JP2000038618A - Production of grain oriented silicon steel sheet good in magnetic property - Google Patents

Production of grain oriented silicon steel sheet good in magnetic property

Info

Publication number
JP2000038618A
JP2000038618A JP22243098A JP22243098A JP2000038618A JP 2000038618 A JP2000038618 A JP 2000038618A JP 22243098 A JP22243098 A JP 22243098A JP 22243098 A JP22243098 A JP 22243098A JP 2000038618 A JP2000038618 A JP 2000038618A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
hardness
surface layer
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22243098A
Other languages
Japanese (ja)
Inventor
Nobunori Fujii
宣憲 藤井
Tomoji Kumano
知二 熊野
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP22243098A priority Critical patent/JP2000038618A/en
Publication of JP2000038618A publication Critical patent/JP2000038618A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To reduce the secondarily recrystallized grain size at a low cost and to improve the magnetic properties of a steel sheet by forming twin crystals on the surface layer of a silicon steel sheet before final cold rolling having a specified compsn. composed of C, Si, Mn, S or Se, Al, N, Sn, Cr and Fe and imparting high hardness thereto. SOLUTION: A silicon steel sheet slab composed of, by weight, 0.020 to 0.075% C, 2.5 to 4.5% Si, 0.05 to 0.45% Mn, <=0.15% S and/or Se, 0.020 to 0.035% acid soluble Al, 0.0035 to 0.012% N, 0.02 to 0.15% Sn, 0.003 to 0.20% Cr, and the balance Fe with inevitable impurities is heated at <=1,280 deg.C, is thereafter subjected to hot rolling and is, if required, subjected to hot rolled sheet annealing, cold rolling for one time or >= two times including annealing, decarburizing annealing, nitriding treatment and finish annealing to obtain a grain oriented silicon steel sheet. At this time, before the final cold rolling, the steel sheet is subjected to shot blasting or the like to form twin crystals on the surface layer, and the hardness of the surface layer is made higher than that of the center part by >=20 vickers hardness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気機器の鉄心に用
いられる一方向性電磁鋼板の製造方法に関するもので、
これにより磁気特性が良好な一方向性電磁鋼板の製造を
可能にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used for an iron core of electric equipment.
This makes it possible to produce a grain-oriented electrical steel sheet having good magnetic properties.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は鋼板面が{110}
面で、圧延方向が〈100〉軸を有するいわゆるGos
s方位(ミラー指数で{110}〈001〉方位を表
す)を持つ結晶粒から構成されており、軟磁性材料とし
て変圧器及び発電機用の鉄心に使用される。この鋼板は
磁気特性として磁化特性と鉄損特性が良好でなければな
らない。磁化特性の良否はかけられた一定の磁場中で鉄
心内に誘起される磁束密度の高低で決まり、磁束密度の
高い製品では鉄心を小型化できる。磁束密度の高さは鋼
板結晶粒の方位を{110}〈001〉に高度に揃える
ことによって達成できる。
2. Description of the Related Art A grain-oriented electrical steel sheet has a steel sheet surface of {110}.
So-called Gos whose rolling direction has the <100> axis
It is composed of crystal grains having s orientation (representing {110} <001> orientation by Miller index), and is used as a soft magnetic material in iron cores for transformers and generators. This steel sheet must have good magnetic properties such as magnetization properties and iron loss properties. The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the core in the applied constant magnetic field, and a product with a high magnetic flux density can be downsized. The height of the magnetic flux density can be achieved by highly aligning the crystal grains of the steel sheet to {110} <001>.

【0003】鉄損は鉄心に所定の交流磁場を与えた場合
に熱エネルギーとして消費される電力損失であり、その
良否に対して磁束密度、板厚、被膜張力、不純物量、比
抵抗、結晶粒の大きさ等が影響する。その中でも磁束密
度が高く、結晶粒径が小さいことが鉄損を小さくうえで
重要であり、できる限り鉄損が低い製品を安いコストで
製造する方法の開発が課題である。ところで、現在、工
業生産されている代表的な一方向性電磁鋼板の製造方法
として以下の技術が知られている。
[0003] Iron loss is a power loss consumed as heat energy when a predetermined alternating magnetic field is applied to an iron core. The quality of the iron loss depends on the magnetic flux density, plate thickness, coating tension, impurity amount, specific resistance, and crystal grain. Influences the size. Among them, high magnetic flux density and small crystal grain size are important in reducing iron loss, and the development of a method for manufacturing a product with as low an iron loss as possible at low cost is an issue. By the way, the following technology is known as a method of manufacturing a typical grain-oriented electrical steel sheet that is currently industrially produced.

【0004】第一の技術はM.F.Littmannに
よる特公昭30−3651号公報に示されたMnSを用
いた2回冷延工程であり、得られる二次再結晶粒は小さ
く安定して発達するが、高い磁束密度が得られない。第
二の技術は田口等による特公昭40−15644号公報
に示されたAlN+MnSを用いた最終冷間圧延率を8
0%以上の強圧下率とするプロセスであり、高い磁束密
度は得られるが比較的二次再結晶粒は大きく、また工業
生産に際しては製造条件の厳密なコントロールが要求さ
れる。第三の技術は今中等による特公昭51−1346
9号公報に示されたMnS(及び/又はMnSe)+S
bを含有する珪素鋼を2回冷延工程によって製造するプ
ロセスであり、比較的に高い磁束密度と小さい二次再結
晶粒が得られている。
The first technique is described in M. F. This is a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651 by Littmann, and the obtained secondary recrystallized grains are small and stably developed, but a high magnetic flux density cannot be obtained. The second technique is to use a final cold rolling reduction of 8 using AlN + MnS disclosed in Japanese Patent Publication No. 40-15644 by Taguchi et al.
This is a process in which the rolling reduction is 0% or more. A high magnetic flux density can be obtained, but the secondary recrystallized grains are relatively large. In industrial production, strict control of production conditions is required. The third technology is now published by Tokuboku No. 51-1346
No. 9 MnS (and / or MnSe) + S
This is a process for producing silicon steel containing b twice by a cold rolling process, and a relatively high magnetic flux density and small secondary recrystallized grains are obtained.

