JPH06346147A - Production of grain-oriented silicon steel sheet - Google Patents

Production of grain-oriented silicon steel sheet

Info

Publication number
JPH06346147A
JPH06346147A JP5133686A JP13368693A JPH06346147A JP H06346147 A JPH06346147 A JP H06346147A JP 5133686 A JP5133686 A JP 5133686A JP 13368693 A JP13368693 A JP 13368693A JP H06346147 A JPH06346147 A JP H06346147A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
rolling
subjected
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5133686A
Other languages
Japanese (ja)
Inventor
Jiro Harase
二郎 原勢
Yakichirou Kawaomo
弥吉郎 河面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5133686A priority Critical patent/JPH06346147A/en
Publication of JPH06346147A publication Critical patent/JPH06346147A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a grain-oriented silicon steel sheet extremely high in magnetic flux density by subjecting a dead soft silicon steel slab having a specified compsn. to hot rolling and annealing, thereafter subjecting it to cold rolling into a cold rolled steel sheet, furthermore annealing it, thereafter executing nitriding treatment and successively subjecting it to finish annealing. CONSTITUTION:As for a silicon steel slab having a compsn. contg., by weight, 0.0005 to 0.004% C, 2.0 to 4.5% Si, 0.010 to 0.080% acid soluble Al, 0.001 to 0.020% N, 0.050 to 2.00% Cu and 0.010 to 0.060% S, and the balance Fe, rough rolling is started at 1000 to 1200 deg.C. After that, it is subjected to finish rolling into a hot rolled steel sheet. Next, it is annealed in the temp. range of 700 to 1100 deg.C in a short time of about 2min according to necessary. Subsequently, the surface is subjected to pickling treatment, and it us subjected to cold rolling for one time or >= two times including process annealing into a cold rolled sheet having a prescribed thickness. After that, heating is executed at 850 to 1050 deg.C for 1 to 200sec, and the surface of the cold rolled steel sheet is subjected to nitriding treatment while it is run in a mixed atmosphere of N2-H2-NH3. Finally, it is coated with an MgO series separation agent for annealing and is subjected to finish annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、方向性珪素鋼板(以下
方向性電磁鋼板と云う)の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet (hereinafter referred to as grain-oriented electrical steel sheet).

【0002】[0002]

【従来の技術】方向性電磁鋼板の製造においては熱延鋼
帯は必要に応じて焼鈍した後、1回または中間焼鈍をは
さむ2回以上の冷間圧延を行い、所定の板厚とし、次い
で一次再結晶焼鈍を行った後焼鈍分離剤を塗布し、仕上
げ焼鈍を施すことで行われている。この一次再結晶焼鈍
では脱炭も行われているのが一般的である。しかるに近
年熔鋼の状態で脱炭した素材を使い、一次再結晶焼鈍工
程での脱炭を省略した技術が数多く報告されている。
2. Description of the Related Art In the production of grain-oriented electrical steel sheet, a hot-rolled steel strip is annealed as required, and then cold-rolled once or twice or more with intermediate annealing to obtain a predetermined sheet thickness, and then, It is carried out by applying the annealing separation agent after performing the primary recrystallization annealing and performing the finish annealing. In this primary recrystallization annealing, decarburization is also generally performed. However, in recent years, many technologies have been reported in which decarburization in a molten steel state is used and decarburization in the primary recrystallization annealing step is omitted.

【0003】例えば特開昭54−112317、特開昭
55−073818、特開昭57−114614、特開
昭57−207114、特開昭58−100627、特
開昭61−91319、特開昭62−83421、特開
平1−119644、特開平1−212721、特開平
1−309923、特開平1−309924、特開平2
−30714、特開平2−141532、特開平3−1
11516、特開平3−287721、特開平5−96
66号公報等数多く存在する。しかしながらこれらの技
術で方向性電磁鋼板を安定して製造するためには製造条
件を厳密に制御する必要がある。
For example, JP-A-54-112317, JP-A-55-073818, JP-A-57-114614, JP-A-57-207114, JP-A-58-100627, JP-A-61-91319 and JP-A-62. -83421, JP-A-1-119644, JP-A-1-212721, JP-A-1-309923, JP-A-1-309924, JP-A-2
-30714, JP-A-2-141532, JP-A3-1
11516, JP-A-3-287721, and JP-A-5-96
There are many publications such as Japanese Patent No. 66. However, in order to stably manufacture the grain-oriented electrical steel sheet with these techniques, it is necessary to strictly control the production conditions.

【0004】[0004]

【発明が解決しようとする課題】本発明は、方向性電磁
鋼板を安定して製造する方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for stably producing a grain-oriented electrical steel sheet.

【0005】[0005]

【課題を解決するための手段】本発明の手段は、C:
0.0005〜0.004重量%、Si:2.0〜4.
5重量%、酸可溶性Al:0.010〜0.080重量
%、N:0.001〜0.020重量%、Cu:0.0
50〜2.00重量%、S:0.010〜0.060重
量%(以後単に%と記述する)の成分を含んだ珪素鋼ス
ラブを1000℃から1200℃の温度域で粗圧延後仕
上げ圧延を行って熱延鋼帯とした後、必要に応じて70
0℃から1100℃の温度域で短時間焼鈍を行った後1
回または中間焼鈍をはさむ2回以上の冷間圧延を行い、
所定の板厚とし、850℃から1050℃の温度域で1
秒以上200秒以内加熱後鋼板を走行せしめる状態で窒
化処理をし、焼鈍分離剤を塗布し、仕上げ焼鈍を施すこ
とにある。
The means of the present invention comprises C:
0.0005-0.004% by weight, Si: 2.0-4.
5% by weight, acid-soluble Al: 0.010 to 0.080% by weight, N: 0.001 to 0.020% by weight, Cu: 0.0
Rough rolling and finish rolling of a silicon steel slab containing 50 to 2.00% by weight and S: 0.010 to 0.060% by weight (hereinafter simply referred to as "%") in a temperature range of 1000 to 1200 ° C. After making the hot rolled steel strip, 70
After annealing for a short time in the temperature range of 0 ° C to 1100 ° C, 1
Or two or more cold rollings with intermediate annealing
Specified plate thickness, 1 in the temperature range from 850 ℃ to 1050 ℃
After heating for 200 seconds or more and 200 seconds or less, nitriding treatment is performed in a state where the steel sheet is allowed to run, an annealing separator is applied, and finish annealing is performed.

【0006】この場合一次再結晶焼鈍の少なくとも加熱
後段の雰囲気のP H2 O /P H2 を0.06以上4.0
以下とした後、窒化処理を行うことで、所望の窒化が効
率的に行われる。またこのように窒化を行っても、仕上
げ焼鈍の雰囲気の窒素分圧が50%以下では形成された
窒化物がインヒビターとして有効に働かない場合がある
ので、該仕上げ焼鈍の昇温過程において800℃以上で
窒素分圧50%以上とすることが好ましい。
In this case, the P H 2 O / P H 2 in the atmosphere at least after the heating of the primary recrystallization annealing is 0.06 or more and 4.0 or more.
Desired nitriding is efficiently performed by performing the nitriding treatment after the following. Even if nitriding is performed in this way, the nitride formed may not work effectively as an inhibitor when the partial pressure of nitrogen in the atmosphere of finish annealing is 50% or less. As described above, the nitrogen partial pressure is preferably 50% or more.

