JPH07252531A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JPH07252531A
JPH07252531A JP6042823A JP4282394A JPH07252531A JP H07252531 A JPH07252531 A JP H07252531A JP 6042823 A JP6042823 A JP 6042823A JP 4282394 A JP4282394 A JP 4282394A JP H07252531 A JPH07252531 A JP H07252531A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
hot
annealing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6042823A
Other languages
Japanese (ja)
Inventor
Jiro Harase
二郎 原勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6042823A priority Critical patent/JPH07252531A/en
Publication of JPH07252531A publication Critical patent/JPH07252531A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PURPOSE:To stably produce a grain oriented silicon steel sheet having high magnetic flux density at a low cost by executing, in order, a hot-rolling, cold- rolling, heating-decarburization, nitriding treatment and finish annealing under the specific conditions to a silicon steel slab having a specific composition. CONSTITUTION:Rougher-rolling is executed in the starting temp. range of 1000-1200 deg.C to the silicon steel slab containing, by wt, 0.025-0.060% C, 2.0-4.5% Si, 0.010-0.080% acid soluble Al, 0.001-0.020% N, 0.0020-0.030% S and the balance Fe with inevitable impurities, and successively, the finish-rolling is executed. After heating the hot-rolled steel sheet obtd. by this hot-rolling in the range of 700-900 deg.C for 1-300sec, immediately, this steel sheet is cooled at quicker cooling velocity than the air-cooling and, thereafter, the steel sheet is made to be a prescribed thickness by single time cold-rolling. Successively, after heating-decarburizing in the range of 800-950 deg.C for 200-300sec, the nitriding treatment is executed while running the steel sheet, and further, anneal- separating agent is coated to apply the finish-annealing. By this method, the electrical steel sheet having excellent magnetic characteristic is obtd. by the simple annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、方向性珪素鋼板(以下
方向性電磁鋼板という)の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet (hereinafter referred to as grain-oriented electrical steel sheet).

【0002】[0002]

【従来の技術】1回の冷間圧延で製品厚みまで圧延する
方向性電磁鋼板の製造法(以下TS法と呼ぶ)において
は、熱延板焼鈍は、特公昭46−23820号公報や、
特開昭50−15727号公報に開示されている如く、
γ相が最も多く形成されると考えられる高温まで加熱
後、二次均熱を行なったり、また二次均熱なしで制御冷
却されている。本発明は、この1回の冷間圧延で、製品
厚みとする方向性電磁鋼板の製造技術の中でも、一次再
結晶後連続的に窒化せしめる方法で製造する方法(以下
SL法と呼ぶ)に関するものであるが、この技術におい
ても、特開平2−259019号公報や、特開平5−1
25446号公報で開示されているように、熱延板焼鈍
は900℃または950℃以上の一次均熱と一次均熱よ
り低い温度の二次均熱を経た後制御冷却されている。本
発明はSL法において低温の一次均熱後直ちに制御冷却
を行なう熱延板焼鈍を行なうことで、磁束密度が著しく
高い方向性電磁鋼板を安定して安価に製造する技術を提
供するものである。
2. Description of the Related Art In a method for manufacturing a grain-oriented electrical steel sheet (hereinafter referred to as TS method) in which a single cold rolling is performed to a product thickness, hot-rolled sheet annealing is performed by Japanese Patent Publication No. 46-23820.
As disclosed in JP-A-50-15727,
After heating to a high temperature at which the γ phase is considered to be most formed, secondary soaking is performed or controlled cooling is performed without secondary soaking. The present invention relates to a method (hereinafter referred to as SL method) for manufacturing by a method of continuously nitriding after primary recrystallization, among the manufacturing techniques of grain-oriented electrical steel sheet having a product thickness by this one cold rolling. However, even in this technique, Japanese Unexamined Patent Publication No. 259090/1990 and Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent No. 25446, the hot-rolled sheet annealing is controlled cooling after being subjected to primary soaking at 900 ° C. or 950 ° C. or higher and secondary soaking at a temperature lower than the primary soaking. The present invention provides a technique for stably and inexpensively manufacturing a grain-oriented electrical steel sheet having a remarkably high magnetic flux density by performing hot rolled sheet annealing in which the controlled cooling is performed immediately after the low temperature primary soaking in the SL method. .