【0005】上記3種類の技術においては共通して次の
ような問題がある。即ち、上記技術はいずれもが析出物
を微細、均一に制御する技術として熱延に先立つスラブ
加熱温度を、1250℃超、実際には1300℃以上と
極めて高い温度にすることによって、粗大に析出してい
る析出物を一旦固溶させ、その後の熱延中、或いは熱処
理中に析出させてインヒビターを形成する技術である。
スラブ加熱温度を上げることはスラブ加熱時の使用エネ
ルギーの増大、設備損傷率の増大等の他、材質的にはス
ラブの結晶組織に起因する線状の二次再結晶不良が発生
し、特に薄手材、高Si材においてこの問題は顕著にな
ってくる。
[0005] The above three techniques have the following problems in common. In other words, each of the above techniques is a technique for controlling the precipitation finely and uniformly, by setting the slab heating temperature prior to hot rolling to a very high temperature of more than 1250 ° C., actually 1300 ° C. or more, so that the precipitation is coarse. This is a technique for forming an inhibitor by once dissolving a deposited precipitate in a solid solution and then depositing it during hot rolling or heat treatment.
Increasing the slab heating temperature increases the energy used during slab heating, increases the equipment damage rate, etc., and also causes linear secondary recrystallization failure due to the crystal structure of the slab. This problem becomes remarkable in high-Si materials.

【0006】このような高温スラブ加熱法に対し、第四
の技術として特開昭62−40315号公報或いは特開
平5−112827号公報に開示されている低温スラブ
加熱法の技術がある。これは二次再結晶に必要なインヒ
ビターを、脱炭焼鈍(一次再結晶)完了以降から仕上げ
焼鈍における二次再結晶発現以前までに造り込むこと
で、スラブ加熱温度を普通鋼なみの1280℃以下とす
る技術である。この技術においては鋼中にNを侵入させ
ることによって、インヒビターとして機能する(Al,
Si)Nを形成させる方法が用いられている。鋼中にN
を侵入させる手段としては、仕上げ焼鈍昇温過程での雰
囲気ガスからのNの侵入を利用するか、脱炭焼鈍後段領
域或いは脱炭焼鈍完了後のストリップを連続ラインでN
H3等の窒化源となる雰囲気ガスを用いて行う。このよ
うな方法によって磁気特性(鉄損、磁束密度)の良好な
電磁鋼板が得られている。
As a fourth technique for such a high-temperature slab heating method, there is a low-temperature slab heating method disclosed in Japanese Patent Application Laid-Open No. Sho 62-40315 or Japanese Patent Application Laid-Open No. H5-112827. This is because the slab heating temperature is 1280 ° C or less, comparable to ordinary steel, by building the inhibitors required for secondary recrystallization from after the completion of decarburization annealing (primary recrystallization) to before the appearance of secondary recrystallization in finish annealing. Technology. In this technology, N acts as an inhibitor by infiltrating N into steel (Al,
A method of forming Si) N is used. N in steel
As a means for infiltrating N, the intrusion of N from the atmospheric gas during the finish annealing temperature raising process is used, or the strip after the decarburizing annealing or the strip after the decarburizing annealing is
This is performed using an atmosphere gas serving as a nitriding source such as H3. By such a method, an electromagnetic steel sheet having good magnetic properties (iron loss, magnetic flux density) has been obtained.

【0007】[0007]

