JPH086138B2 - Method for manufacturing thin unidirectional silicon steel sheet with low iron loss - Google Patents

Method for manufacturing thin unidirectional silicon steel sheet with low iron loss

Info

Publication number
JPH086138B2
JPH086138B2 JP3100232A JP10023291A JPH086138B2 JP H086138 B2 JPH086138 B2 JP H086138B2 JP 3100232 A JP3100232 A JP 3100232A JP 10023291 A JP10023291 A JP 10023291A JP H086138 B2 JPH086138 B2 JP H086138B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
iron loss
unidirectional silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3100232A
Other languages
Japanese (ja)
Other versions
JPH04329830A (en
Inventor
克郎 黒木
洋三 菅
延幸 高橋
清 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3100232A priority Critical patent/JPH086138B2/en
Publication of JPH04329830A publication Critical patent/JPH04329830A/en
Publication of JPH086138B2 publication Critical patent/JPH086138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電機機器の鉄心に用いら
れる薄物一方向性珪素鋼板の製造方法に関するもので、
これにより鉄損の低い薄物一方向性珪素鋼板の製造を可
能にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin unidirectional silicon steel sheet used for an iron core of an electric machine,
This makes it possible to manufacture a thin unidirectional silicon steel sheet with low iron loss.

【0002】[0002]

【従来の技術】一方向性珪素鋼板は鋼板面が{110}
面で、圧延方向が〈100〉軸を有する、いわゆるゴス
方位(ミラー指数で{110}〈001〉方位を表わ
す)を持つ結晶粒から構成されており、軟磁性材料とし
て変圧器および発電機用の鉄心に使用される。この鋼板
は磁気特性として磁化特性と鉄損特性が良好でなければ
ならない。磁化特性の良否はかけられた一定の磁場中で
鉄心内に誘起される磁束密度の高低で決まり、磁束密度
の高い製品では鉄心を小型化できる。磁束密度の高さは
鋼板結晶粒の方位を{110}〈001〉に高度に揃え
ることによって達成できる。
2. Description of the Related Art A unidirectional silicon steel plate has a steel plate surface of {110}
In the plane, the rolling direction has a <100> axis, and it is composed of crystal grains having a so-called Goss orientation (representing {110} <001> orientation in Miller index), and is used as a soft magnetic material for transformers and generators. Used for iron cores. This steel sheet must have good magnetic properties and iron loss properties. The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the iron core in the applied constant magnetic field, and the iron core can be downsized in products with high magnetic flux density. The high magnetic flux density can be achieved by aligning the orientation of the steel plate crystal grains to {110} <001>.

【0003】鉄損は鉄心に所定の交流磁場を与えた場合
に熱エネルギーとして消費される電力損失であり、その
良否に対して磁束密度、板厚、不純物量、比抵抗、結晶
粒の大きさ等が影響する。磁束密度の高い鋼板は電気機
器の鉄心を小さくでき、また鉄損も少なくなるので望ま
しく、当該技術分野ではできる限り磁束密度の高い製品
を安いコストで製造する方法の開発が課題である。
Iron loss is a power loss consumed as heat energy when a predetermined AC magnetic field is applied to the iron core, and magnetic flux density, plate thickness, amount of impurities, specific resistance, size of crystal grains are determined according to the quality. And so on. A steel sheet having a high magnetic flux density can reduce the iron core of an electric device and also reduce an iron loss, which is desirable. In the technical field, development of a method of manufacturing a product having a high magnetic flux density at a low cost is an issue.

【0004】ところで、一方向性珪素鋼板は、熱延板を
適切な冷延と焼鈍との組合せにより最終板厚になった鋼
板を仕上焼鈍することにより{110}〈001〉方位
を有する一次再結晶粒を選択成長させる、いわゆる二次
再結晶によって得られる。二次再結晶は二次再結晶前の
鋼板中に微細な析出物、例えばMnS,AlN,MnS
e,BN,(Al,Si)N等が存在すること、あるい
はSn,Sb,等の粒界存在型の元素が存在することに
よって達成される。
By the way, a unidirectional silicon steel sheet has a primary re-orientation having a {110} <001> orientation by finishing annealing a hot rolled sheet having a final thickness obtained by a combination of appropriate cold rolling and annealing. It is obtained by so-called secondary recrystallization in which crystal grains are selectively grown. The secondary recrystallization is a fine precipitate such as MnS, AlN, MnS in the steel sheet before the secondary recrystallization.
This is achieved by the presence of e, BN, (Al, Si) N, etc., or the presence of grain boundary existence type elements such as Sn, Sb, etc.

【0005】これら析出物、粒界存在型の元素はJ.B.Ma
y and D.Turnbull(Trans. Met.Soc.AIME212(1958)p769/
781)によって説明されているように、仕上焼鈍工程で
{110}〈001〉方位以外の一次再結晶粒の成長を
抑え、{110}〈001〉方位粒を選択的に成長させ
る機能を持つ。このような粒成長の抑制効果は一般には
インヒビター効果と呼ばれている。したがって当該分野
の研究開発の重点課題はいかなる種類の析出物、あるい
は粒界存在型の元素を用いて二次再結晶を安定させる
か、そして正確な{110}〈001〉方位粒の存在割
合を高めるためにそれらの適切な存在状態をいかに達成
するかにある。
These precipitates and grain boundary type elements are JBMa
y and D. Turnbull (Trans.Met.Soc.AIME212 (1958) p769 /
781), it has the function of suppressing the growth of primary recrystallized grains other than the {110} <001> orientation in the finish annealing step and selectively growing the {110} <001> oriented grains. Such a grain growth suppressing effect is generally called an inhibitor effect. Therefore, the priority issue of research and development in this field is to determine what kind of precipitates or grain boundary existence type elements are used to stabilize the secondary recrystallization, and to determine the exact proportion of {110} <001> oriented grains. It is how to achieve their proper presence to enhance.

【0006】特に、最近では一種類の析出物による方法
では{110}〈001〉方位の高度の制御に限界があ
るため、各析出物について短所・長所を深く解明するこ
とにより、いくつかの析出物を有機的に組合せて、より
磁束密度の高い製品を安定に、かつコストを安く製造で
きる技術開発が進められている。現在、工業生産されて
いる代表的な一方向性珪素鋼板製造方法として3種類あ
るが、各々については長所・短所がある。第一の技術は
M.F Littmannによる特公昭30−3651号公報に示さ
れたMnSを用いた二回冷延工程であり、得られる二次
再結晶粒は安定して発達するが、高い磁束密度が得られ
ない。第二の技術は田口等による特公昭40−1564
4号公報に示されたAlN+MnSを用いた最終冷延を
80%以上の強圧下率とするプロセスであり、高い磁束
密度は得られるが、工業生産に際しては製造条件の厳密
なコントロールが要求される。第三の技術は今中等によ
る特公昭51−13469号公報に示されたMnS(お
よび/またはMnSe)+Sbを含有する珪素鋼を二回
冷延工程によって製造するプロセスであり、比較的高い
磁束密度は得られるが、二回冷延法であることから製造
コストが高くなる。
In particular, recently, the method using one kind of precipitate has a limit in controlling the altitude of the {110} <001> orientation. Therefore, by clarifying the disadvantages and merits of each precipitate, some precipitates are formed. Technological development is underway to organically combine products to stably manufacture products with higher magnetic flux density and at lower cost. At present, there are three types of typical industrially produced unidirectional silicon steel sheet manufacturing methods, each of which has advantages and disadvantages. The first technique is
This is a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651 by MF Littmann, and the obtained secondary recrystallized grains grow stably, but a high magnetic flux density cannot be obtained. The second technique is Japanese Patent Publication No. 40-1564 by Taguchi et al.
This is a process in which the final cold rolling using AlN + MnS disclosed in Japanese Patent Publication No. 4 is a strong rolling reduction of 80% or more, and a high magnetic flux density can be obtained, but strict control of manufacturing conditions is required in industrial production. . The third technique is a process for producing silicon steel containing MnS (and / or MnSe) + Sb, which is disclosed in Japanese Examined Patent Publication No. 51-13469, by a double cold rolling process, and has a relatively high magnetic flux density. Although it can be obtained, the double cold rolling method increases the manufacturing cost.

【0007】上記3種類の技術においては共通して次の
ような問題がある。すなわち、上記技術はいずれもが析
出物を微細、均一に制御する技術として熱延に先立つス
ラブ加熱温度を、第一の技術では1260℃以上、第二
の技術では特開昭48−51852号公報に示すように
素材Si量によるが3%Siの場合で1350℃、第三
の技術では特開昭51−20716号公報に示されるよ
うに1230℃以上、高い磁束密度の得られた実施例で
は1320℃といった極めて高い温度にすることによっ
て粗大に存在する析出物を一旦固溶させ、その後の熱延
中、あるいは熱処理中に析出させている。スラブ加熱温
度を上げることはスラブ加熱時の使用エネルギーの増
大、ノロの発生による歩留り低下および加熱炉補修費の
増大ならびに加熱炉補修頻度の増大に起因する設備稼働
率の低下、さらには特公昭57−41526号公報に示
されるように線状二次再結晶不良が発生するために連続
鋳造スラブが使用できないという問題がある。しかしこ
のようなコスト上の問題以上に重要なことは、鉄損向上
のためにSiを多く、成品板厚を薄く、といった手段を
採ると、この線状二次再結晶不良の発生が増大し、高温
スラブ加熱法を前提にした技術では将来の鉄損向上に希
望を持てない。これに対し特公昭61−60896号公
報に開示されている技術では鋼中のSを少なくすること
によって二次再結晶が極めて安定し、高Si薄手成品を
可能にした。しかしこの技術は量産規模で工場生産する
上で磁束密度の安定性に問題があり、例えば特開昭62
−40315号公報に開示されているような改良技術が
提案されているが、今まで完全に解決するに至っていな
い。
The above three types of technology have the following problems in common. That is, in any of the above techniques, the slab heating temperature prior to hot rolling as a technique for finely and uniformly controlling precipitates is 1260 ° C. or higher in the first technique and JP-A-48-51852 in the second technique. Depending on the amount of Si as the material, 1350 ° C. in the case of 3% Si, and 1230 ° C. or higher in the third technique as shown in JP-A-51-20716. By making the temperature extremely high such as 1320 ° C., coarsely existing precipitates are once solid-dissolved and then precipitated during hot rolling or heat treatment. Increasing the slab heating temperature increases the energy used during slab heating, decreases the yield due to the generation of slag, increases the heating furnace repair cost, and lowers the facility operating rate due to the increased heating furnace repair frequency. There is a problem that the continuous casting slab cannot be used because linear secondary recrystallization failure occurs as disclosed in Japanese Patent Publication No. 41526-415. However, more important than such a problem in terms of cost, if measures such as increasing Si and increasing the product thickness to reduce iron loss are taken, the occurrence of this linear secondary recrystallization defect increases. However, the technology based on the high temperature slab heating method has no hope for improving iron loss in the future. On the other hand, in the technique disclosed in Japanese Examined Patent Publication No. 61-60896, by reducing the S in the steel, the secondary recrystallization is extremely stable and a high Si thin hand product is made possible. However, this technique has a problem in the stability of the magnetic flux density in factory production on a mass production scale.
Although an improved technique disclosed in Japanese Patent Publication No.-40315 has been proposed, it has not been solved completely until now.

【0008】[0008]

【発明が解決しようとする課題】以上述べて来たように
現在工業化されている製造方法は二次再結晶に必要なイ
ンヒビターを冷間圧延以前の工程で造り込むものであ
る。これに対し本発明は特開昭62−40315号公報
と同一技術思想に基づく製造方法である。即ち、二次再
結晶に必要なインヒビターは、脱炭焼鈍(一次再結晶)
完了以降から仕上焼鈍における二次再結晶発現以前まで
に造り込むもので、その手段として鋼中にNを侵入させ
ることによって、インヒビターとして機能する(Al,
Si)Nを形成させる。
As described above, the manufacturing method currently industrialized is to incorporate the inhibitor required for secondary recrystallization in the step before cold rolling. On the other hand, the present invention is a manufacturing method based on the same technical idea as JP-A-62-40315. That is, the inhibitor required for secondary recrystallization is decarburization annealing (primary recrystallization).
It is built in after completion until before secondary recrystallization occurs in finish annealing. As a means of that, N is introduced into the steel to function as an inhibitor (Al,
Si) N is formed.

【0009】鋼中にNを侵入させる手段としては、従来
技術で提案されているように仕上焼鈍昇温過程での雰囲
気ガスからのNの侵入を利用する方法があるが、本発明
においては、脱炭焼鈍後段領域あるいは脱炭焼鈍完了後
のストリップを連続ラインでNH3 等の窒化源となる雰
囲気ガスを用いて行う。このようなプロセスを採る場合
においても二次再結晶粒を小さくし、良質の被膜を形成
させることが低鉄損を得る上で重要なことに変わりはな
いが、この点まだ十分とは言えない。この他鋼板の板厚
が薄くなると二次再結晶粒の発達が不安定になる傾向も
出ており、このような問題点も解決していく必要があ
る。
As a means for injecting N into the steel, there is a method of utilizing N invasion from the atmospheric gas in the finish annealing temperature rising process as proposed in the prior art, but in the present invention, The stripping after the decarburization annealing or the strip after the completion of the decarburization annealing is performed in a continuous line using an atmosphere gas such as NH 3 which serves as a nitriding source. Even when such a process is adopted, it is still important to reduce the secondary recrystallized grains and form a good quality film in order to obtain low iron loss, but this point is not yet sufficient. . In addition, the development of secondary recrystallized grains tends to become unstable when the plate thickness of the steel plate becomes thin, and it is necessary to solve such a problem.

【0010】[0010]

【課題を解決するための手段】本発明者らはこの技術を
さらに詳細に検討した結果、鋼板表面に脱炭焼鈍および
連続的な窒化焼鈍過程で生成する酸化物の酸素量及び仕
上焼鈍昇温過程の追加酸化によって形成する酸化膜の量
と質が、後の仕上焼鈍過程での雰囲気ガスからの窒化や
インヒビターの抜け及びグラス被膜の形成過程で多大な
影響をもたらすことを確かめ、これらの制御により最終
成品での磁気特性、グラス被膜特性を著しく改善できる
という新しい知見に加えて粒界偏析型であるSn,Sb
を添加することにより仕上焼鈍高温域(二次再結晶開始
温度)まで一次再結晶粒成長制御効果をもたせ、特に薄
物製品の磁気特性の安定化に効果が大きいことを見出し
た。
As a result of a more detailed study of this technique, the inventors of the present invention have found that the oxygen content of oxides produced during decarburization annealing and continuous nitriding annealing on the surface of a steel sheet and the temperature of finish annealing are increased. It was confirmed that the amount and quality of the oxide film formed by the additional oxidation in the process had a great influence on the nitridation of the atmospheric gas and the removal of the inhibitor and the formation process of the glass film in the subsequent finish annealing process. In addition to the new finding that the magnetic properties and glass coating properties in the final product can be significantly improved by the addition of Sn, Sb which is a grain boundary segregation type,
It has been found that the addition of Al has the effect of controlling the primary recrystallized grain growth up to the high temperature range of the finish annealing (secondary recrystallization start temperature), and is particularly effective in stabilizing the magnetic properties of thin products.

【0011】この鋼板表面に形成する酸素量の制御は通
常脱炭焼鈍時の雰囲気ガス露点及び焼鈍分離剤の持込水
分量規制で行われるが、鋼の成分、例えばMn,Si,
Al,Cr等の含有量によって、或いは鋼板の表面性状
によってその変動はさけられない。また、鋼板の板厚が
薄くなればなる程、鋼板表面層のインヒビターの変動の
影響が大きくなり磁気特性が変動する。
The control of the amount of oxygen formed on the surface of the steel sheet is usually carried out by controlling the atmospheric gas dew point during decarburization annealing and the amount of water carried in by the annealing separator, but the components of the steel such as Mn, Si,
The variation is unavoidable depending on the contents of Al, Cr, etc. or the surface properties of the steel sheet. Further, the thinner the steel plate is, the more the influence of the fluctuation of the inhibitor in the surface layer of the steel plate becomes, and the magnetic characteristics fluctuate.

【0012】本発明はこれらの変動を小さくすることを
狙いとし、鋼中に微量のSnとSbを複合添加して上記
問題点を解決し目的を達成することを確認したものであ
る。AlNを基本インヒビターとする珪素鋼にSnを添
加する方法は例えば特開昭53−134722号公報記
載の方法が挙げられるが、これは実施例から見ても判る
ように従来の高温スラブ加熱の思想に基づくものであ
る。
The present invention aims to reduce these fluctuations, and has confirmed that the above problems are solved and the object is achieved by the combined addition of a small amount of Sn and Sb in steel. As a method of adding Sn to silicon steel using AlN as a basic inhibitor, for example, the method described in JP-A-53-134722 can be mentioned. This is the idea of conventional high temperature slab heating as can be seen from the examples. It is based on.

【0013】次に本発明を実験結果に基づいて説明す
る。C:0.054%,Si:3.3%,Mn:0.1
4%,S:0.007%,酸可溶性Al:0.028
%,N:0.0075%,Cr:0.10%を含み、残
部Fe及び不可避的不純物からなるスラブを再溶解し、
Sn,Sbを添加した鋼塊を1150℃に加熱し、1.
8mmに熱延した。
Next, the present invention will be described based on experimental results. C: 0.054%, Si: 3.3%, Mn: 0.1
4%, S: 0.007%, acid-soluble Al: 0.028
%, N: 0.0075%, Cr: 0.10%, redissolving a slab consisting of the balance Fe and unavoidable impurities,
The steel ingot to which Sn and Sb were added was heated to 1150 ° C., and 1.
It was hot rolled to 8 mm.

【0014】この熱延板を1120℃で焼鈍し、酸洗
し、冷延して板厚0.20mmの冷延板にした。次いで
脱炭焼鈍を840℃の温度で、N2 :25%、H2 :7
5%、露点65℃の雰囲気中で行った。次いで窒化処理
を750℃×30秒間、N2 :25%、H2 :75%、
微量のNH3 を混合した雰囲気中で行った。窒化後の
[N]量はほぼ200ppmに調整した。次いでMgO
とTiO2 を主成分とするスラリーを塗布した後、12
00℃×20時間の仕上げ焼鈍を行った後、張力コーテ
ィングを施した。この結果を図1に示す。
The hot rolled sheet was annealed at 1120 ° C., pickled and cold rolled to obtain a cold rolled sheet having a thickness of 0.20 mm. Then, decarburization annealing is performed at a temperature of 840 ° C., N 2 : 25%, H 2 : 7.
It was conducted in an atmosphere of 5% and a dew point of 65 ° C. Next, nitriding treatment is performed at 750 ° C. for 30 seconds, N 2 : 25%, H 2 : 75%,
It was performed in an atmosphere in which a slight amount of NH 3 was mixed. The amount of [N] after nitriding was adjusted to about 200 ppm. Then MgO
After applying a slurry containing TiO 2 and TiO 2 as main components,
After finish annealing at 00 ° C. for 20 hours, tension coating was applied. The result is shown in FIG.

【0015】Sbは0.00〜0.10%の範囲で、S
nは0.00〜0.14%の範囲で複合添加した。良好
な鉄損の得られるSbとSnの合計量は0.03〜0.
15%の範囲である。特にSb:0.02〜0.04
%、Sn:0.04〜0.08%の範囲で添加したもの
が優れている。なおSbは0.08%を越すと脱炭性が
劣ってくる。
Sb is in the range of 0.00 to 0.10%, and
n was compounded in the range of 0.00 to 0.14%. The total amount of Sb and Sn that gives good iron loss is 0.03 to 0.
It is in the range of 15%. Especially Sb: 0.02-0.04
%, Sn: those added in the range of 0.04 to 0.08% are excellent. If Sb exceeds 0.08%, the decarburizing property becomes poor.

【0016】次に本発明の限定理由について述べる。C
の含有量が0.025%未満になると二次再結晶が不安
定となり、かつ二次再結晶した場合でも製品の磁束密度
(B8 値)が1.80Tに満たない低いものとなる。一
方、Cの含有量が0.075%を越えて多くなり過ぎる
と、脱炭焼鈍時間が長大なものとなり、生産性を著しく
損なう。
Next, the reasons for limitation of the present invention will be described. C
When the content of is less than 0.025%, the secondary recrystallization becomes unstable, and even when the secondary recrystallization is performed, the magnetic flux density (B 8 value) of the product becomes lower than 1.80 T. On the other hand, when the content of C exceeds 0.075% and becomes too large, the decarburization annealing time becomes long and the productivity is remarkably impaired.

【0017】Siの含有量が2.5%未満になると低鉄
損の製品を得難く、一方、Siの含有量が4.5%を越
えて多くなり過ぎると材料の冷間圧延時に、割れ、破断
が多発して安定した冷間圧延作業を不可能にする。本発
明の出発材料の成分系における特徴の一つは、Sを0.
015%以下、好ましくは0.010%以下とする点に
ある。
When the Si content is less than 2.5%, it is difficult to obtain a product with low iron loss, while when the Si content exceeds 4.5% and is too large, cracking occurs during cold rolling of the material. However, frequent fractures make stable cold rolling impossible. One of the characteristics of the component system of the starting material of the present invention is that S is 0.
It is at a point of 015% or less, preferably 0.010% or less.

【0018】従来、公知の技術、例えば特公昭40−1
5644号公報或は特公昭47−25250号公報に開
示されている技術においては、Sは二次再結晶を生起さ
せるに必要な析出物の一つであるMnSの形成元素とし
て必須であった。前記公知技術において、Sが最も効果
を発揮する含有量範囲があり、それは熱間圧延に先立っ
て行われるスラブの加熱段階でMnSを固溶できる量と
して規定されていた。
Conventionally known techniques, for example, Japanese Patent Publication No. 40-1
In the technology disclosed in Japanese Patent No. 5644 or Japanese Patent Publication No. 47-25250, S is essential as an element for forming MnS, which is one of the precipitates necessary for causing secondary recrystallization. In the above-mentioned known technology, there is a content range in which S exerts the most effect, and it has been defined as an amount capable of forming a solid solution of MnS in the heating step of the slab performed prior to hot rolling.

【0019】しかしながら、インヒビターとして(A
l,Si)Nを用いる本発明においては、MnSは特に
必要としない。むしろ、MnSが増加することは磁気特
性上好ましくない。従って、本発明においては、Sの含
有量は0.015%以下、好ましくは0.010%以下
である。AlはNと結合してAlNを形成するが、本発
明においては、後工程、即ち一次再結晶完了後に鋼を窒
化することにより(Al,Si)Nを形成せしめること
を必須としているから、フリーのAlが一定量以上必要
である。そのため、sol.Alとして0.010〜
0.050%添加する。
However, as an inhibitor (A
In the present invention using l, Si) N, MnS is not particularly required. Rather, an increase in MnS is not preferable in terms of magnetic properties. Therefore, in the present invention, the S content is 0.015% or less, preferably 0.010% or less. Al combines with N to form AlN, but in the present invention, it is essential to form (Al, Si) N by nitriding the steel in a later step, that is, after completion of primary recrystallization. Al is required to have a certain amount or more. Therefore, sol. 0.010 as Al
Add 0.050%.

【0020】Mnは含有量が少な過ぎると二次再結晶が
不安定となり、一方、多過ぎると高い磁束密度をもつ製
品を得難くなる。適正な含有量は0.050〜0.45
%である。Nは0.0010%未満では二次再結晶粒の
発達が悪くなる。一方0.0120%を越えるとブリス
ターと呼ばれる鋼板のふくれが発生する。
If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. Proper content is 0.050 to 0.45
%. If N is less than 0.0010%, the development of secondary recrystallized grains becomes poor. On the other hand, if it exceeds 0.0120%, swelling of the steel sheet called blister occurs.

【0021】SnとSbを複合で添加すると、特に板厚
0.23mm以下の薄物の磁束密度、鉄損改善及びその
安定化に効果がある。適正範囲はこれら両者の合計で
0.03〜0.15%である。Crは脱炭焼鈍時の酸化
挙動に大きく影響する元素であるが、Sn,Sbと同時
に添加すると酸化層の質、量の変動を小さくし、仕上焼
鈍における被膜形成を安定化する。その添加量は0.0
4%未満では効果が小さく、一方、0.20%を越える
と磁気特性上好ましくない。適正範囲は0.04〜0.
20%である。
When Sn and Sb are added in combination, it is particularly effective in improving the magnetic flux density, iron loss and stabilization of a thin material having a plate thickness of 0.23 mm or less. The proper range is 0.03 to 0.15% in total of these two. Cr is an element that greatly affects the oxidation behavior during decarburization annealing, but if it is added at the same time as Sn and Sb, the quality and amount of the oxide layer are reduced, and the film formation during finish annealing is stabilized. The addition amount is 0.0
If it is less than 4%, the effect is small, while if it exceeds 0.20%, it is not preferable in terms of magnetic properties. The appropriate range is 0.04 to 0.
20%.

【0022】スラブ加熱温度については、従来のように
インヒビターを固溶する高温スラブ加熱でも、また殆ん
ど従来では無理と考えられていた普通鋼並の低温スラブ
加熱でも二次再結晶は行われる。しかし熱延の割れが少
なくできること、及び熱エネルギーが少ない低温スラブ
加熱が有利であることから、スラブ加熱温度はノロの発
生しない1200℃以下が望ましい。
Regarding the slab heating temperature, the secondary recrystallization is carried out by the conventional high temperature slab heating in which the inhibitor is solid-dissolved, and also by the low temperature slab heating which is considered to be almost impossible in the past, which is similar to that of ordinary steel. . However, it is desirable that the slab heating temperature is 1200 ° C. or less at which no slag is generated, because the number of cracks in hot rolling can be reduced and the low temperature slab heating with less heat energy is advantageous.

【0023】熱延以降の工程においては、最も高いB8
を得るために短時間の焼鈍後、80%以上の高圧延率の
冷延によって最終板厚にする方法が望ましい。しかし特
性はやや劣るが低コストとするために熱延板焼鈍を省略
してもよい。また最終成品の結晶粒を小さくするため中
間焼鈍を含む工程でも可能である。次に湿水素或いは湿
水素、窒素混合雰囲気ガス中で脱炭焼鈍をする。このと
きの温度は特にこだわらないが800〜900℃が好ま
しい範囲である。
In the process after hot rolling, the highest B 8
In order to obtain the above, it is desirable to employ a method in which after annealing for a short time, cold rolling with a high rolling rate of 80% or more is performed to obtain the final plate thickness. However, the hot-rolled sheet annealing may be omitted in order to reduce the cost although the characteristics are slightly inferior. It is also possible to perform the step including intermediate annealing in order to reduce the crystal grains of the final product. Next, decarburization annealing is performed in wet hydrogen or a mixed atmosphere gas of wet hydrogen and nitrogen. The temperature at this time is not particularly limited, but 800 to 900 ° C. is a preferable range.

【0024】本発明における窒化処理は脱炭焼鈍後、ス
トリップを走行せしめる状態下で水素ガス及び窒素ガス
を含む混合ガスにNH3 を混合し、かつ酸化ポテンシャ
ル:PH2 O/PH2 ≦0.04の雰囲気中、500〜
900℃の温度域で行うのがよい。次いで焼鈍分離剤を
塗布し、高温(通常1100〜1200℃)長時間の仕
上焼鈍を行う。
In the nitriding treatment in the present invention, after decarburization annealing, NH 3 is mixed with a mixed gas containing hydrogen gas and nitrogen gas under the condition of running the strip, and the oxidation potential: PH 2 O / PH 2 ≦ 0. In the atmosphere of 04, 500 ~
It is preferable to perform it in the temperature range of 900 ° C. Then, an annealing separator is applied, and finish annealing is performed at high temperature (normally 1100 to 1200 ° C.) for a long time.

【0025】[0025]

【実施例】以下実施例について述べる。 実施例1 C:0.050%,Si:3.30%,Mn:0.10
%.S:0.007%,酸可溶性Al:0.030%,
N:0.0073%,Cr:0.10%を基本成分と
し、これにSbとSnを次の表1の如く添加したインゴ
ットを造った。
EXAMPLES Examples will be described below. Example 1 C: 0.050%, Si: 3.30%, Mn: 0.10.
%. S: 0.007%, acid-soluble Al: 0.030%,
N: 0.0073% and Cr: 0.10% were used as basic components, and Sb and Sn were added thereto as shown in Table 1 below to produce an ingot.

【0026】これを1150℃で加熱し、熱延し、1.
6mm厚の熱延板を得た。この熱延板を切断し、110
0℃×2.5分+900℃×2分の焼鈍をし、100℃
の湯中で冷却した後、酸洗し、0.17mm厚に冷延し
た。次いで830℃×90秒の脱炭焼鈍を露点60℃の
湿水素、窒素雰囲気中で行った。次いで水素75%、窒
素25%、微量のアンモニア混合ガス中で750℃×3
0秒の窒化処理を行い、鋼板の窒素量を180ppmと
した。次いでMgOにTiO25%とNa2 4
7 0.3%を添加してなるスラリーを塗布した後、12
00℃×20時間の仕上焼鈍を行った。次いで張力コー
ティング処理を行った。磁気特性を表2に示す。
This was heated at 1150 ° C., hot rolled, and 1.
A hot rolled plate having a thickness of 6 mm was obtained. This hot rolled sheet is cut to 110
Annealed at 0 ℃ for 2.5 minutes + 900 ℃ for 2 minutes, 100 ℃
After being cooled in hot water, pickled and cold rolled to a thickness of 0.17 mm
It was Next, decarburization annealing at 830 ° C for 90 seconds was performed at a dew point of 60 ° C.
It was performed in an atmosphere of wet hydrogen and nitrogen. Next, hydrogen 75%, nitrogen
Elementary 25%, 750 ° C x 3 in a small amount of ammonia mixed gas
Nitriding is performed for 0 seconds and the nitrogen content of the steel plate is adjusted to 180 ppm.
did. Then MgO and TiO25% and Na2B FourO
7After applying the slurry obtained by adding 0.3%, 12
Finish annealing was performed at 00 ° C. for 20 hours. Then tension cord
Processing was performed. The magnetic properties are shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】Sn単独、Sb単独よりSnとSbを複合
添加したものが優れた磁気特性を示した。 実施例2 C:0.052%,Si:3.45%,Mn:0.12
%.S:0.007%,酸可溶性Al:0.028%,
N:0.0075%,Cr:0.08%を含み、残部Fe
および不可避的不純物からなる材料Aとこの成分にS
n:0.08%、Sb0.02%を添加した材料Bの
1.3mmの熱延板を、それぞれ950℃×5分の焼鈍
をし、100℃の湯中で冷却した。次いで酸洗し、0.
13mm厚に冷延した。次いで830℃×90秒の脱炭
焼鈍を露点60℃の湿水素、窒素雰囲気中で行った。次
いで750℃×30秒の窒化処理を水素、窒素、アンモ
ニアの混合ガス中で行い、窒化後の窒素量180ppm
とした。次いでMgOにTiO 2 5%とSb2 (S
4 30.2%を添加してなるスラリーを塗布した
後、1200℃×20時間の仕上焼鈍を行った。
Composite of Sn and Sb from Sn alone and Sb alone
The added one showed excellent magnetic properties. Example 2 C: 0.052%, Si: 3.45%, Mn: 0.12
%. S: 0.007%, acid-soluble Al: 0.028%,
N: 0.0075%, Cr: 0.08% included, balance Fe
And material A consisting of inevitable impurities and S in this component
n: 0.08%, of the material B with Sb 0.02% added
Annealing of 1.3 mm hot rolled sheets for 950 ° C x 5 minutes
And cooled in hot water at 100 ° C. Then, pickling,
It was cold rolled to a thickness of 13 mm. Next, decarburization at 830 ° C for 90 seconds
Annealing was performed in a wet hydrogen / nitrogen atmosphere with a dew point of 60 ° C. Next
Nitrogen treatment at 750 ° C for 30 seconds is performed with hydrogen, nitrogen, and ammonia.
Nitrogen mixed gas, nitrogen content after nitriding 180ppm
And Then MgO and TiO 25% and Sb2(S
OFour)3A slurry prepared by adding 0.2% was applied.
Then, finish annealing was performed at 1200 ° C. for 20 hours.

【0030】次いでレーザー照射して磁区制御を行った
後、張力コーティングを施した。磁気特性は次の如くで
あった。Sn,Sbを添加した試料Bが非常に優れた磁
気特性を示した。 試料 A 試料 B B8 (T) 1.89 1.92 W13/50 (W/kg) 0.40 0.31
Then, laser irradiation was performed to control magnetic domains, and then tension coating was applied. The magnetic properties were as follows. Sample B containing Sn and Sb showed very excellent magnetic properties. Sample A Sample B B 8 (T) 1.89 1.92 W 13/50 (W / kg) 0.40 0.31

【0031】[0031]

【発明の効果】本発明によれば、鉄損の低い薄物一方向
性珪素鋼板を製造することができる。
According to the present invention, a thin unidirectional silicon steel sheet with low iron loss can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】成品中のSb,Sn量と鉄損との関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the amounts of Sb and Sn in a product and iron loss.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.025〜0.075%、
Si:2.5〜4.5%、S≦0.015%、酸可溶性
Al:0.010〜0.050%、N:0.0010〜
0.012%、Mn:0.050〜0.45%、Cr:
0.04〜0.20%、SnとSbを複合で0.03〜
0.15%を含み、残部Fe及び不可避的不純物からな
る珪素鋼スラブを、1200℃以下の温度に加熱した
後、熱延し、一回又は中間焼鈍を介挿する二回以上の圧
延で、その最終圧延率を80%以上とし、次いで脱炭焼
鈍、仕上焼鈍をする一方向性珪素鋼板の製造プロセスで
あって、脱炭焼鈍後、ストリップを走行せしめる状態下
で水素、窒素、アンモニアの混合ガス中で窒化処理を行
うことを特徴とする鉄損の低い薄物一方向性珪素鋼板の
製造方法。
1. C: 0.025 to 0.075% by weight,
Si: 2.5-4.5%, S ≦ 0.015%, acid-soluble Al: 0.010-0.050%, N: 0.0010
0.012%, Mn: 0.050 to 0.45%, Cr:
0.04 to 0.20%, Sn and Sb combined to 0.03 to
After heating a silicon steel slab containing 0.15% and the balance Fe and unavoidable impurities to a temperature of 1200 ° C. or lower, hot rolling is performed and rolling is performed once or twice or more by intermediate annealing. A process for producing a unidirectional silicon steel sheet in which the final rolling rate is 80% or more, followed by decarburization annealing and finish annealing. After decarburizing annealing, hydrogen, nitrogen, and ammonia are mixed under the condition of running the strip. A method for manufacturing a thin unidirectional silicon steel sheet with low iron loss, which comprises nitriding in a gas.
JP3100232A 1991-05-02 1991-05-02 Method for manufacturing thin unidirectional silicon steel sheet with low iron loss Expired - Lifetime JPH086138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100232A JPH086138B2 (en) 1991-05-02 1991-05-02 Method for manufacturing thin unidirectional silicon steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100232A JPH086138B2 (en) 1991-05-02 1991-05-02 Method for manufacturing thin unidirectional silicon steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH04329830A JPH04329830A (en) 1992-11-18
JPH086138B2 true JPH086138B2 (en) 1996-01-24

Family

ID=14268529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100232A Expired - Lifetime JPH086138B2 (en) 1991-05-02 1991-05-02 Method for manufacturing thin unidirectional silicon steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JPH086138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510543A (en) * 2011-12-29 2015-04-09 ポスコ Electric steel sheet and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259037B2 (en) * 2002-05-21 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101676630B1 (en) * 2015-11-10 2016-11-16 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR102325004B1 (en) * 2019-12-20 2021-11-10 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510543A (en) * 2011-12-29 2015-04-09 ポスコ Electric steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04329830A (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0686630B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JPS5956523A (en) Manufacture of anisotropic silicon steel plate having high magnetic flux density
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH05295440A (en) Production of grain-oriented silicon steel sheet using rapidly solidified thin cast slab
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3324616B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH07310125A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH0417618A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH04329829A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH06172862A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JP2001040416A (en) Manufacture of grain oriented silicon steel sheet with high goss integration degree
JPH11279642A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 16