【0007】以下本発明について詳細に説明する。一次
再結晶焼鈍工程では脱炭を行わないで一方向性電磁鋼板
を製造する方法として、発明者らは特開昭57−114
614号公報で開示した技術を開発したが、この方法で
は磁束密度が比較的低いという欠点があった(実施例B
8 =1.88)。また磁束密度が高い鋼板を製造する技
術として、特開昭57−89439号公報(実施例B8
=1.97)や、特開昭57−207114号公報(実
施例B8 =1.94)も開発されたが、安定してこのよ
うな高い磁束密度が得られない場合が存在した。その原
因について鋭意研究した結果(1)一次再結晶板に二次
再結晶の核となる(110)〔001〕方位結晶粒が少
ないこと、(2)二次再結晶粒以外の結晶方位の成長を
阻止すべきインヒビターが不足していること、更に
(3)(110)〔001〕二次再結晶粒のみを優先的
に成長させる作用効果が、従来の製造工程による一次再
結晶板と較べて少ないことが分かった。
The present invention will be described in detail below. As a method for producing a grain-oriented electrical steel sheet without decarburizing in the primary recrystallization annealing step, the inventors of the present invention have disclosed JP-A-57-114.
Although the technique disclosed in Japanese Patent No. 614 was developed, this method had a drawback that the magnetic flux density was relatively low (Example B).
8 = 1.88). Further, as a technique for producing a steel sheet having a high magnetic flux density, Japanese Patent Application Laid-Open No. 57-89439 (Example B 8
= 1.97) and has been developed Sho 57-207114 Patent Publication (Example B 8 = 1.94) also may stably such a high magnetic flux density can not be obtained by the present. As a result of diligent research on the cause, (1) the primary recrystallized plate has few (110) [001] -oriented crystal grains that become nuclei for secondary recrystallization, and (2) the growth of crystal orientations other than the secondary recrystallized grains. Insufficient inhibitor to prevent the above-mentioned phenomenon, and further, (3) (110) [001] secondary recrystallized grains preferentially grow, and compared with the primary recrystallized plate produced by the conventional manufacturing process, Turned out to be few.

【0008】これらの欠点を克服するには、C:0.0
005〜0.004%、Si:2.0〜4.5%、酸可
溶性Al:0.010〜0.080%、N:0.001
〜0.020%、Cu:0.050〜2.00%、S:
0.010〜0.060%の成分を含有した珪素鋼スラ
ブを1000℃から1200℃の温度域で粗圧延を開始
し、仕上げ圧延を行って熱延鋼帯とした後、必要に応じ
て700℃から1100℃の温度域で短時間焼鈍を行っ
た後、1回または中間焼鈍をはさむ2回以上の冷間圧延
を行い、所定の板厚とし、850℃から1050℃の温
度域で1秒以上200秒以内加熱後鋼板を走行せしめる
状態で窒化処理をし、焼鈍分離剤を塗布し、仕上げ焼鈍
を施すことにある。
To overcome these drawbacks, C: 0.0
005 to 0.004%, Si: 2.0 to 4.5%, acid-soluble Al: 0.010 to 0.080%, N: 0.001
~ 0.020%, Cu: 0.050-2.00%, S:
Rough rolling of a silicon steel slab containing 0.010 to 0.060% of components is started in a temperature range of 1000 ° C to 1200 ° C, and finish rolling is performed to form a hot rolled steel strip, and then 700 if necessary. After performing short-time annealing in the temperature range of ℃ to 1100 ℃, cold rolling is performed once or twice or more with intermediate anneal to obtain a predetermined plate thickness, and in the temperature range of 850 ℃ to 1050 ℃ for 1 second. After heating within 200 seconds, nitriding is performed in a state where the steel sheet is allowed to run after heating, an annealing separator is applied, and finish annealing is performed.

【0009】この場合一次再結晶焼鈍の加熱後段の雰囲
気のP H2 O /P H2 を0.06以上4.0以下とした
後、窒化処理を行うことで、所望の窒化が効率的に行わ
れる。また仕上げ焼鈍の雰囲気の窒素分圧が50%以下
では、形成された窒化物がインヒビターとして有効に働
かない場合があるので、該仕上げ焼鈍の昇温過程800
℃以上で窒素分圧50%以上とすることが好ましいこと
を発見し、本発明を完成させた。
In this case, desired nitriding can be efficiently performed by performing nitriding treatment after setting P H 2 O / P H 2 in the atmosphere after heating of the primary recrystallization annealing to 0.06 or more and 4.0 or less. Done. If the nitrogen partial pressure in the atmosphere of finish annealing is 50% or less, the formed nitride may not work effectively as an inhibitor.
The inventors have found that it is preferable to set the nitrogen partial pressure to 50% or more at a temperature of not less than 0 ° C, and have completed the present invention.

【0010】本発明とほぼ同じ構成の方向性電磁鋼板の
製造法について特開平2−77525号公報で開示され
た先行技術がある。その先行技術においては、脱炭焼鈍
後鋼板を走行せしめる状態下で窒化処理をし、焼鈍分離
剤を塗布した後高温仕上げ焼鈍をすることを特徴として
いる。本発明における粗熱延開始温度は1200℃以下
であり、この条件もこの先行技術と同一である。本発明
とこの先行技術が構成上最も異なる点は先ず第1に鋼成
分であり、第2に一次再結晶焼鈍条件である。
There is a prior art disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2-77525 regarding a method for manufacturing a grain-oriented electrical steel sheet having substantially the same structure as the present invention. The prior art is characterized in that after decarburization annealing, the steel sheet is subjected to a nitriding treatment in a running state, an annealing separator is applied, and then high-temperature finish annealing is performed. The crude hot rolling start temperature in the present invention is 1200 ° C. or lower, and this condition is also the same as this prior art. The most different structural difference between the present invention and this prior art is firstly the steel composition and secondly the primary recrystallization annealing conditions.

【0011】先行発明においてはCuは添加されていな
いが、本発明においてはCuを0.05%から2%の範
囲で添加されており、Cuを積極的に活用しているとこ
ろが成分で異なる第1の点である。またこの先行発明で
はSが0.012%以上含まれている場合は二次再結晶
不良になるので、Sは好ましくは0.007%以下とし
ている。然るに本発明においてSは0.010%以上が
必要で、0.04%程度まではSは高いほど二次再結晶
が安定する。本発明とこの先行技術がSの作用効果の点
で全く異なる。Sの範囲及び、その作用効果が異なる点
が成分で異なる第2の点である。
Although Cu is not added in the prior invention, Cu is added in the range of 0.05% to 2% in the present invention, and Cu is positively utilized. It is point 1. Further, in this prior invention, when S is contained in an amount of 0.012% or more, secondary recrystallization failure occurs, so S is preferably made 0.007% or less. However, in the present invention, S is required to be 0.010% or more, and up to about 0.04%, the higher the S, the more stable the secondary recrystallization. The present invention and this prior art are completely different in the effect of S. The range of S and the difference in its action and effect are the second points that are different in the components.