【0003】[0003]

【発明が解決しようとする課題】本発明は、熱延板焼鈍
工程を簡略化させて、方向性電磁鋼板を安価で安定して
製造する方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for stably manufacturing a grain-oriented electrical steel sheet at a low cost by simplifying the hot-rolled sheet annealing step.

【0004】[0004]

【課題を解決するための手段】本発明の要旨は、C:
0.025〜0.060重量%、Si:2.0〜4.5
重量%、酸可溶性Al:0.010〜0.080重量
%、N:0.001〜0.020重量%、S:0.00
20〜0.030重量%の成分を含有し、残部Fe及び
不可避的不純物を含んだ珪素鋼スラブを1000℃から
1200℃の温度域で粗圧延を開始し、引き続き仕上げ
圧延を行ない好ましくは500℃以下の温度で巻き取っ
た後、該熱延鋼帯を700℃以上900℃以下の温度で
1秒以上300秒以内加熱後、空冷より速い冷却速度で
冷却した後1回の冷間圧延で所定の板厚とし、800℃
から950℃の温度域で20秒以上300秒以内加熱脱
炭した後、鋼板を走行せしめる状態で窒化処理を施した
後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すことにあ
る。
SUMMARY OF THE INVENTION The gist of the present invention is C:
0.025-0.060% by weight, Si: 2.0-4.5
% By weight, acid-soluble Al: 0.010 to 0.080% by weight, N: 0.001 to 0.020% by weight, S: 0.00
A silicon steel slab containing 20 to 0.030% by weight of components and the balance of Fe and unavoidable impurities is rough-rolled in a temperature range of 1000 ° C to 1200 ° C, and then finish-rolled, preferably 500 ° C. After winding at the following temperature, the hot-rolled steel strip is heated at a temperature of 700 ° C. or more and 900 ° C. or less for 1 second or more and 300 seconds or less, cooled at a cooling rate faster than air cooling, and then predetermined by one cold rolling. Thickness of 800 ℃
After heating and decarburizing in a temperature range of from 950 ° C. to 950 ° C. for 20 seconds to 300 seconds, a nitriding treatment is performed while the steel sheet is allowed to travel, an annealing separator is applied, and a final annealing is performed.

【0005】以下本発明について詳細に説明する。SL
法において熱延板焼鈍を900℃以上の温度で二段加熱
で行なう冶金学的な理由については、一次再結晶板の組
織と集合組織を二次再結晶が発現し易いように整えると
している。特に一次均熱温度が900℃より低いと、熱
延板焼鈍の再結晶が不十分であり最終製品の磁気特性B
8 が1.9T以下となり、磁束密度の高い方向性電磁鋼
板はできないとしている。しかしながら発明者は(11
0)〔001〕二次再結晶発現の冶金原理及び、SL法
における各工程条件を冶金学的に研究した結果、熱延板
焼鈍工程においては、熱延板焼鈍温度にかかわらず集合
組織は殆ど変化せず、また、表面相を除くと結晶組織も
殆ど変化しないことを見いだした。これは熱延板工程で
の再結晶はいわゆるその場合再結晶と称されるものに該
当し、新たな核発生と成長が殆ど認められないためと考
えられる。つまり、熱延板焼鈍では主として歪の高い結
晶粒から転位密度が減少し、回復のみが起こり、顕著な
粒界移動は起きないと言える。
The present invention will be described in detail below. SL
Regarding the metallurgical reason for performing hot-rolled sheet annealing by heating in a two-step manner at a temperature of 900 ° C. or higher in the method, it is stated that the texture and texture of the primary recrystallized sheet are arranged so that secondary recrystallization is easily exhibited. Especially when the primary soaking temperature is lower than 900 ° C, the recrystallization of the hot-rolled sheet annealing is insufficient and the magnetic properties B of the final product B
8 is 1.9 T or less, and it is said that grain-oriented electrical steel sheets with high magnetic flux density cannot be produced. However, the inventor
0) As a result of metallurgical studies on the metallurgical principle of [001] secondary recrystallization manifestation and each process condition in the SL method, in the hot-rolled sheet annealing step, the texture is almost independent of the hot-rolled sheet annealing temperature. It was found that there was no change, and that the crystal structure did not change when the surface phase was removed. It is considered that this is because recrystallization in the hot-rolled sheet process corresponds to what is called recrystallization in that case, and new nucleation and growth are hardly observed. In other words, it can be said that in the hot-rolled sheet annealing, the dislocation density mainly decreases from the crystal grains with high strain, only recovery occurs, and no remarkable grain boundary migration occurs.

