then (C: mirror-finished)
After applying a water slurry of l 2 O 3 + BiOCl (5 parts by weight) and (D: conventional method) MgO, the steel sheets are laminated, and the steel sheets are laminated under a low gas flow rate in a humid hydrogen atmosphere having a nitrogen partial pressure of 25%. Next, recrystallization finishing annealing was performed. These samples were rolled with a gear roll in a direction of 10 degrees from a direction perpendicular to the rolling direction and a width of 50 μm.
m, a groove having a depth of 50 μm is formed, and then a coating liquid containing colloidal silica and phosphate as main components is applied to form a groove.
Bake at 50 ° C. for 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours. Table 1 shows the magnetic properties of the obtained products.

【0037】[0037]

【表1】 [Table 1]

【0038】(実施例2)重量%で、Si:3.3%、
Mn:0.1%、C:0.05%、S:0.007%、
酸可溶性Al:0.03%、N:0.008%,Sn:
0.05%を基本成分とし、(A:Bi添加)Bi:
0.01%と(B:従来法)Bi:0%の2水準の珪素
鋼を溶製し、それぞれ鋳片に分注鋳造後、1200℃に
加熱し、抽出後直ちに2.3mm板厚まで熱間圧延した。
酸洗し1.4mmまで冷延した冷延板を1120℃の温度
で30秒900℃で90秒焼鈍し後、750℃まで空冷
後80℃の水中に急冷し、最終板厚0.15mmに冷延し
た。この冷延板を窒素と水素の混合ガス中において酸化
度0.3で830℃の温度で70秒焼鈍し一次再結晶さ
せた。次いでアンモニア雰囲気中で焼鈍することによ
り、窒素量を0.025%に増加して、インヒビターの
強化を行った。
Example 2 Si: 3.3% by weight
Mn: 0.1%, C: 0.05%, S: 0.007%,
Acid-soluble Al: 0.03%, N: 0.008%, Sn:
0.05% as a basic component, (A: Bi added) Bi:
Melting two levels of silicon steel of 0.01% and (B: conventional method) Bi: 0%, dispensing and casting each to a slab, heating to 1200 ° C., and immediately after extraction to 2.3 mm sheet thickness. Hot rolled.
The cold-rolled sheet which had been pickled and rolled to 1.4 mm was annealed at a temperature of 1120 ° C. for 30 seconds at 900 ° C. for 90 seconds, then air-cooled to 750 ° C. and quenched into 80 ° C. water to a final thickness of 0.15 mm Cold rolled. This cold-rolled sheet was annealed in a mixed gas of nitrogen and hydrogen at a temperature of 830 ° C. with a degree of oxidation of 0.3 for 70 seconds to perform primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0039】これらの鋼板をその後、(C:鏡面化)Z
rO+BiCl(10重量部)、及び(D:従来法)M
gOの水スラリーを塗布した後鋼板を積層し、窒素分圧
が25%の湿水素雰囲気で低いガス流量のもとで二次再
結晶仕上焼鈍を施した。これら仕上焼鈍後の試料に圧延
方向と直角方向に、幅30μm、深さ10μmの溝をフ
ォトエッチング法で形成した後、アルミナ・ゾルとホウ
酸を主成分とするコーティング液を塗布して870℃で
2分間焼き付けた。これらの試料の磁気特性を測定した
後、更に800℃で4時間の歪取り焼鈍を行った。得ら
れた製品の磁気特性を表2に示す。
These steel sheets were then subjected to (C: mirror finishing) Z
rO + BiCl (10 parts by weight) and (D: conventional method) M
After applying the gO water slurry, the steel sheets were laminated and subjected to secondary recrystallization finish annealing under a low gas flow rate in a wet hydrogen atmosphere with a nitrogen partial pressure of 25%. A groove having a width of 30 μm and a depth of 10 μm is formed on the sample after the finish annealing in a direction perpendicular to the rolling direction by a photoetching method, and then a coating solution containing alumina sol and boric acid as main components is applied at 870 ° C. For 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours. Table 2 shows the magnetic properties of the obtained products.

【0040】[0040]

【表2】 [Table 2]

【0041】(実施例3)重量%で、Si:3.3%、
Mn:0.07%、C:0.07%、Se:0.025
%、酸可溶性Al:0.028%、N:0.008%、
Sb:0.1%を基本成分とし、(A:Bi添加)B
i:0.01%と(B:従来法)Bi:0%の2水準の
珪素鋼を溶製し、それぞれ鋳片に分注鋳造後、1350
℃で加熱し、抽出後直ちに2.3mm板厚まで熱間圧延
し、直ちに室温まで水冷した。この熱延板を1100℃
で2分間焼鈍した後酸洗し、最終板厚0.27mmまで途
中で250℃での時効処理を5回挟んで冷延した。この
冷延板を窒素と水素の混合ガス中において酸化度0.4
8で850℃の温度で120秒焼鈍し一次再結晶させ
た。
(Example 3) Si: 3.3% by weight
Mn: 0.07%, C: 0.07%, Se: 0.025
%, Acid-soluble Al: 0.028%, N: 0.008%,
Sb: 0.1% as a basic component, (A: Bi added) B
i: 0.01% and (B: conventional method) Bi-level silicon steels of 2% were melted, each of which was dispensed and cast into a slab, and then 1350
C., immediately after the extraction, hot-rolled to a thickness of 2.3 mm, and immediately cooled with water to room temperature. 1100 ° C
And then pickled, and cold rolled with aging treatment at 250 ° C. five times on the way to a final sheet thickness of 0.27 mm. This cold-rolled sheet is oxidized in a mixed gas of
8 at 850 ° C. for 120 seconds for primary recrystallization.

【0042】これらの鋼板をその後、(C:鏡面化)M
gO+BiCl3 、及び(D:従来法)MgOの水スラ
リーを塗布した後、鋼板を積層し厚み方向に20kg/mm
2 で加圧した後、窒素分圧が25%の湿水素雰囲気で低
いガス流量のもとで二次再結晶仕上焼鈍を施した。これ
らの試料に、コロイド状シリカとリン酸塩を主成分とす
るコーティング液を塗布して850℃で2分間焼き付け
た。その後、鋼板表面に圧延方向と直角方向に5mm間隔
でレーザー照射を行った。得られた製品の磁気特性を表
3に示す。
These steel sheets were then (C: mirror-finished) M
After applying a water slurry of gO + BiCl 3 and (D: conventional method) MgO, a steel sheet is laminated and 20 kg / mm in a thickness direction.
After pressurizing with 2, nitrogen partial pressure is subjected to secondary recrystallization finish annealing under a low gas flow rate in a hydrogen atmosphere humidity 25%. A coating solution containing colloidal silica and phosphate as main components was applied to these samples and baked at 850 ° C. for 2 minutes. Thereafter, the surface of the steel sheet was irradiated with laser at intervals of 5 mm in a direction perpendicular to the rolling direction. Table 3 shows the magnetic properties of the obtained products.

【0043】[0043]

【表3】 [Table 3]

【0044】(実施例4)容量%で、C:0.05%、
Si:3.25%、Mn:0.10%、S:0.007
%、P:0.025%、酸可溶性Al:0.029%、
N:0.007%Bi:0.007%、Cr:0.12
%を含有する珪素鋼を溶製し、スラブに鋳造後、115
0℃に加熱し、抽出後直ちに2.3mm板厚まで熱延し、
熱延後水冷し550℃で巻き取った。その後熱延板を1
120℃の温度で30秒900℃で90秒焼鈍し、75
0℃まで空冷後80℃の水中に急冷した。次いで酸洗
後、0.23mmまで5パスの圧延を行い、途中200℃
以上で5分以上の時効処理を行った。引き続き脱炭・一
次再結晶焼鈍を窒素と、水素の混合ガス中において酸化
度0.49の雰囲気とし、850℃の温度で100秒行
い、引き続いてNH3 雰囲気でN含有量が200ppm
になるよう窒化焼鈍を行った。MgOを主成分とする焼
鈍分離剤にMgO100重量部に対しBiOClを7.
5重量部添加した水スラリーを鋼板表面に塗布後して巻
いた5Tのコイルを、ボックスタイプの焼鈍炉で2次再
結晶仕上焼鈍を行った。炉内に窒素50%の窒素と水素
の混合ガスを流しながら1200℃まで15℃/hrで昇
温し、引き続いて水素を流しながら1200℃で75時
間の純化焼鈍を行った。その後、コイルを連続焼鈍ライ
ンで展開しながら、圧延方向からと直角方向から10度
傾いた、幅50μm、深さ11μmの溝を形成した歯型
の金型をプレスで溝を形成した後、コロイド状シリカと
リン酸塩を主成分とするコーティング液を塗布して86
0℃で2分間焼き付けた。得られたコイルの5箇所でサ
ンプリングし、測定した800℃で2時間焼鈍後のエプ
スタイン値は、磁区制御前の磁束密度B8 で平均1.9
7T、鉄損W17 /50 で0.68W/kgであった。
(Example 4) By volume%, C: 0.05%,
Si: 3.25%, Mn: 0.10%, S: 0.007
%, P: 0.025%, acid-soluble Al: 0.029%,
N: 0.007% Bi: 0.007%, Cr: 0.12
% Is melted and cast into a slab.
Heated to 0 ° C and immediately hot rolled to a 2.3mm plate thickness after extraction,
After hot rolling, it was cooled with water and wound up at 550 ° C. Then hot-rolled sheet
Anneal at a temperature of 120 ° C. for 30 seconds, 900 ° C. for 90 seconds, 75
After air cooling to 0 ° C, it was quenched into 80 ° C water. Next, after pickling, rolling was performed in 5 passes to 0.23 mm, and 200 ° C.
Thus, the aging treatment was performed for 5 minutes or more. Subsequently, decarburization / primary recrystallization annealing is performed in a mixed gas of nitrogen and hydrogen in an atmosphere having an oxidation degree of 0.49, at a temperature of 850 ° C. for 100 seconds, and subsequently in an NH 3 atmosphere with an N content of 200 ppm.
Nitriding annealing was performed to obtain. 6. As an annealing separator containing MgO as a main component, BiOCl is added to 100 parts by weight of MgO.
A 5 T coil wound by applying 5 parts by weight of added water slurry to the surface of the steel sheet was subjected to secondary recrystallization finish annealing in a box type annealing furnace. The temperature was raised to 1200 ° C. at a rate of 15 ° C./hr while flowing a mixed gas of 50% nitrogen and hydrogen in the furnace, and subsequently, purification annealing was performed at 1200 ° C. for 75 hours while flowing hydrogen. Then, while developing the coil in a continuous annealing line, a groove is formed by pressing a tooth mold having a groove having a width of 50 μm and a depth of 11 μm, which is inclined by 10 degrees from the rolling direction and a direction perpendicular to the rolling direction. 86 by applying a coating liquid containing silica and phosphate as main components
Bake for 2 minutes at 0 ° C. The Epstein value after annealing at 800 ° C. for 2 hours, sampled at five points of the obtained coil, was 1.9 on average with the magnetic flux density B 8 before the magnetic domain control.
7T, was 0.68W / kg in iron loss W 17/50.

【0045】[0045]

【発明の効果】本発明は、従来のBi添加法とによる超
高磁束密度化とBi塩化物を含有する焼鈍分離剤を塗布
する鏡面化技術による低鉄損化を極めて効果的に組み合
わせることにより、工業生産において極めて安定的に安
価な超磁束密度低一方向性電磁鋼板が得られるととも
に、磁区細分化処理後の鉄損特性も極めて優れており、
工業的に非常に価値が高いものと云える。
The present invention provides an extremely effective combination of ultra-high magnetic flux density by the conventional Bi addition method and low iron loss by the mirror finishing technique of applying an annealing separator containing Bi chloride. In addition to being able to obtain inexpensively super-flux density low unidirectional electrical steel sheets in an extremely stable manner in industrial production, the iron loss properties after magnetic domain refinement are extremely excellent.
It can be said that it is very valuable industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一次皮膜形成法(従来のマグネシア焼鈍分離剤
剤)における、各Bi含有量での仕上げ焼鈍中のガス導
入量と磁束密度B8 および鋼板酸素量の関係を示す図
で、〔A〕は各Bi含有量での仕上げ焼鈍中のガス導入
量と磁束密度B8 の関係を示す図で、〔B〕は各Bi含
有量での仕上げ焼鈍中のガス導入量と鋼板酸素量の関係
を示す図。
FIG. 1 is a graph showing a relationship between a gas introduction amount, a magnetic flux density B 8 and a steel sheet oxygen amount during finish annealing at each Bi content in a primary film forming method (conventional magnesia annealing separating agent); ] is a diagram showing the relationship between the gas introduction amount and the magnetic flux density B 8 in finish annealing at the Bi content, [B] the relationship of the gas introduction amount in finish annealing and a steel sheet oxygen amount in each Bi content FIG.

【図2】鏡面化法(ビスマス塩化物を含有するマグネシ
ア焼鈍分離剤)における、各Bi含有量での仕上げ焼鈍
中のガス導入量と磁束密度B8 および鋼板酸素量の関係
を示す図で、〔A〕は各Bi含有量での仕上げ焼鈍中の
ガス導入量と磁束密度B 8 の関係を示す図で、〔B〕は
各Bi含有量での仕上げ焼鈍中のガス導入量と鋼板の酸
素量の関係を示す図。
Fig. 2 Mirroring method (magnesium containing bismuth chloride)
Finish annealing at each Bi content in (A annealing separator)
Amount of gas introduced and magnetic flux density B8Between steel and oxygen content
[A] shows the results during the finish annealing at each Bi content.
Gas introduction amount and magnetic flux density B 8[B] is a diagram showing the relationship of
Gas introduction amount and acid of steel sheet during finish annealing for each Bi content
The figure which shows the relationship of an elementary quantity.

【図3】図2で得られた試料をレーザー照射により磁区
細分化処理を行ったときの素材の磁束密度(磁区細分化
前)B8 と磁区細分化後の鉄損W17/50 の関係を示す
図。
FIG. 3 shows the relationship between the magnetic flux density (before magnetic domain refining) B 8 and the iron loss W 17/50 after the magnetic domain refining when the sample obtained in FIG. 2 is subjected to magnetic domain refining treatment by laser irradiation. FIG.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.02〜0.1% Si:2.0〜4.8%、 酸可溶性Al:0.012〜0.050%、 N:0.0030〜0.0150%、 Bi:0.0005〜0.03% を基本成分とし、残部はFeおよび不可避的不純物をか
らなる溶鋼を鋳造し、熱間圧延し、65〜95%の最終
強冷延を含む1回あるいは中間焼鈍を介入する2回以上
の冷間圧延により最終板厚とし、一次再結晶を兼ねた脱
炭焼鈍を施し、脱炭焼鈍から二次再結晶仕上焼鈍の工程
間で必要に応じて窒化処理を行い、二次再結晶仕上焼鈍
を行う工程からなる一方向性電磁鋼板の製造方法におい
て、鋼板表面に、焼鈍分離剤100重量部に対してBi
の塩化物が塩素重量部で0.2〜15重量部含有する焼
鈍分離剤を塗布後、二次再結晶仕上焼鈍することを特徴
とする磁束密度の高い鏡面一方向性電磁鋼板の製造方
法。
1. Weight%, C: 0.02-0.1% Si: 2.0-4.8%, Acid-soluble Al: 0.012-0.050%, N: 0.0030-0 0.0150%, Bi: 0.0005 to 0.03% as a basic component, the remainder being cast molten steel composed of Fe and unavoidable impurities, hot-rolled, and including 65-95% final strong cold rolling. The final thickness is obtained by cold rolling once or twice or more with intermediate annealing, decarburizing annealing combined with primary recrystallization, and between decarburizing annealing and secondary recrystallization finishing annealing as necessary A unidirectional electrical steel sheet comprising a step of performing a secondary recrystallization finish annealing by performing a nitriding treatment and performing a secondary recrystallization finish annealing.
A method for producing a mirror-oriented unidirectional electrical steel sheet having a high magnetic flux density, comprising applying an annealing separator containing 0.2 to 15 parts by weight of a chloride in parts by weight of chlorine and then performing secondary recrystallization finish annealing.
【請求項2】 焼鈍分離剤の主成分が、MgO,Al2
3 ,SiO2 ,ZrO,BaO,CaO,SrOの1
種あるいは2種以上の混合物であることを特徴とする請
求項1記載の鉄損の低い鏡面一方向性電磁鋼板の製造方
法。
2. The main component of the annealing separator is MgO, Al 2
1 of O 3 , SiO 2 , ZrO, BaO, CaO, SrO
The method for producing a mirror-oriented unidirectional magnetic steel sheet having a low iron loss according to claim 1, which is a kind or a mixture of two or more kinds.
【請求項3】 請求項1記載の鋼板に局部的な歪みを導
入することにより、磁区細分化処理を施すことを特徴と
する鉄損の低い鏡面一方向性電磁鋼板の製造方法。
3. A method for producing a mirror-oriented unidirectional magnetic steel sheet having a low iron loss, wherein a magnetic domain refinement treatment is performed by introducing local strain into the steel sheet according to claim 1.
【請求項4】 請求項1記載の鋼板にコーティング処理
による張力皮膜を形成した後、局部的な歪みを導入する
ことにより、磁区細分化処理を施すことを特徴とする鉄
損の低い鏡面一方向性電磁鋼板の製造方法。
4. A mirror surface unidirectional having a low iron loss, wherein a magnetic domain refinement treatment is performed by introducing a local strain after forming a tension film by a coating treatment on the steel sheet according to claim 1. Manufacturing method of conductive electrical steel sheet.
【請求項5】 請求項1記載の鋼板に圧延方向に対して
直角もしくは直角から45度の範囲内で間隔2〜10mm
で幅10〜300μm、深さ5〜50μmの範囲で連続
的、不連続または点状の溝あるいは局部的な溝を形成
し、併せてコーティング処理による張力皮膜を形成する
ことにより磁区細分化させることを特徴とする鉄損の低
い鏡面一方向性電磁鋼板の製造方法。
5. The steel sheet according to claim 1, which is perpendicular to the rolling direction or at an interval of 2 to 10 mm within a range of 45 degrees from the perpendicular.
Forming a continuous, discontinuous or point-like groove or a local groove in the range of 10 to 300 μm in width and 5 to 50 μm in depth, and forming a tension film by a coating process to further subdivide the magnetic domains. A method for producing a mirror-oriented unidirectional magnetic steel sheet having a low iron loss, characterized by comprising:
JP28493296A 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet Expired - Lifetime JP3496067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28493296A JP3496067B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28493296A JP3496067B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH10130726A true JPH10130726A (en) 1998-05-19
JP3496067B2 JP3496067B2 (en) 2004-02-09

Family

ID=17684934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28493296A Expired - Lifetime JP3496067B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3496067B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027196A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method of manufacturing ultra-high mangnetic flux density grain-oriented silicon steel sheet having high magnetic flerd iron loss and excellent film characteristic
WO2003008654A1 (en) * 2001-07-16 2003-01-30 Nippon Steel Corporation Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
JP2003096520A (en) * 2001-09-21 2003-04-03 Nippon Steel Corp Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP2003183790A (en) * 2002-11-01 2003-07-03 Nippon Steel Corp Grain-oriented magnetic steel sheet with ultra-high magnetic flux density having low core loss in high magnetic field and superior film characteristics
EP2940161A4 (en) * 2012-12-28 2016-01-20 Posco Grain-oriented electrical steel sheet, and method for manufacturing same
JP2019123936A (en) * 2018-01-12 2019-07-25 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheets
WO2020149327A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149325A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JP2020122210A (en) * 2019-01-31 2020-08-13 Jfeスチール株式会社 Annealing separator and method for producing grain-oriented electrical steel sheet
KR20210110364A (en) * 2019-01-16 2021-09-07 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210111802A (en) * 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
US20220081746A1 (en) * 2019-01-16 2022-03-17 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
US20220112573A1 (en) * 2019-01-16 2022-04-14 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
US12123084B2 (en) * 2019-01-16 2024-10-22 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027196A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method of manufacturing ultra-high mangnetic flux density grain-oriented silicon steel sheet having high magnetic flerd iron loss and excellent film characteristic
WO2003008654A1 (en) * 2001-07-16 2003-01-30 Nippon Steel Corporation Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
US7399369B2 (en) 2001-07-16 2008-07-15 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
JP2003096520A (en) * 2001-09-21 2003-04-03 Nippon Steel Corp Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP2003183790A (en) * 2002-11-01 2003-07-03 Nippon Steel Corp Grain-oriented magnetic steel sheet with ultra-high magnetic flux density having low core loss in high magnetic field and superior film characteristics
EP2940161A4 (en) * 2012-12-28 2016-01-20 Posco Grain-oriented electrical steel sheet, and method for manufacturing same
US10023932B2 (en) 2012-12-28 2018-07-17 Posco Grain-oriented electrical steel sheet, and method for manufacturing the same
JP2019123936A (en) * 2018-01-12 2019-07-25 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheets
KR20210110363A (en) * 2019-01-16 2021-09-07 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
JPWO2020149325A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
US12123084B2 (en) * 2019-01-16 2024-10-22 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
CN113286905A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113302317A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020149327A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
KR20210110364A (en) * 2019-01-16 2021-09-07 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210111802A (en) * 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
JPWO2020149327A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2020149325A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
US20220081746A1 (en) * 2019-01-16 2022-03-17 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
RU2768905C1 (en) * 2019-01-16 2022-03-25 Ниппон Стил Корпорейшн Method of producing electrotechnical steel sheet with oriented grain structure
US20220112573A1 (en) * 2019-01-16 2022-04-14 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
RU2771130C1 (en) * 2019-01-16 2022-04-26 Ниппон Стил Корпорейшн Method for producing electrical steel sheet with oriented grain structure
EP3913090A4 (en) * 2019-01-16 2022-09-28 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
EP3913077A4 (en) * 2019-01-16 2022-09-28 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
CN113302317B (en) * 2019-01-16 2024-01-09 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet
US12110567B2 (en) 2019-01-16 2024-10-08 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
JP2020122210A (en) * 2019-01-31 2020-08-13 Jfeスチール株式会社 Annealing separator and method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3496067B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
EP1992708B1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP3337958B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties
JP3489945B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2003003213A (en) Method for producing specular grain-oriented silicon steel having high magnetic flux density
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP7188459B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
WO2024096082A9 (en) Grain-oriented electromagnetic steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term