【0012】先行発明ではCは0.025%以下では二
次再結晶が不安定になり、かつ二次再結晶した場合でも
製品の磁束密度が1.8Tesla と低下するとしている。
本発明においては熱間圧延以前の状態ですでにCが0.
004%以下であるが、二次再結晶は安定であり、磁束
密度も1.8Tesla 以上の高い値を示す。一次再結晶前
のC量が異なる点が先行発明と成分で異なる第3の点で
ある。
According to the prior invention, when the content of C is 0.025% or less, the secondary recrystallization becomes unstable, and the magnetic flux density of the product decreases to 1.8 Tesla even when the secondary recrystallization is performed.
In the present invention, C is 0.
Although it is 004% or less, the secondary recrystallization is stable, and the magnetic flux density shows a high value of 1.8 Tesla or more. The third difference is that the amount of C before primary recrystallization is different from that of the prior invention in terms of components.

【0013】後で詳しく述べるが、本発明のインヒビタ
ーとしてはCが0.004%以下の状態で硫化物と窒化
物の双方及び、固溶Cuを活用するところが本発明と先
行発明で成分構成が異なってくる理由である。本発明で
は一次再結晶焼鈍前にCが0.004%以下、Sが0.
010%以上でCuが0.05%から2.00%の範囲
で含有されている鋼板を、850℃以上の温度で脱炭す
ることなく一次再結晶焼鈍した後窒化処理することにあ
る。
As will be described in detail later, the composition of the present invention and the prior invention is that both the sulfide and the nitride and the solid solution Cu are utilized in the state of C of 0.004% or less as the inhibitor of the present invention. That's why it's different. In the present invention, C is 0.004% or less and S is 0.
A steel sheet containing Cu in an amount of 010% or more and 0.05% to 2.00% is subjected to primary recrystallization annealing without decarburization at a temperature of 850 ° C. or more and then subjected to nitriding treatment.

【0014】先行発明では一次再結晶焼鈍前にC:0.
025%から0.075%以下、Sが0.012%の範
囲で含有されている鋼板を再結晶させ、引き続き水蒸気
を含んだ雰囲気中で800℃から850℃の温度で、1
20秒以上加熱して脱炭を行い、しかる後に窒化処理を
行っている。即ち本発明と先行発明においては、鋼成
分、一次再結晶焼鈍の目的が異なる。
In the prior invention, before the primary recrystallization annealing, C: 0.
A steel sheet containing 025% to 0.075% or less and S in the range of 0.012% is recrystallized, and subsequently at a temperature of 800 ° C to 850 ° C in an atmosphere containing water vapor, 1
Decarburization is performed by heating for 20 seconds or more, and then nitriding treatment is performed. That is, the purpose of the steel composition and the primary recrystallization annealing is different between the present invention and the prior invention.

【0015】本発明鋼では脱炭が不必要であるので、再
結晶焼鈍は非脱炭性雰囲気で完了させればよい。この場
合、再結晶粒成長が完了するまでは、できるだけ還元性
の雰囲気とした後、引き続き窒化処理を連続的に行う
が、この窒化処理前の雰囲気のP H2 O /P H2 を0.
06以上4.0以下とすることで、二次再結晶が安定
し、かつ良好な磁気特性が得られる。
Since decarburization is unnecessary in the steel of the present invention, recrystallization annealing may be completed in a non-decarburizing atmosphere. In this case, until the recrystallized grain growth is completed, after a possible reducing atmosphere, it continues to nitriding treatment continuously, but the P H 2 O / P H 2 atmosphere before the nitriding treatment 0.
By setting the ratio to be not less than 06 and not more than 4.0, secondary recrystallization is stable and good magnetic characteristics can be obtained.

【0016】以上成分及び一次再結晶焼鈍の各条件を組
み合わせることで、本発明ではなぜ先行発明では不可能
であった二次再結晶を安定させ、かつ磁束密度を1.8
Tesla 以上確保できるのかと云う冶金学的原理について
は、現時点では必ずしも明確ではない。現時点では実験
事実からその組み合わせ効果が生じる理由を以下の如く
解釈している。
By combining the above components and the respective conditions of the primary recrystallization annealing, the secondary recrystallization, which was impossible in the prior invention in the present invention, is stabilized, and the magnetic flux density is 1.8.
At present, the metallurgical principle of whether or not Tesla can be secured is not clear at this point. At the present time, the reason why the combination effect is generated from the experimental fact is interpreted as follows.

【0017】先ず成分について述べる。Cuが0.05
0〜2.00%含まれると(1)の(110)〔00
1〕方位二次再結晶核となる可能性のある結晶粒が増加
し(図1参照)、更に(2)の二次再結晶粒以外の結晶
粒の成長を阻止する作用効果があることが分かった。こ
の場合(1)の効果は特にCu含有量が0.5%以上と
なると顕著になることを発見した。また(2)の効果は
Cuが0.05%以上あれば顕著となり、Cuが増すほ
どその効果が大きくなることが分かった。
First, the components will be described. Cu is 0.05
When it is contained in an amount of 0 to 2.00%, (1) (110) [00
1) The number of crystal grains that may become azimuth secondary recrystallized nuclei increases (see FIG. 1), and further there is an action effect of inhibiting the growth of crystal grains other than the secondary recrystallized grains of (2). Do you get it. In this case, it was discovered that the effect of (1) becomes remarkable especially when the Cu content is 0.5% or more. Further, it was found that the effect of (2) becomes remarkable when Cu is 0.05% or more, and the effect becomes larger as Cu increases.

【0018】電子顕微鏡により析出物の形態を調査した
ところ、Cuが0.05%以上あれば、Cuの硫化物の
量もサイズもCu量を増しても変化しないことから、C
u添加で二次再結晶粒を成長しやすくするのは、析出物
(硫化物)としてのインヒビター効果と、固溶Cuその
ものが二次再結晶粒以外の結晶粒の成長を阻止する効果
があるためと考えられる。その点を確認するため、Sを
全く含まない試料で、Cu添加量を増やしたところ、C
uが多いほど二次再結晶が安定した実験結果が得られ、
固溶Cuはそのような作用効果があると推察した(実施
例3参照)。
When the morphology of precipitates was examined by an electron microscope, when Cu was 0.05% or more, the amount and size of Cu sulfide did not change even if the amount of Cu was increased.
The fact that the addition of u facilitates the growth of secondary recrystallized grains has an inhibitor effect as a precipitate (sulfide) and an effect that solid solution Cu itself prevents the growth of crystal grains other than the secondary recrystallized grains. It is thought to be because. In order to confirm this point, when the amount of Cu added was increased in a sample containing no S,
The more u, the more stable the results of secondary recrystallization are obtained.
It was speculated that solid solution Cu has such an effect (see Example 3).