【0006】ところで、一次再結晶板の組織と集合組織
は熱延板焼鈍後に存在する第二相の形態と、固溶C,N
の存在量によって著しく変化することは良く知られてい
る。本発明鋼の場合およそ700℃以上であれば平衡論
的にはγ相が存在するので、熱延板焼鈍温度を本発明の
範囲で示した700℃から900℃の範囲に保持後制御
冷却を行なえば、冷延前の状態で固溶C,N及び第二相
を二次再結晶発現に有利な一次再結晶板となるようにす
ることが可能である。従って先行発明で言う熱延板での
再結晶発現のありなしは、二次再結晶発現には直接関係
ないと言える。
By the way, the structure and texture of the primary recrystallized sheet are the morphology of the second phase existing after hot-rolled sheet annealing and the solid solution C, N.
It is well known that the amount of abundance changes significantly. In the case of the steel of the present invention, the gamma phase exists in equilibrium at about 700 ° C. or higher, so that the hot-rolled sheet annealing temperature is maintained within the range of 700 ° C. to 900 ° C. shown in the range of the present invention, and then controlled cooling is performed. If it is carried out, it is possible to make the solid solution C, N and the second phase into a primary recrystallized plate which is advantageous for the development of secondary recrystallization before cold rolling. Therefore, it can be said that the presence or absence of recrystallization in the hot-rolled sheet referred to in the prior invention is not directly related to the secondary recrystallization.

【0007】ところで本発明で熱延巻取り温度は500
℃以下が好ましい。このような低温巻取りを行なうと、
700℃以上に再加熱後急冷すると第二相ができ易いの
に対し、500℃以上で巻取ると、熱延板の状態でαと
炭化物への分解が十分に進行しており、高温で比較的長
い時間再加熱後制御冷却しないと第二相が形成し難くな
る。従って熱延巻取り温度は低ければ低いほど好まし
い。
In the present invention, the hot rolling coiling temperature is 500
C. or less is preferable. When such low temperature winding is performed,
The second phase is likely to form when reheated to 700 ° C or higher and then rapidly cooled, whereas when wound at 500 ° C or higher, decomposition into α and carbide progresses sufficiently in the state of the hot rolled sheet, so comparison at high temperature It is difficult to form the second phase unless controlled cooling is performed after reheating for an extremely long time. Therefore, the lower the hot rolling temperature is, the more preferable.