【発明が解決しようとする課題】上記の低温スラブ加熱
による製造法においては、窒化によるインヒビターの強
化により磁束密度を向上させることが重要である。しか
し,窒化によるインヒビターは熱的安定性が極めて高い
ため二次再結晶粒が大きくなりやすく、その結果良好な
鉄損が得られ難い問題があった。そこで本発明者らは、
低温スラブ加熱−窒化法の製造プロセスにおいて結晶粒
を小さくし鉄損を改善するプロセス条件を検討した。本
発明は冷間圧延前鋼板の表層に歪みと双晶を付与するこ
とにより、磁気特性の優れた一方向性電磁鋼板を安定し
て製造する方法を提供するものである。
In the above-mentioned manufacturing method using low-temperature slab heating, it is important to improve the magnetic flux density by strengthening the inhibitor by nitriding. However, the inhibitor due to nitriding has extremely high thermal stability, so that secondary recrystallized grains are likely to be large, and as a result, it is difficult to obtain good iron loss. Therefore, the present inventors
In the manufacturing process of the low-temperature slab heating-nitriding method, the process conditions for reducing crystal grains and improving iron loss were studied. The present invention provides a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties by imparting strain and twins to the surface layer of a steel sheet before cold rolling.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記(1)〜(3)に示すとおりである。 (1)重量比で、C:0.020〜0.075%、S
i:2.5〜4.5%、Mn:0.05〜0.45%、
S或いはSeを単独又は複合で0.15%以下、酸可溶
性Al:0.020〜0.035%、N:0.0035
〜0.012%、Sn:0.02〜0.15%、Cr:
0.003〜0.20%、残部Fe及び不可避的不純物
からなる電磁鋼スラブを、1280℃以下の温度に加熱
した後熱間圧延し、熱延板焼鈍を行いもしくは行わず、
1回もしくは焼鈍をはさむ2回以上の冷間圧延、脱炭焼
鈍、窒化処理、仕上焼鈍の一連の処理を施す一方向性電
磁鋼板の製造において、最終冷間圧延前の鋼板表層に双
晶を形成させ、表層硬度を中央部より高くすることを特
徴とする磁気特性が良好な一方向性電磁鋼板の製造方
法。 (2)最終冷間圧延前の鋼板の板厚表層から板厚比で1
0%未満のビッカース硬度の平均をHv(s)、10%
から板厚中央部までのビッカース硬度の平均をHv
(c)としたとき、Hv(s)−Hv(c)≧20にな
るように、表層部の硬度を高くすることを特徴とする
(1)記載の磁気特性が良好な一方向性電磁鋼板の製造
方法。 (3)最終冷間圧延前にショットブラストをグリッドブ
ラスト、サンドブラストなどのドライブラスト、ウェッ
トブラスト、ワイヤーブラシ研磨ブラシ、高圧洗浄のメ
カニカルデスケーリングのうち何れかの手段を用いるこ
とにより表層部の硬度を高くすることを特徴とする
(1)もしくは(2)記載の磁気特性が良好な一方向性
電磁鋼板の製造方法。
The gist of the present invention is as follows (1) to (3). (1) By weight ratio, C: 0.020 to 0.075%, S
i: 2.5 to 4.5%, Mn: 0.05 to 0.45%,
0.15% or less of S or Se alone or in combination, acid-soluble Al: 0.020-0.035%, N: 0.0035
0.012%, Sn: 0.02 to 0.15%, Cr:
An electromagnetic steel slab consisting of 0.003 to 0.20%, balance Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower and then hot-rolled, with or without hot-rolled sheet annealing,
In the production of unidirectional magnetic steel sheets that are subjected to a series of cold rolling, decarburizing annealing, nitriding, and finish annealing once or twice or more with annealing, twins are formed on the surface layer of the steel sheet before final cold rolling. A method for producing a grain-oriented electrical steel sheet having good magnetic properties, characterized by forming a surface layer hardness higher than that of a central part. (2) From the surface layer of the steel sheet before final cold rolling, the thickness ratio is 1
Average Vickers hardness of less than 0% is Hv (s), 10%
Hv is the average of Vickers hardness from
(1) The hardness of the surface layer is increased so that Hv (s) −Hv (c) ≧ 20 when (c), the unidirectional electrical steel sheet having good magnetic properties according to (1). Manufacturing method. (3) The hardness of the surface layer portion can be reduced by using any one of drive blast such as grid blast and sand blast, wet blast, wire brush polishing brush, and mechanical descaling of high pressure cleaning before final cold rolling. (1) The method for producing a grain-oriented electrical steel sheet having good magnetic properties according to (1) or (2), wherein the magnetic property is increased.

【0009】[0009]

【発明の実施の形態】本発明者らは、熱延板焼鈍〜冷間
圧延の間にショットブラスト等の手段を用いて鋼板表層
部のみを硬くすることにより、二次再結晶粒径を小さく
し、鉄損を改善できることを発見した。以下本発明を実
験に基づき詳細に説明する。重量比で、C:0.055
%、Si:3.3%、Mn:0.12%、S:0.00
8%、Cr:0.12%、酸可溶性Al:0.027
%、N:0.0077%、P:0.030%、Sn:
0.05%を含有する電磁鋼スラブを1150℃で加熱
した後熱延し、2.3mmの熱延板を作った。これを1
120℃+900℃の温度で2段焼鈍した後急冷却し
た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors made the secondary recrystallized grain size smaller by hardening only the surface layer portion of the steel sheet using means such as shot blasting between the hot-rolled sheet annealing and the cold rolling. And found that iron loss could be improved. Hereinafter, the present invention will be described in detail based on experiments. C: 0.055 by weight ratio
%, Si: 3.3%, Mn: 0.12%, S: 0.00
8%, Cr: 0.12%, acid-soluble Al: 0.027
%, N: 0.0077%, P: 0.030%, Sn:
An electromagnetic steel slab containing 0.05% was heated at 1150 ° C. and then hot rolled to produce a 2.3 mm hot rolled sheet. This one
After two-step annealing at a temperature of 120 ° C. + 900 ° C., it was rapidly cooled.

【0010】この熱延板焼鈍板にショットブラスト処理
を種々の条件で施した。条件は未処理、およびショット
投射量を400〜1000g/minとした。処理を施
した鋼板からサンプルを切り出し、断面を研磨してマク
ロビッカース硬度計にて板厚方向の硬度を測定した。断
面硬度プロフィールにより鋼板表面から10%の深さま
での平均硬度および10%以上の平均硬度を計算し、そ
の差を表層と板厚中心部の硬度差とした。またナイター
ル腐食液で断面を腐食後、断面組織を観察した。
The annealed hot rolled sheet was subjected to a shot blast treatment under various conditions. The conditions were untreated, and the shot projection amount was 400 to 1000 g / min. A sample was cut out from the treated steel sheet, the cross section was polished, and the hardness in the thickness direction was measured with a Macro Vickers hardness meter. The average hardness from the steel sheet surface to a depth of 10% and the average hardness of 10% or more were calculated from the cross-sectional hardness profile, and the difference was defined as the hardness difference between the surface layer and the center of the thickness. After the cross section was corroded with a nital etchant, the cross-sectional structure was observed.

【0011】次いで鋼板を酸洗し、0.26mmに冷間
圧延した。これを脱炭焼鈍した。このとき焼鈍温度を変
更することにより、一次再結晶粒の粒径を23μmに調
整した。脱炭焼鈍板からサンプルを切り出し、板厚方向
の集合組織プロフィールを測定した。この後、鋼板に窒
化焼鈍を750℃×30秒で水素、窒素、アンモニアの
混合ガス中で行い、鋼板の窒素量をほぼ200ppmに
調整した。次いでMgO,TiO2 を主成分とする焼鈍
分離剤を塗布し、1200℃まで15℃/hrで加熱
し、その後1200℃で20時間の仕上げ焼鈍を行っ
た。
Next, the steel sheet was pickled and cold rolled to 0.26 mm. This was decarburized and annealed. At this time, the grain size of the primary recrystallized grains was adjusted to 23 μm by changing the annealing temperature. A sample was cut out from the decarburized annealed plate, and the texture profile in the plate thickness direction was measured. Thereafter, nitriding annealing was performed on the steel sheet at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the nitrogen amount of the steel sheet to approximately 200 ppm. Next, an annealing separator mainly composed of MgO and TiO 2 was applied, heated to 1200 ° C. at 15 ° C./hr, and then subjected to finish annealing at 1200 ° C. for 20 hours.