【0019】次にSを:0.010〜0.060%範囲
に限定したのは(2),(3)の効果が発現するためで
ある。即ち本発明の素材成分においてはSが0.01%
未満では二次再結晶粒が発現しにくくなったり、二次再
結晶した場合も(110)〔001〕からはずれた二次
再結晶粒の発現が多くなることを見いだした。即ち本成
分系においてはSは(2),(3)の効果を与えると解
釈される。
Next, S is limited to the range of: 0.010 to 0.060% because the effects of (2) and (3) are exhibited. That is, in the material component of the present invention, S is 0.01%
It was found that when the amount is less than the above, secondary recrystallized grains are hard to develop, and when secondary recrystallized, secondary recrystallized grains deviated from (110) [001] increase. That is, S is interpreted as giving the effects of (2) and (3) in this component system.

【0020】そのメカニズムは明瞭ではないがSが0.
01%以上存在する場合は微細なCu系硫化物が多数観
察され、この微細なCu系硫化物が(2),(3)の効
果を発現するものと解釈している。Sは0.06%でも
効果があるが、Sが多い場合熱延工程で割れが発生しや
すいので、本発明では上限を0.060%としたもので
ある。このSの効果はCuと共存して初めて発揮される
ものであり、先行発明の如くCuが添加されていない場
合は、Sが存在することはかえって二次再結晶を不安定
にすると推察される。
Although the mechanism is not clear, S is 0.
When it is present in an amount of 01% or more, many fine Cu-based sulfides are observed, and it is interpreted that these fine Cu-based sulfides exert the effects of (2) and (3). Although S is effective even if it is 0.06%, cracks are likely to occur in the hot rolling process when S is large, so in the present invention, the upper limit is made 0.060%. This effect of S is exhibited only when it coexists with Cu, and it is presumed that the presence of S rather makes secondary recrystallization unstable if Cu is not added as in the prior invention. .

【0021】次に先行発明と異なる一次再結晶焼鈍条件
を選択した冶金学的理由を述べる。先にも述べた如く、
先行技術では一次再結晶焼鈍工程において820℃から
860℃で120秒以上、脱炭性雰囲気下での加熱が必
要である。この場合加熱温度が900℃以上では、脱炭
に有害な層が鋼板表面に形成され、脱炭しにくくなるの
で、加熱温度は900℃以下に抑えられている。この脱
炭焼鈍工程では鋼板表面部に内部酸化層が形成され、こ
の内部酸化層は仕上げ焼鈍工程で形態を変化させるが最
終製品まで残存し、磁気特性特に鉄損を劣化させる。
Next, the metallurgical reasons for selecting the primary recrystallization annealing conditions different from those of the prior invention will be described. As mentioned earlier,
In the prior art, it is necessary to heat at 820 ° C. to 860 ° C. for 120 seconds or more in a decarburizing atmosphere in the primary recrystallization annealing step. In this case, when the heating temperature is 900 ° C. or higher, a layer harmful to decarburization is formed on the surface of the steel sheet and decarburization becomes difficult, so the heating temperature is suppressed to 900 ° C. or lower. In this decarburization annealing step, an internal oxide layer is formed on the surface of the steel sheet, and this internal oxide layer changes its form in the finish annealing step, but remains in the final product, deteriorating the magnetic properties, especially iron loss.

【0022】しかるに本発明鋼板では一次再結晶焼鈍で
は再結晶させることが主目的であるので、このような製
品の鉄損に悪影響を与える原因となる内部酸化の形成を
抑える雰囲気で、再結晶温度以上で加熱すればよいの
で、良好な磁気特性を得ることが容易となる。このため
加熱温度の上限はなく、加熱時間も短時間でよい。加熱
温度は再結晶さえすればよいので700℃以上であれば
よいが、加熱温度を900℃以上が好ましいとしたの
は、これ以下の温度で一次再結晶させた場合、成分系に
よっては一次再結晶粒径が小さいため、結果として製品
の磁束密度が低下する場合があるからである。
However, since the main purpose of the steel sheet of the present invention is to recrystallize in the primary recrystallization annealing, the recrystallization temperature is set in an atmosphere which suppresses the formation of internal oxidation which causes a bad influence on the iron loss of such a product. Since the above heating is sufficient, it becomes easy to obtain good magnetic characteristics. Therefore, there is no upper limit of the heating temperature and the heating time may be short. Since the heating temperature need only be recrystallized, it may be 700 ° C. or higher. However, the heating temperature of 900 ° C. or higher is preferable because when primary recrystallization is performed at a temperature below this temperature, the primary recrystallization may be different depending on the component system. Because the crystal grain size is small, the magnetic flux density of the product may decrease as a result.

【0023】加熱温度の上限を1050℃以下としたの
は、これ以上の加熱温度でも良好な磁気特性が得られる
が、時として磁気特性が劣化する等安定して良好な特性
が得られない場合があることと、このような高温で加熱
することは不経済なためである。加熱時間を1秒以上と
したのは、これ以上の時間であれば良好な磁気と特性が
得られるためであり、上限を200秒以下としたのは、
これ以上の加熱時間でも良好な磁気特性が得られるが、
加熱時間が長すぎると引き続く窒化処理に不利な表面性
状となり、結果として製品の磁気特性が劣化する等安定
して良好な特性が得られない場合があることと、長時間
加熱することは不経済であるためである。
The upper limit of the heating temperature is set to 1050 ° C. or lower when good magnetic properties can be obtained even at heating temperatures higher than this temperature, but sometimes stable magnetic properties cannot be obtained due to deterioration of magnetic properties. This is because it is uneconomical to heat at such a high temperature. The heating time is set to 1 second or longer because good magnetism and characteristics can be obtained if the heating time is longer than this, and the upper limit is set to 200 seconds or shorter.
Good magnetic properties can be obtained with heating time longer than this,
If the heating time is too long, the surface properties will be unfavorable to the subsequent nitriding treatment, and as a result, the magnetic properties of the product may deteriorate and stable and good properties may not be obtained, and it is uneconomical to heat for a long time. This is because.

【0024】この場合加熱前段の雰囲気のP H2 O /P
H2 は0.06以下とし、しかる後に窒化処理開始前の
雰囲気のP H2 O /P H2 を0.06以上4.0以下と
することが好ましい。このような雰囲気で処理すること
で製品の磁気特性が向上することと、引き続き窒化工程
で窒化しやすくなるので、成分的に窒化されにくい元素
が添加されている場合特に有効である。以上成分効果と
一次再結晶焼鈍の効果が相まって、先行発明では不可能
なC<0.005%以下の素材を出発材として二次再結
晶が安定し、かつ磁束密度が1.8Tesla 以上の方向性
珪素鋼板の製造が可能となったと考えている。
In this case, P H 2 O / P in the atmosphere before heating
H 2 was 0.06 or less, it is preferable that the P H 2 O / P H 2 atmosphere before the nitriding treatment start 0.06 to 4.0 thereafter. By treating in such an atmosphere, the magnetic properties of the product are improved and it is easy to continue nitriding in the nitriding step, so it is particularly effective when an element that is difficult to be nitrided is added. Due to the combination of the above component effects and the effect of primary recrystallization annealing, secondary recrystallization is stable with a material of C <0.005% or less, which is impossible in the prior invention, as the starting material, and the magnetic flux density is in the direction of 1.8 Tesla or more. We believe that it has become possible to manufacture high-quality silicon steel sheets.

【0025】以下本発明法におけるその他の成分、熱延
条件、熱延以降の処理条件について述べる。Siは含有
量が多いほど固有抵抗が増加して製品の渦流損を減少さ
せるので、渦流損を減少させるためにはSiは多いほど
よい。Siを2%以上と限定したのはこれ以下では渦流
損が大きく好ましくないので下限を2%としたものであ
る。しかしSiは添加量が増すほど冷間圧延工程で割れ
やすくなる。この傾向はCが高いほど顕著となる。本発
明鋼は冷間圧延工程ではCが既に0.004%以下であ
るので、従来の素材と較べ割れにくいが、Si4.5%
以上では冷間圧延に特別の工夫が必要で経済的に製造す
るという本発明の目的にそれるので上限を4.5%とし
た。
Other components in the method of the present invention, hot rolling conditions, and treatment conditions after hot rolling will be described below. The higher the Si content, the more the specific resistance increases and the eddy current loss of the product decreases. Therefore, the more Si the better, in order to reduce the eddy current loss. The reason why Si is limited to 2% or more is that the lower limit is set to 2% because eddy current loss is large and it is not preferable below this range. However, Si becomes more likely to crack in the cold rolling process as the added amount increases. This tendency becomes more remarkable as C is higher. In the steel of the present invention, since C is already 0.004% or less in the cold rolling process, it is less likely to crack as compared with the conventional material, but Si4.5%
In the above description, the upper limit was set to 4.5% because the cold rolling requires special measures and the purpose of the present invention is to economically manufacture.

【0026】Alは(Al,Si)Nを形成しインヒビ
ターとして働くが、酸可溶性Alとして0.01%以上
ないとその効果が発揮されないので下限を0.01%と
した。上限を0.08%としたのはこれ以上のAlが存
在するとインヒビターとして有効に働かなくなるためで
ある。Nは(Al,Si)Nを形成しインヒビターとし
て働くが、スラブの段階で0.001%以上ないとその
効果が発揮されないので下限を0.001%とした。上
限を0.02%としたのはこれ以上含まれるとブリスタ
と呼ばれる表面傷が発生するためである。
Al forms (Al, Si) N and acts as an inhibitor, but the effect is not exhibited unless the content of acid-soluble Al is 0.01% or more, so the lower limit was made 0.01%. The upper limit is set to 0.08% because if it exceeds this amount, it will not work effectively as an inhibitor. N forms (Al, Si) N and acts as an inhibitor, but the effect is not exhibited unless it is 0.001% or more at the slab stage, so the lower limit was made 0.001%. The upper limit is set to 0.02% because if it is contained more than this, surface scratches called blister occur.

【0027】粗熱延開始温度が1200℃以上となると
本発明成分では二次再結晶が不安定になり、二次再結晶
が安定して製品の磁束密度は1.80Tesla 以下になる
確率が増加し工業的な製造方法として採用できない。二
次再結晶が不安定となるのは、高温熱延では結晶粒径が
大きいため、熱延工程での再結晶が不十分なことに起因
し、二次再結晶しても磁束密度が低いのは、高温加熱に
起因して、一次再結晶粒が小さくなり、その結果二次再
結晶温度が低下し方位の悪い二次再結晶粒が発現するこ
とによる。粗熱延開始温度が1000℃以下でも良好な
磁気特性が得られるが、熱延に要するエネルギーが多く
必要で、かつ熱延時に鋼板表面に傷が入りやすくなるの
で経済的でないため、粗熱延開始温度を1000℃以上
とした。
When the hot rolling start temperature is 1200 ° C. or higher, the secondary recrystallization becomes unstable with the components of the present invention, the secondary recrystallization becomes stable, and the probability that the magnetic flux density of the product will be 1.80 Tesla or less increases. However, it cannot be adopted as an industrial manufacturing method. The reason why the secondary recrystallization becomes unstable is that the crystal grain size is large in high temperature hot rolling, so that the recrystallization in the hot rolling process is insufficient, and the magnetic flux density is low even after the secondary recrystallization. The reason is that the primary recrystallized grains become small due to the high temperature heating, and as a result, the secondary recrystallized temperature is lowered and the secondary recrystallized grains having a bad orientation are developed. Good magnetic properties can be obtained even if the starting temperature for rough hot rolling is 1000 ° C or lower, but it requires a large amount of energy for hot rolling and is not economical because the surface of the steel sheet is easily scratched during hot rolling. The starting temperature was 1000 ° C or higher.

【0028】仕上げ焼鈍の雰囲気は従来の方向性電磁鋼
板の仕上げ焼鈍と同様でよい。しかし仕上げ焼鈍昇温過
程の窒素を50%以上の雰囲気で焼鈍すると、安定して
良好な磁気特性が得られるので、仕上げ焼鈍の昇温過程
における800℃以上の領域で窒素50%以上の雰囲気
で加熱することが好ましい。この場合800℃以上と限
定したのは、これ以下の温度では影響が少ないためであ
る。窒素量は100%でもよいが、全く水素を含まない
場合雰囲気中に酸素等が混入すると、鋼板が酸化される
場合もあり、好ましくないので数%の水素を混入させて
おくことが好ましい。
The atmosphere of finish annealing may be the same as that of the conventional finish annealing of grain-oriented electrical steel sheet. However, if nitrogen is annealed in an atmosphere of 50% or more in the temperature of finish annealing, stable and good magnetic characteristics can be obtained. It is preferable to heat. In this case, the reason why the temperature is limited to 800 ° C. or higher is that there is little influence at a temperature lower than this. The amount of nitrogen may be 100%, but when hydrogen is not contained at all, if oxygen or the like is mixed in the atmosphere, the steel sheet may be oxidized, which is not preferable. Therefore, it is preferable to mix a few% of hydrogen.

【0029】ところで本発明鋼の窒素含有量は、先に説
明した如く熱延鋼帯の状態では0.001%以上、0.
020%以下の範囲であればよいが、仕上げ焼鈍前の状
態では0.006%以上0.06%の範囲が望ましい。
これは仕上げ焼鈍前の状態で窒素が0.006%以下で
も、0.06%以上でも二次再結晶が発現しにくくなる
傾向が生じたり、二次再結晶が発現しても磁束密度が著
しく悪くなるためである。
By the way, the nitrogen content of the steel of the present invention is 0.001% or more and 0.
The range is preferably 020% or less, but is preferably 0.006% or more and 0.06% in the state before finish annealing.
This is because even before nitrogen is 0.006% or below 0.06% in the state before finish annealing, secondary recrystallization tends to be difficult to occur, or even when secondary recrystallization occurs, the magnetic flux density is remarkably high. This is because it gets worse.

【0030】窒素含有量が低い場合二次再結晶が発現し
にくくなるのは、窒化物としてのインヒビターが不足す
るため、いろいろの方位を持った結晶粒が成長するため
であり、二次再結晶が発現しても磁束密度が低いのは、
窒化物としてのインヒビターが不足するため、二次再結
晶が低温で発現し、その場合の二次再結晶方位は(11
0)〔001〕方位以外の二次再結晶粒である確率が高
くなるためである。
When the nitrogen content is low, the secondary recrystallization is difficult to occur because the inhibitor as a nitride is insufficient and the crystal grains having various orientations grow. Even if appears, the magnetic flux density is low,
Due to lack of inhibitor as nitride, secondary recrystallization occurs at low temperature, and the secondary recrystallization orientation in that case is (11
0) The probability of secondary recrystallized grains other than the [001] orientation increases.

【0031】窒素含有量が高い場合二次再結晶が発現し
にくくなるのは、窒化物としてのインヒビターが強いた
め高温まで二次再結晶が発現できず、高温でインヒビタ
ーが弱くなるといろいろの方位を持った結晶粒が二次再
結晶成長したり、いわゆる細粒が発生し二次再結晶が発
現しなくなるためである。
When the nitrogen content is high, the secondary recrystallization is difficult to develop. The reason is that the inhibitor as a nitride is so strong that the secondary recrystallization cannot be expressed up to a high temperature and the inhibitor becomes weak at a high temperature. This is because the crystal grains that it has undergone secondary recrystallization growth or so-called fine grains are generated and secondary recrystallization does not occur.

【0032】以下本発明の実施態様を述べる。C:0.
0005〜0.015%、Si:2.0〜4.5%、酸
可溶性Al:0.010〜0.080%、N:0.00
1〜0.020%、Cu:0.050〜2.00%、
S:0.010〜0.060%、残部Fe及び不可避的
不純物からなる熔鋼を通常の工程もしくは、連続鋳造し
てスラブとした後、1200℃から1000℃の温度域
から熱間圧延して熱延鋼板あるいは、熱延鋼帯とする。
この熱延鋼板あるいは、熱延鋼帯は、750〜1200
℃の温度域での焼鈍が行われる。またこのような熱延板
焼鈍なしでこれらの熱延鋼板あるいは、熱延鋼帯は、冷
間圧延される。
Embodiments of the present invention will be described below. C: 0.
0005 to 0.015%, Si: 2.0 to 4.5%, acid-soluble Al: 0.010 to 0.080%, N: 0.00
1 to 0.020%, Cu: 0.050 to 2.00%,
S: 0.010 to 0.060%, the balance of Fe and unavoidable impurities is used as a molten steel in a normal process or continuously cast into a slab, and then hot rolled from a temperature range of 1200 ° C to 1000 ° C. Hot-rolled steel sheet or hot-rolled steel strip.
This hot rolled steel sheet or hot rolled steel strip is 750 to 1200.
Annealing is performed in the temperature range of ° C. Further, these hot rolled steel sheets or hot rolled steel strips are cold rolled without such hot rolled sheet annealing.

【0033】ついで冷間圧延後の材料は700〜105
0℃の温度域で一次再結晶焼鈍される。この焼鈍の後段
でインヒビター強化のためアンモニア含有雰囲気による
窒化処理を行う。次いで再結晶板は、焼鈍分離剤が塗布
されて仕上げ焼鈍炉に入る。仕上げ焼鈍の昇温速度は、
通常の一方向性電磁鋼板のそれと同様である。仕上げ焼
鈍の昇温時の雰囲気も通常の一方向性電磁鋼板のそれと
同様、中性或いは還元性であるが、800℃を超える温
度域では窒素分圧を50%以上とすることが好ましい。
The material after cold rolling is 700 to 105.
Primary recrystallization annealing is performed in the temperature range of 0 ° C. In the latter stage of this annealing, nitriding treatment is performed in an ammonia-containing atmosphere to strengthen the inhibitor. The recrystallized plate is then coated with an annealing separator and enters a finish annealing furnace. The temperature rising rate of finish annealing is
It is similar to that of a normal unidirectional electrical steel sheet. The atmosphere at the time of raising the temperature of the finish annealing is neutral or reducing as in the case of the ordinary grain-oriented electrical steel sheet, but the nitrogen partial pressure is preferably 50% or more in the temperature range exceeding 800 ° C.

【0034】なお、窒素分圧調整のためアルゴン、ヘリ
ウム等の不活性ガスを混合することは何等さしさわりな
い。二次再結晶完了後、純化のため100%水素で高温
(約1200℃)保持される。仕上げ焼鈍終了後、必要
に応じてレーザービーム照射等の磁区細分化処理を行
う。
It should be noted that mixing an inert gas such as argon or helium for adjusting the nitrogen partial pressure does not matter. After the completion of the secondary recrystallization, it is kept at a high temperature (about 1200 ° C.) with 100% hydrogen for purification. After finishing annealing, magnetic domain subdivision processing such as laser beam irradiation is performed if necessary.

【0035】[0035]

【実施例】【Example】

実施例1 C:0.0010%、Si:2.90%、Mn:0.0
75%、Al:0.027%、N:0.008%を主成
分として、Cu,Sの含有量が異なる4種類のスラブA
からD(表1参照)を1100℃の温度で2時間加熱
後、粗圧延、仕上げ圧延を経て厚さ2.3mmの熱延板と
した。次いで900℃で2分間加熱し水冷した。酸洗後
冷間圧延を行い厚さ0.35mmとした。
Example 1 C: 0.0010%, Si: 2.90%, Mn: 0.0
Four types of slabs A containing 75%, Al: 0.027%, N: 0.008% as main components and different Cu and S contents.
To D (see Table 1) were heated at a temperature of 1100 ° C. for 2 hours, then rough-rolled and finish-rolled to obtain hot-rolled sheets having a thickness of 2.3 mm. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.35 mm.

【0036】次に850℃の温度で180秒間加熱後、
冷却過程でN2 −H2 −NH3 の雰囲気で連続的に窒化
処理した。次にMgOを塗布し25%N2 −H2 の雰囲
気で昇温速度15℃/hrで1200℃まで加熱後、10
0%H2 雰囲気で20時間加熱後冷却した。次いで歪取
り焼鈍を行い磁気特性を測定した。結果を表1に示す。
Next, after heating at a temperature of 850 ° C. for 180 seconds,
It was continuously nitrided in an atmosphere of N 2 -H 2 -NH 3 in the cooling process. Next, MgO is applied and heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 25% N 2 —H 2 and then 10
The mixture was heated in a 0% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から明らかの如く本発明の方法で製造
した材料は、磁束密度が高く鉄損が低かったが、比較材
は磁束密度が低く、鉄損が高かった。
As is clear from Table 1, the material produced by the method of the present invention had a high magnetic flux density and a low iron loss, whereas the comparative material had a low magnetic flux density and a high iron loss.

【0039】実施例2 C:0.001%、Si:2.95%、Mn:0.07
8%、S:0.026%、Cu:0.98%、N:0.
007%を主成分としてAlの含有量が異なる3種類の
スラブAからC(表2参照)を1070℃から粗圧延を
開始し厚さ2.5mの熱延板とした。次いで900℃で
2分間加熱し水冷した。酸洗後冷間圧延を行い厚さ0.
29mmとした。次に950℃の温度で180秒加熱後冷
却過程でN2 −H2 −NH3 の雰囲気で連続的に窒化処
理した。
Example 2 C: 0.001%, Si: 2.95%, Mn: 0.07
8%, S: 0.026%, Cu: 0.98%, N: 0.
Three types of slabs A to C (see Table 2) having 007% as a main component and different Al contents were rough rolled at 1070 ° C. to obtain a hot-rolled sheet having a thickness of 2.5 m. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling is performed to a thickness of 0.
It was set to 29 mm. Next, after heating for 180 seconds at a temperature of 950 ° C., nitriding treatment was continuously performed in an N 2 —H 2 —NH 3 atmosphere in the cooling process.

【0040】次にMgOを塗布し、95%N2 −H2
50%N2 −H2 、25%N2 −H2 の雰囲気で昇温速
度15℃/hrで1200℃まで加熱後、100%H2
囲気で20時間加熱後冷却した。次いで歪取り焼鈍を行
い磁気特性を測定した。結果を表2に示す。比較のため
Cu,Sを含まない材料も処理したが、この場合は10
0%二次再結晶が発現せず磁気特性が著しく悪かった
(B8 :1.42Tesla,W17/50 :3.43w/kg)。本
発明の方法で製造した材料は、磁気特性が著しく良好で
あることが分かる。
Next, MgO is applied, and 95% N 2 --H 2 ,
After heating to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 50% N 2 —H 2 and 25% N 2 —H 2 , it was heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 2. A material containing no Cu or S was also processed for comparison, but in this case, 10
0% secondary recrystallization did not occur and the magnetic properties were remarkably poor (B 8 : 1.42 Tesla, W 17/50 : 3.43 w / kg). It can be seen that the material produced by the method of the invention has remarkably good magnetic properties.

【0041】[0041]

【表2】 [Table 2]

【0042】表2から明らかの如く本発明の方法で製造
した材料は、磁気特性が著しく良好であることが分か
る。
As is clear from Table 2, the materials produced by the method of the present invention have remarkably good magnetic properties.

【0043】実施例3 C:0.003%、Si:2.87%、Mn:0.07
6%、Al:0.026%、Cu:1.00%、N:
0.007%を主成分としてSの含有量が異なる2種類
のスラブA,B(表3参照)を1100℃の温度1時間
加熱後直ちに粗熱延を開始し、熱延板とした。次いで9
00℃で2分間加熱し水冷した。酸洗後冷間圧延を行い
厚さ0.29mmとした。
Example 3 C: 0.003%, Si: 2.87%, Mn: 0.07
6%, Al: 0.026%, Cu: 1.00%, N:
Two types of slabs A and B (see Table 3) having 0.007% as a main component and different S contents were heated at a temperature of 1100 ° C. for 1 hour and immediately followed by rough hot rolling to obtain hot rolled sheets. Then 9
The mixture was heated at 00 ° C for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm.

【0044】次に、850℃,900℃の温度で180
秒加熱後冷却過程でN2 −H2 −NH3 の雰囲気で連続
的に窒化処理した。次にMgOを塗布し、25%N2
2の雰囲気で昇温速度15℃/hrで1200℃まで加
熱後、100%H2 雰囲気で20時間加熱後冷却した。
次いで歪取り焼鈍を行い磁気特性を測定した。結果を表
3に示す。Sを0.001%しか含まない比較材も二次
再結晶は100%発現したが磁気特性が著しく悪かっ
た。
Next, 180 at 850 ° C. and 900 ° C.
After second heating, nitriding was continuously performed in an N 2 —H 2 —NH 3 atmosphere in the cooling process. Next, MgO is applied and 25% N 2
After heating in an atmosphere of H 2 to 1200 ° C. at a heating rate 15 ° C. / hr, and cooled after heated for 20 hours at 100% H 2 atmosphere.
Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 3. The comparative material containing only 0.001% S also exhibited 100% secondary recrystallization, but the magnetic properties were remarkably poor.

【0045】[0045]

【表3】 [Table 3]

【0046】表3から明らかの如く本発明の方法で製造
した材料は、磁気特性が著しく良好であることが分か
る。
As is apparent from Table 3, the materials produced by the method of the present invention have remarkably good magnetic properties.

【0047】実施例4 C:0.0028%、Si:2.87%、Mn:0.0
76%、S:0.020%、Cu:1.00%、Al:
0.026%、N:0.0069%、その他不可避的不
純物を含んだスラブを1150℃の温度で1時間加熱後
直ちに熱延を開始して熱延板とした。次いで900℃で
2分間加熱し水冷した。酸洗後冷間圧延を行い厚さ0.
45mmと0.35mmとした。
Example 4 C: 0.0028%, Si: 2.87%, Mn: 0.0
76%, S: 0.020%, Cu: 1.00%, Al:
A slab containing 0.026%, N: 0.0069%, and other unavoidable impurities was heated at a temperature of 1150 ° C. for 1 hour and then hot rolling was immediately started to obtain a hot rolled sheet. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling is performed to a thickness of 0.
It was set to 45 mm and 0.35 mm.

【0048】次に850℃の温度で180秒加熱後窒化
処理を行った。次にMgOを塗布し、95%N2 −H2
の雰囲気で昇温速度15℃/hrで1200℃まで加熱
後、100%H2 雰囲気で20時間加熱後冷却した。次
いで歪取り焼鈍を行い磁気特性を測定した。結果を表4
に示す。比較のためCu,Sが0.001%以下の素材
についても同様の工程で処理したが本発明鋼と較べ磁束
密度が著しく低く、鉄損が大きかった。
Next, after heating for 180 seconds at a temperature of 850 ° C., nitriding treatment was performed. Next, MgO is applied and 95% N 2 -H 2
After heating to 1200 ° C. at a temperature rising rate of 15 ° C./hr in the above atmosphere, heating was performed in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 4.
Shown in. For comparison, a material having Cu and S of 0.001% or less was treated in the same process, but the magnetic flux density was remarkably low and the iron loss was large as compared with the steel of the present invention.

【0049】[0049]

【表4】 [Table 4]

【0050】表4から明らかの如く本発明の方法で製造
した材料は、磁気特性が著しく良好であることが分か
る。
As is clear from Table 4, the materials produced by the method of the present invention have remarkably good magnetic properties.

【0051】実施例5 C:0.001%、Si:2.88%、Mn:0.08
6%、Al:0.026%、Cu:0.082%、N:
0.008%を主成分としてSの含有量が異なる2種類
のスラブA,B(表5参照)を公知の方法で熱延板とし
た。次いで900℃で2分間加熱し水冷した。酸洗後冷
間圧延を行い厚さ0.29mmとした。次に900℃,9
50℃の温度で180秒加熱後冷却過程でN2 −H2
NH3 の雰囲気で連続的に窒化処理した。
Example 5 C: 0.001%, Si: 2.88%, Mn: 0.08
6%, Al: 0.026%, Cu: 0.082%, N:
Two types of slabs A and B (see Table 5) having 0.008% as a main component and different S contents were made into hot-rolled sheets by a known method. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm. Next, 900 ℃, 9
After heating for 180 seconds at a temperature of 50 ° C, N 2 -H 2-
Nitriding was continuously performed in an NH 3 atmosphere.

【0052】次にMgOを塗布し、95%N2 −H2
50%N2 −H2 、25%N2 −H2 雰囲気で昇温速度
15℃/hrで1200℃まで加熱後、100%H2 雰囲
気で20時間加熱後冷却した。次いで歪取り焼鈍を行い
磁気特性を測定した。結果を表5に示す。Sを0.00
1%しか含まない比較材は二次再結晶が不安定であった
り二次再結晶が100%発現した場合も磁気特性が悪か
った。
Next, MgO was applied, and 95% N 2 --H 2 ,
After heating to 1200 ° C. at a temperature rising rate of 15 ° C./hr in a 50% N 2 —H 2 atmosphere and a 25% N 2 —H 2 atmosphere, heating was performed in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 5. S is 0.00
The comparative material containing only 1% had poor magnetic properties even when the secondary recrystallization was unstable or when the secondary recrystallization was 100%.

【0053】[0053]

【表5】 [Table 5]

【0054】表5から明らかの如く本発明の方法で製造
した材料は、磁気特性が著しく良好であることが分か
る。
As is clear from Table 5, the materials produced by the method of the present invention have remarkably good magnetic properties.

【0055】[0055]

【発明の効果】本発明により熔鋼の状態で0.004%
以下のCを含有した珪素鋼を素材として磁束密度の極め
て高い方向性電磁鋼板が安価に容易に得られる技術が提
供された。本発明の工業上の価値は絶大である。
According to the present invention, 0.004% in the molten steel state
A technique has been provided in which a grain-oriented electrical steel sheet having an extremely high magnetic flux density can be easily obtained at low cost by using the following silicon steel containing C as a raw material. The industrial value of the present invention is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu添加量と一次再結晶板の(110)〈uv
w〉強度の関係を示す図表である。
1] Cu addition amount and (110) <uv of primary recrystallized plate
It is a chart showing the relationship of w> strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.0005〜0.004重量%、 Si:2.0〜4.5重量%、 酸可溶性Al:0.010〜0.080重量%、 N :0.001〜0.020重量%、 Cu:0.050〜2.00重量%、 S :0.010〜0.060重量% 残部Fe及び不可避的不純物を含んだ珪素鋼スラブを1
000℃から1200℃の温度域で粗圧延を開始し、引
き続き仕上げ圧延を行って熱延鋼帯とした後、必要に応
じて700℃から1100℃の温度域で短時間焼鈍を行
った後、1回または中間焼鈍をはさむ2回以上の冷間圧
延を行い、所定の板厚とし、850℃から1050℃の
温度域で1秒以上200秒以内加熱後鋼板を走行せしめ
る状態で窒化処理をし、焼鈍分離剤を塗布し、仕上げ焼
鈍を施すことを特徴とする方向性珪素鋼板の製造方法。
1. C: 0.0005 to 0.004% by weight, Si: 2.0 to 4.5% by weight, acid soluble Al: 0.010 to 0.080% by weight, N: 0.001 to 0% 0.020% by weight, Cu: 0.050 to 2.00% by weight, S: 0.010 to 0.060% by weight 1 of a silicon steel slab containing the balance Fe and unavoidable impurities.
After starting rough rolling in the temperature range of 000 ° C to 1200 ° C, and subsequently performing finish rolling to form a hot rolled steel strip, after performing short-time annealing in the temperature range of 700 ° C to 1100 ° C as necessary, Cold rolling is performed once or twice or more with intervening intermediate annealing to obtain a predetermined thickness, and nitriding is performed in a state where the steel sheet is allowed to run after heating in the temperature range of 850 ° C to 1050 ° C for 1 second to 200 seconds. A method for manufacturing a grain-oriented silicon steel sheet, which comprises applying an annealing separator and performing finish annealing.
JP5133686A 1993-06-03 1993-06-03 Production of grain-oriented silicon steel sheet Withdrawn JPH06346147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5133686A JPH06346147A (en) 1993-06-03 1993-06-03 Production of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5133686A JPH06346147A (en) 1993-06-03 1993-06-03 Production of grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH06346147A true JPH06346147A (en) 1994-12-20

Family

ID=15110510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5133686A Withdrawn JPH06346147A (en) 1993-06-03 1993-06-03 Production of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH06346147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262761B1 (en) * 1997-01-17 2000-08-01 아사무라 타카싯 A method for manufacturing a grain oriented electrical steel plate having no primary film
KR100501005B1 (en) * 2000-12-08 2005-07-18 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet
KR100544723B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction
CN102991449A (en) * 2012-11-08 2013-03-27 上海冠驰汽车安全技术有限公司 Force-limiting torsion bar in relation to automobile safety belt
WO2015045397A1 (en) 2013-09-26 2015-04-02 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262761B1 (en) * 1997-01-17 2000-08-01 아사무라 타카싯 A method for manufacturing a grain oriented electrical steel plate having no primary film
KR100501005B1 (en) * 2000-12-08 2005-07-18 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet
KR100544723B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction
CN102991449A (en) * 2012-11-08 2013-03-27 上海冠驰汽车安全技术有限公司 Force-limiting torsion bar in relation to automobile safety belt
WO2015045397A1 (en) 2013-09-26 2015-04-02 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
RU2625350C1 (en) * 2013-09-26 2017-07-13 ДжФЕ СТИЛ КОРПОРЕЙШН Method of production of grain-oriented sheet from electrical steel
US9978489B2 (en) 2013-09-26 2018-05-22 Jfe Steel Corporation Method of producing grain oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
JPH0726328A (en) Production of grain oriented silicon steel sheet
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR100530064B1 (en) A Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
JPH0770639A (en) Production of grain-oriented silicon steel sheet
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07252531A (en) Production of grain oriented silicon steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3443150B2 (en) Method for producing grain-oriented silicon steel sheet
JPH07258737A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905