【0008】加熱温度の下限を700℃としたのは、こ
れ以下の温度では本目的にかなった一次再結晶板ができ
ないためである。加熱温度の上限を900℃以下とした
のはこれ以上の高温で加熱した場合、集積度の高い二次
再結晶を発現させるためには二次均熱が必要で、経済的
でないので900℃以下とした。加熱時間を1秒以上3
00秒以下としたのはこの範囲であれば(110)〔0
01〕二次再結晶発現に有利な一次再結晶板が得られる
ためである。加熱時間が300秒超でも効果はあるが、
熱的に不経済なので、加熱時間の上限を300秒とし
た。1秒未満では効果が不十分なので1秒以上とした。
The lower limit of the heating temperature is set to 700 ° C. because the primary recrystallized plate which meets the purpose cannot be obtained at a temperature lower than this. The upper limit of the heating temperature is set to 900 ° C or less, because when heating at a higher temperature than this, secondary soaking is necessary to develop highly integrated secondary recrystallization, which is not economical, so 900 ° C or less And Heating time 1 second or more 3
It is within this range that (00) [0]
01] It is because a primary recrystallized plate that is advantageous for developing secondary recrystallization can be obtained. It is effective even if the heating time exceeds 300 seconds,
Since it is thermally uneconomical, the upper limit of the heating time was set to 300 seconds. If the time is less than 1 second, the effect is insufficient.

【0009】以上の範囲で熱延板焼鈍を行ない冷延後一
次再結晶させれば、本目的にかなった一次再結晶板とな
る。この場合一次再結晶温度を800℃以上としたの
は、これ以下の温度で一次再結晶させても、集積度の高
い(110)〔001〕二次再結晶が発現しないためで
あり、950℃以下としたのはこれ以上の温度で再結晶
させると、二次再結晶が発現しなくなる場合が多くなる
ためである。加熱時間が20秒未満では脱炭が不十分で
あり、300秒超の加熱を行なっても何等の効果もない
ので、加熱時間は20秒以上300秒以下とした。
If the hot-rolled sheet is annealed in the above range and cold-rolled and then primary recrystallization is performed, a primary recrystallized plate that meets the purpose is obtained. In this case, the reason why the primary recrystallization temperature is set to 800 ° C. or higher is that even if the primary recrystallization is performed at a temperature lower than this temperature, (110) [001] secondary recrystallization having a high degree of integration does not occur, and the temperature is 950 ° C. The reason for setting below is that if recrystallization is carried out at a temperature higher than this, secondary recrystallization often does not occur. If the heating time is less than 20 seconds, decarburization is insufficient and heating for more than 300 seconds has no effect. Therefore, the heating time was set to 20 seconds or more and 300 seconds or less.

【0010】このようにして形成した一次再結晶板から
(110)〔001〕方位のみ優先的に二次再結晶させ
るためには、その他の結晶粒の成長を抑え、(110)
〔001〕方位粒のみ優先的に成長させるためのインヒ
ビターが必要であり、この目的のため、一次再結晶焼鈍
に引き続き窒化処理が連続的に行なわれる。この時の窒
化量を制御することが極めて重要であり、窒素分析値で
300ppm 以上1500ppm 以下とすることが好まし
い。窒化処理後の窒素分析値が300ppm 未満の場合や
1500ppm 超の場合は、二次再結晶が発現しても磁束
密度が低いか二次再結晶が部分的にしか発現しない等不
安定になる。
In order to preferentially recrystallize only the (110) [001] orientation from the primary recrystallized plate thus formed, growth of other crystal grains is suppressed and (110)
An inhibitor for growing preferentially only [001] oriented grains is necessary, and for this purpose, nitriding treatment is continuously performed after primary recrystallization annealing. It is extremely important to control the nitriding amount at this time, and it is preferable to set the nitrogen analysis value to 300 ppm or more and 1500 ppm or less. When the nitrogen analysis value after the nitriding treatment is less than 300 ppm or more than 1500 ppm, even if the secondary recrystallization occurs, the magnetic flux density is low or the secondary recrystallization partially develops and becomes unstable.

【0011】この理由は窒素量で二次再結晶温度が変化
するためであり、窒化量が少なく低温で二次再結晶が発
現する場合は磁束密度が低くなり、窒化量が多すぎて二
次再結晶温度が高すぎる場合、二次再結晶が発現する場
合は磁束密度が低くなったり、二次再結晶が部分的にし
か発現しなくなるためである。SL法で従来の二段均熱
の熱延板焼鈍を行なう場合は、窒素量は200ppm から
300ppm 程度にすれば、磁束密度の高い二次再結晶が
発現するが、本発明法の熱延板焼鈍の場合、磁束密度の
高い二次再結晶を発現させるためには窒化量を多くする
必要がある。窒化処理工程で窒化量を増やすことは、殆
どコストには影響しないので、窒化量を多くすること
は、本発明の熱延板焼鈍工程を簡略化できるメリットを
損なうものではない。
The reason for this is that the secondary recrystallization temperature changes depending on the amount of nitrogen. When the amount of nitriding is small and secondary recrystallization occurs at low temperature, the magnetic flux density is low, and the amount of nitriding is too large to cause secondary recrystallization. This is because when the recrystallization temperature is too high, the magnetic flux density becomes low when the secondary recrystallization appears, or the secondary recrystallization only partially develops. In the case of performing the conventional two-stage uniform hot-rolled sheet annealing by the SL method, if the amount of nitrogen is set to about 200 ppm to 300 ppm, secondary recrystallization with a high magnetic flux density appears, but the hot-rolled sheet of the present invention method In the case of annealing, it is necessary to increase the amount of nitriding in order to develop secondary recrystallization having a high magnetic flux density. Increasing the nitriding amount in the nitriding process hardly affects the cost, so increasing the nitriding amount does not impair the merit of simplifying the hot-rolled sheet annealing process of the present invention.

【0012】以下その他の条件を限定した理由を簡単に
説明する。本発明法に従って処理すればCは0.025
%未満でも磁束密度の高い二次再結晶が得られるが、発
現する二次再結晶粒径が大きくなり、その結果鉄損が悪
い場合があるので0.025%以上とした。また0.0
6%超のCでも磁束密度の高い二次再結晶は発現する
が、これ以上のCを高めても、磁気特性の向上は見られ
ず、脱炭時間が長くなり好ましくないので0.06%以
下とした。
The reason why the other conditions are limited will be briefly described below. When processed according to the method of the present invention, C is 0.025.
If it is less than 0.1%, secondary recrystallization with a high magnetic flux density can be obtained, but the secondary recrystallization grain size that develops becomes large, and as a result, iron loss may be poor, so it was made 0.025% or more. Also 0.0
Even if C exceeds 6%, secondary recrystallization with high magnetic flux density appears, but even if C is increased beyond this, improvement in magnetic properties is not seen and decarburization time becomes long, which is not preferable. Below.

【0013】次にSを0.002〜0.030%の範囲
に限定したのは、本発明素材成分においてはSが0.0
02%未満では(110)〔001〕から外れた二次再
結晶粒の発現が多くなるためで、Sは多いほど二次再結
晶の発現に効果的だが、Sが多い場合熱延工程で割れが
発生し易いので、本発明では上限を0.030%とした
ものである。Siは含有量が多いほど固有抵抗が増加し
て製品の渦流損を減少させるので、渦流損を減少させる
ためにはSiは多いほど良い。Siを2%以上と限定し
たのはこれ未満では渦流損が大きく好ましくないので下
限を2%としたものである。しかしSiは添加量が増す
ほど冷間圧延工程で割れ易くなる。Siが4.5%超で
は冷間圧延に特別の工夫が必要で経済的に製造するとい
う本発明の目的にそれるので上限を4.5%とした。
Next, S is limited to the range of 0.002 to 0.030% because S in the material component of the present invention is 0.0
If it is less than 02%, secondary recrystallized grains deviating from (110) [001] are more likely to occur. The more S, the more effective the secondary recrystallization is. However, when S is large, cracking occurs in the hot rolling process. Therefore, the upper limit is set to 0.030% in the present invention. As the Si content increases, the specific resistance increases and the eddy current loss of the product decreases. Therefore, the more Si the better, in order to reduce the eddy current loss. The reason why Si is limited to 2% or more is that the lower limit is 2% because eddy current loss is large and it is not preferable if Si is less than this. However, Si becomes more likely to crack in the cold rolling process as the added amount increases. If the Si content exceeds 4.5%, the upper limit is set to 4.5% because the cold rolling requires a special device and the purpose of the present invention is to economically manufacture.

【0014】Alは(Al,Si)Nを形成しインヒビ
ターとして働くが、酸可溶性Alとして0.01%以上
ないとその効果が発揮されないので下限を0.01%と
した。上限を0.08%としたのはこれ以上のAlが存
在するとインヒビターとして有効に働かなくなるためで
ある。Nは(Al,Si)Nを形成しインヒビターとし
て働くが、スラブの段階で0.001%以上ないとその
効果が発揮されないので下限を0.001%とした。上
限を0.02%としたのはこれ以上含まれるとブリスタ
ーと呼ばれる表面傷が発生するためである。
Al forms (Al, Si) N and acts as an inhibitor, but the effect is not exhibited unless the content of acid-soluble Al is 0.01% or more, so the lower limit was made 0.01%. The upper limit is set to 0.08% because if it exceeds this amount, it will not work effectively as an inhibitor. N forms (Al, Si) N and acts as an inhibitor, but the effect is not exhibited unless it is 0.001% or more at the slab stage, so the lower limit was made 0.001%. The upper limit is set to 0.02% because if it is contained more than this, surface scratches called blister occur.

【0015】粗熱延開始温度が1200℃超となると本
発明成分では二次再結晶が不安定になり、二次再結晶が
安定して製品の磁束密度は1.80Tesla 以下になる確
率が増加するので、1200℃以下とした。粗熱延開始
温度が1000℃未満でも良好な磁気特性が得られる
が、熱延に要するエネルギーが多く必要で、かつ熱延時
に鋼板表面に傷が入り易くなるので経済的でないため、
粗熱延開始温度を1000℃以上とした。
If the hot rolling start temperature exceeds 1200 ° C., the secondary recrystallization becomes unstable with the components of the present invention, the secondary recrystallization becomes stable, and the probability that the magnetic flux density of the product will be 1.80 Tesla or less increases. Therefore, the temperature was set to 1200 ° C. or lower. Good magnetic properties can be obtained even when the crude hot rolling start temperature is less than 1000 ° C., but a lot of energy required for hot rolling is required and it is not economical because the surface of the steel sheet is easily scratched during hot rolling.
The crude hot rolling start temperature was set to 1000 ° C or higher.

【0016】仕上げ焼鈍の雰囲気は従来の方向性電磁鋼
板の仕上げ焼鈍同様で良い。しかし仕上げ焼鈍昇温過程
の窒素を90%以上、好ましくは95%以上の雰囲気で
焼鈍すると、安定して良好な磁気特性が得られる。この
場合で仕上げ焼鈍の昇温過程における800℃以上の領
域でこのような雰囲気とすることが好ましい。この場合
800℃以上と限定したのは、これ以下の温度で窒素量
を著しく増やすと焼鈍分離剤中の水分の影響で鋼板が酸
化され良好な皮膜ができなくなる場合があるからであ
る。
The atmosphere of finish annealing may be the same as that of the conventional finish annealing of grain-oriented electrical steel sheet. However, when annealing is performed in an atmosphere of nitrogen of 90% or more, preferably 95% or more in the finish annealing temperature rising process, stable and good magnetic characteristics can be obtained. In this case, it is preferable to set such an atmosphere in a region of 800 ° C. or higher in the temperature rising process of finish annealing. In this case, the reason for limiting the temperature to 800 ° C. or higher is that if the amount of nitrogen is remarkably increased at a temperature lower than this temperature, the steel sheet may be oxidized due to the influence of moisture in the annealing separator, and a good film may not be formed.

【0017】[0017]

【実施例】【Example】

実施例1 C:0.034%、Si:3.27%、Mn:0.09
8%、P:0.026%、Al:0.026%、S:
0.0070%、Cr:0.118%、Cu:0.01
1%、Sn:0.052%、N:0.0070%を主成
分としたスラブを1100℃の温度で2時間加熱後、粗
圧延、仕上げ圧延を経て直ちに急冷して室温で巻取った
(厚さ2.0mm)。次いで熱延板焼鈍は875℃で12
0秒加熱後5℃の食塩水中に焼き入れる条件(A条件)
と沸騰水中に焼き入れる条件(B条件)の2条件で行な
った。酸洗後冷間圧延を行ない厚さ0.30mmとした。
この場合冷間圧延途中板厚1.6mm、1.2mm、0.8
mm、0.6mm、0.4mmの各厚みで250℃20分保持
した条件でも冷延を行なった(Pass毎Agingあ
りと呼ぶ、この処理を施さない冷延をPass毎Agi
ngなしの冷延と呼ぶ)。
Example 1 C: 0.034%, Si: 3.27%, Mn: 0.09
8%, P: 0.026%, Al: 0.026%, S:
0.0070%, Cr: 0.118%, Cu: 0.01
A slab containing 1%, Sn: 0.052%, and N: 0.0070% as main components was heated at a temperature of 1100 ° C. for 2 hours, then rough-rolled, finish-rolled, rapidly cooled, and wound at room temperature ( Thickness 2.0 mm). Then, hot-rolled sheet annealing was performed at 875 ° C for 12
Conditions for heating for 0 seconds and quenching in saline at 5 ° C (condition A)
And the condition of quenching in boiling water (condition B). After pickling, cold rolling was performed to a thickness of 0.30 mm.
In this case, the plate thickness during cold rolling is 1.6mm, 1.2mm, 0.8
mm, 0.6 mm, and 0.4 mm were also cold-rolled under the condition of holding at 250 ° C. for 20 minutes (referred to as “Passing with Aging”, cold rolling without this treatment was performed with “Pass-by-Agi”).
Called cold rolling without ng).

【0018】次に表1に示した温度、時間で加熱後、冷
却過程でN2 −H2 −NH3 の雰囲気で連続的に窒化処
理した。次にMgOを塗布し95%N2 −H2 の雰囲気
で昇温速度15℃/hrで1200℃まで加熱後、100
%H2 雰囲気で20時間加熱後冷却した。次いで歪取り
焼鈍を行ない磁気特性を測定した。結果を表1に示す。
比較のため熱延板焼鈍を1080℃で30秒加熱後90
0℃で150秒保持後沸騰水中で冷却(C条件)を行な
った後、表1に示した温度時間で加熱後、冷却過程でN
2 −H2 −NH3 の雰囲気で連続的に窒化処理し、本発
明と同じ工程で処理した試片も作製し、その結果に併せ
て表1に示した。表に示したように本発明材は熱延板焼
鈍温度が低いにもかかわらず比較材と同等以上の良好な
磁気特性が得られた。
Next, after heating at the temperature and time shown in Table 1, nitriding treatment was continuously performed in an atmosphere of N 2 —H 2 —NH 3 in the cooling process. Next, MgO is applied and heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 95% N 2 —H 2 and then 100
It was heated in a% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 1.
For comparison, hot-rolled sheet annealing was heated at 1080 ° C. for 30 seconds and then 90
After holding at 0 ° C for 150 seconds, cooling in boiling water (condition C), heating at the temperature time shown in Table 1, and then N in the cooling process
Continuously in an atmosphere of 2 -H 2 -NH 3 nitrided, treated specimen by the same process as the present invention is also produced, as shown in Table 1 together with the result. As shown in the table, the material of the present invention has good magnetic characteristics equivalent to or better than those of the comparative material despite the low annealing temperature of the hot rolled sheet.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明により、簡単な熱延板焼鈍で磁気
特性の優れた電磁鋼板が安価に製造できる。
According to the present invention, a magnetic steel sheet having excellent magnetic properties can be manufactured at low cost by a simple hot-rolled sheet annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.025〜0.060重量%、 Si:2.0〜4.5重量%、 酸可溶性Al:0.010〜0.080重量%、 N :0.001〜0.020重量%、 S :0.0020〜0.030重量%、 残部Fe及び不可避的不純物を含んだ珪素鋼スラブを1
000℃から1200℃の温度域で粗圧延を開始し、引
き続き仕上げ圧延を行なった後、該熱延鋼帯を700℃
以上900℃以下の温度で1秒以上300秒以内加熱
後、直ちに空冷より速い冷却速度で冷却した後1回の冷
間圧延で所定の板厚とし、800℃から950℃の温度
域で20秒以上300秒以内加熱脱炭した後、鋼板を走
行せしめる状態で窒化処理を施した後焼鈍分離剤を塗布
し、仕上げ焼鈍を施す磁束密度の高い方向性珪素鋼板の
製造方法。
1. C: 0.025 to 0.060% by weight, Si: 2.0 to 4.5% by weight, acid-soluble Al: 0.010 to 0.080% by weight, N: 0.001 to 0. 0.020% by weight, S: 0.0020 to 0.030% by weight, 1 of a silicon steel slab containing the balance Fe and unavoidable impurities
After the rough rolling is started in the temperature range of 000 ° C to 1200 ° C and the finish rolling is subsequently performed, the hot rolled steel strip is heated to 700 ° C.
After heating at a temperature of 900 ° C or lower for 1 second or more and 300 seconds or less, immediately cool at a cooling rate faster than air cooling, and then perform one cold rolling to a predetermined plate thickness, and in a temperature range of 800 ° C to 950 ° C for 20 seconds. A method for producing a grain-oriented silicon steel sheet having a high magnetic flux density, which is decarburized by heating within 300 seconds, nitrided in a state in which the steel sheet is allowed to travel, and then applied with an annealing separation agent and subjected to finish annealing.
【請求項2】 窒化処理後の窒素量を300ppm 以上1
500ppm 以下の範囲とする請求項1記載の方法。
2. The amount of nitrogen after nitriding is 300 ppm or more 1
The method according to claim 1, wherein the range is 500 ppm or less.
JP6042823A 1994-03-14 1994-03-14 Production of grain oriented silicon steel sheet Withdrawn JPH07252531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6042823A JPH07252531A (en) 1994-03-14 1994-03-14 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6042823A JPH07252531A (en) 1994-03-14 1994-03-14 Production of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH07252531A true JPH07252531A (en) 1995-10-03

Family

ID=12646681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6042823A Withdrawn JPH07252531A (en) 1994-03-14 1994-03-14 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH07252531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419642B1 (en) * 1999-04-29 2004-02-25 주식회사 포스코 method for manufacturing high magnetic flux density grain-oriented electrical steels
KR100544637B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 A method for grain-oriented electrical steel sheet with good magnetic properties
US9175362B2 (en) 2010-02-18 2015-11-03 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419642B1 (en) * 1999-04-29 2004-02-25 주식회사 포스코 method for manufacturing high magnetic flux density grain-oriented electrical steels
KR100544637B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 A method for grain-oriented electrical steel sheet with good magnetic properties
US9175362B2 (en) 2010-02-18 2015-11-03 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP2728112B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent iron loss
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
CN113825847B (en) Method for producing oriented electrical steel sheet
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JPH04120216A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic
JPH07252531A (en) Production of grain oriented silicon steel sheet
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JPH0949022A (en) Production of grain oriented silicon steel sheet with low iron loss and high magnetic flux density
JPH04301035A (en) Production of grain-oriented silicon steel sheet having magnetic property uniform in longitudinal direction
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JPH0726328A (en) Production of grain oriented silicon steel sheet
JPH0797629A (en) Manufacturing unidirectional electromagnetic steel plate or steel strip
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07113120A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH0562802B2 (en)
JPH07258737A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH0770639A (en) Production of grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605