【0012】仕上げ焼鈍板をSRA(歪取り焼鈍)した
後、SSTで磁気特性を測定した。また、仕上焼鈍板を
マクロ酸洗し、二次再結晶粒径の観察を行った。図1に
冷間圧延前鋼板の表面硬度と鉄損(W17/50)、図2に
二次再結晶平均粒径、および図3に磁束密度(B8)の
関係を示す。図1から、冷間圧延前鋼板の表層硬度が硬
くなるとともに鉄損が改善することが判明した。同時に
図3から二次再結晶粒の径小化も認められることから、
鉄損の改善は二次再結晶粒径が小さくなったことが主原
因と考えられる。このとき、図2に見られるように磁束
密度も若干の改善が認められた。
After the finish annealed plate was subjected to SRA (strain relief annealing), the magnetic properties were measured by SST. In addition, the finish annealed plate was subjected to macro pickling, and the secondary recrystallized grain size was observed. FIG. 1 shows the relationship between the surface hardness and iron loss (W17 / 50) of the steel sheet before cold rolling, FIG. 2 shows the relationship between the secondary recrystallization average particle size, and FIG. 3 shows the relationship between the magnetic flux density (B8). From FIG. 1, it was found that the surface hardness of the steel sheet before cold rolling became harder and the iron loss was improved. At the same time, as shown in FIG.
It is considered that the iron loss was improved mainly because the secondary recrystallized grain size became smaller. At this time, as shown in FIG. 2, the magnetic flux density was slightly improved.

【0013】図4にショットブラスト処理の有無材の断
面組織と板厚方向の硬度プロフィールを示す。ショット
ブラストを処理した材料(A)は鋼板表面に双晶が発生
しており、双晶に対応して硬くなっていることが判っ
た。また、図5からもわかるように、硬度の増加は表層
部のみであり、板厚中央の硬度はショットブラスト未処
理材(B)も同等で変化は認められなかった。
FIG. 4 shows the cross-sectional structure of the material with and without shot blasting and the hardness profile in the thickness direction. It was found that the material (A) that had been subjected to the shot blast had twins generated on the surface of the steel sheet, and was hardened corresponding to the twins. Also, as can be seen from FIG. 5, the hardness increased only in the surface layer portion, and the hardness at the center of the plate thickness was the same as that of the shot blast untreated material (B), and no change was observed.

【0014】鋼板表面の双晶または硬度増加が一次再結
晶集合組織変化を介し、二次再結晶組織に影響したもの
と推定し、前記(A)(B)のプロセスを経た一次再結
晶集合組織を調査した。その結果、図6に示すように、
ショットブラスト処理材(A)はショットブラスト未処
理材(B)に比較して、表層近傍の(110)面強度が
強い部分がより深くなっていた。一方、図7に示すよう
に、(111)面強度は(A)(B)の差は小さかっ
た。
It is presumed that the twinning or increase in hardness of the steel sheet surface has influenced the secondary recrystallization texture through the change of the primary recrystallization texture, and the primary recrystallization texture having undergone the processes (A) and (B) above. investigated. As a result, as shown in FIG.
The shot blasted material (A) had a deeper portion near the surface layer where the (110) plane strength was higher than the shot blasted material (B). On the other hand, as shown in FIG. 7, the difference between (A) and (B) in the (111) plane strength was small.

【0015】冷間圧延前の鋼板表面に形成した双晶また
は硬度増加が鉄損特性を改善する機構については明らか
でないが、以上の実験結果から次のように解釈できる。
冷間圧延前の鋼板表面を双晶形成により硬化すること
で、冷間圧延における鋼板表面のメタルフローが変化す
る。すなわち鋼板表面近傍の剪断変形が双晶で拘束され
るため、より内部まで剪断変形が進行し、(110)面
方位の形成がより深くまでもたらされる。二次再結晶は
表層近傍のGOSS核方位が優先成長することで形成さ
れると考えられている。従って、本発明によりGOSS
核である(110)面が、表層からより深くまで存在す
ることにより、二次再結晶核数が増加したものと推定す
る。そして数が増えた分、二次再結晶粒径は小さくな
り、鉄損が改善したものと推定する。
The mechanism by which twins or increased hardness formed on the surface of the steel sheet before cold rolling improves iron loss characteristics is not clear, but can be interpreted as follows from the above experimental results.
By hardening the steel sheet surface before cold rolling by twin formation, the metal flow on the steel sheet surface in cold rolling changes. That is, since the shear deformation near the surface of the steel sheet is restricted by twins, the shear deformation proceeds further inside, and the formation of the (110) plane orientation is brought deeper. It is believed that secondary recrystallization is formed by preferential growth of the GOSS nuclei orientation near the surface layer. Therefore, according to the present invention, GOSS
It is presumed that the number of secondary recrystallization nuclei increased due to the presence of the (110) plane, which is a nucleus, from the surface layer to a deeper depth. It is presumed that the secondary recrystallized grain size becomes smaller and the iron loss is improved as the number increases.

【0016】次に、本発明の成分の限定理由につき説明
する。Cは、その含有量が0.020%未満になると、
二次再結晶が不安定になり、二次再結晶した場合でも製
品の磁束密度がB8で1.80Tと低いものとなる。一
方、Cの含有量が0.075%を超えて多くなり過ぎる
と、脱炭焼鈍時間が長くなり、生産性を損なう。好まし
くは0.03〜0.06%がよい。
Next, the reasons for limiting the components of the present invention will be described. When the content of C is less than 0.020%,
The secondary recrystallization becomes unstable, and the magnetic flux density of the product is as low as 1.80 T at B8 even when the secondary recrystallization is performed. On the other hand, when the content of C exceeds 0.075% and becomes too large, the decarburization annealing time becomes long, and the productivity is impaired. Preferably, 0.03 to 0.06% is good.

【0017】Siは、その含有量が2.5%未満になる
と低鉄損の製品を得難く、一方4.5%を超えて多くな
り過ぎると材料の冷延性に問題を生ずる。本発明の出発
材料の成分系における特徴の一つは、S或いはSeを単
独又は複合で0.015%以下、好ましくは0.007
0%以下とする点にある。SおよびSeは周知のごとく
MnS,MnSeを形成し、粒成長を抑制する作用をす
る。本発明においては二次再結晶粒を発現させるに必要
なインヒビターは、脱炭焼鈍以降で造り込むことを特徴
としているため、冷延以前で微細な析出物が分散するこ
とは、一次再結晶粒径を調整して高磁束密度低鉄損を得
る本発明においては好ましくない。従ってS或いはSe
は0.015%以下としている。又S或いはSeを少な
くすることは、熱延時の耳割れの低減にも効果が大き
い。
If the content of Si is less than 2.5%, it is difficult to obtain a product with a low iron loss, while if it exceeds 4.5%, there is a problem in the cold rolling property of the material. One of the features of the component system of the starting material of the present invention is that S or Se, alone or in combination, is 0.015% or less, preferably 0.007% or less.
The point is that it is 0% or less. As is well known, S and Se form MnS and MnSe, and act to suppress grain growth. In the present invention, the inhibitor required to develop secondary recrystallized grains is characterized by being built after decarburization annealing, so that fine precipitates are dispersed before cold rolling, and the primary recrystallized grains are dispersed. It is not preferable in the present invention to obtain a high magnetic flux density and a low iron loss by adjusting the diameter. Therefore, S or Se
Is set to 0.015% or less. Reducing S or Se is also highly effective in reducing edge cracks during hot rolling.

【0018】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより、(Al,Si)Nを形成せしめる
ことを必須としているから、フリーのAlが一定量以上
必要である。そのため、酸可溶性Alとして、0.02
0〜0.035%添加する。Nは0.0035〜0.0
12%にする必要がある。0.012%を超えるとブリ
スターと呼ばれる鋼板表面の脹れが発生する。又一次再
結晶組織の調整が困難になる。下限は0.0035%が
よい。この値未満になると二次再結晶粒を発達させるの
が困難になる。
Al combines with N to form AlN,
In the present invention, it is essential to form (Al, Si) N by nitriding the steel after the post-process, ie, after the completion of the primary recrystallization, so that a certain amount of free Al is required. Therefore, as acid-soluble Al, 0.02
0-0.035% is added. N is 0.0035 to 0.0
Need to be 12%. If it exceeds 0.012%, blisters on the surface of the steel plate called blisters occur. Further, it becomes difficult to adjust the primary recrystallization structure. The lower limit is preferably 0.0035%. Below this value, it becomes difficult to develop secondary recrystallized grains.

【0019】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方、多過ぎると高い磁束密度を
持つ製品を得難くなる。適正な含有量は、0.050〜
0.45%である。Crは脱炭焼鈍時の酸化を促進する
元素であるが、Snとの複合添加で仕上げ焼鈍後の被膜
形成が安定化する。Snは脱炭焼鈍後の集合組織を改善
し、ひいては二次再結晶粒を改善し被膜の安定化と相ま
って鉄損改善に効果が大きい。
If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.050
0.45%. Cr is an element that promotes oxidation during decarburization annealing, but the formation of a film after finish annealing is stabilized by the combined addition with Sn. Sn improves the texture after decarburizing annealing, and eventually improves the secondary recrystallized grains, and has a great effect on iron loss improvement in combination with stabilization of the coating.

【0020】Snの適量は0.02〜0.15%であり
これより少ないと効果が弱く、一方多いと窒化が困難に
なり二次再結晶粒が発達しなくなる。好ましくは0.0
3〜0.08%がよい。Crの適量は0.03〜0.2
0%がよい。0.03%未満では上記効果が得られな
い。又0.20%超添加しても合金コストが上昇するだ
けで効果が向上しないので制限される。好ましくは0.
05〜0.15%がよい。
An appropriate amount of Sn is 0.02 to 0.15%. If the amount is less than this, the effect is weak. On the other hand, if the amount is too large, nitriding becomes difficult and secondary recrystallized grains do not develop. Preferably 0.0
3-0.08% is good. The appropriate amount of Cr is 0.03 to 0.2
0% is good. If it is less than 0.03%, the above effects cannot be obtained. Addition of more than 0.20% is limited because the effect is not improved only by increasing the alloy cost. Preferably 0.
05-0.15% is good.

【0021】この他、微量のP、Cu、Sb、Ni、B
i等を含むことは本発明の主旨を損なうものではない。
次に、本発明の製造プロセスについて説明する。電磁鋼
スラブは、転炉或いは電気炉等の溶解炉で鋼を溶製し、
必要に応じて真空脱ガス処理し、次いで連続鋳造によっ
て或いは造塊後分塊圧延することによって得られる。そ
の後、熱間圧延に先立つスラブ加熱がなされる。本発明
のプロセスにおいては、スラブ加熱温度は1280℃以
下の低い温度で行い、加熱エネルギーの消費量を少なく
するとともに、鋼中のAlNを完全に固溶させずに不完
全固溶状態とする。また当然のことながら固溶温度が高
いMnSも不完全固溶状態である。スラブ加熱は直ちに
通常の方法により粗熱延と仕上熱延を経て板厚2〜3m
mまで熱延される。
In addition, trace amounts of P, Cu, Sb, Ni, B
Including i or the like does not impair the gist of the present invention.
Next, the manufacturing process of the present invention will be described. Electromagnetic steel slabs are produced by melting steel in a melting furnace such as a converter or an electric furnace.
It is obtained by vacuum degassing if necessary, and then by continuous casting or by ingot-rolling. Thereafter, slab heating is performed prior to hot rolling. In the process of the present invention, the slab heating temperature is set to a low temperature of 1280 ° C. or less to reduce the consumption of heating energy and to make the AlN in the steel into an incomplete solid solution state without completely dissolving the AlN in the steel. Of course, MnS having a high solid solution temperature is also in an incomplete solid solution state. The slab is heated immediately after the rough hot rolling and the finish hot rolling by the usual method, with a sheet thickness of 2 to 3 m.
m.

【0022】熱延板は通常の方法で焼鈍される。冷延圧
下率の調整のため予備冷間圧延後に焼鈍しても良い。焼
鈍は公知の方法でよいが、通常900〜1170℃の温
度で行った後、急冷する。なお熱延板の焼鈍を省略して
も充分商品価値あるものが製造可能である。本発明の趣
旨は最終冷間圧延工程の直前に表面処理し、表面のみに
双晶を形成させ、表層を硬くすることにある。このよう
な表面硬化法としては、ドライブラスト(ショットブラ
スト、グリッドブラスト、サンドブラスト)、ウエット
ブラスト、ワイヤーブラシ、研磨ブラシ、高水圧洗浄の
メカニカルデスケーリング装置が酸洗前処理としても効
果があり有効である。その他、プレス、溶射、スキンパ
ス圧延、レベラーの表面効果法も適用できる。このうち
低コストで可能にする方法としては、通常デスケーリン
グとして使用されるショットブラストが最適である。
The hot rolled sheet is annealed in a usual manner. Annealing may be performed after preliminary cold rolling to adjust the rolling reduction. Annealing may be performed by a known method, but is usually performed at a temperature of 900 to 1170 ° C. and then rapidly cooled. Even if the annealing of the hot-rolled sheet is omitted, a product with sufficient commercial value can be manufactured. The gist of the present invention is to perform surface treatment immediately before the final cold rolling step to form twins only on the surface and to harden the surface layer. As such a surface hardening method, a drive blast (shot blast, grid blast, sand blast), a wet blast, a wire brush, a polishing brush, a mechanical descaling device of high water pressure cleaning is effective and effective as a pretreatment for pickling. is there. In addition, press, thermal spraying, skin pass rolling, and a leveler surface effect method can also be applied. Of these methods, shot blasting, which is usually used as descaling, is the most suitable method at a low cost.

【0023】双晶形成は、図4(A)のように断面組織
を観察することで判別できる。また、定量的には図1〜
図3に示すとおり、表層と板厚中心の硬度差を20以上
にすることが安定的に良好な磁気特性を確保するうえで
より好ましい。硬度の測定は図5に示すように断面を測
定することが好ましいが、簡易的には鋼板表面からの硬
度測定でも良い。表層硬度の制御は図8に示すようにシ
ョットブラストの投射量を調整することにより可能であ
る。この投射量は通常のショットブラスト設備で達成可
能であるが、鋼板の成分や材質強度により一意でないの
で、生産のなかで合わせ込みが必要である。そして硬度
が高すぎると冷間圧延中に破断することがあるので注意
が必要である。ショットブラストの後は双晶形成部が除
去されない程度に酸洗する。
The twin formation can be determined by observing the cross-sectional structure as shown in FIG. Also, quantitatively, FIG.
As shown in FIG. 3, it is more preferable that the difference in hardness between the surface layer and the center of the plate thickness be 20 or more in order to stably secure good magnetic properties. Although it is preferable to measure the cross section as shown in FIG. 5, the hardness may be simply measured from the surface of the steel sheet. The surface hardness can be controlled by adjusting the shot blast projection amount as shown in FIG. Although this projection amount can be achieved by ordinary shot blasting equipment, it is not unique due to the composition and material strength of the steel sheet, so it is necessary to adjust it during production. Care must be taken because if the hardness is too high, it may break during cold rolling. After the shot blasting, pickling is performed to such an extent that the twin forming portion is not removed.

【0024】最終冷間圧延は通常の方法で行う。高いB
8値を得るために圧下率を高めたり、パス間で時効処理
をすることは好ましい。最終板厚に圧延された鋼板は脱
炭焼鈍を施す。脱炭焼鈍は脱炭を行う他に一次再結晶組
織の調整及び被膜形成に必要な酸化層を生成させる役割
がある。これは通常800〜900℃の温度域で湿水
素、窒素ガス中で行う。
The final cold rolling is performed by a usual method. High B
In order to obtain eight values, it is preferable to increase the rolling reduction or to perform aging treatment between passes. The steel sheet rolled to the final thickness is subjected to decarburization annealing. The decarburization annealing has a role of adjusting the primary recrystallization structure and generating an oxide layer necessary for forming a film, in addition to performing decarburization. This is usually performed in a temperature range of 800 to 900 ° C. in wet hydrogen or nitrogen gas.

【0025】次いで、上記脱炭焼鈍に続き窒化処理を行
う。窒化処理の条件は公知の条件とし、焼鈍温度が65
0〜850℃の温度域で窒化が良好である。良好な二次
再結晶粒を安定して発達させるには窒素量は120pp
m以上、好ましくは150ppm以上必要である。この
後公知の方法で、MgO,TiO2 を主成分とするスラ
リーを塗布し1100℃以上の温度で仕上げ焼鈍を行
う。
Next, a nitriding treatment is performed following the decarburizing annealing. The conditions of the nitriding treatment are known conditions, and the annealing temperature is 65
Good nitriding in a temperature range of 0 to 850 ° C. In order to stably develop good secondary recrystallized grains, the amount of nitrogen is 120 pp
m, preferably 150 ppm or more. Thereafter, a slurry mainly containing MgO and TiO 2 is applied by a known method, and finish annealing is performed at a temperature of 1100 ° C. or more.

【0026】[0026]

【実施例】重量比で、C:0.056%、Si:3.5
%、Mn:0.10%、S:0.007%、Cr:0.
12%、酸可溶性Al:0.030%、N:0.007
5%、P:0.025%、Sn:0.05%とした成分
の電磁鋼スラブを1150℃で加熱熱延し2.3mmの
熱延板を造った。これを1120℃+900℃での温度
で2段焼鈍した後急冷却した。
EXAMPLE C: 0.056%, Si: 3.5 by weight
%, Mn: 0.10%, S: 0.007%, Cr: 0.
12%, acid-soluble Al: 0.030%, N: 0.007
An electromagnetic steel slab having a composition of 5%, P: 0.025%, and Sn: 0.05% was hot-rolled at 1150 ° C. to produce a 2.3-mm hot-rolled sheet. This was subjected to two-step annealing at a temperature of 1120 ° C. + 900 ° C. and then rapidly cooled.

【0027】その後、(A)ショットブラストなし
(B)ショットブラストありの2水準で表面処理した。
表層硬度はビッカース硬度で(A)300、(B)25
0であり板厚中心は(A)(B)ともに250であっ
た。従って表層と板厚中心の硬度差はそれぞれ(A)5
0、(B)0であった。次いで酸洗し0.23mmに冷
間圧延した。これを湿水素、窒素雰囲気中で焼鈍温度を
820℃とし脱炭焼鈍をした。一次再結晶粒の粒径は約
23μmであった。
Thereafter, surface treatment was performed at two levels: (A) without shot blast and (B) with shot blast.
The surface layer hardness is Vickers hardness (A) 300, (B) 25
0 and the center of the plate thickness was 250 for both (A) and (B). Therefore, the difference in hardness between the surface layer and the center of the plate thickness is (A) 5
0, (B) 0. Then, it was pickled and cold rolled to 0.23 mm. This was subjected to decarburization annealing at an annealing temperature of 820 ° C. in a wet hydrogen and nitrogen atmosphere. The particle size of the primary recrystallized grains was about 23 μm.

【0028】この後、窒化焼鈍を750℃×30秒で水
素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素
量をほぼ210ppmに調整した。次いでMgO,Ti
O2を主成分とする焼鈍分離剤を塗布し、1200℃×
20時間の仕上げ焼鈍を行った。仕上げ焼鈍板を歪み取
り焼鈍したのち磁気特性を測定した。その結果、 (A)〔比較例〕磁束密度(B8):1.92T、鉄損(W
17/50):0.87w/kg (B)〔本発明〕磁束密度(B8):1.92T、鉄損(W
17/50):0.82w/kg 本発明の条件を満たす(B)の条件では良好な鉄損が得
られた。
Thereafter, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to approximately 210 ppm. Next, MgO, Ti
Apply an annealing separator mainly composed of O2,
Finish annealing was performed for 20 hours. After the strain-annealed finish annealed plate, the magnetic properties were measured. As a result, (A) [Comparative Example] magnetic flux density (B8): 1.92 T, iron loss (W
17/50): 0.87 w / kg (B) [Invention] Magnetic flux density (B8): 1.92 T, iron loss (W
17/50): 0.82 w / kg Under the condition (B) satisfying the conditions of the present invention, good iron loss was obtained.

【0029】[0029]

【発明の効果】本発明によりコストメリットが高い低温
スラブ加熱−窒化処理を前提とするプロセスで、コスト
負担をかけることなく二次再結晶粒径を小さくすること
が可能となり、磁気特性が良好な一方向性電磁鋼板を製
造できる。
According to the present invention, it is possible to reduce the secondary recrystallized grain size without imposing a cost in a process on the premise of low-temperature slab heating-nitriding, which has a high cost merit, and has good magnetic characteristics. We can manufacture unidirectional electrical steel sheets.

【図面の簡単な説明】[Brief description of the drawings]

【図1】最終冷延前鋼板の表層硬度と鉄損(W17/50)
の関係を示す図である。
Fig. 1 Surface hardness and iron loss of steel sheet before final cold rolling (W17 / 50)
FIG.

【図2】最終冷延前鋼板の表層硬度と磁束密度(B8)
の関係を示す図である。
FIG. 2 Surface hardness and magnetic flux density (B8) of steel sheet before final cold rolling
FIG.

【図3】最終冷延前鋼板の表層硬度と二次再結晶平均粒
径の関係を示す図である。
FIG. 3 is a graph showing the relationship between the surface hardness of the steel sheet before final cold rolling and the average secondary recrystallized grain size.

【図4】最終冷延前鋼板の断面組織を示す図である。FIG. 4 is a view showing a sectional structure of a steel sheet before final cold rolling.

【図5】最終冷延前鋼板の断面硬度の板厚方向プロフィ
ールを示す図である。
FIG. 5 is a view showing a profile in a thickness direction of a sectional hardness of a steel sheet before final cold rolling.

【図6】脱炭焼鈍板の集合組織の板厚方向プロフィール
を示す図である。
FIG. 6 is a view showing a profile in a sheet thickness direction of a texture of a decarburized annealed sheet.

【図7】脱炭焼鈍板の集合組織の板厚方向プロフィール
を示す図である。
FIG. 7 is a view showing a profile in a thickness direction of a texture of a decarburized annealed sheet.

【図8】ショットブラストの投射量と表層硬度の関係を
示す図である。
FIG. 8 is a diagram showing a relationship between a shot blast projection amount and a surface hardness.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年9月9日(1998.9.9)[Submission date] September 9, 1998 (1998.9.9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図 4】 [Fig. 4]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C21D 7/06 H01F 1/16 B (72)発明者 熊野 知二 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 Fターム(参考) 4K033 AA02 BA02 FA01 FA12 HA03 JA04 5E041 AA02 AA11 AA19 CA02 HB05 HB07 HB11 NN01 NN17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) // C21D 7/06 H01F 1/16 B (72) Inventor Tomoji Kumano Tobata-ku, Tobata-ku, Kitakyushu-shi, Fukuoka 1-1 Nippon Steel Corporation Yawata Works (72) Inventor Katsuro Kuroki F-term 4K033 AA02 BA02 FA01 FA12 at 59 Nippon Steel Plant Design Co., Ltd., 46-46 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture HA03 JA04 5E041 AA02 AA11 AA19 CA02 HB05 HB07 HB11 NN01 NN17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C :0.020〜0.07
5%、Si:2.5〜4.5%、Mn:0.05〜0.
45%、S或いはSeを単独又は複合で0.15%以
下、酸可溶性Al:0.020〜0.035%、N :
0.0035〜0.012%、Sn:0.02〜0.1
5%、Cr:0.003〜0.20%、残部Fe及び不
可避的不純物からなる電磁鋼スラブを、1280℃以下
の温度に加熱した後熱間圧延し、熱延板焼鈍を行いもし
くは行わず、1回もしくは焼鈍をはさむ2回以上の冷間
圧延、脱炭焼鈍、窒化処理、仕上焼鈍の一連の処理を施
す一方向性電磁鋼板の製造において、最終冷間圧延前の
鋼板表層に双晶を形成させ、表層硬度を中央部より高く
することを特徴とする磁気特性が良好な一方向性電磁鋼
板の製造方法。
1. C: 0.020 to 0.07 by weight ratio
5%, Si: 2.5-4.5%, Mn: 0.05-0.
45%, S or Se alone or in combination with 0.15% or less, acid-soluble Al: 0.020 to 0.035%, N:
0.0035 to 0.012%, Sn: 0.02 to 0.1
5%, Cr: 0.003 to 0.20%, electromagnetic steel slab consisting of balance Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or less, then hot-rolled, and hot rolled sheet annealing is performed or not. In the production of unidirectional electrical steel sheets subjected to a series of cold rolling, decarburizing annealing, nitriding treatment, and finish annealing one or more times including annealing, twinning is applied to the surface layer of the steel sheet before final cold rolling. And a method of manufacturing a grain-oriented electrical steel sheet having good magnetic properties, wherein the surface layer hardness is higher than that of the central part.
【請求項2】 最終冷間圧延前の鋼板の板厚表層から板
厚比で10%未満のビッカース硬度の平均をHv
(s)、10%から板厚中央部までのビッカース硬度の
平均をHv(c)としたとき、Hv(s)−Hv(c)
≧20になるように、表層部の硬度を高くすることを特
徴とする請求項1記載の磁気特性が良好な一方向性電磁
鋼板の製造方法。
2. The average of Vickers hardness of less than 10% in the sheet thickness ratio from the sheet thickness of the steel sheet before final cold rolling is defined as Hv.
(S) Hv (s) −Hv (c) where Hv (c) is the average of Vickers hardness from 10% to the center of the plate thickness.
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the hardness of the surface layer portion is increased so as to satisfy ≥20.
【請求項3】 表層部の硬度を高くする方法として、最
終冷間圧延前にショットブラスト、グリッドブラスト、
サンドブラストなどのドライブラスト、ウエットブラス
ト、ワイヤーブラシ、研磨ブラシ、高水圧洗浄のメカニ
カルデスケーリングのうちいずれかの手段を用いること
を特徴とする請求項1もしくは2記載の磁気特性が良好
な一方向性電磁鋼板の製造方法。
3. As a method for increasing the hardness of the surface layer, shot blast, grid blast,
3. The one-way magnetic medium according to claim 1, wherein any one of drive blast such as sand blast, wet blast, wire brush, polishing brush, and mechanical descaling of high-pressure cleaning is used. Manufacturing method of electrical steel sheet.
JP22243098A 1998-07-23 1998-07-23 Production of grain oriented silicon steel sheet good in magnetic property Withdrawn JP2000038618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22243098A JP2000038618A (en) 1998-07-23 1998-07-23 Production of grain oriented silicon steel sheet good in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22243098A JP2000038618A (en) 1998-07-23 1998-07-23 Production of grain oriented silicon steel sheet good in magnetic property

Publications (1)

Publication Number Publication Date
JP2000038618A true JP2000038618A (en) 2000-02-08

Family

ID=16782282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22243098A Withdrawn JP2000038618A (en) 1998-07-23 1998-07-23 Production of grain oriented silicon steel sheet good in magnetic property

Country Status (1)

Country Link
JP (1) JP2000038618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162773A (en) * 2011-02-08 2012-08-30 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
WO2019182149A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
CN114901850A (en) * 2020-02-20 2022-08-12 日本制铁株式会社 Hot-rolled steel sheet for non-oriented electromagnetic steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162773A (en) * 2011-02-08 2012-08-30 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
WO2019182149A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
CN111902555A (en) * 2018-03-22 2020-11-06 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
JPWO2019182149A1 (en) * 2018-03-22 2021-03-11 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7052864B2 (en) 2018-03-22 2022-04-12 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN114901850A (en) * 2020-02-20 2022-08-12 日本制铁株式会社 Hot-rolled steel sheet for non-oriented electromagnetic steel sheet
CN114901850B (en) * 2020-02-20 2023-09-26 日本制铁株式会社 Hot rolled steel sheet for non-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
WO2007102282A1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004