JPH07278669A - Manufacture of mirror surface oriented silicon steel sheet with low iron loss - Google Patents

Manufacture of mirror surface oriented silicon steel sheet with low iron loss

Info

Publication number
JPH07278669A
JPH07278669A JP6706194A JP6706194A JPH07278669A JP H07278669 A JPH07278669 A JP H07278669A JP 6706194 A JP6706194 A JP 6706194A JP 6706194 A JP6706194 A JP 6706194A JP H07278669 A JPH07278669 A JP H07278669A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
chloride
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6706194A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Kenichi Murakami
健一 村上
Takeo Nagashima
武雄 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6706194A priority Critical patent/JPH07278669A/en
Publication of JPH07278669A publication Critical patent/JPH07278669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably manufacture the mirror surface oriented silicon steel sheet with low iron loss by performing the decarburization annealing of the silicon steel strip having the prescribed composition consisting of Si, Al, N and Fe in a specific atmospheric gas, and coating the MgO separation agent for annealing with the chloride added to perform the finish annealing. CONSTITUTION:The silicon steel strip having the composition consisting of, by weight, 0.8-4.8% Si, 0.012-0.05% acid-soluble Al, <=0.01% N, and the balance Fe with inevitable impurities is cold rolled to the final thickness in one or two or more cold rolling including the intermediate annealing. This cold-rolled steel sheet is decarburization annealed in the atmospheric gas where the degree of oxidation (PH2O/PH2) is 0.01-0.15, and the inhibitor is reinforced through the nitrogen increasing process. Then, the separation agent for annealing which is mainly composed of MgO and is added with the chloride is coated and laminated on this steel sheet to perform the finish annealing, and the blunting annealing in the atmosphere of H2 gas. The chloride is preferably BiOCl or Bi2O3+FeCl2. The mirror surface is achieved in the whose zone of the coil to stably obtain the grain-oriented silicon steel sheet with low iron loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として変圧器その他の
電気機器等の鉄心として利用される一方向性珪素鋼板の
製造方法に関するものである。特に、その表面を効果的
に仕上げることにより、鉄損特性の向上を図ろうとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a unidirectional silicon steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, it is intended to improve the iron loss characteristics by effectively finishing the surface.

【0002】[0002]

【従来の技術】一方向性珪素鋼板は、磁気鉄心として多
くの電気機器に用いられている。一方向性珪素鋼板は、
Siを0.8〜4.8%含有し製品の結晶粒の方位を
{110}〈001〉方位に高度に集積させた鋼板であ
る。その磁気特性として磁束密度が高く(B8 値で代表
される)、鉄損が低い(W17/50 値で代表される)こと
が要求される。特に、最近では省エネルギーの見地から
電力鉄損の低減に対する要求が高まっている。この要求
に応え、一方向性珪素鋼板の鉄損を低減させる手段とし
て、磁区を細分化する技術が開発された。
2. Description of the Related Art Unidirectional silicon steel sheets are used as magnetic cores in many electric devices. Unidirectional silicon steel sheet,
It is a steel sheet containing 0.8 to 4.8% of Si and having the crystal grains of the product highly integrated in the {110} <001> orientation. The magnetic properties are required to have a high magnetic flux density (represented by a B 8 value) and low iron loss (represented by a W 17/50 value). In particular, recently, from the viewpoint of energy saving, there is an increasing demand for reduction of electric power iron loss. In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of a unidirectional silicon steel sheet.

【0003】積み鉄心の場合、仕上げ焼鈍後の鋼板にレ
ーザービームを照射して、局部的な微少歪を与えること
により磁区を細分化して鉄損を低減させる方法が、例え
ば特開昭58−26405号公報に開示されている。ま
た、巻き鉄心の場合には、鉄心に加工した後、歪取り焼
鈍を施しても磁区細分化効果の消失しない方法も、例え
ば特開昭62−8617号公報に開示されている。これ
らの技術的手段により磁区を細分化することにより鉄損
は大きく低減されるようになってきている。
In the case of a laminated iron core, a method of irradiating a steel sheet after finish annealing with a laser beam to give a local minute strain to subdivide a magnetic domain to reduce iron loss is disclosed in, for example, JP-A-58-265405. It is disclosed in the publication. Further, in the case of a wound core, a method in which the magnetic domain refining effect is not lost even if strain relief annealing is performed after processing the core is also disclosed in, for example, Japanese Patent Application Laid-Open No. 62-8617. By subdividing the magnetic domains by these technical means, iron loss has been greatly reduced.

【0004】しかしながら、これらの磁区の動きを観察
すると動かない磁区も存在していることが分かり、方向
性電磁鋼板の鉄損値を更に低減させるためには、磁区細
分化と合わせて磁区の動きを阻害する鋼板表面のグラス
皮膜の凹凸に起因するピン止め効果をなくすことが重要
であることが分かった。そのためには、磁区の動きを阻
害する鋼板表面のグラス皮膜を形成させないことが有効
である。その手段として、焼鈍分離剤として粗大高純ア
ルミナを用いることによりグラス皮膜を形成させない方
法が、例えばU.S.Patent3785882に開
示されている。しかしながらこの方法では表面直下の介
在物をなくすことができず、鉄損の向上代はW15/60
高々2%に過ぎない。
However, by observing the movement of these magnetic domains, it is found that some magnetic domains do not move, and in order to further reduce the iron loss value of the grain-oriented electrical steel sheet, the movement of the magnetic domains should be combined with the magnetic domain subdivision. It was found that it is important to eliminate the pinning effect due to the unevenness of the glass film on the surface of the steel sheet that inhibits For that purpose, it is effective not to form a glass film on the surface of the steel sheet that hinders the movement of magnetic domains. As a means for this, a method of forming a glass film by using coarse and highly pure alumina as an annealing separator is disclosed in U.S. Pat. S. Patent 3785882. However, with this method, it is not possible to eliminate inclusions just below the surface, and the improvement margin of iron loss is W 15/60 of only 2% at most.

【0005】この表面直下の介在物を制御し、かつ表面
の鏡面化を達成する方法として、仕上げ焼鈍後に化学研
磨或いは電解研磨を行う方法が、例えば特開昭64−8
3620号公報に開示されている。しかしながら、化学
研磨・電解研磨等の方法は、研究室レベルでの少試料の
材料を加工することは可能であるが、工業的規模で行う
には薬液の濃度管理、温度管理、公害設備の付与等の点
で大きな問題があり、いまだ実用化されるに至っていな
い。この問題点を解消する方策として、本発明者等は塩
化物を焼鈍分離剤に添加する方法を既に提案している
(例えば特願平5−204393号、特願平5−323
059号)。
As a method of controlling the inclusions just below the surface and achieving a mirror surface of the surface, a method of performing chemical polishing or electrolytic polishing after finish annealing is disclosed in, for example, Japanese Patent Laid-Open No. 64-8.
It is disclosed in Japanese Patent No. 3620. However, chemical polishing, electrolytic polishing, etc. can process a small amount of material at the laboratory level, but for industrial scale processing, chemical concentration control, temperature control, and provision of pollution equipment are required. There is a big problem in terms of such things, and it has not yet been put to practical use. As a measure to solve this problem, the present inventors have already proposed a method of adding chloride to the annealing separator (for example, Japanese Patent Application Nos. 5-204393 and 5-323).
059).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、工業的
にコイル規模で行った場合、コイルの部位により仕上げ
焼鈍昇温時の雰囲気ガスが異なるため塩化物の分解挙動
がばらつき、コイル全体で均一に鏡面化が実現できない
ことが判明した。この問題点を解消するために、塩化物
の添加量を増加させ鏡面の均一化をめざしたところ、部
分的に粒界までエッチングされてしまった。本発明の目
的はコイル規模で均一に鏡面化を行い、鉄損の低い鏡面
方向性電磁鋼板の製造方法を提示することである。
However, when industrially carried out on a coil scale, the decomposition gas of chloride varies because the atmosphere gas at the time of finish annealing temperature rise varies depending on the coil portion, and the entire surface of the coil has a uniform mirror surface. It turned out that the realization could not be realized. In order to solve this problem, when the amount of chloride added was increased and the mirror surface was made uniform, the grain boundaries were partially etched. It is an object of the present invention to provide a method for producing a mirror-oriented grain-oriented electrical steel sheet having a low iron loss, which is uniformly mirror-finished on a coil scale.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために種々の実験を行い脱炭焼鈍の露点を制
御し、脱炭焼鈍時に形成される酸化層においてFe系酸
化物(Fe2 SiO4,FeO等)を形成させないこと
により、焼鈍分離剤中の塩化物の添加量を低減させた条
件下で安定して鏡面化できることを見出した。
Means for Solving the Problems The present inventors have conducted various experiments in order to solve the above problems by controlling the dew point of decarburization annealing so that the Fe-based oxide is formed in the oxide layer formed during decarburization annealing. It has been found that by not forming (Fe 2 SiO 4 , FeO, etc.), it is possible to obtain a stable mirror finish under the condition that the amount of chloride added in the annealing separator is reduced.

【0008】以下、詳細に説明する。重量で、Si:
3.3%、Mn:0.14%、C:0.05%、S:
0.007%、酸可溶性Al:0.028%、N:0.
008%の珪素鋼スラブを1150℃で加熱した後、板
厚1.6mmに熱延した。この熱延板を1100℃で2分
間焼鈍した後最終板厚0.15mmに冷延した。この冷延
板を湿潤ガス中で脱炭を兼ね830℃で70秒焼鈍し一
次再結晶させた。脱炭焼鈍の雰囲気ガス露点は酸化度
(P H2 O /P H2 )として(1)0.016、(2)
0.06、(3)0.105、(4)0.185、
(5)0.327の条件で焼鈍を行った。これらの脱炭
焼鈍後の表面酸化物の組成を赤外反射スペクトルにより
同定した。その結果を図2に示す。形成された酸化物は
図2に示されるように、条件(1)〜(3)では、Si
2 、条件(4),(5)ではSiO2 とFe2 SiO
4 である。
The details will be described below. By weight, Si:
3.3%, Mn: 0.14%, C: 0.05%, S:
0.007%, acid-soluble Al: 0.028%, N: 0.
A 008% silicon steel slab was heated at 1150 ° C. and then hot-rolled to a plate thickness of 1.6 mm. The hot rolled sheet was annealed at 1100 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.15 mm. This cold-rolled sheet was annealed at 830 ° C. for 70 seconds in wet gas for decarburization to perform primary recrystallization. Atmospheric gas dew point of decarburization annealing is as oxidation degree (PH 2 O / PH 2 ) of (1) 0.016, (2)
0.06, (3) 0.105, (4) 0.185,
(5) Annealing was performed under the condition of 0.327. The composition of these surface oxides after decarburization annealing was identified by infrared reflection spectrum. The result is shown in FIG. As shown in FIG. 2, the formed oxide is Si under the conditions (1) to (3).
O 2 , under the conditions (4) and (5) SiO 2 and Fe 2 SiO
Is 4 .

【0009】その後、アンモニア窒化により窒素量を
0.02%まで高めインヒビターを強化した。この脱炭
焼鈍板にBiOClを0〜8%添加したマグネシアを主
成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施し
た。仕上げ焼鈍は1200℃まではN2 :50%+
2 :50%の雰囲気ガス中で15℃/hrの昇温速度で
行い、1200℃でH2 :100%に切り替え20時間
純化焼鈍を行った。これらの試料について、鏡面化度を
図1に示す。これらの結果より、Fe系酸化物(Fe2
SiO4 )が生成しない酸化度域(実験条件(1)〜
(3))で塩化物添加量の広い領域で均一な鏡面化が達
成されることが分かる。
After that, the amount of nitrogen was increased to 0.02% by ammonia nitriding to strengthen the inhibitor. This decarburized annealed plate was applied with an annealing separating agent containing magnesia as a main component to which BiOCl was added in an amount of 0 to 8%, followed by finish annealing. Finish annealing is N 2 : 50% + up to 1200 ℃
H 2 was performed at a temperature rising rate of 15 ° C./hr in an atmosphere gas of 50%, and at 1200 ° C., H 2 was changed to 100%, and purification annealing was performed for 20 hours. The specularity of these samples is shown in FIG. From these results, the Fe-based oxide (Fe 2
Oxidation degree range in which SiO 4 ) is not generated (experimental condition (1)-
It can be seen that in (3)), uniform mirroring is achieved in a wide range of chloride addition.

【0010】以下、実施形態を説明する。基本的な製造
法としては、田口・坂倉等によるAlNとMnSを主イ
ンヒビターとして用いる製造法(例えば特公昭40−1
5644号公報)、または小松等による(Al,Si)
Nを主インヒビターとして用いる製造法(例えば特公昭
62−45285号公報)を適用すればよい。Siは電
気抵抗を高め、鉄損を下げるうえで重要な元素である。
含有量が4.8%を超えると、冷間圧延時に材料が割れ
易くなり、圧延不可能となる。一方、Si量を下げると
仕上げ焼鈍時にα→γ変態を生じ、結晶の方向性が損な
われるので、実質的に結晶の方向性に影響を及ぼさない
0.8%を下限とする。
Embodiments will be described below. As a basic manufacturing method, a manufacturing method using AlN and MnS as a main inhibitor by Taguchi, Sakakura et al.
5644) or by Komatsu et al. (Al, Si)
A production method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285) may be applied. Si is an important element for increasing electric resistance and reducing iron loss.
If the content exceeds 4.8%, the material is likely to crack during cold rolling, making rolling impossible. On the other hand, if the amount of Si is reduced, α → γ transformation occurs during finish annealing, and the crystal orientation is impaired. Therefore, the lower limit is 0.8%, which does not substantially affect the crystal orientation.

【0011】酸可溶性AlはNと結合してAlNまたは
(Al,Si)Nとしてインヒビターとして機能するた
めに必須の元素である。磁束密度が高くなる0.012
〜0.050%を限定範囲とする。Nは製鋼時に0.0
1%以上添加するとブリスターと呼ばれる鋼板中の空孔
を生じるので0.01%を上限とする。他のインヒビタ
ー構成元素として、B,Bi,Se,Pb,Sn,Ti
等を添加することもできる。
Acid-soluble Al is an essential element for binding N and functioning as AlN or (Al, Si) N as an inhibitor. Higher magnetic flux density 0.012
˜0.050% is the limited range. N is 0.0 during steelmaking
If 1% or more is added, voids in the steel sheet called blister are generated, so 0.01% is made the upper limit. As other inhibitor constituent elements, B, Bi, Se, Pb, Sn, Ti
Etc. can also be added.

【0012】上記成分の溶鋼は、通常の工程により熱延
板とされるか、もしくは溶鋼を連続鋳造して薄帯とす
る。前記熱延板または連続鋳造薄帯はただちに、もしく
は短時間焼鈍を経て冷間圧延される。上記焼鈍は750
〜1200℃の温度域で30秒〜30分間行われ、この
焼鈍は製品の磁気特性を高めるために有効である。望む
製品の特性レベルとコストを勘案して採否を決めるとよ
い。冷間圧延は、基本的には特公昭40−15644号
公報に開示されているように最終冷延圧下率80%以上
とすればよい。冷間圧延後の材料は、鋼中に含まれる炭
素を除去するために湿水素雰囲気中で、750〜900
℃の温度域で脱炭焼鈍を行う。
The molten steel having the above components is formed into a hot-rolled sheet by a usual process, or the molten steel is continuously cast into a ribbon. The hot-rolled sheet or the continuously cast ribbon is immediately or cold-rolled after annealing for a short time. The above annealing is 750
The annealing is performed in a temperature range of ~ 1200 ° C for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. It is advisable to decide whether to accept or reject the product considering the characteristic level and cost of the desired product. The cold rolling may be basically carried out at a final cold rolling reduction of 80% or more as disclosed in Japanese Patent Publication No. 40-15644. The material after cold rolling is 750 to 900 in a wet hydrogen atmosphere in order to remove carbon contained in steel.
Decarburization annealing is performed in the temperature range of ℃.

【0013】この脱炭焼鈍において、Fe系の酸化物
(Fe2 SiO4 ,FeO等)を形成させない酸化度で
焼鈍を行うことが、本発明のポイントである。例えば、
通常脱炭焼鈍が行われる800〜850℃の温度域にお
いては、雰囲気ガスの酸化度(P H2 O /P H2 )を
0.15以下に調整することにより、Fe系酸化物の生
成を抑制することができる。但し、あまりに酸化度を下
げると脱炭速度が遅くなってしまう。この両者を勘案す
ると、この温度域においては雰囲気ガスの酸化度(P H
2 O /P H2 ):0.01〜0.15の範囲が好まし
い。
In the decarburization annealing, the point of the present invention is to perform the annealing at a degree of oxidation that does not form Fe-based oxides (Fe 2 SiO 4 , FeO, etc.). For example,
In the temperature range of 800 to 850 ° C. where decarburization annealing is usually performed, the Fe-based oxide is produced by adjusting the degree of oxidation (P H 2 O / P H 2 ) of the atmospheric gas to 0.15 or less. Can be suppressed. However, if the degree of oxidation is lowered too much, the decarburization rate will become slow. Taking these two factors into consideration, the degree of oxidation (P H
2 O / PH 2 ): The range of 0.01 to 0.15 is preferable.

【0014】(Al,Si)Nを主インヒビターとして
用いる製造法(例えば特公昭62−45285号公報)
においては、この脱炭焼鈍板に窒化処理を施す。この窒
化処理の方法は特に限定するものではなく、アンモニア
等の窒化能のある雰囲気ガス中で行う方法等がある。量
的には0.005%以上、望ましくは全窒素量として鋼
中のAl当量以上窒化すればよい。これらの脱炭焼鈍板
を積層する際に、マグネシアを主成分とする焼鈍分離剤
に塩化物を添加する。この塩化物として特に、ビスマス
の塩化物またはビスマスの化合物と塩素化合物を複合し
て添加すると鏡面化に有効である。
A production method using (Al, Si) N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285).
In the above, the decarburized annealed plate is subjected to nitriding treatment. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia. Quantitatively, 0.005% or more, preferably, the total nitrogen content may be nitrided by Al equivalent or more in the steel. When laminating these decarburized annealing plates, chloride is added to the annealing separator having magnesia as a main component. As the chloride, it is effective to add a complex of a bismuth chloride or a bismuth compound and a chlorine compound for mirroring.

【0015】この積層した板を仕上げ焼鈍して、二次再
結晶と窒化物の純化を行う。二次再結晶を特開平2−2
58929号に開示されるように一定の温度で保持する
等の手段により所定の温度域で行うことは磁束密度を上
げるうえで有効である。二次再結晶完了後、窒化物の純
化を行うために100%水素で1100℃以上の温度で
焼鈍する。仕上げ焼鈍後、表面は既に平滑化されている
ので、張力コーティング処理を行い、必要に応じてレー
ザー照射等の磁区細分化処理を施せばよい。
This laminated plate is finish annealed to carry out secondary recrystallization and purification of nitride. Secondary recrystallization is described in JP-A-2-2.
As disclosed in Japanese Patent No. 58929, it is effective to increase the magnetic flux density by using a means such as holding at a constant temperature. After the completion of the secondary recrystallization, annealing is performed at a temperature of 1100 ° C. or higher with 100% hydrogen in order to purify the nitride. Since the surface has already been smoothed after the finish annealing, tension coating treatment may be performed, and magnetic domain subdivision treatment such as laser irradiation may be performed as necessary.

【0016】[0016]

【実施例】重量で、Si:3.2%、Mn:0.13
%、C:0.05%、S:0.007%、酸可溶性A
l:0.027%、N:0.008%、残部Fe及び不
可避的不純物からなる珪素鋼熱延板を、1100℃で2
分間焼鈍した後、最終板厚0.23mmに冷延した。この
冷延板を脱炭を兼ね酸化度(1)0.06、(2)0.
44で830℃の温度で120秒焼鈍し一次再結晶させ
た。次いでアンモニア雰囲気中で焼鈍することにより、
窒素量を0.025%に増加して、インヒビターの強化
を行った。
EXAMPLES Si: 3.2% by weight, Mn: 0.13
%, C: 0.05%, S: 0.007%, acid-soluble A
1: 0.027%, N: 0.008%, the balance of Fe and unavoidable impurities hot-rolled silicon steel sheet 2 at 1100 ℃
After annealing for a minute, the product was cold rolled to a final plate thickness of 0.23 mm. This cold-rolled sheet also serves as decarburization and has an oxidation degree of (1) 0.06, (2) 0.
It was annealed at 44 at a temperature of 830 ° C. for 120 seconds for primary recrystallization. Then, by annealing in an ammonia atmosphere,
The amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0017】これらの鋼板をその後、マグネシア(Mg
O)を水スラリーで塗布した後、仕上げ焼鈍を施した。
焼鈍分離剤にBi2 3 とFeCl2 をそれぞれ(1)
1%、(2)3%、(3)5%、(4)7%添加した。
これらの試料を燐酸−クロム酸系の張力コーティング処
理を施した後、レーザー照射して磁区細分化した。得ら
れた製品の磁気特性を表1に示す。酸化度0.06の脱
炭焼鈍条件の場合、広範囲の添加物の添加量で鏡面化が
達成されている。
These steel sheets were then subjected to magnesia (Mg
O) was applied as a water slurry and then subjected to finish annealing.
Bi 2 O 3 and FeCl 2 as annealing separators (1)
1%, (2) 3%, (3) 5% and (4) 7% were added.
These samples were subjected to phosphoric acid-chromic acid-based tension coating treatment and then laser-irradiated to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 1. In the case of decarburization annealing conditions with an oxidation degree of 0.06, mirror-finishing is achieved with a wide range of additive amounts.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明により、従来ないような低鉄損の
方向性電磁鋼板を工業的規模で安定して製造することが
できる。
According to the present invention, it is possible to stably produce a grain-oriented electrical steel sheet having a low iron loss, which has never been seen before, on an industrial scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱炭焼鈍時の雰囲気ガスの酸化度(P H2 O /
P H2 )及び塩化物(BiOCl)添加量の製品の表面
鏡面度に及ぼす影響を示した図表である。
[Fig. 1] Oxidation degree of atmosphere gas (P H 2 O /
3 is a table showing the influence of the addition amounts of P H 2 ) and chloride (BiOCl) on the surface specularity of the product.

【図2】脱炭焼鈍時の雰囲気ガスの酸化度を変更した場
合に形成された酸化物を赤外反射スペクトルである。
FIG. 2 is an infrared reflection spectrum of an oxide formed when the degree of oxidation of atmospheric gas during decarburization annealing is changed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量で、 Si:0.8〜4.8%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01%、 残部実質的にFe及び不可避的不純物からなる珪素鋼帯
を、一回もしくは中間焼鈍をはさむ二回以上の冷間圧延
により最終板厚とし、次いで脱炭焼鈍・増窒素処理を行
った後、焼鈍分離剤を塗布して仕上げ焼鈍を施す方向性
電磁鋼板の製造方法において、 (1)脱炭焼鈍を酸化度(P H2 O /P H2 )で0.0
1以上0.15以下の雰囲気ガス中で行い、 (2)該鋼板を積層する際の板間のマグネシアを主成分
とする焼鈍分離剤に塩化物を添加することにより仕上げ
焼鈍後に表面を鏡面にすることを特徴とする鉄損の低い
鏡面方向性電磁鋼板の製造方法。
1. By weight, Si: 0.8 to 4.8%, acid-soluble Al: 0.012 to 0.05%, N ≤ 0.01%, the balance consisting essentially of Fe and inevitable impurities. A direction in which a silicon steel strip is subjected to a final thickness by cold rolling once or twice or more with intermediate annealing, followed by decarburizing annealing / nitrogen-enhancing treatment, and then applying an annealing separator to perform final annealing. (1) Decarburization annealing with a degree of oxidation (PH 2 O / PH 2 ) of 0.0
It is performed in an atmosphere gas of 1 or more and 0.15 or less, and (2) the surface is mirror-finished after finish annealing by adding chloride to the annealing separating agent having magnesia as a main component between the sheets when laminating the steel sheets. A method of manufacturing a mirror-oriented grain-oriented electrical steel sheet having low iron loss.
【請求項2】 重量で、 Si:0.8〜4.8%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01%、 Mn:0.02〜0.3%、 S :0.005〜0.040%、 残部実質的にFe及び不可避的不純物からなる珪素鋼帯
を、一回もしくは中間焼鈍をはさむ二回以上の冷間圧延
により最終板厚とし、次いで脱炭焼鈍を行った後、焼鈍
分離剤を塗布して仕上げ焼鈍を施す方向性電磁鋼板の製
造方法において、 (1)脱炭焼鈍を酸化度(P H2 O /P H2 )で0.0
1以上0.15以下の雰囲気ガス中で行い、 (2)該鋼板を積層する際の板間のマグネシアを主成分
とする焼鈍分離剤に塩化物を添加することにより仕上げ
焼鈍後に表面を鏡面にすることを特徴とする鉄損の低い
鏡面方向性電磁鋼板の製造方法。
2. By weight, Si: 0.8 to 4.8%, acid-soluble Al: 0.012 to 0.05%, N ≤ 0.01%, Mn: 0.02 to 0.3%, S: 0.005 to 0.040%, the balance being a silicon steel strip consisting essentially of Fe and unavoidable impurities to a final thickness by cold rolling once or twice or more with intermediate annealing, and then decarburization In the method of manufacturing a grain-oriented electrical steel sheet, which comprises performing annealing and then applying an annealing separating agent and performing final annealing, (1) decarburization annealing is performed with an oxidation degree (P H 2 O / P H 2 ) of 0.0.
It is performed in an atmosphere gas of 1 or more and 0.15 or less, and (2) the surface is mirror-finished after finish annealing by adding chloride to the annealing separating agent having magnesia as a main component between the sheets when laminating the steel sheets. A method of manufacturing a mirror-oriented grain-oriented electrical steel sheet having low iron loss.
【請求項3】 焼鈍分離剤に添加する塩化物としてビス
マスの塩化物またはビスマスの化合物と塩素化合物を複
合して添加する請求項1もしくは2記載の製造方法。
3. The production method according to claim 1, wherein a chloride of bismuth or a compound of bismuth and a chlorine compound are compounded and added as a chloride to be added to the annealing separator.
JP6706194A 1994-04-05 1994-04-05 Manufacture of mirror surface oriented silicon steel sheet with low iron loss Pending JPH07278669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6706194A JPH07278669A (en) 1994-04-05 1994-04-05 Manufacture of mirror surface oriented silicon steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6706194A JPH07278669A (en) 1994-04-05 1994-04-05 Manufacture of mirror surface oriented silicon steel sheet with low iron loss

Publications (1)

Publication Number Publication Date
JPH07278669A true JPH07278669A (en) 1995-10-24

Family

ID=13333961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6706194A Pending JPH07278669A (en) 1994-04-05 1994-04-05 Manufacture of mirror surface oriented silicon steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JPH07278669A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149348A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
KR20210110362A (en) * 2019-01-16 2021-09-07 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844152A (en) * 1981-09-10 1983-03-15 日本設備コア株式会社 Plastic tile
JPH0371511A (en) * 1989-08-08 1991-03-27 Hitachi Ltd Photosensitive composition and patterning using this

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844152A (en) * 1981-09-10 1983-03-15 日本設備コア株式会社 Plastic tile
JPH0371511A (en) * 1989-08-08 1991-03-27 Hitachi Ltd Photosensitive composition and patterning using this

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
KR20210018433A (en) 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149348A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
KR20210110362A (en) * 2019-01-16 2021-09-07 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210110868A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Manufacturing method of uni-directional electrical steel sheet
KR20210110866A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Manufacturing method of unidirectional electrical steel sheet
JPWO2020149325A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP4119635B2 (en) Method for producing mirror-oriented electrical steel sheet with good decarburization
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2003247021A (en) Method of producing mirror-finished, grain oriented silicon steel sheet having high magnetic flux density
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss