JP2001040416A - Manufacture of grain oriented silicon steel sheet with high goss integration degree - Google Patents

Manufacture of grain oriented silicon steel sheet with high goss integration degree

Info

Publication number
JP2001040416A
JP2001040416A JP21564899A JP21564899A JP2001040416A JP 2001040416 A JP2001040416 A JP 2001040416A JP 21564899 A JP21564899 A JP 21564899A JP 21564899 A JP21564899 A JP 21564899A JP 2001040416 A JP2001040416 A JP 2001040416A
Authority
JP
Japan
Prior art keywords
content
annealing
steel sheet
grain size
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21564899A
Other languages
Japanese (ja)
Other versions
JP4268277B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Takashi Mogi
尚 茂木
Kenichi Murakami
健一 村上
Tomoji Kumano
知二 熊野
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP21564899A priority Critical patent/JP4268277B2/en
Publication of JP2001040416A publication Critical patent/JP2001040416A/en
Application granted granted Critical
Publication of JP4268277B2 publication Critical patent/JP4268277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a grain oriented silicon steel sheet having high Goss integration degree and superior iron loss, on the assumption that a low temperature slab heating - nitriding process is used. SOLUTION: The grain oriented silicon steel sheet can be manufactured by subjecting a silicon steel slab, having a composition consisting of, by weight, 0.02-0.10% C, 2.5-4.0% Si, 0.05-0.45% Mn, <=0.015% S and/or Se, 0.020-0.035% acid-soluble Al, 0.0035-0.012% N, and the balance Fe with inevitable impurities, to heating to <=1280 deg.C and to hot rolling, annealing the resultant hot rolled plate, applying cold rolling at >=80% draft, and then subjecting the resultant sheet to decarburizing annealing, nitriding treatment, and finish annealing. In this case, the average grain size of non-transformed ferritic phases in the annealed hot rolled plate is controlled to 28-85 μm (preferably 35-65 μm). Further, according to Si content (%), C content (%) is regulated to a value within the range satisfying 0.023×Si(%)-0.032-<=C(%)<=0.025×Si(%)-0.010.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器などの電気
機器の鉄心材料に用いる、結晶方位(ゴス方位)が一方
向に揃った一方向性電磁鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional magnetic steel sheet having a crystal orientation (Goss orientation) in one direction, which is used for an iron core material of electric equipment such as a transformer.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、鋼板面が{11
0}面で圧延方向が〈100〉軸を有する、いわゆる、
ゴス方位(ミラー指数で{110}〈001〉方位を表
す)を持つ結晶粒から構成されており、軟磁性材料とし
て、変圧器・発電機の鉄心に使用される。この鋼板は、
磁気特性として磁化・鉄損特性が良好でなければならな
いが、磁化特性の良否は、かけられた一定の磁場中で、
鉄心(鋼板)内に誘起される磁束密度の高低で決まり、
磁束密度の高い電磁鋼板は、鉄心を小型化できるという
利点を有する。高い磁束密度は、鋼板における結晶粒の
方位を、{110}〈001〉に、高度に揃えることに
よって達成できる。なお、通常、磁束密度は800A/
mの磁場の強さでの値B8で示される。
2. Description of the Related Art A grain-oriented electrical steel sheet has a steel sheet surface of $ 11.
In the 0 ° plane, the rolling direction has a <100> axis,
It is composed of crystal grains having a Goss orientation (representing the {110} <001> orientation in Miller index), and is used as a soft magnetic material in cores of transformers and generators. This steel plate
Magnetization and iron loss properties must be good as magnetic properties, but good or bad magnetizing properties are determined in a constant applied magnetic field.
Determined by the level of magnetic flux density induced in the iron core (steel plate),
An electromagnetic steel sheet having a high magnetic flux density has an advantage that the iron core can be downsized. High magnetic flux density can be achieved by highly aligning the crystal grain orientation in the steel sheet to {110} <001>. The magnetic flux density is usually 800 A /
It is indicated by the value B8 at a magnetic field strength of m.

【0003】一方、鉄損は、鉄心に所定の交流磁場を与
えた場合に、熱エネルギーとして消費される電力損失で
あり、その良否に対しては、磁束密度、板厚、被膜張
力、不純物量、比抵抗、結晶粒の大きさ等が影響する。
それらの中でも、磁束密度が高く、比抵抗が大きいこと
が、鉄損を小さくするうえで重要であり、できる限り鉄
損が低い製品を安いコストで製造する技術の開発が課題
となる。
On the other hand, iron loss is power loss consumed as heat energy when a predetermined alternating magnetic field is applied to an iron core. The quality of the iron loss is determined by the magnetic flux density, plate thickness, coating tension, and amount of impurities. , Specific resistance, crystal grain size, and the like.
Among them, high magnetic flux density and high specific resistance are important in reducing iron loss, and the development of a technology for manufacturing a product with as low an iron loss as possible at low cost is an issue.

【0004】一方向性電磁鋼板は、微細析出物によるイ
ンヒビターと、冷間圧延ないし一次再結晶による集合組
織制御を利用し、二次再結晶させて製造されるもので、
磁束密度の高さは、インヒビターと集合組織に依存す
る。そして、一方向性電磁鋼板においては、Si含有量
が多いほど比抵抗が大きくなり、鉄損が小さくなるが、
Si含有量を増加させると集合組織が劣化するという問
題がある。なお、鉄損は50Hzで磁束密度1.7Tま
で磁化したときの損失W17/50で代表される。
A grain-oriented electrical steel sheet is manufactured by secondary recrystallization using an inhibitor of fine precipitates and texture control by cold rolling or primary recrystallization.
The height of the magnetic flux density depends on the inhibitor and the texture. And, in the grain-oriented electrical steel sheet, the specific resistance increases as the Si content increases, and the iron loss decreases.
When the Si content is increased, there is a problem that the texture is deteriorated. The iron loss is represented by a loss W17 / 50 when magnetized at 50 Hz to a magnetic flux density of 1.7 T.

【0005】ところで、これまで工業化された代表的な
一方向性電磁鋼板の製造方法として、以下の四つの技術
が知られている。第一の技術は、M.F.Littma
nnが、特公昭30−3651号公報で開示した、Mn
Sを用いる二回冷間圧延法である。しかし、この方法で
製造された一方向性電磁鋼は磁束密度が高くなく、B8
は1.86T程度で、飽和磁束密度Bsに対する比で
0.92〜0.93程度のゴス方位集積度のものであ
る。
By the way, the following four techniques are known as methods for producing typical grain-oriented electrical steel sheets which have been industrialized. The first technique is the M.I. F. Littma
nn is disclosed in Japanese Patent Publication No. 30-3651;
This is a double cold rolling method using S. However, the unidirectional magnetic steel manufactured by this method does not have a high magnetic flux density.
Is about 1.86 T and has a Goss orientation integration degree of about 0.92 to 0.93 relative to the saturation magnetic flux density Bs.

【0006】第二の技術は、田口等が、特公昭40−1
5644号公報で開示した、AlN+MnSを用い最終
冷間圧延率を80%以上の強圧下率とする技術である。
この技術においては、高い磁束密度は得られるが、工業
生産に際し、製造条件の厳密なコントロールが要求され
る。この技術で製造された一方向性電磁鋼板において、
磁束密度B8は1.93T程度で、飽和磁束密度Bsに
対して0.95〜0.96程度のゴス方位集積度ものが
得られている。
The second technique is disclosed by Taguchi et al.
This is a technique disclosed in Japanese Patent No. 5644 to make a final cold rolling reduction of 80% or more by using AlN + MnS.
In this technique, a high magnetic flux density can be obtained, but strict control of manufacturing conditions is required in industrial production. In the grain-oriented electrical steel sheet manufactured by this technology,
The magnetic flux density B8 is about 1.93T, and a Goss orientation integration degree of about 0.95 to 0.96 with respect to the saturation magnetic flux density Bs is obtained.

【0007】第三の技術は、今中等が、特公昭51−1
3469号公報で開示した、MnS(および/またはM
nSe)+Sbを用いる二回冷間圧延法に係る技術であ
る。この技術で得られる電磁鋼板においては、磁束密度
が第二の技術のものより劣り、磁束密度B8は1.90
T程度で、ゴス方位集積度は、飽和磁束密度Bsに対し
0.94〜0.95程度である。
The third technology is described in Japanese Patent Publication No. 51-1 / 1987.
No. 3,469, MnS (and / or MnS)
This is a technique related to a double cold rolling method using nSe) + Sb. In the magnetic steel sheet obtained by this technology, the magnetic flux density is inferior to that of the second technology, and the magnetic flux density B8 is 1.90.
At about T, the Goss orientation integration degree is about 0.94 to 0.95 with respect to the saturation magnetic flux density Bs.

【0008】上記3種の技術には、共通して次のような
問題がある。これらの技術は、いずれも、インヒビター
の造り込みを冷間圧延前でおこなっている。すなわち、
熱間圧延に先立つスラブ加熱温度を1250℃超、実際
には、1300℃以上と極めて高くすることによって、
粗大な析出物を一旦固溶させ、その後の熱間圧延あるい
は熱処理中において、析出物を微細・均一に析出させて
いる。ところが、スラブ加熱温度を上げること(高温ス
ラブ加熱法)は、スラブ加熱時の使用エネルギーの増
大、設備損傷率の増大等の他、材質的には、スケールロ
ス・耳割れによる歩留まり低下、スラブの結晶組織粗大
化に起因する線状の二次再結晶不良の発生等の問題を抱
えていて、特に、薄手材、高Si材において、この問題
は顕著になってくる。
The above three techniques have the following problems in common. In each of these technologies, the inhibitor is formed before cold rolling. That is,
By increasing the slab heating temperature prior to hot rolling to more than 1250 ° C, in fact, to 1300 ° C or more,
The coarse precipitate is once dissolved, and the precipitate is finely and uniformly precipitated during the subsequent hot rolling or heat treatment. However, raising the slab heating temperature (high-temperature slab heating method) involves increasing the energy used during slab heating, increasing the equipment damage rate, etc., as well as reducing the yield due to scale loss and ear cracks, There is a problem such as the occurrence of linear secondary recrystallization failure due to the coarsening of the crystal structure, and this problem is particularly remarkable in thin materials and high Si materials.

【0009】このような高温スラブ加熱法の問題を解決
するため、第四の技術として、低温スラブ加熱法が開発
され、その技術が、特開昭62−40315号公報およ
び特開平5−112827号公報に開示されている。こ
の技術は、二次再結晶に必要なインヒビターを、脱炭焼
鈍(一次再結晶)完了以降から仕上焼鈍における二次再
結晶発現以前までの間に、鋼中に造り込むことで、スラ
ブ加熱温度を、普通鋼なみの1280℃以下とする技術
である。インヒビターは、鋼中にNを侵入させることに
よって形成する(Al,Si)Nである。そして、析出
量は、従来の高温スラブ加熱法における析出量の3倍以
上を確保できるため、インヒビターは、強固で熱的安定
性が高いものとなる。鋼中にNを侵入させる手段として
は、仕上焼鈍の昇温過程で雰囲気ガスからNを侵入させ
る手段、もしくは、脱炭焼鈍の後段領域または脱炭焼鈍
完了後においてストリップを連続ラインで窒化焼鈍する
手段がある。窒化源としては、NH3 等を混合した焼鈍
雰囲気ガスを用いる。このような低温スラブ加熱法によ
って、一方向性電磁鋼板の抜本的なコストダウンが達成
できた。
As a fourth technique, a low-temperature slab heating method has been developed to solve the problem of the high-temperature slab heating method, which is disclosed in Japanese Patent Application Laid-Open Nos. 62-40315 and 5-112827. It is disclosed in the gazette. In this technology, the inhibitor required for secondary recrystallization is built into steel from the time after completion of decarburization annealing (primary recrystallization) to before the appearance of secondary recrystallization in finish annealing, thereby increasing the slab heating temperature. Is 1280 ° C. or less, which is comparable to ordinary steel. Inhibitors are (Al, Si) N formed by infiltrating N into steel. And the amount of precipitation can secure 3 times or more of the amount of precipitation in the conventional high-temperature slab heating method, so that the inhibitor is strong and has high thermal stability. As a means for infiltrating N into the steel, a means for infiltrating N from the atmosphere gas during the temperature rise process of the finish annealing, or a nitriding annealing of the strip in a continuous region after the decarburizing annealing or after the completion of the decarburizing annealing is performed. There are means. As the nitriding source, an annealing atmosphere gas mixed with NH 3 or the like is used. With such a low-temperature slab heating method, a drastic cost reduction of the grain-oriented electrical steel sheet could be achieved.

【0010】また、上記方法は、熱的に安定なインヒビ
ターを用いることにより、上記第二の技術と同等の高磁
束密度を得ることができる。磁束密度B8は、1.93
T程度で、ゴス方位集積度は飽和磁束密度Bsに対する
比で0.94〜0.96程度である。
In the above method, a high magnetic flux density equivalent to that of the second technique can be obtained by using a thermally stable inhibitor. The magnetic flux density B8 is 1.93
At about T, the Goss orientation integration degree is about 0.94 to 0.96 in a ratio to the saturation magnetic flux density Bs.

【0011】[0011]

【発明が解決しようとする課題】上記低温スラブ加熱法
による一方向性電磁鋼板の製造においては、高温スラブ
加熱法で発生する、結晶異常粒成長に起因する線状の二
次再結晶不良の問題がなく、高Si化が容易となる。そ
れ故、本発明者らは、低温スラブ加熱−一回冷間圧延法
をベースに、高Si化を推進してきたが、成分組成をは
じめとする工程条件をそのままにして、鋼中のSi含有
量を増加させると、磁束密度B8が劣化し、所定の低鉄
損が得られ難いという問題に直面した。本発明者らはこ
の原因を鋭意調査したところ、まず、Si含有量が増加
すると飽和磁束密度Bsが低下するため、ゴス二次再結
晶の方位集積度を現す指標として、飽和磁束密度Bsに
対するB8の比率(B8/Bs;以下ゴス方位集積度と
記す)が有用であり、かつ、良好な鉄損特性を達成する
ためには、所要レベルのゴス方位集積度の確保が必要で
あることを見い出した。ところが、ゴス方位集積度でみ
ても、単にSi含有量を増加させただけでは、ゴス方位
集積度が劣化し、所定の鉄損特性が得られなかった。即
ち、Si含有量の増大にともなう冶金的な変化を、イン
ヒビターと集合組織の両観点から解明し、高Si材にお
いても、所要レベルのゴス方位集積度を確保するための
補償技術の開発が課題となる。
In the production of a grain-oriented electrical steel sheet by the above-described low-temperature slab heating method, there is a problem of a linear secondary recrystallization defect caused by abnormal crystal grain growth, which occurs in the high-temperature slab heating method. And Si can be easily increased. Therefore, the present inventors have promoted high Si based on the low-temperature slab heating-single cold rolling method.However, while maintaining the process conditions including the component composition, the Si content in the steel is maintained. When the amount is increased, the magnetic flux density B8 is degraded, and it is difficult to obtain a predetermined low iron loss. The present inventors diligently investigated the cause. First, as the Si content increases, the saturation magnetic flux density Bs decreases. Therefore, as an index indicating the degree of azimuthal integration of Goss secondary recrystallization, B8 relative to the saturation magnetic flux density Bs is used. (B8 / Bs; hereinafter referred to as Goss orientation accumulation degree) is useful, and it is necessary to secure a required level of Goss orientation accumulation degree in order to achieve good iron loss characteristics. Was. However, even in terms of the Goss orientation integration degree, simply increasing the Si content deteriorates the Goss orientation integration degree, and a predetermined iron loss characteristic cannot be obtained. That is, the metallurgical change accompanying the increase of the Si content is clarified from both the inhibitor and the texture viewpoints, and the development of a compensation technique for securing a required level of Goss orientation integration even in a high Si material is an issue. Becomes

【0012】[0012]

【課題を解決するための手段】本発明者らは、高Si化
にともなう材質的な変化を詳細に調査することにより、
ゴス方位集積度劣化の原因を解明するとともに、低温ス
ラブ加熱−窒化法の製造プロセスにおいて、高Si化す
るための適正プロセス条件を検討した。まず、高Si化
にともなうゴス方位集積度の劣化は、焼鈍した熱延板に
おける結晶粒径粗大化が原因であり、結晶粒径を所定の
範囲に制御することが重要であることを解明した。ま
た、上記制御の方法を種々検討した結果、C含有量を調
整することにより変態相量を調整し、この調整により、
ゴス方位集積度を所望のレベルで確保することが可能と
なり、Si含有量に応じた鉄損特性の改善を達成できる
ことを発見した。
Means for Solving the Problems The inventors of the present invention have investigated in detail the material change accompanying the increase in Si, and
In addition to elucidating the cause of the deterioration of the Goss orientation integration degree, the appropriate process conditions for increasing the Si in the low-temperature slab heating-nitriding manufacturing process were studied. First, it was clarified that the deterioration of the Goss orientation accumulation degree due to the increase in Si is due to the coarsening of the crystal grain size in the annealed hot-rolled sheet, and it is important to control the crystal grain size within a predetermined range. . Further, as a result of various studies of the above control method, the amount of the transformation phase was adjusted by adjusting the C content, and by this adjustment,
It has been found that the Goss orientation integration degree can be secured at a desired level, and that the iron loss characteristics can be improved in accordance with the Si content.

【0013】即ち、本発明は、上記知見に基づくもので
あるところ、その要旨とするところは、下記(1)〜
(3)に示すとおりである。 (1)重量%で、C:0.02〜0.10%、Si:
2.5〜4.0%、Mn:0.05〜0.45%、Sお
よび/またはSe:0.15%以下、酸可溶性Al:
0.020〜0.035%、N:0.0035〜0.0
12%、残部Fe及び不可避的不純物からなる電磁鋼ス
ラブを、1280℃以下の温度に加熱した後熱延し、熱
延板を焼鈍し、圧下率80%以上の冷間圧延をし、次い
で、脱炭焼鈍、窒化処理、仕上焼鈍をする一方向性電磁
鋼板の製造方法において、焼鈍した熱延板における非変
態フェライト相の平均結晶粒径を28〜85μmの範囲
に制御することを特徴とするゴス方位集積度が高い一方
向性電磁鋼板の製造方法。 (2)前記非変態フェライト相の平均結晶粒径を35〜
65μmの範囲に制御する(1)記載のゴス方位集積度
が高い一方向性電磁鋼板の製造方法。 (3)前記電磁鋼スラブにおいて、Si含有量(%)に
応じ、C含有量(%)を、0.023×Si(%)−
0.032≦C(%)≦0.025×Si(%)−0.
010の範囲内に調整する(1)または(2)記載のゴ
ス方位集積度が高い一方向性電磁鋼板の製造方法。
That is, the present invention is based on the above findings, and the gist thereof is as follows:
It is as shown in (3). (1) By weight%, C: 0.02 to 0.10%, Si:
2.5-4.0%, Mn: 0.05-0.45%, S and / or Se: 0.15% or less, acid-soluble Al:
0.020-0.035%, N: 0.0035-0.0
An electromagnetic steel slab consisting of 12%, the balance Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or less, hot-rolled, annealed, and cold-rolled at a rolling reduction of 80% or more, In a method for producing a grain-oriented electrical steel sheet to be subjected to decarburizing annealing, nitriding treatment and finish annealing, the average grain size of the non-transformed ferrite phase in the annealed hot-rolled sheet is controlled in a range of 28 to 85 μm. A method for producing a grain-oriented electrical steel sheet having a high degree of Goss orientation integration. (2) The non-transformed ferrite phase has an average crystal grain size of 35 to
(1) The method for producing a grain-oriented electrical steel sheet having a high degree of Goss orientation integration according to (1), wherein the grain size is controlled to be in a range of 65 μm. (3) In the electromagnetic steel slab, the C content (%) is set to 0.023 × Si (%) − according to the Si content (%).
0.032 ≦ C (%) ≦ 0.025 × Si (%)-0.
(1) or (2), wherein the Goss orientation is highly integrated.

【0014】[0014]

【発明の実施の形態】まず、本発明を実験結果に基づき
説明する。重量%で、Mn:0.1%、S:0.007
%、Cr:0.12%、酸可溶性Al:0.029%、
N:0.0083%、P:0.030%をベース成分含
有量とし、Cを0.021〜0.095%、Siを2.
5〜4.5%の範囲で変更した電磁鋼スラブを、115
0℃で60分間加熱した後に熱間圧延し、2.3mm厚
の熱延板を製造した。そして、この熱延板を、1120
℃+900℃で焼鈍加熱した後、急冷却した。急冷後の
熱延板の断面を光学顕微鏡で観察し、結晶粒径の平均値
を測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present invention will be described based on experimental results. % By weight, Mn: 0.1%, S: 0.007
%, Cr: 0.12%, acid-soluble Al: 0.029%,
N: 0.0083%, P: 0.030% as base component content, C: 0.021 to 0.095%, Si:
The electrical steel slab modified in the range of 5 to 4.5%
After heating at 0 ° C. for 60 minutes, hot rolling was performed to produce a hot-rolled sheet having a thickness of 2.3 mm. Then, this hot rolled sheet is
After annealing and heating at a temperature of + 900 ° C., it was rapidly cooled. The cross section of the hot rolled sheet after quenching was observed with an optical microscope, and the average value of the crystal grain size was measured.

【0015】上記熱延板を引き続き酸洗し、0.22m
m厚の冷延板に冷間圧延した。この冷延板につき、焼鈍
温度を変えて脱炭焼鈍し、一次再結晶粒の粒径を23μ
mに調整した。この後、窒化焼鈍を、750℃×30秒
で水素、窒素、アンモニアの混合ガス中で行い、鋼板の
窒素量を、ほぼ220ppmに調整した。次いで、Mg
O,TiO2 を主成分とする焼鈍分離剤を塗布し、12
00℃まで10℃/hrで加熱し、その後、1200℃
で20時間の仕上焼鈍を行った。仕上焼鈍板を歪み取焼
鈍した後、SST(Single Sheet Tes
ter)で磁気特性を測定した。なお、磁束密度につい
ては、飽和磁束がSi含有量の増加に伴い低下するた
め、Si含有量の異なる電磁鋼材料では、磁束密度B8
をもってゴス二次再結晶の先鋭度を反映できない。そこ
で、B8/Bsの規格値でゴス方位集積度を評価した。
そして、X線回折による結晶方位測定により、B8/B
sの妥当性を確認した。
The hot-rolled sheet is continuously pickled, and
It cold-rolled to the cold-rolled sheet of m thickness. This cold-rolled sheet was decarburized and annealed at different annealing temperatures to reduce the primary recrystallized grain size to 23 μm.
m. Thereafter, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to approximately 220 ppm. Then, Mg
An annealing separator containing O and TiO 2 as main components is applied, and 12
Heat to 100 ° C at 10 ° C / hr, then 1200 ° C
For 20 hours. After the strain-annealed finish annealing plate, SST (Single Sheet Tes)
ter) to measure the magnetic properties. As for the magnetic flux density, since the saturation magnetic flux decreases with an increase in the Si content, magnetic steel materials having different Si contents have a magnetic flux density of B8
Cannot reflect the sharpness of Goss secondary recrystallization. Therefore, the Goss orientation integration degree was evaluated using the standard value of B8 / Bs.
Then, by the crystal orientation measurement by X-ray diffraction, B8 / B
The validity of s was confirmed.

【0016】図1に、焼鈍した熱延板における平均結晶
粒径(μm)と、二次再結晶のゴス方位集積度(B8/
Bs)の関係を示す。B8/Bs≧0.94の高い二次
再結晶先鋭度を得るための平均結晶粒径は、28〜85
μmの範囲にあることが判明した。これが、本発明にお
ける第1の特徴である。ここで、この平均結晶粒径28
〜85μmの範囲内において、鉄損は、Si含有量の増
大にともない低下しており、高Si化の効果が発揮され
ていることを確認した。鉄損改善代は、0.1%のSi
含有量あたり、W17/50で約0.015W/kgで
あった。
FIG. 1 shows the average crystal grain size (μm) in the annealed hot rolled sheet and the Goss orientation integration (B8 /
Bs). The average crystal grain size for obtaining a high secondary recrystallization sharpness of B8 / Bs ≧ 0.94 is 28 to 85.
It was found to be in the range of μm. This is the first feature of the present invention. Here, this average crystal grain size 28
Within the range of 8585 μm, the iron loss decreased with an increase in the Si content, and it was confirmed that the effect of increasing Si was exhibited. Iron loss improvement cost is 0.1% Si
It was about 0.015 W / kg at W17 / 50 per content.

【0017】焼鈍した熱延板における結晶粒径が二次再
結晶の先鋭度に影響を及ぼすメカニズムは、現在のとこ
ろ明らかでないが、次のように考えられる。一方向性電
磁鋼板におけるゴス方位集積度は、前述したように、イ
ンヒビター強度と一次再結晶集合組織に依存すると考え
られるが、本発明においては、主に、一次再結晶集合組
織による影響が大きいものと考えられる。
The mechanism by which the grain size of the annealed hot-rolled sheet affects the sharpness of the secondary recrystallization is not clear at present, but is considered as follows. As described above, the degree of Goss orientation accumulation in a grain-oriented electrical steel sheet is considered to depend on the inhibitor strength and the primary recrystallization texture, but in the present invention, mainly the influence of the primary recrystallization texture is large. it is conceivable that.

【0018】一般に、一次再結晶においては、二次再結
晶核としてのゴス方位と、ゴス核と対応方位関係にある
〔111〕<211>方位について考えればよい。ま
た、ゴス方位は、冷間圧延で結晶粒内に形成される変形
帯を生成サイトとし、冷間圧延前の結晶粒径が大きい方
が、ゴス核が多くなると考えられている。一方、〔11
1〕<211>は、冷間圧延前の結晶粒界近傍を再結晶
生成サイトとし、冷間圧延前の結晶粒径が小さいと、
〔111〕<211>は増加すると考えられている。従
って、焼鈍した熱延板における結晶粒径が小さすぎる場
合、一次再結晶のゴス核が不足することとなり、良好な
二次再結晶ゴス方位集積度と粒径は得られない。
In general, in the primary recrystallization, the Goss orientation as a secondary recrystallization nucleus and the [111] <211> orientation corresponding to the Goss nucleus may be considered. In the Goss orientation, the deformation zone formed in the crystal grain by cold rolling is used as a generation site, and it is considered that the larger the crystal grain size before cold rolling, the larger the number of goss nuclei. On the other hand, [11
1] <211> indicates that the vicinity of the crystal grain boundary before cold rolling is a recrystallization generation site, and that the crystal grain size before cold rolling is small,
[111] <211> is considered to increase. Therefore, if the crystal grain size in the annealed hot-rolled sheet is too small, goss nuclei for primary recrystallization will be insufficient, and good secondary recrystallization Goss orientation and grain size cannot be obtained.

【0019】逆に、焼鈍した熱延板における結晶粒径が
大きすぎる場合、一次再結晶のゴス核と対応方位関係に
ある(111)<211>方位が減少し、そのため、安
定して高磁束密度を得るには不利となると考えられる。
本発明で基本とする低温スラブ加熱法においては、上記
集合組織の兼ね合いより、冷間圧延前の結晶粒径は、2
8〜35μmが適正であると考えられる。一方、たとえ
ば、特開平9−316537号公報に開示されるよう
に、本発明者らの調査によると、いわゆる、高温スラブ
加熱法を前提とする技術では、冷間圧延前の適正な結晶
粒径は、10〜25μmと、本発明における適正結晶粒
径に比べ著しく小さい。この理由は明確でないが、上記
公報開示の方法では、低温スラブ加熱法に比較してイン
ヒビターの熱的安定性が低いため、その分、一次再結晶
粒径を小さくして、二次再結晶駆動力を弱めなくてはな
らないことが関与しているものと考えられる。
Conversely, if the crystal grain size in the annealed hot-rolled sheet is too large, the (111) <211> orientation corresponding to the Goss nucleus of the primary recrystallization decreases, and therefore, a high magnetic flux is stably obtained. It is considered disadvantageous for obtaining density.
In the low-temperature slab heating method based on the present invention, the crystal grain size before cold rolling is 2 due to the above texture.
8-35 μm is considered appropriate. On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 9-31637, for example, according to a study by the present inventors, in a technique based on a so-called high-temperature slab heating method, an appropriate crystal grain size before cold rolling is used. Is 10 to 25 μm, which is significantly smaller than the proper crystal grain size in the present invention. Although the reason for this is not clear, in the method disclosed in the above publication, the thermal stability of the inhibitor is lower than that in the low-temperature slab heating method. It is thought that having to weaken power is involved.

【0020】次に、焼鈍した熱延板における平均結晶粒
径を制御する方策について検討した実験結果を述べる。
上記実験結果から整理したB8/Bsに対するSiとC
の各量(%)の影響を図2に示す。図中に、平均結晶粒
径の測定値を示すが、Si量(%)が多い、または、C
量(%)が少ないほうが、結晶粒径が大きいことが判
る。図1に示すように、焼鈍した熱延板における平均結
晶粒径28〜85μmにおいて、B8/Bs≧0.94
が可能であり、この結晶粒径を得るためには、Si量
(%)に応じて、 0.023×Si(%)−0.032≦C(%)≦0.
025×Si(%)−0.010 の範囲内にC量(%)を調整する必要があることが判
る。これが、本発明の第2の特徴である。
Next, a description will be given of the results of experiments in which measures for controlling the average crystal grain size in the annealed hot-rolled sheet were examined.
Si and C for B8 / Bs arranged from the above experimental results
The effect of each amount (%) is shown in FIG. The measured values of the average crystal grain size are shown in the figure, but the Si content (%) is large or C
It can be seen that the smaller the amount (%), the larger the crystal grain size. As shown in FIG. 1, when the average grain size of the annealed hot-rolled sheet is 28 to 85 μm, B8 / Bs ≧ 0.94
In order to obtain this crystal grain size, 0.023 × Si (%) − 0.032 ≦ C (%) ≦ 0.
It is understood that the C amount (%) needs to be adjusted within the range of 025 × Si (%) − 0.010. This is the second feature of the present invention.

【0021】第2の特徴について冶金的な見解を述べる
と、次のとおりである。一般に、Siはオーステナイト
ループ型元素、Cはオーステナイト拡大元素であること
が知られている。従って、Si量(%)を増加させる
と、スラブ加熱から熱延板焼鈍にいたる熱履歴でのオー
ステナイト変態率が減少する。そして、オーステナイト
は、フェライトの粒成長を抑制するものであるから、S
i量(%)の増大にともない、焼鈍した焼鈍板における
結晶粒径が大きくなるものと考えられる。従って、C量
(%)を高めてオーステナイト変態率を確保するという
観点から、Si量(%)の増大にともない、C量(%)
の適正範囲も高めにシフトするものと考えられる。
A metallurgical view of the second feature is as follows. Generally, it is known that Si is an austenite loop element and C is an austenite expanding element. Therefore, when the Si content (%) is increased, the austenite transformation rate in the heat history from slab heating to hot-rolled sheet annealing decreases. Since austenite suppresses ferrite grain growth, S
It is considered that the crystal grain size in the annealed annealed sheet increases with an increase in the i amount (%). Therefore, from the viewpoint of increasing the C content (%) and securing the austenite transformation rate, the C content (%) increases with the Si content (%).
It is thought that the appropriate range of the shift will also be higher.

【0022】次に、本発明における電磁鋼スラブの成分
組成の限定理由につき説明する。Cは、γ変態を利用し
て熱延組織を改善するために、0.02%以上必要であ
るが、0.10%を超えると、脱炭焼鈍時間が長くな
り、生産性を損なうので、上限を0.10%とする。加
えて上述したように、C量(%)は、Si量(%)に応
じて、「0.023×Si(%)−0.032」〜
「0.025×Si(%)−0.010」の範囲内に調
整される。C量(%)が上記範囲未満になると、二次再
結晶が不安定になり、二次再結晶した場合でも、ゴス方
位集積度(B8/Bs)が0.94以下と低いものとな
る。一方、C量(%)が上記範囲を超えると、二次再結
晶は安定するが、やはりゴス方位集積度が劣化する。
Next, the reasons for limiting the component composition of the electromagnetic steel slab in the present invention will be described. C is required to be 0.02% or more in order to improve the hot-rolled microstructure by utilizing the γ transformation, but if it exceeds 0.10%, the decarburization annealing time becomes longer, and the productivity is impaired. The upper limit is set to 0.10%. In addition, as described above, the C amount (%) varies from “0.023 × Si (%) − 0.032” to the Si amount (%).
It is adjusted within the range of “0.025 × Si (%) − 0.010”. If the C amount (%) is less than the above range, the secondary recrystallization becomes unstable, and even in the case of the secondary recrystallization, the Goss orientation integration degree (B8 / Bs) is as low as 0.94 or less. On the other hand, when the C content (%) exceeds the above range, the secondary recrystallization is stabilized, but the Goss orientation integration degree is also deteriorated.

【0023】Siは、製品の比抵抗を効果的に上げ低鉄
損を得るための重要な元素であり、狙うべき鉄損に応じ
て含有量が決定される。2.5%未満になると低鉄損の
製品が得難く、一方、4.0%を超えて多くなり過ぎる
と材料の冷延性に問題を生ずるので、Siは2.5〜
4.0%とした。本発明における電磁鋼スラブの成分組
成における特徴の一つは、Sおよび/またはSeを0.
015%以下、好ましくは、0.007%以下とする点
にある。周知のごとく、SはMnS、SeはMnSeを
形成し、粒成長を抑制する作用をする。本発明において
は、二次再結晶粒を発現させるのに必要なインヒビター
は、脱炭焼鈍以降の工程で造り込むことを特徴としてお
り、冷間圧延以前で微細な析出物が分散することは、一
次再結晶粒径を調整して高磁束密度および低鉄損を得よ
うとする本発明においては、好ましくない。従って、S
および/またはSeは0.015%以下としている。ま
た、Sおよび/またはSe量を少なくすることは、熱間
圧延時の耳割れの低減にも効果が大きい。
Si is an important element for effectively increasing the specific resistance of the product and obtaining a low iron loss, and its content is determined according to the iron loss to be aimed. If the content is less than 2.5%, it is difficult to obtain a product with a low iron loss. On the other hand, if the content is more than 4.0%, a problem occurs in the cold rolling property of the material.
4.0%. One of the characteristics of the component composition of the electromagnetic steel slab according to the present invention is that S and / or Se are set to 0.1%.
015% or less, preferably 0.007% or less. As is well known, S forms MnS and Se forms MnSe, and acts to suppress grain growth. In the present invention, the inhibitor required to develop secondary recrystallized grains is characterized by being built in the steps after decarburizing annealing, and fine precipitates are dispersed before cold rolling, In the present invention in which the primary recrystallization grain size is adjusted to obtain a high magnetic flux density and a low iron loss, it is not preferable. Therefore, S
And / or Se is set to 0.015% or less. In addition, reducing the amount of S and / or Se is also highly effective in reducing edge cracking during hot rolling.

【0024】Alは、Nと結合してAlNを形成する
が、本発明においては、後工程、即ち、一次再結晶完了
後に鋼を窒化することにより、(Al,Si)Nを形成
せしめることを必須としているから、フリーのAlが一
定量以上必要である。そのため、酸可溶性Alとして、
0.020〜0.035%添加する。Nは、0.003
5〜0.012%にする必要がある。0.012%を超
えると、ブリスターと呼ばれる鋼板表面の脹れが発生す
る。また、一次再結晶組織の調整が困難になる。下限は
0.0035%がよい。この値未満になると、二次再結
晶粒を発達させるのが困難になるからである。
Although Al combines with N to form AlN, in the present invention, it is necessary to form (Al, Si) N by nitriding the steel after the completion of the primary recrystallization. Since it is essential, a certain amount of free Al is required. Therefore, as acid-soluble Al,
0.020-0.035% is added. N is 0.003
It needs to be 5 to 0.012%. If it exceeds 0.012%, blisters on the steel sheet surface called blisters occur. In addition, it becomes difficult to adjust the primary recrystallization structure. The lower limit is preferably 0.0035%. If the value is less than this value, it becomes difficult to develop secondary recrystallized grains.

【0025】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方、多過ぎると高い磁束密度を
持つ製品を得難くなる。適正な含有量は、0.05〜
0.45%である。この他、微量のCr、Sn、P、C
u、Sb、Ni、Bi等を含むことは本発明の主旨を損
なうものではない。
If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The appropriate content is 0.05-
0.45%. In addition, trace amounts of Cr, Sn, P, C
Including u, Sb, Ni, Bi and the like does not impair the gist of the present invention.

【0026】次に、本発明の製造プロセスについて説明
する。電磁鋼スラブは、転炉または電気炉等の溶解炉で
溶製し、必要に応じて真空脱ガス処理し、次いで、連続
鋳造によって、または、造塊後分塊圧延することによっ
て得られる。その後、熱間圧延に先立つスラブ加熱がな
される。本発明の製造プロセスにおいては、スラブ加熱
は1280℃以下の低い温度で行なう。この低温スラブ
加熱は、加熱エネルギーの消費量を少なくするととも
に、鋼中のAlNを完全に固溶させずに不完全固溶状態
とする。また、この低温スラブ加熱で当然のことなが
ら、固溶温度が高いMnSも不完全固溶状態となる。ス
ラブ加熱後は直ちに通常の方法により粗熱延と仕上熱延
を経て、板厚2〜3mmの熱延板に熱間圧延される。
Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab is obtained by melting in a melting furnace such as a converter or an electric furnace, performing a vacuum degassing treatment as necessary, and then performing continuous casting or slab rolling after ingot making. Thereafter, slab heating is performed prior to hot rolling. In the manufacturing process of the present invention, slab heating is performed at a low temperature of 1280 ° C. or less. This low-temperature slab heating reduces the consumption of heating energy and causes the AlN in the steel to be in an incomplete solid solution state without completely dissolving the AlN in the steel. In addition, MnS having a high solid solution temperature naturally becomes an incomplete solid solution state by the low-temperature slab heating. Immediately after the slab is heated, it is hot-rolled into a hot-rolled sheet having a thickness of 2 to 3 mm through rough hot rolling and finish hot rolling by a usual method.

【0027】熱延板は通常の方法で焼鈍される。熱延板
焼鈍の条件は公知の方法でよいが、通常、900〜11
70℃の温度で30〜500秒程度の焼鈍を行ない、そ
の後急冷却をする。本発明は、上述したように、焼鈍し
た熱延板における平均結晶粒径を28〜85μm、好ま
しくは、35〜65μmの範囲内に制御することを特徴
とする。平均結晶粒径の測定方法は、鋼板の板厚方向
で、熱延方向に平行した断面における一方の表層から他
方の表層までにわたる領域において、1000個以上の
結晶粒の個数を測定し、一個当たりの面積より、円相当
径に換算して算出したものである。個数の測定は、旧オ
ーステナイト相にあたる微細なベーナイトやパーライト
組織を除き、旧フェライト組織に対して行う。なお、粒
径の測定は、画像解析処理装置等を用いてもかまわな
い。また、測定する断面は熱延方向に直角であってもか
まわないが、結晶粒は熱延方向に延伸しているので平均
粒径値は、直角方向の80〜90%とやや小さくなる。
The hot rolled sheet is annealed in a usual manner. The condition of the hot-rolled sheet annealing may be a known method, but usually 900 to 11
Anneal at a temperature of 70 ° C. for about 30 to 500 seconds, and then cool rapidly. As described above, the present invention is characterized in that the average crystal grain size in the annealed hot-rolled sheet is controlled within a range of 28 to 85 μm, preferably 35 to 65 μm. The method for measuring the average crystal grain size is as follows: in the thickness direction of the steel sheet, in a region extending from one surface layer to the other surface layer in a cross section parallel to the hot rolling direction, the number of 1000 or more crystal grains is measured. Is calculated by converting the area of to the equivalent circle diameter. The number measurement is performed on the old ferrite structure except for the fine bainite and pearlite structures corresponding to the old austenite phase. Note that the particle size may be measured using an image analysis processing device or the like. The cross section to be measured may be perpendicular to the hot rolling direction, but since the crystal grains are stretched in the hot rolling direction, the average particle size value is slightly reduced to 80 to 90% of the perpendicular direction.

【0028】続いて、冷間圧延以降の工程条件について
言及する。本発明は、低コストを目指す観点から、熱延
板焼鈍後は、強圧下の一回冷間圧延を前提とする。冷間
圧延は通常の方法で行う。高い磁束密度を得るために、
圧下率を高めたり、パス間で時効処理をすることは好ま
しい。最終板厚に冷間圧延された冷延板に脱炭焼鈍を施
す。脱炭焼鈍には、脱炭を行う他に、一次再結晶組織の
調整および被膜形成に必要な酸化層を生成させる役割が
ある。そして、脱炭焼鈍は、通常、800〜900℃の
温度域で湿水素、窒素ガス中で行う。
Next, the process conditions after the cold rolling will be described. The present invention is based on the premise that once cold-rolled sheet annealing is performed, one-time cold rolling under high pressure is performed from the viewpoint of achieving low cost. Cold rolling is performed by a usual method. To obtain a high magnetic flux density,
It is preferable to increase the draft and to perform aging treatment between passes. Decarburizing annealing is performed on the cold-rolled sheet cold-rolled to the final sheet thickness. In addition to decarburization, decarburization annealing has a role of adjusting the primary recrystallization structure and generating an oxide layer necessary for forming a film. The decarburization annealing is usually performed in a temperature range of 800 to 900 ° C. in wet hydrogen and nitrogen gas.

【0029】次に、窒化処理を行うが、窒化処理の条件
は公知の条件でよく、焼鈍温度を650〜850℃とす
ることが、窒化にとって有利である。良好な二次再結晶
粒を安定して発達させるには、窒素量は120ppm以
上、好ましくは、150ppm以上必要である。この
後、公知の方法で、MgO、TiO2 を主成分とするス
ラリーを塗布し、1100℃以上の温度で仕上焼鈍を行
う。仕上焼鈍の条件は公知の条件でよく、ゴス方位集積
度を高めるために、雰囲気を調整したり、加熱速度を遅
くすることは有効である。
Next, a nitriding treatment is performed. The conditions for the nitriding treatment may be known conditions, and it is advantageous for the nitriding to set the annealing temperature to 650 to 850 ° C. In order to stably develop good secondary recrystallized grains, the nitrogen content is required to be 120 ppm or more, preferably 150 ppm or more. Thereafter, a slurry mainly containing MgO and TiO 2 is applied by a known method, and finish annealing is performed at a temperature of 1100 ° C. or more. The condition of the finish annealing may be a known condition, and it is effective to adjust the atmosphere or reduce the heating rate in order to increase the degree of Goss orientation accumulation.

【0030】[0030]

【実施例】重量%で、Mn:0.10%、S:0.00
7%、Cr:0.12%、酸可溶性Al:0.028
%、N:0.0084%、P:0.025%をベースと
し、C量(%)とSi量(%)を表1に示すように調整
した電磁鋼スラブを、1150℃で加熱後、熱間圧延
し、2.0mmの熱延板とした。その後、1120℃+
900℃で熱延板焼鈍した後、急冷却した。焼鈍後の平
均結晶粒径を表1に示す。次いで、酸洗した後、0.2
2mm厚の冷延板に冷間圧延した。これを湿水素、窒素
雰囲気中で脱炭焼鈍した。この時、一次再結晶粒の粒径
が約23μmになるように焼鈍温度を調整した。
EXAMPLES In weight%, Mn: 0.10%, S: 0.00
7%, Cr: 0.12%, acid-soluble Al: 0.028
%, N: 0.0084%, P: 0.025%, and after heating an electromagnetic steel slab having a C content (%) and a Si content (%) adjusted as shown in Table 1, at 1150 ° C. Hot rolling was performed to obtain a 2.0 mm hot-rolled sheet. Then 1120 ° C +
After annealing at 900 ° C., the steel sheet was rapidly cooled. Table 1 shows the average crystal grain size after annealing. Then, after pickling, 0.2
It was cold-rolled into a cold-rolled sheet having a thickness of 2 mm. This was decarburized and annealed in a wet hydrogen and nitrogen atmosphere. At this time, the annealing temperature was adjusted so that the particle size of the primary recrystallized grains was about 23 μm.

【0031】この後、窒化焼鈍を、750℃×30秒で
水素、窒素、アンモニアの混合ガス中で行い、鋼板中の
窒素量を、215ppmに調整した。次いで、MgO、
TiO2 を主成分とする焼鈍分離剤を塗布し、1200
℃×20時間の仕上焼鈍を行った。仕上焼鈍板を歪み取
り焼鈍した後、磁束密度B8を測定した。それから、コ
ロイダルシリカとリン酸アルミニウムを主成分とする張
力コーティングを塗布し、焼き付けた後、冷延方向に、
5mm間隔でレーザー照射磁区制御を行い、鉄損W17
/50を測定した。結果を表1に示す。
Thereafter, nitriding annealing was carried out at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to 215 ppm. Then, MgO,
An annealing separator containing TiO 2 as a main component is applied, and 1200
Finish annealing was performed at 20 ° C. × 20 hours. The magnetic flux density B8 was measured after the finish annealed plate was annealed for distortion removal. Then, after applying a tension coating mainly composed of colloidal silica and aluminum phosphate and baking, in the cold rolling direction,
Laser irradiation magnetic domain control is performed at 5 mm intervals, and iron loss W17
/ 50 was measured. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から、本発明の条件を満たす条件の下
では、良好な鉄損が得られていることが判る。
From Table 1, it can be seen that good iron loss is obtained under the conditions satisfying the conditions of the present invention.

【0034】[0034]

【発明の効果】本発明により、コストメリットが高い低
温スラブ加熱−窒化法を前提とするプロセスにおいて、
高Si化が可能となり、ゴス方位集積度が高く、鉄損が
良好な一方向性電磁鋼板を製造できる。
According to the present invention, in a process premised on a low-temperature slab heating-nitriding method having high cost merit,
It is possible to manufacture a grain-oriented electrical steel sheet having a high Si content, a high Goss orientation integration degree, and a good iron loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Si量(%)毎における、焼鈍した熱延板にお
ける平均結晶粒径と二次再結晶ゴス方位集積度(B8/
Bs)の関係を示す図である。
FIG. 1 shows the average crystal grain size and the degree of secondary recrystallization Goss orientation integration (B8 /
It is a figure which shows the relationship of Bs).

【図2】C量(%)およびSi量(%)と、二次再結晶
ゴス方位集積度(B8/Bs)および平均結晶粒径の関
係を示す図である。
FIG. 2 is a graph showing the relationship between the C content (%) and Si content (%), the degree of secondary recrystallization Goss orientation integration (B8 / Bs), and the average crystal grain size.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 B (72)発明者 茂木 尚 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 村上 健一 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 熊野 知二 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 Fターム(参考) 4K033 AA02 CA07 CA09 CA10 DA01 DA02 FA01 FA12 HA02 JA04 JA07 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN06 NN17 NN18──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H01F 1/16 H01F 1/16 B (72) Inventor Takashi Mogi 1-1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Kenichi Murakami 1-1 1-1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Tomoji Kumano Fukuoka Prefecture 1-1 Nippon Steel Corporation, Yawata Works, Tobata-ku, Kitakyushu City (72) Katsuro Kuroki Inventor F-term in Nippon Steel Plant Design Co., Ltd., 46-46 Nakahara, Tobata-ku, Kitakyushu, Fukuoka 4K033 AA02 CA07 CA09 CA10 DA01 DA02 FA01 FA12 HA02 JA04 JA07 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN06 NN17 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.02〜0.10%、 Si:2.5〜4.0%、 Mn:0.05〜0.45%、 Sおよび/またはSe:0.015%以下、 酸可溶性Al:0.020〜0.035%、 N:0.0035〜0.012%、 残部Fe及び不可避的不純物からなる電磁鋼スラブを、
1280℃以下の温度に加熱した後、熱間圧延し、熱延
板を焼鈍し、圧下率80%以上の冷間圧延をし、次い
で、脱炭焼鈍、窒化処理、仕上焼鈍をする一方向性電磁
鋼板の製造方法において、焼鈍した熱延板における非変
態フェライト相の平均結晶粒径を28〜85μmの範囲
に制御することを特徴とするゴス方位集積度が高い一方
向性電磁鋼板の製造方法。
C .: 0.02 to 0.10%, Si: 2.5 to 4.0%, Mn: 0.05 to 0.45%, S and / or Se: 0. 015% or less, acid-soluble Al: 0.020 to 0.035%, N: 0.0035 to 0.012%, and the balance of Fe and unavoidable impurities to the electromagnetic steel slab,
After being heated to a temperature of 1280 ° C. or less, hot-rolled, annealed hot-rolled sheet, cold-rolled with a reduction of 80% or more, and then subjected to decarburizing annealing, nitriding treatment, and finish annealing. A method for producing a magnetic steel sheet, wherein the average grain size of the non-transformed ferrite phase in the annealed hot-rolled sheet is controlled in the range of 28 to 85 µm. .
【請求項2】 前記非変態フェライト相の平均結晶粒径
を35〜65μmの範囲に制御することを特徴とする請
求項1記載のゴス方位集積度が高い一方向性電磁鋼板の
製造方法。
2. The method according to claim 1, wherein the average grain size of the non-transformed ferrite phase is controlled in a range of 35 to 65 μm.
【請求項3】 前記電磁鋼スラブにおいて、Si含有量
(%)に応じ、C含有量(%)を、 0.023×Si(%)−0.032≦C(%)≦0.
025×Si(%)−0.010 の範囲内に調整することを特徴とする請求項1または2
記載のゴス方位集積度が高い一方向性電磁鋼板の製造方
法。
3. In the electromagnetic steel slab, the C content (%) is set to 0.023 × Si (%) − 0.032 ≦ C (%) ≦ 0 according to the Si content (%).
3. The method according to claim 1, wherein the adjustment is performed within a range of 025 × Si (%) − 0.010.
A method for producing a grain-oriented electrical steel sheet having a high degree of Goss orientation integration according to the description.
JP21564899A 1999-07-29 1999-07-29 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP4268277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21564899A JP4268277B2 (en) 1999-07-29 1999-07-29 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21564899A JP4268277B2 (en) 1999-07-29 1999-07-29 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001040416A true JP2001040416A (en) 2001-02-13
JP4268277B2 JP4268277B2 (en) 2009-05-27

Family

ID=16675894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21564899A Expired - Fee Related JP4268277B2 (en) 1999-07-29 1999-07-29 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4268277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179603A3 (en) * 2000-08-08 2007-07-04 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP2537946A1 (en) * 2010-02-18 2012-12-26 Nippon Steel Corporation Manufacturing method for grain-oriented electromagnetic steel sheet
EP2639326A4 (en) * 2010-11-10 2015-07-01 Posco Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179603A3 (en) * 2000-08-08 2007-07-04 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP2107130A1 (en) * 2000-08-08 2009-10-07 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP2537946A1 (en) * 2010-02-18 2012-12-26 Nippon Steel Corporation Manufacturing method for grain-oriented electromagnetic steel sheet
EP2537946A4 (en) * 2010-02-18 2014-05-07 Nippon Steel & Sumitomo Metal Corp Manufacturing method for grain-oriented electromagnetic steel sheet
US9175362B2 (en) 2010-02-18 2015-11-03 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet
EP2639326A4 (en) * 2010-11-10 2015-07-01 Posco Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same
US9728332B2 (en) 2010-11-10 2017-08-08 Posco Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same

Also Published As

Publication number Publication date
JP4268277B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
RU2580776C1 (en) Method of making sheet of textured electrical steel
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP2019163516A (en) Production method of grain-oriented electromagnetic steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP4873770B2 (en) Unidirectional electrical steel sheet
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP4268277B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH09157748A (en) Production of grain oriented silicon steel sheet having low iron loss and high magnetic flux density
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2001192733A (en) Method for producing grain oriented silicon steel sheet high in accumulation degree in goss orientation
JPH11269543A (en) Production of grain oriented electric steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R151 Written notification of patent or utility model registration

Ref document number: 4268277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees