JPH02274813A - Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability - Google Patents

Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability

Info

Publication number
JPH02274813A
JPH02274813A JP1094414A JP9441489A JPH02274813A JP H02274813 A JPH02274813 A JP H02274813A JP 1094414 A JP1094414 A JP 1094414A JP 9441489 A JP9441489 A JP 9441489A JP H02274813 A JPH02274813 A JP H02274813A
Authority
JP
Japan
Prior art keywords
annealing
nitriding
primary
executed
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1094414A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Toyohiko Konno
今野 豊彦
Kiyoshi Ueno
植野 清
Kenichi Takimoto
滝本 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1094414A priority Critical patent/JPH02274813A/en
Priority to US07/508,772 priority patent/US5082509A/en
Priority to DE69032461T priority patent/DE69032461T2/en
Priority to EP90107029A priority patent/EP0392534B1/en
Publication of JPH02274813A publication Critical patent/JPH02274813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To stably manufacture a grain oriented electrical steel sheet having oxide layer excellent in nitriding ability by specifying oxidizing degree in atmosphere in a primary recrystallizing annealing at the time of executing hot rolling, cold rolling, primary recrystallizing annealing, nitriding treatment and finishing annealing to a steel slab of the specific composition. CONSTITUTION:The slab containing 0.8 to 6.8wt.% Si, 0.008 to 0.048% acid soluble Al and the balance Fe and inevitable impurities is heated at about 1000 to 1270 deg.C, then the hot rolling is executed to it and the cold rollings are executed one time or >= Z times contg. intermediate annealing. Successively, the primary recrystallizing annealing is executed together with decarbonization and after executing the nitriding treatment, by applying anneal-parting agent containing MgO as the essential component, the finishing annealing for aiming secondary recrystallization and purifying is executed. Then, the oxidizing degree (P H2O/PH2) in the atmosphere at the time of the primary recrystallizing annealing is made in the range of 0.15 to 0.8. By this method, the grain-oriented electrical steel sheet, which uniformly and stably executes the nitrogen absorption through the surface, is obtd. and useful to iron core for electrical equipment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、結晶粒がミラー指数で(110) <001
>方位をもつ一方向性電磁鋼板、または(100)<0
01>方位をもつ二方向性電磁鋼板等の、ある結晶方位
に強く配向した、いわゆる方向性電磁鋼板の製造工程に
おいて、特に一次再結晶焼鈍法に関するものである。こ
れらの鋼板は、軟磁性材料として電気機器の鉄心として
用いられる。
Detailed Description of the Invention (Industrial Application Field) The present invention provides crystal grains with a Miller index of (110) <001
> Unidirectional electrical steel sheet with orientation or (100) <0
The present invention particularly relates to the primary recrystallization annealing method in the manufacturing process of so-called grain-oriented electrical steel sheets that are strongly oriented in a certain crystal orientation, such as bidirectional electrical steel sheets with a 01> orientation. These steel plates are used as soft magnetic materials as cores of electrical equipment.

(従来の技術) 方向性電磁鋼板は、先に述べたように一定の方位をもつ
結晶粒より構成された通常4.5%以下のSiを含有す
る板厚0.10〜0.35amの鋼板である。
(Prior Art) As mentioned above, a grain-oriented electrical steel sheet is a steel sheet with a thickness of 0.10 to 0.35 am that is composed of crystal grains with a certain orientation and usually contains 4.5% or less of Si. It is.

この鋼板は磁気特性として励磁特性と鉄損特性が要求さ
れ、そのためには結晶粒の方位を高度に揃えることが重
要である。この結晶方位の集積化は二次再結晶と呼ばれ
るカタストロフィツクな粒成長現象を利用して達成され
る。
This steel sheet is required to have excitation characteristics and iron loss characteristics as magnetic properties, and for this purpose, it is important to align the orientation of the crystal grains to a high degree. This integration of crystal orientations is achieved using a catastrophic grain growth phenomenon called secondary recrystallization.

二次再結晶を制御するためには、二次再結晶前の一次再
結晶組織の調整と、インヒビターと呼ばれる微細析出物
もしくは粒界偏析型の元素の調整が必須である。このイ
ンヒビターは、一次再結晶組織のなかで一般の一次再結
晶粒の成長を抑え、ある特定の方位粒を選択的に成長さ
せる機能をもつ。
In order to control secondary recrystallization, it is essential to adjust the primary recrystallization structure before secondary recrystallization and to adjust the fine precipitates or grain boundary segregation type elements called inhibitors. This inhibitor has the function of suppressing the growth of general primary recrystallized grains in the primary recrystallized structure and selectively growing certain oriented grains.

析出物として代表的なものとしては、M、P。Typical precipitates include M and P.

Littmann (特公昭30−3651号公報)及
びJ、E、May。
Littmann (Japanese Patent Publication No. 30-3651) and J.E. May.

D、Turnbull (↑rans、Met、soc
、AIMB 212(1958年)P769/781)
はMnSを、田ロ、坂倉(特公昭40−15644号公
報)はAjNを、今中等は(特公昭51−13469号
公報)はMnSeを、小松等は(M、 5i)Nを提示
している。
D, Turnbull (↑rans, Met, soc
, AIMB 212 (1958) P769/781)
presented MnS, Taro and Sakakura (Special Publication No. 15644 of 1972) presented AjN, Konaka (Special Publication of Publication No. 51-13469) presented MnSe, and Komatsu et al. presented (M, 5i)N. There is.

一方、粒界偏析型の元素としては、斎藤(日本金属学会
誌27 (1963年)P186/195)は、Pb、
Sb、Nb。
On the other hand, as elements that segregate at grain boundaries, Saito (Journal of the Japan Institute of Metals 27 (1963) P186/195) describes Pb,
Sb, Nb.

^g4else1s等を提示しているが、工業的には何
れも析出物型インヒビターの補助的なものとして使用さ
れているにすぎない。
Although ^g4else1s and the like have been proposed, industrially they are only used as auxiliary substances to precipitate-type inhibitors.

これらの析出物がインヒビターとしての機能を発揮する
上で必要な条件は必ずしも明確ではないが、検量(鉄と
鋼53 (1967年) P1007/1023)、黒
水ら(日本金属学会誌43 (1979年) P175
/181゜44 (1980年)P419/424)の
結果をまとめると、次のように考えられる。
The conditions necessary for these precipitates to function as inhibitors are not necessarily clear, but they have been described in the calibration (Tetsu to Hagane 53 (1967) P1007/1023), Kurosui et al. year) P175
/181°44 (1980) P419/424) can be summarized as follows.

(1)二次再結晶前に、−成典結晶粒の粒成長を抑える
に充分な量の微細析出物が存在すること。
(1) Before the secondary recrystallization, - the presence of a sufficient amount of fine precipitates to suppress grain growth of the normal grains.

(2)析出物の大きさがある程度大きく、二次再結晶焼
鈍時に、あまり急激に熱的変化しないこと。
(2) The size of the precipitates is large to some extent, and thermal changes do not occur too rapidly during secondary recrystallization annealing.

(発明が解決しようとする課題) 現在、工業生産されている代表的な一方向性電磁鋼板の
製造法としては3種類ある。
(Problems to be Solved by the Invention) Currently, there are three typical manufacturing methods for unidirectional electrical steel sheets that are industrially produced.

第一の技術は、M、P、Litts+annにより特公
昭30−3651号公報に示されたMnSを用いた二回
冷延工程によるものであり、第二の技術は川口・坂倉に
より特公昭40−15644号公報に示されたA I 
N+MnSを用いた最終冷間圧延率を80%以上の強圧
下とする工程によるものであり、第三の技術は今中らに
より特公昭51−13469号公報に示されたMnS 
 (またはMn5e) +Sbを用いた二回冷延工程に
よるものである。
The first technique is a two-step cold rolling process using MnS, which was disclosed in Japanese Patent Publication No. 3651-1973 by M.P. AI shown in Publication No. 15644
This is based on a process in which the final cold rolling rate using N + MnS is strongly reduced to 80% or more.
(or Mn5e) +Sb by a two-time cold rolling process.

これらの技術は、何れも析出物の量の確保とその微細化
の要件を満たすために、熱延前の高温スラブ加熱による
インヒビターの作り込みを基本技術としている。
In order to ensure the amount of precipitates and to satisfy the requirements for making them finer, the basic technology of all of these techniques is to create an inhibitor by heating the slab at a high temperature before hot rolling.

高温スラブ加熱には、次の問題点がある。High-temperature slab heating has the following problems.

1)方向性電磁鋼板専用の高温スラブ加熱炉が必要であ
る。
1) A high-temperature slab heating furnace exclusively for grain-oriented electrical steel sheets is required.

2)加熱炉のエネルギー原単位が高い。2) The energy consumption rate of the heating furnace is high.

3) スラブ表面の酸化が進みノロと呼ばれる溶融物が
発生し操業上、悪影響をもたらす。
3) Oxidation of the slab surface progresses and molten material called slag is generated, which has a negative impact on operations.

このような、問題点を解消するために、低温スラブ加熱
を実現させるには、高温スラブ加熱によらないインヒビ
ター作り込み技術が必要である。
In order to solve these problems and realize low-temperature slab heating, an inhibitor manufacturing technology that does not rely on high-temperature slab heating is required.

本発明者等の一部は、窒化処理によってインヒビターを
形成する製造方法を特公昭62−45285号公報(一
方向性電磁鋼板)、特願昭62−297825号(二方
向、性電磁鋼板)に提示している。
Some of the inventors of the present invention disclosed a manufacturing method of forming an inhibitor by nitriding treatment in Japanese Patent Publication No. 45285/1985 (unidirectional electrical steel sheet) and Japanese Patent Application No. 297825/1988 (bidirectional electrical steel sheet). is presenting.

このプロセスで重要なことは、窒化によってインヒビタ
ーを均一に析出分散させることである。
What is important in this process is to uniformly precipitate and disperse the inhibitor by nitriding.

工業的規模で、コイル内長手方向・幅方向に窒化の不均
一があると、それに対応して磁気特性が不均一になると
いう問題が生じる。
On an industrial scale, if there is non-uniform nitriding in the longitudinal and width directions within the coil, a corresponding problem arises in that the magnetic properties become non-uniform.

窒化の律速段階は表面での反応であり、窒化を均一にか
つ安定して行うためには、−次回結晶焼鈍時に表面に形
成される酸化層を制御することが必要である。
The rate-determining step in nitriding is the reaction on the surface, and in order to perform nitriding uniformly and stably, it is necessary to control the oxide layer formed on the surface during the next crystal annealing.

本発明は、−次回結晶焼鈍時の酸化度(PH20/PM
を規定することにより、窒化能の優れた酸化層をつくる
方法を提供するものである。
The present invention is characterized by -oxidation degree (PH20/PM
The present invention provides a method for creating an oxide layer with excellent nitriding ability by specifying .

(課題を解決するための手段) 本発明の要旨とするところは、重量%でSi:0.8〜
6.8%、酸可溶性IV:o、008〜0.048%。
(Means for Solving the Problems) The gist of the present invention is that Si: 0.8 to 0.8% by weight.
6.8%, acid soluble IV: o, 008-0.048%.

残部Fe及び不可避的不純物からなるスラブを熱間圧延
し、必要に応じて焼鈍した後、冷間圧延により最終板厚
とし、次いで一次再結晶焼鈍を行った後、焼鈍分離剤を
塗布し、仕上焼鈍を施す工程からなる方向性電磁鋼板の
製造法において、特に一次再結晶焼鈍後から仕上焼鈍の
二次再結晶開始前の間に窒化処理を行い、二次再結晶に
必要なインヒビターを形成するにあたり、窒化を均一か
つ安定して行なわせるために、焼鈍時の雰囲気の酸化度
(P H!O/ P Hz)を、0.15〜0.80に
規定し、窒化能の優れた酸化層をつくることを特徴とす
る一次再結晶焼鈍法にある。
A slab consisting of the remainder Fe and unavoidable impurities is hot-rolled, annealed if necessary, cold-rolled to the final thickness, then primary recrystallization annealed, annealing separator applied, and finished. In a method for producing grain-oriented electrical steel sheets that includes an annealing process, nitriding is performed between after primary recrystallization annealing and before the start of secondary recrystallization in finish annealing to form an inhibitor necessary for secondary recrystallization. In order to perform nitriding uniformly and stably, the degree of oxidation (PH!O/P Hz) of the atmosphere during annealing is specified at 0.15 to 0.80, and an oxide layer with excellent nitriding ability is formed. The primary recrystallization annealing method is characterized by the production of

以下、詳細に説明する。This will be explained in detail below.

本発明者等は、Si:3.3%、酸可溶性Aj:0.0
27%、N:o、008%、Mn:0.14%を含有し
、残部Fe及び不可避的不純物からなる熱延板を110
0’Cで2分間焼鈍した後、冷間圧延により0.20 
Mの最終板厚とした。この材料に、酸化度(PH10/
Plh)を0.02〜1.0の範囲で変えて、−次回結
晶焼鈍を施した。
The present inventors have determined that Si: 3.3%, acid-soluble Aj: 0.0
A hot-rolled sheet containing 27%, N: o, 0.08%, Mn: 0.14%, and the balance consisting of Fe and unavoidable impurities was heated to 110%.
After annealing at 0'C for 2 minutes, it is cold rolled to 0.20
The final plate thickness was M. This material has an oxidation degree (PH10/
Next crystal annealing was performed while changing Plh) in the range of 0.02 to 1.0.

その後、MgOを主成分とする焼鈍分離剤を塗布し、仕
上焼鈍を行った。仕上焼鈍は、N、25χ+Ht75χ
の雰囲気で、1200°C迄昇温し、nxtooχに切
り換え、20時間純化焼鈍を行い、昇温過程での窒化挙
動と製品の特性を調べた。
Thereafter, an annealing separator containing MgO as a main component was applied, and final annealing was performed. Finish annealing is N, 25χ + Ht75χ
The temperature was raised to 1200°C in an atmosphere of

第1図は、窒素量が最大となる850°Cでの増窒素量
と一次再結晶焼鈍時の酸化度(PH1O/P)1.)の
関係を示すものである。
Figure 1 shows the nitrogen increase amount at 850°C, where the nitrogen amount is maximum, and the oxidation degree (PH1O/P) during primary recrystallization annealing. ).

第1図より、酸化度0.15〜0.80、特に好ましく
は0.25〜0.70の範囲で安定して窒化しており、
第2図に示す磁束密度(B−値)も、それに対応して増
窒素量が多い場合に磁束密度が高くなっている。
From FIG. 1, nitriding is stable in the range of oxidation degree of 0.15 to 0.80, particularly preferably 0.25 to 0.70,
Correspondingly, the magnetic flux density (B-value) shown in FIG. 2 also becomes higher when the amount of nitrogen enrichment is large.

かかる−次回結晶焼鈍の酸化度によって窒化能が大きく
変わる理論的根拠は完全には明確にされてはいないが、
本発明者等は赤外分光分析、 GDS等の解析手法を用
いて調査を行った結果、最外層のシリカ(Sing)と
ファイアライト(Pe!5i04)の不均一構造に基因
するものではないかと考えている。
Although the theoretical basis for the large change in nitriding ability depending on the oxidation degree of the next crystal annealing is not completely clear,
The inventors conducted an investigation using analysis methods such as infrared spectroscopy and GDS, and found that the problem may be due to the non-uniform structure of the outermost layer of silica (Sing) and Firelite (Pe!5i04). thinking.

すなわち、第3図に酸化物の平衡状態図を示すが、本限
定範囲は、はぼファイアライトの形成領域と一致してい
る。ところが実際は、最外層は酸化度が0.25より上
ではファイアライトが主体であるが、酸化度が0.25
より下ではシリカが主体となっており、実質的には平衡
状態に到達していない不均一構造となっている。
That is, as shown in FIG. 3, which shows an equilibrium state diagram of oxides, this limited range coincides with the formation region of habofireite. However, in reality, the outermost layer is mainly composed of Firelite when the oxidation degree is higher than 0.25;
In the lower part, silica is the main component, resulting in a heterogeneous structure that has not substantially reached an equilibrium state.

酸化度0.25において窒化能が不連続的に変化してい
るのは、このような質的変化によるものと考えられる。
The reason why the nitriding ability changes discontinuously at an oxidation degree of 0.25 is considered to be due to such a qualitative change.

また、酸化度0.15を境に、それより下で窒化能が急
激に劣化したのは、最外層に特にシリカの濃化が著しい
ことから、タイトなシリカができたためと考えられる。
Further, the reason why the nitriding ability deteriorated rapidly below the oxidation degree of 0.15 is thought to be due to the formation of tight silica since the concentration of silica was particularly significant in the outermost layer.

このように、一次再結晶焼鈍時の酸化度(P HzO/
 P Hl)を限定することにより、表面酸化層の構造
を制御し、−次回結晶焼鈍から仕上焼鈍時の二次再結晶
前までに施される窒化処理を均一にかつ安定して行なう
ことができるようになる。
In this way, the degree of oxidation (P HzO/
By limiting P Hl), the structure of the surface oxidation layer can be controlled, and the nitriding treatment performed from the next crystal annealing to before the secondary recrystallization during final annealing can be performed uniformly and stably. It becomes like this.

次に、本発明の実施態様を説明する。Next, embodiments of the present invention will be described.

本発明において、スラブが含有する成分としては、重量
%でSi:0.8〜6.8%、酸可溶性Aj:0.00
8〜0.048%、残部Feおよび不可避的不純物であ
り、これらを必須成分として、それ以外は特に限定しな
い。
In the present invention, the components contained in the slab include Si: 0.8 to 6.8% and acid-soluble Aj: 0.00% by weight.
8 to 0.048%, the balance being Fe and unavoidable impurities, and these are essential components, and other than that there are no particular limitations.

Stは電気抵抗を高め、鉄損を下げることにより特性を
高めるが、4.8%以上となると冷延不可能となる。さ
らに6.8%を越えると温間圧延によっても割れが生じ
易(なり圧延不可能となってしまう、一方別量を下げる
と、仕上焼鈍時にα→γ変態が生じ結晶の方向性が破壊
されてしまう、そこで、二次再結晶温度の下限と考えら
れる950”Cでα→T変態を起こさない0.8%以上
を限定範囲とする。
St increases electrical resistance and improves properties by lowering iron loss, but if it exceeds 4.8%, cold rolling becomes impossible. Furthermore, if it exceeds 6.8%, cracks are likely to occur even during warm rolling (and rolling becomes impossible), while if the content is lowered, α → γ transformation occurs during final annealing, destroying the crystal orientation. Therefore, the limited range is set to 0.8% or more, which does not cause α→T transformation at 950''C, which is considered to be the lower limit of the secondary recrystallization temperature.

酸可溶性Mは、Nと結合してAjNもしくは(N。Acid-soluble M is bonded to N to form AjN or (N).

5t)Nとなり、インヒビターとして機能する。特に−
成典結晶焼鈍後の窒化を考えた場合、フリーのMとして
存在させておくことが有効である。磁束密度が高くなる
0、 008〜0.048%を限定範囲とする。
5t) N and functions as an inhibitor. Especially-
When considering nitriding after standard crystal annealing, it is effective to allow M to exist as free M. The limited range is 0.008% to 0.048% where the magnetic flux density becomes high.

その他、インヒビター構成元素としてMn、S、Se。In addition, Mn, S, and Se are inhibitor constituent elements.

B4i、Nb、Sn、Ti等を添加することもできる。B4i, Nb, Sn, Ti, etc. can also be added.

このスラブの加熱温度は1000″C未満になると鋼板
の形状が確保し難くなり、また、127゜°Cを越える
と前に述べたノロ等の問題が生じるので、1000〜1
270℃が望ましい。加熱されたスラブは、引き続き熱
間圧延される。
If the heating temperature of this slab is less than 1000°C, it will be difficult to maintain the shape of the steel plate, and if it exceeds 127°C, problems such as slag mentioned above will occur.
270°C is desirable. The heated slab is subsequently hot rolled.

上記熱延板は、必要に応じて750〜1200℃の温度
域で30秒〜30分間焼鈍される。
The hot-rolled sheet is annealed in a temperature range of 750 to 1200°C for 30 seconds to 30 minutes, if necessary.

次いで、所定の最終板厚・集合組織を得るために1回も
しくは中間焼鈍をはさんだ2回以上の冷間圧延を施され
る。
Next, cold rolling is performed once or twice or more with intermediate annealing in order to obtain a predetermined final plate thickness and texture.

一方向性電磁鋼板に対しては、基本的には特公昭40−
15644号公報に示された最終冷間圧延を80%以上
とすること、また二方向性電磁鋼板に対しては、特公昭
35−2657号公報、或いは特公昭38−8218号
公報に示された40〜80%と30〜70%という圧下
率の交叉冷間圧延が適用される。その後、鋼中に炭素が
含まれているならば、脱炭を兼ね、−成典結晶焼鈍を行
う。
For unidirectional electrical steel sheets, basically
The final cold rolling should be 80% or more as shown in Japanese Patent Publication No. 15644, and for bidirectional electrical steel sheets, the method shown in Japanese Patent Publication No. 35-2657 or Japanese Patent Publication No. 38-8218 Cross cold rolling with reductions of 40-80% and 30-70% is applied. Thereafter, if carbon is contained in the steel, it is also subjected to decarburization and crystalline annealing.

ここで、焼鈍時の酸化度を 0.15〜0.80、望ま
しくは0.25〜0.70に限定し、表面酸化層の構造
を制御することが本発明の骨子である。
Here, the gist of the present invention is to limit the degree of oxidation during annealing to 0.15 to 0.80, preferably 0.25 to 0.70, and to control the structure of the surface oxidation layer.

このようにして得られた、材料にMgOを主成分とする
焼鈍分離剤を塗布した後、二次再結晶と純化を目的とし
た仕上焼鈍を施す。
After applying an annealing separator containing MgO as a main component to the material thus obtained, final annealing is performed for the purpose of secondary recrystallization and purification.

ここで−成典結晶焼鈍後、二次再結晶開始前に行う窒化
処理については何ら限定するものではない、従来用いら
れている仕上焼鈍時の窒素分圧を上げる方法、アンモニ
ア等窒化能のある雰囲気ガスによる方法、窒化マンガン
、窒化クロム等窒化能のある金属窒化物を焼鈍分離剤に
添加する方法等がある。
There are no limitations on the nitriding treatment performed after the final crystal annealing and before the start of secondary recrystallization, including the conventional method of increasing the nitrogen partial pressure during the final annealing, and an atmosphere with nitriding ability such as ammonia. There are a method using gas, a method of adding a metal nitride having nitriding ability such as manganese nitride, chromium nitride, etc. to the annealing separator.

(実施例) 実施例1 重量%で、Si:3.3%、酸可溶性IV : 0.0
25%。
(Example) Example 1 In weight %, Si: 3.3%, acid soluble IV: 0.0
25%.

N : O,OO8%、Mn:0.14%、  S :
0.007 %。
N: O, OO8%, Mn: 0.14%, S:
0.007%.

C:0.05%を含有し、残部Pa及び不可避的不純物
からなるスラブを1150°Cに加熱した後、熱間圧延
して1.8■厚の熱延板とした。この熱延板を1100
℃で2分間焼鈍した後、熱間圧延方向と同一方向に63
%の圧下率を適用する冷間圧延を行い、さらに前記冷間
圧延方向と交叉する方向に55%の圧下率を適用する冷
間圧延を行い、0.30m厚の最終板厚とした。こうし
て得られた冷延板を酸化度を変え、810°Cで脱炭を
兼ねる一次再結晶焼鈍を行った。
A slab containing 0.05% C and the remainder Pa and unavoidable impurities was heated to 1150°C and then hot rolled to form a hot rolled sheet with a thickness of 1.8 cm. This hot rolled plate is 1100
After annealing at ℃ for 2 minutes, 63 mm in the same direction as the hot rolling direction.
% cold rolling was performed, and further cold rolling was performed applying a rolling reduction of 55% in the direction intersecting the cold rolling direction, resulting in a final plate thickness of 0.30 m. The cold-rolled sheets thus obtained were subjected to primary recrystallization annealing at 810° C., which also served as decarburization, with varying degrees of oxidation.

次いで、焼鈍分離剤としてMgOを塗布した後、Nt:
25χ+Ht75χの雰囲気中で15°C/hrの昇温
速度で1200℃迄昇温し、その後1200°Cで20
時間)It:100χの雰囲気中で純化を行った。仕上
焼鈍850℃での増窒素量及び得られた製品の磁気特性
は表1のとおりであった。
Then, after applying MgO as an annealing separator, Nt:
The temperature was raised to 1200°C at a heating rate of 15°C/hr in an atmosphere of 25χ + Ht75χ, and then heated at 1200°C for 20
Time) Purification was performed in an atmosphere of It: 100χ. Table 1 shows the amount of nitrogen added during final annealing at 850°C and the magnetic properties of the obtained product.

表        1 を兼ねる一次再結晶焼鈍を行った6次いで、NH。Table 1 6 followed by NH.

を3%含む窒素雰囲気中で窒化処理を行った。The nitriding treatment was performed in a nitrogen atmosphere containing 3% of

−成典結晶焼鈍時の酸化度と増窒素量の関係は表2のと
おりであった。
- The relationship between the degree of oxidation and the amount of nitrogen enrichment during standard crystal annealing is as shown in Table 2.

表        2 実施例2 重量%で、Sl:3.2%、酸可溶性AIl: 0.0
27%、N:0.007%、Mn:0.13%、 S 
i 0.007%、C:0.05%を含有し、残部Pe
及び不可避的不純物からなるスラブを1150℃に加熱
した後、熱間圧延して1.8■厚の熱延板とした。この
熱延板を1120℃で2分間次いで900℃で2分間焼
鈍した後、0.20閣厚の最終板厚へ冷間圧延した。こ
の冷延板を酸化度を変え、8.30℃で脱炭実施例3 実施例2と同じ冷延板を酸化度(PRlo /pH□)
が一定になるように露点を調整し、(a)Nt25χ÷
H275χ、 (b)s寞50χ+■850χ+ (c
)Nt7sχ+Hz25Xの3種類の雰囲気ガス中83
0°Cで焼鈍を行った。次いでNHsを3%含む窒素雰
囲気中で窒化処理を行った。
Table 2 Example 2 In weight %, Sl: 3.2%, acid-soluble AIl: 0.0
27%, N: 0.007%, Mn: 0.13%, S
Contains 0.007% of i, 0.05% of C, and the balance is Pe.
After heating the slab containing unavoidable impurities to 1150° C., it was hot-rolled into a hot-rolled plate having a thickness of 1.8 mm. The hot rolled sheet was annealed at 1120° C. for 2 minutes, then at 900° C. for 2 minutes, and then cold rolled to a final sheet thickness of 0.20 mm. This cold-rolled sheet was decarburized at 8.30℃ by changing the oxidation degree.Example 3 The same cold-rolled sheet as in Example 2 was decarburized at 8.30℃.
Adjust the dew point so that it is constant, and (a) Nt25χ÷
H275χ, (b) s寞50χ+■850χ+ (c
) Nt7sχ+Hz25X in three types of atmospheric gases 83
Annealing was performed at 0°C. Next, nitriding treatment was performed in a nitrogen atmosphere containing 3% NHs.

表3に示すように、増窒素量は雰囲気ガス組成によらず
酸化度で決まる。
As shown in Table 3, the amount of nitrogen increase is determined by the degree of oxidation, regardless of the atmospheric gas composition.

表 分とする焼鈍分離剤を塗布した後、仕上焼鈍を行った。table After applying an annealing separator for 20 minutes, final annealing was performed.

仕上焼鈍はN225χ+H875χの雰囲気中15°C
/hrで1200°C迄昇温し、1200°Cで20時
間Hz100χ中で純化を行った。仕上焼鈍850℃で
の増窒素量及び得られた成品の磁気特性は表4のとおり
であった。
Final annealing at 15°C in an atmosphere of N225χ + H875χ
The temperature was raised to 1200°C at 1200°C/hr, and purification was carried out at 1200°C for 20 hours at Hz 100χ. Table 4 shows the amount of nitrogen increase during final annealing at 850°C and the magnetic properties of the obtained product.

表         4 実施例4 重量%で、Si:3.2%、酸可溶性Al : 0.0
27%。
Table 4 Example 4 In weight %, Si: 3.2%, acid-soluble Al: 0.0
27%.

N : O,OO3%、Mn:0.14%、 S : 
0.007%。
N: O, OO3%, Mn: 0.14%, S:
0.007%.

C: 0.05%を含有し、残部Pe及び不可避的不純
物からなるスラブを1150°Cに加熱した後、熱間圧
延し、1.8 am厚の熱延板とした。この熱延板を1
100°Cで2分間次いで900°Cで2分間焼鈍した
後、0.20 wm厚の最終板厚へ冷間圧延した。
A slab containing 0.05% C and the balance consisting of Pe and unavoidable impurities was heated to 1150°C and then hot rolled to form a hot rolled sheet with a thickness of 1.8 am. This hot rolled plate is 1
After annealing at 100°C for 2 minutes and 900°C for 2 minutes, it was cold rolled to a final thickness of 0.20 wm.

この冷延板を酸化度を変え、830℃で脱炭を兼ねる一
次再結晶焼鈍を行った。次いで窒化を目的にフェロ窒化
マンガンを5%添加したMgOを主成(発明の効果) 本発明は、以上述べたように、多くの問題点を抱える高
温スラブ加熱を不要とする窒化処理によるインヒビター
作り込みを主眼とする方向性電磁鋼板の製造法において
、窒化の律速となる表面酸化層を制御し、表面を通して
の窒素吸収を均一にかつ安定して行うことができるので
、方向性電磁鋼板の製造を安定化する上で、その工業的
効果は甚大である。
This cold-rolled sheet was subjected to primary recrystallization annealing at 830° C., which also served as decarburization, with varying degrees of oxidation. Next, for the purpose of nitriding, the main material is MgO to which 5% of ferromanganese nitride is added. In the manufacturing method of grain-oriented electrical steel sheets, which focuses on the production of grain-oriented electrical steel sheets, the surface oxidation layer, which is the rate-limiting factor for nitriding, can be controlled, and nitrogen absorption through the surface can be performed uniformly and stably. Its industrial effects are enormous in stabilizing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一次再結晶焼鈍時の酸化度と仕上焼鈍時の85
0°Cでの増窒素量を示す図、第2図は一次再結晶焼鈍
時の酸化度と製品の磁化特性を示す図、第3図はPeO
,FetSiO4,5iOtの平衡状態図である。 0.5 → 酸化/1(んθ/〜2) θ5 メθ 酸化度 (P#Z(:l /PHi )
Figure 1 shows the oxidation degree during primary recrystallization annealing and 85 during final annealing.
Figure 2 shows the amount of nitrogen enriched at 0°C, Figure 2 shows the degree of oxidation during primary recrystallization annealing and the magnetization characteristics of the product, Figure 3 shows the amount of nitrogen enriched at 0°C.
, FetSiO4,5iOt. 0.5 → Oxidation/1 (nθ/~2) θ5 Meθ Oxidation degree (P#Z(:l/PHi)

Claims (1)

【特許請求の範囲】 重量%でSi:0.8〜6.8%、酸可溶性Al:0.
008〜0.048%、残部Fe及び不可避的不純物か
らなるスラブを、熱間圧延・冷間圧延・一次再結晶焼鈍
・焼鈍分離剤の塗布・仕上焼鈍の工程からなり、特に一
次再結晶焼鈍後から仕上焼鈍の二次再結晶開始前の間に
窒化処理を施す方向性電磁鋼板の製造方法において、 焼鈍時の雰囲気の酸化度(PH_2O/PH_2)を0
.15〜0.8の範囲とすることを特徴とする窒化能の
優れた酸化層をつくる一次再結晶焼鈍法。
[Claims] Si: 0.8 to 6.8% by weight, acid-soluble Al: 0.
A slab consisting of 0.008 to 0.048%, balance Fe and unavoidable impurities is processed through the steps of hot rolling, cold rolling, primary recrystallization annealing, application of an annealing separator, and final annealing, especially after primary recrystallization annealing. In a method for producing grain-oriented electrical steel sheets in which nitriding treatment is performed between the beginning and the start of secondary recrystallization during finish annealing, the oxidation degree (PH_2O/PH_2) of the atmosphere during annealing is set to 0.
.. A primary recrystallization annealing method for producing an oxide layer with excellent nitriding ability, characterized in that the nitriding ability is in the range of 15 to 0.8.
JP1094414A 1989-04-14 1989-04-14 Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability Pending JPH02274813A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1094414A JPH02274813A (en) 1989-04-14 1989-04-14 Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability
US07/508,772 US5082509A (en) 1989-04-14 1990-04-12 Method of producing oriented electrical steel sheet having superior magnetic properties
DE69032461T DE69032461T2 (en) 1989-04-14 1990-04-12 Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties
EP90107029A EP0392534B1 (en) 1989-04-14 1990-04-12 Method of producing oriented electrical steel sheet having superior magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094414A JPH02274813A (en) 1989-04-14 1989-04-14 Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability

Publications (1)

Publication Number Publication Date
JPH02274813A true JPH02274813A (en) 1990-11-09

Family

ID=14109584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094414A Pending JPH02274813A (en) 1989-04-14 1989-04-14 Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability

Country Status (1)

Country Link
JP (1) JPH02274813A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305921A (en) * 1989-05-22 1990-12-19 Nippon Steel Corp Production of grain-oriented steel sheet having excellent magnetic characteristic
JPH0711332A (en) * 1993-06-28 1995-01-13 Kawasaki Steel Corp Decarburization annealing method for grain-oriented silicon steel sheet
KR100399221B1 (en) * 1998-12-26 2003-12-24 주식회사 포스코 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
US7270718B2 (en) 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
JP2008019462A (en) * 2006-07-11 2008-01-31 Nippon Steel Corp Method for producing magnetic steel sheet excellent in magnetic characteristic in direction perpendicular to rolling direction
US9956118B2 (en) 2014-09-15 2018-05-01 3M Innovative Properties Company Personal protective system tool communication adapter
JP2020507673A (en) * 2016-12-22 2020-03-12 ポスコPosco Grain-oriented electrical steel sheet and its manufacturing method
JP2022501517A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571575A (en) * 1980-05-06 1982-01-06 Fuanzeruto Yozefu Protector for welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571575A (en) * 1980-05-06 1982-01-06 Fuanzeruto Yozefu Protector for welding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305921A (en) * 1989-05-22 1990-12-19 Nippon Steel Corp Production of grain-oriented steel sheet having excellent magnetic characteristic
JPH0711332A (en) * 1993-06-28 1995-01-13 Kawasaki Steel Corp Decarburization annealing method for grain-oriented silicon steel sheet
KR100399221B1 (en) * 1998-12-26 2003-12-24 주식회사 포스코 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
US7270718B2 (en) 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
JP2008019462A (en) * 2006-07-11 2008-01-31 Nippon Steel Corp Method for producing magnetic steel sheet excellent in magnetic characteristic in direction perpendicular to rolling direction
JP4608467B2 (en) * 2006-07-11 2011-01-12 新日本製鐵株式会社 Manufacturing method of electrical steel sheet
US9956118B2 (en) 2014-09-15 2018-05-01 3M Innovative Properties Company Personal protective system tool communication adapter
US11090192B2 (en) 2014-09-15 2021-08-17 3M Innovative Properties Company Personal protective system tool communication adapter
JP2020507673A (en) * 2016-12-22 2020-03-12 ポスコPosco Grain-oriented electrical steel sheet and its manufacturing method
US11608540B2 (en) 2016-12-22 2023-03-21 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor
JP2022501517A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method
US11603572B2 (en) 2018-09-27 2023-03-14 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5082509A (en) Method of producing oriented electrical steel sheet having superior magnetic properties
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH01283324A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH07118750A (en) Production of mirror finished grain oriented silicon steel sheet with low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JPH02274813A (en) Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability
JP3489945B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JPS6160895B2 (en)
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JPH02305921A (en) Production of grain-oriented steel sheet having excellent magnetic characteristic
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH04235221A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JP2706020B2 (en) Method for producing grain-oriented silicon steel sheet
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH0143818B2 (en)
JPH04183818A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density and high quality of glass coating film
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density