JPH10183249A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents
Production of grain oriented silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH10183249A JPH10183249A JP8345140A JP34514096A JPH10183249A JP H10183249 A JPH10183249 A JP H10183249A JP 8345140 A JP8345140 A JP 8345140A JP 34514096 A JP34514096 A JP 34514096A JP H10183249 A JPH10183249 A JP H10183249A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- sol
- steel sheet
- grain size
- primary recrystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は変圧器、発電機等の
電動機の鉄心材料および磁気シールド材等として広く用
いられる方向性電磁鋼板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet which is widely used as an iron core material and a magnetic shield material for electric motors such as transformers and generators.
【0002】[0002]
【従来の技術】方向性電磁鋼板は、ゴス方位と呼ばれる
{110}<001>方位を主方位とする結晶配向を持ち、圧延方
向に優れた励磁特性と鉄損特性を有する軟磁性材料であ
る。一般には、Si を3重量%(以下、化学組成の%表
示は重量%を意味する)程度含有する鋼のスラブを1300
℃以上に加熱して熱間圧延し、そのままあるいは焼鈍
(熱延板焼鈍)を施した後、1回または中間焼鈍をはさ
んだ2回以上の冷間圧延を施して最終板厚とする。その
後脱炭処理を伴う連続焼鈍を施して一次再結晶させた
後、焼付き防止のための焼鈍分離剤を塗布してコイル状
に巻き取り、高温で仕上焼鈍をおこなう。2. Description of the Related Art A grain-oriented electrical steel sheet is called a Goss orientation.
It is a soft magnetic material that has a crystal orientation with the main orientation being {110} <001> and has excellent excitation and iron loss properties in the rolling direction. In general, a steel slab containing about 3% by weight of Si (hereinafter,% of chemical composition means% by weight) is 1300%.
C. or higher, and hot-rolled, and as it is or after annealing (hot-rolled sheet annealing), cold rolling is performed once or twice or more with intermediate annealing to obtain a final sheet thickness. Thereafter, continuous annealing accompanied by decarburization treatment is performed to cause primary recrystallization, and then an annealing separating agent for preventing seizure is applied, wound in a coil shape, and finish annealing is performed at a high temperature.
【0003】ここで、一次再結晶焼鈍は、仕上焼鈍時に
ゴス方位への集積度が高い集合組織を形成し易い一次再
結晶集合組織を得ることを目的として、800 〜850 ℃前
後で焼鈍する。仕上焼鈍の目的は、一次再結晶した鋼板
をさらに二次再結晶させてゴス方位に集積した集合組織
を形成することと、二次再結晶を生じさせるのに用いた
インヒビターと呼ばれる析出物を除去することにある。
このために1100〜1200℃前後で長時間均熱する。インヒ
ビターは、一般的には微細に分散させた硫化物や窒化物
であり、二次再結晶時にゴス方位の結晶粒を選択的に成
長させる目的で用いる。Sb などの固溶元素をインヒビ
ターとして使用する場合もある。Here, the primary recrystallization annealing is performed at about 800 to 850 ° C. for the purpose of obtaining a primary recrystallization texture that easily forms a texture having a high degree of integration in the Goss orientation during the finish annealing. The purpose of the finish annealing is to further secondary recrystallize the primary recrystallized steel sheet to form a texture integrated in the Goss orientation, and to remove precipitates called inhibitors used to cause secondary recrystallization Is to do.
For this reason, it is soaked at about 1100-1200 ° C for a long time. Inhibitors are generally sulfides or nitrides that are finely dispersed, and are used for the purpose of selectively growing Goss-oriented crystal grains during secondary recrystallization. In some cases, a solid solution element such as Sb is used as an inhibitor.
【0004】こうして製造される方向性電磁鋼板は、そ
の製造過程で1300℃以上の高温でのスラブ加熱や、最終
の冷間圧延後の連続脱炭焼鈍、さらには1100℃以上の高
温での仕上焼鈍などの特殊な製造工程が必要であるので
極めてコストの高いものになる。これらの特殊な製造工
程に起因したコスト問題を解決すべく、従来から種々の
研究開発が進められている。[0004] The grain-oriented electrical steel sheet thus manufactured is subjected to slab heating at a high temperature of 1300 ° C or more during the manufacturing process, continuous decarburization annealing after final cold rolling, and finishing at a high temperature of 1100 ° C or more. Since a special manufacturing process such as annealing is required, the cost becomes extremely high. In order to solve the cost problem caused by these special manufacturing processes, various researches and developments have conventionally been made.
【0005】例えば、特開平5―9666 号公報には、Si
:1.5 〜3%、Mn :1〜3%、sol.Al :0.003 〜
0.015 %でかつ、Si (%)―0.5 ×Mn (%)≦2
およびC+N≦0.0020%、S≦0.01%であることを特徴
とする方向性電磁鋼板が提案されている。また同号公報
には、C≦0.01%、N:0.001 〜0.01%で、CとN以外
は上記と同じ組成である鋼を熱延し、1回または中間焼
鈍を含む2回以上冷間圧延した後の仕上焼鈍条件が、窒
素含有雰囲気中で825 〜925 ℃で4〜100 時間保持し、
さらに水素雰囲気中で925 ℃を超え、1050℃以下の温度
域で4〜100 時間保持するものである製造方法も提案さ
れている。この方法では脱炭焼鈍を必要とせず、また仕
上焼鈍が低温で可能であることに加えて、スラブ加熱も
1270℃以下の低温で十分であることが示されており、低
鉄損化と製造コスト低減の両面で極めて有効なものであ
る。For example, Japanese Patent Application Laid-Open No. Hei 5-96666 discloses that Si
: 1.5 to 3%, Mn: 1 to 3%, sol. Al: 0.003 to
0.015% and Si (%)-0.5 x Mn (%) ≤ 2
And a grain-oriented electrical steel sheet characterized by C + N ≦ 0.0020% and S ≦ 0.01%. Further, in the same publication, a steel having the same composition as above except for C and N with C ≦ 0.01% and N: 0.001 to 0.01% is hot-rolled, and cold-rolled once or twice or more including intermediate annealing. After the annealing, the condition of the final annealing is maintained at 825 to 925 ° C. for 4 to 100 hours in a nitrogen-containing atmosphere,
Further, a production method has been proposed in which the temperature is maintained in a temperature range of more than 925 ° C. and not more than 1050 ° C. for 4 to 100 hours in a hydrogen atmosphere. This method does not require decarburization annealing, and in addition to allowing finish annealing at low temperatures, slab heating is also possible.
It has been shown that a low temperature of 1270 ° C. or less is sufficient, and is extremely effective in reducing both iron loss and manufacturing cost.
【0006】また、特開平5―51705 号公報には、一層
の低鉄損を狙った、Si :3.0 %を超え4.0 %以下、M
n :2.0 %を超え4.0 %以下、塩酸可溶性Al (sol.A
l ):0.003 〜0.015 %で、かつSi (%)−0.5 ×M
n (%)≦2であることを主な特徴とする方向性電磁鋼
板と、上記の組成の鋼の冷間圧延後の仕上焼鈍条件が窒
素含有雰囲気中で825 〜925 ℃で4〜100 時間保持し、
さらに水素雰囲気中で925 ℃を超え1050℃以下の温度域
で4〜100 時間保持する方法であるその製造方法も提案
されている。Japanese Patent Application Laid-Open No. 5-51705 discloses that Si: more than 3.0% and 4.0% or less, aiming at further lower iron loss.
n: More than 2.0% and less than 4.0%, soluble in hydrochloric acid-soluble Al (sol.A
l): 0.003 to 0.015% and Si (%) − 0.5 × M
The grain-oriented electrical steel sheet whose main feature is n (%) ≦ 2 and the finish annealing conditions after cold rolling of steel having the above composition are performed at 825 to 925 ° C. for 4 to 100 hours in a nitrogen-containing atmosphere. Hold and
Further, there has been proposed a method for producing the same in which the temperature is kept in a temperature range of more than 925 ° C. and 1050 ° C. or less in a hydrogen atmosphere for 4 to 100 hours.
【0007】鉄損は一般にヒステリシス損と渦電流損の
2種類の損失に分けられる。ヒステリシス損はゴス方位
への集積度の改善や、不純物の低減により達成できる。
また、渦電流損は鋼板の固有抵抗の増加や製品板厚を薄
くすることで低減できる。しかし、不純物の低減は限界
に近いところまで来ており、製品の板厚を薄くするのも
コストが高くなる。したがって、ゴス方位の集積度を高
めることと固有抵抗を増すことが低鉄損化に残された有
効な手段といえる。しかし、特開平5-9666号公報や特開
平5-51705 号公報に記載の方法では、固有抵抗を高める
ためにSi やMn を増やすとゴス方位への集積度が低下
する傾向が認められ、ヒステリシス損低下と渦電流損低
下の両立が困難な問題として残っていた。[0007] Iron loss is generally classified into two types of loss: hysteresis loss and eddy current loss. The hysteresis loss can be achieved by improving the degree of integration in the Goss orientation and reducing impurities.
Further, the eddy current loss can be reduced by increasing the specific resistance of the steel sheet and reducing the thickness of the product. However, the reduction of impurities has reached the limit, and reducing the thickness of the product also increases the cost. Therefore, it can be said that increasing the degree of integration of the Goss orientation and increasing the specific resistance are effective means left for reducing iron loss. However, in the methods described in JP-A-5-9666 and JP-A-5-51705, when Si or Mn is increased in order to increase the specific resistance, the degree of integration in the Goss orientation tends to decrease, and hysteresis is observed. Reducing the loss and the eddy current loss at the same time remains a difficult problem.
【0008】[0008]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、ヒステリシス損および渦電流損が共に低く
磁束密度の高い方向性電磁鋼板を、高温のスラブ加熱や
脱炭焼鈍を用いないで、低コストで安定して製造する方
法を提供することにある。The problem to be solved by the present invention is to provide a grain-oriented electrical steel sheet having low hysteresis loss and eddy current loss and high magnetic flux density without using high-temperature slab heating or decarburizing annealing. To provide a low-cost, stable manufacturing method.
【0009】[0009]
【課題を解決するための手段】本発明の要旨は下記の磁
気特性の優れた方向性電磁鋼板の製造方法にある。The gist of the present invention resides in the following method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
【0010】重量%で、C:0.01%以下、Si :2%を
超えて4%以下、Mn :1.5 〜4%、sol.Al :0.003
〜0.025 %、N:0.001 〜0.01%を含み、かつSi とM
n がSi (%)−0.5 ×Mn (%)≦2の関係を満た
し、残部はFe 及び不可避的不純物からなる組成のスラ
ブを、熱間圧延のまま、または熱間圧延後に焼鈍した
後、中間焼鈍をはさむ2回の冷間圧延をおこない、均熱
温度までの加熱を1℃/秒以上で急速加熱する一次再結
晶焼鈍後に仕上焼鈍する方向性電磁鋼板の製造方法であ
って、その中間焼鈍を、650 〜750 ℃で0.5 〜60時間、
または、860 〜940℃で5〜180 秒のいずれかの条件で
施し、一次再結晶焼鈍を一次再結晶焼鈍後の平均結晶粒
径Dが下記式に示す範囲になるような条件でおこな
い、仕上焼鈍を800 ℃以上、α−γ変態点未満のフェラ
イト単相領域でかつ1050℃以下の範囲で施すことを特徴
とする、磁気特性の良好な方向性電磁鋼板の製造方法。In weight%, C: 0.01% or less, Si: more than 2% and 4% or less, Mn: 1.5 to 4%, sol.Al: 0.003
-0.025%, N: 0.001-0.01%, and Si and M
n satisfies the relationship of Si (%) − 0.5 × Mn (%) ≦ 2, and the remainder is a slab having a composition composed of Fe and unavoidable impurities. This is a method for producing a grain-oriented electrical steel sheet which is subjected to finish rolling after primary recrystallization annealing in which cold rolling is performed twice, including annealing, and rapidly heated to a soaking temperature of 1 ° C / sec or more, and the intermediate annealing is performed. At 650-750 ° C for 0.5-60 hours,
Alternatively, the first recrystallization annealing is performed at 860 to 940 ° C. for 5 to 180 seconds, and the primary recrystallization annealing is performed under such conditions that the average crystal grain size D after the first recrystallization annealing is in the range shown in the following formula. A method for producing a grain-oriented electrical steel sheet having good magnetic properties, wherein annealing is performed in a ferrite single phase region of 800 ° C or higher and lower than the α-γ transformation point and 1050 ° C or lower.
【0011】 ―1000×sol.Al+26≦D≦―1200×sol.Al+37---- ただし、D:平均結晶粒径(単位:μm ) sol.Al :sol.Al 含有量(重量%) 本発明者らは、高Si 、高Mn 鋼でゴス方位への集積度
が高い二次再結晶組織を生じさせるための検討をおこな
った。その結果、Si 含有量が2重量%を超え、かつ、
Mn 含有量が1.5 重量%以上である高合金鋼では、2回
冷間圧延法における中間焼鈍の均熱条件を特定の範囲と
すると共に、一次再結晶焼鈍後の平均結晶粒径をAl 含
有量との関係で決まる特定の範囲とすることが、二次再
結晶集合組織を制御するうえで重要な要因であることを
見いだした。ヒステリシス損と渦電流損とを共に低減す
ることを目的とする本発明は、これらの知見を用いて完
成された。-1000 × sol.Al + 26 ≦ D ≦ −1200 × sol.Al + 37 where D: average crystal grain size (unit: μm) sol.Al: sol.Al content (% by weight) The present inventors have studied to produce a secondary recrystallized structure having a high degree of integration in the Goss orientation with high Si and high Mn steels. As a result, the Si content exceeds 2% by weight, and
In a high alloy steel having a Mn content of 1.5% by weight or more, the soaking condition of the intermediate annealing in the second cold rolling method is set to a specific range, and the average crystal grain size after the primary recrystallization annealing is set to the Al content. It has been found that the specific range determined by the relationship with is important in controlling the secondary recrystallization texture. The present invention aimed at reducing both the hysteresis loss and the eddy current loss has been completed using these findings.
【0012】[0012]
【発明の実施の形態】以下に、本発明について具体的に
説明する。なお、以下の化学組成の含有量の%表示は重
量%を意味する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. In addition, the following percentage indication of the content of the chemical composition means% by weight.
【0013】(1)スラブの化学組成 C:製品中に残存すると鉄損に悪影響を及ぼすのでCは
少ないほど好ましい。素材となる鋼のC含有量がスラブ
の段階で0.01%以下であれば、連続焼鈍による一次再結
晶焼鈍を脱炭焼鈍としなくても磁気特性への悪影響は小
さい。このため、C含有量は0.01%以下とする。望まし
くは0.005%以下である。(1) Chemical composition of slab C: Since remaining in a product adversely affects iron loss, the smaller the C, the better. If the C content of the steel material is 0.01% or less at the slab stage, the adverse effect on the magnetic properties is small even if the primary recrystallization annealing by continuous annealing is not decarburizing annealing. For this reason, the C content is set to 0.01% or less. Desirably, it is 0.005% or less.
【0014】Si :鋼板の固有抵抗を高め、渦電流損を
低下させて鉄損を低減させる作用がある。本発明が狙い
とする低鉄損を得るには、2%を超えるSi を含有させ
る必要がある。他方、4%を超えて含有させると加工性
が著しく低下して冷間圧延が困難となる。このため、S
i 含有量は2%を超えて4%以下の範囲とする。Si: has the effect of increasing the specific resistance of the steel sheet, reducing eddy current loss and reducing iron loss. In order to obtain the low iron loss targeted by the present invention, it is necessary to contain more than 2% of Si. On the other hand, when the content exceeds 4%, the workability is remarkably reduced and cold rolling becomes difficult. Therefore, S
i The content is more than 2% and 4% or less.
【0015】Mn : Si と同様に鋼板の固有抵抗を高
め、渦電流損を低下させて鉄損を低減させるのに有効な
元素である。本発明では鉄損を低減させるためにMn を
1.5 %以上含有させる。他方、過剰に含有させると冷間
圧延性を損なうのでその上限を4%とする。Mn: Like Si, it is an element effective for increasing the specific resistance of a steel sheet, reducing eddy current loss and reducing iron loss. In the present invention, Mn is reduced to reduce iron loss.
1.5% or more. On the other hand, if it is contained excessively, the cold rolling property is impaired, so the upper limit is made 4%.
【0016】さらに本発明では、Mn 含有量とSi 含有
量とを関連させて規制する。優れた磁気特性を実現する
には、仕上焼鈍の段階でゴス方位への集積度の高い二次
再結晶を安定して実現させることが重要である。このた
めには、熱延鋼板の結晶組織を微細化し均質化する必要
がある。その手段として、結晶構造の再配列にともなっ
て組織の微細化と均質化が促進されるα−γ変態を活用
する。Further, in the present invention, the Mn content and the Si content are regulated in relation to each other. In order to realize excellent magnetic properties, it is important to stably realize secondary recrystallization with a high degree of integration in the Goss orientation at the stage of finish annealing. For this purpose, it is necessary to refine and homogenize the crystal structure of the hot-rolled steel sheet. As the means, α-γ transformation, which promotes the micronization and homogenization of the structure along with the rearrangement of the crystal structure, is utilized.
【0017】α−γ変態の発生はフェライト形成元素で
あるSi 含有量とオーステナイト形成元素であるMn 含
有量とのバランスで決まるから、Mn の含有量はSi と
関連させて決める必要がある。本発明では、Si(%)
−0.5 ×Mn(%) ≦2となるようにMn を含有させ
る。この値が2を超えるとフェライト単相鋼となり、α
−γ変態が生じない。Since the occurrence of the α-γ transformation is determined by the balance between the Si content which is a ferrite-forming element and the Mn content which is an austenite-forming element, the Mn content must be determined in relation to Si. In the present invention, Si (%)
Mn is contained so that -0.5 * Mn (%) ≤2. If this value exceeds 2, it becomes a ferritic single phase steel and α
-No γ transformation occurs.
【0018】sol.Al :sol.Al は、二次再結晶を生じ
させるのに重要なインヒビターとなるAlN 、(Al 、
Si )N、(Al 、Si 、Mn )N等の窒化物を形成さ
せるために添加する。sol.Al の含有量が0.003 %に満
たない場合には十分なインヒビター効果が得られない。
しかし、sol.Al 含有量が0.025 %を超えるとインヒビ
ター量が過剰になり、その分散状態も不適切になって二
次再結晶挙動が不安定になる。このため、sol.Al の含
有量は0.003 〜0.025%の範囲とする。Sol.Al: sol.Al is an important inhibitor for causing secondary recrystallization, AlN, (Al,
It is added to form nitrides such as Si) N and (Al, Si, Mn) N. If the content of sol.Al is less than 0.003%, a sufficient inhibitor effect cannot be obtained.
However, when the sol.Al content exceeds 0.025%, the amount of the inhibitor becomes excessive, the dispersion state becomes inappropriate, and the secondary recrystallization behavior becomes unstable. For this reason, the content of sol.Al is in the range of 0.003 to 0.025%.
【0019】N:インヒビターとなる窒化物を形成させ
るのに必要である。スラブ段階での含有量が0.001 %に
満たない場合には窒化物の析出量が少なすぎて所望のイ
ンヒビター効果が得られず、0.01%を超えて含有させて
もその効果は飽和する。このため、N含有量の範囲は0.
001 〜0.01%とする。N: Necessary for forming a nitride serving as an inhibitor. If the content in the slab stage is less than 0.001%, the desired inhibitor effect cannot be obtained due to too small an amount of nitride precipitation, and even if the content exceeds 0.01%, the effect is saturated. Therefore, the range of the N content is 0.
001 to 0.01%.
【0020】本発明では上記の5元素の管理が重要であ
るが、さらに不可避的不純物元素としてのPは0.020 %
以下、Sは0.010 %以下にするのが望ましい。In the present invention, the management of the above five elements is important, but P as an unavoidable impurity element is 0.020%
Hereinafter, S is desirably set to 0.010% or less.
【0021】(2)製造工程 本発明の方向性電磁鋼板の製造方法では、素材としての
上記の組成のスラブを熱間圧延して熱延鋼板とし、必要
により熱延鋼板に焼鈍を施し、次いで中間焼鈍を含む2
回の冷間圧延で最終の板厚に圧延し、一次再結晶焼鈍お
よび仕上焼鈍を施す。(2) Manufacturing Step In the method for manufacturing a grain-oriented electrical steel sheet of the present invention, a slab having the above composition as a raw material is hot-rolled into a hot-rolled steel sheet, and if necessary, the hot-rolled steel sheet is annealed. 2 including intermediate annealing
The sheet is rolled to the final thickness by cold rolling twice, and subjected to primary recrystallization annealing and finish annealing.
【0022】スラブは、転炉、電気炉等で製造した溶鋼
を、必要に応じて真空脱ガス等の処理を施した後、連続
鋳造、または、鋼塊にした後分塊圧延する方法などで製
造される。The slab is obtained by subjecting molten steel produced in a converter, an electric furnace, or the like to a process such as vacuum degassing or the like, if necessary, and then to a continuous casting or a method to form a steel ingot and then to perform ingot rolling. Manufactured.
【0023】熱延条件については特別な制約はない。し
かし、熱延鋼板の結晶組織を均一で微細にすることが良
好な二次再結晶組織を形成させるのに有効であるので、
スラブの加熱温度を1100〜1250℃、仕上圧延完了温度を
750 〜950 ℃の範囲にして熱延するのが好ましい。熱延
鋼板は、ショットブラスト、酸洗等の手段で表面の酸化
皮膜が除去された後冷間圧延される。冷間圧延前に、必
要に応じて、熱延鋼板に焼鈍を施してもよい。冷間圧延
前に熱延鋼板を焼鈍すれば、窒化物の分散状態が適切に
なり、結晶組織も再結晶により均質になるので、最終工
程でおこなわれる二次再結晶時のゴス方位形成が安定す
る。熱延鋼板を焼鈍する時期は、酸化皮膜の除去前、除
去後、いずれでもかまわない。熱延鋼板の焼鈍温度は、
これを連続焼鈍法でおこなう場合には800 〜1000℃が、
箱焼鈍法での場合には650 〜750℃が好ましい。There are no particular restrictions on the hot rolling conditions. However, it is effective to make the crystal structure of the hot-rolled steel sheet uniform and fine to form a good secondary recrystallization structure,
The heating temperature of the slab is 1100-1250 ° C, and the finish rolling temperature is
It is preferable to perform hot rolling at a temperature in the range of 750 to 950 ° C. The hot-rolled steel sheet is cold-rolled after an oxide film on the surface is removed by means such as shot blasting or pickling. Before cold rolling, if necessary, the hot-rolled steel sheet may be subjected to annealing. Annealing the hot-rolled steel sheet before cold rolling makes the dispersion state of nitrides appropriate and the crystal structure becomes homogeneous by recrystallization, so that the goss orientation formation during the secondary recrystallization performed in the final step is stable. I do. The time of annealing the hot-rolled steel sheet may be before or after the oxide film is removed. The annealing temperature of hot rolled steel sheet is
When this is performed by the continuous annealing method, 800-1000 ° C.
In the case of the box annealing method, the temperature is preferably 650 to 750 ° C.
【0024】一次冷間圧延:熱延鋼板を所定の中間板厚
に圧延する。一次冷間圧延の圧下率は20〜80%が望まし
く、30〜70%であればさらに好ましい。Primary cold rolling: A hot-rolled steel sheet is rolled to a predetermined intermediate sheet thickness. The rolling reduction of the primary cold rolling is preferably from 20 to 80%, more preferably from 30 to 70%.
【0025】中間焼鈍:中間焼鈍の条件は極めて重要で
ある。以下に中間焼鈍条件が鉄損に及ぼす影響につい
て、実験結果を基に詳細に説明する。図1は、仕上焼鈍
後の鉄損値に及ぼす中間焼鈍の均熱条件の影響を表した
グラフである。Intermediate annealing: The conditions for intermediate annealing are extremely important. The effect of the intermediate annealing conditions on iron loss will be described below in detail based on experimental results. FIG. 1 is a graph showing the effect of the soaking condition of the intermediate annealing on the iron loss value after the finish annealing.
【0026】ここでは、C:0.003 %、Si :2.5 %、
Mn :2%、sol.Al :0.01%、N:0.004 %、残部は
Fe 及び不可避的不純物からなる化学組成のスラブを11
80℃に加熱後840 ℃で仕上圧延を完了して3mm厚の熱延
鋼板とし、これを酸洗後、1.4 mm厚まで一次冷間圧延し
(圧下率:53%)、種々の均熱温度での箱焼鈍方式(均
熱時間:20時間)あるいは連続焼鈍方式(均熱時間:60
秒)による中間焼鈍を施した。その後、0.35mm厚まで二
次冷間圧延し(圧下率:75%)、940 ℃で均熱する連続
焼鈍方式による一次再結晶焼鈍と、箱焼鈍方式による86
0 ℃で48時間均熱する仕上焼鈍をおこなった。仕上焼鈍
の雰囲気は、均熱の前半部24時間まではH2 :85容積
%、残N2 、それ以降はH2 :100 容積%とした。仕上
焼鈍後の鋼板の圧延方向から試験片を採取し、鉄損、W
17/50 (周波数50Hz で磁束密度1.7 Tに励磁した場合
の鉄損値。単位:W/kg)を求めた。Here, C: 0.003%, Si: 2.5%,
Mn: 2%, sol. Al: 0.01%, N: 0.004%, the balance being Fe and a slab having an inevitable impurity composed of unavoidable impurities.
Finished rolling at 840 ° C after heating to 80 ° C to complete a hot-rolled steel sheet with a thickness of 3mm, after pickling, primary cold rolling to 1.4mm thickness (rolling reduction: 53%), and various soaking temperatures Box annealing method (soaking time: 20 hours) or continuous annealing method (soaking time: 60 hours)
Second). After that, secondary cold rolling to a thickness of 0.35 mm (rolling reduction: 75%), primary recrystallization annealing by continuous annealing at 940 ° C, and box annealing
Finish annealing was performed by soaking at 0 ° C. for 48 hours. Atmosphere of the finishing annealing, until the first half 24 hours of soaking H 2: 85% by volume, remainder N 2, the H 2 later: was 100 vol%. Test specimens were taken from the rolling direction of the steel sheet after finish annealing, and the iron loss and W
17/50 (iron loss value when the magnetic flux density was 1.7 T at a frequency of 50 Hz; unit: W / kg) was determined.
【0027】図1に示されているように、中間焼鈍時の
特定の均熱温度範囲で仕上焼鈍後の鉄損が低くなってお
り、かつ、その最適温度範囲は焼鈍方式によって異な
る。中間焼鈍を均熱時間が20時間の箱焼鈍方式でおこな
う場合には650 〜750 ℃の均熱温度で、均熱時間が60秒
の連続焼鈍方式でおこなう場合には860 〜940 ℃の均熱
温度で良好な低鉄損値が得られた。As shown in FIG. 1, iron loss after finish annealing is low in a specific soaking temperature range during intermediate annealing, and the optimum temperature range varies depending on the annealing method. When the intermediate annealing is performed by the box annealing method with a soaking time of 20 hours, the soaking temperature is 650 to 750 ° C, and when the continuous annealing method with the soaking time is 60 seconds, the temperature is 860 to 940 ° C. Good low iron loss values were obtained at temperatures.
【0028】中間焼鈍後の結晶組織を観察すると、箱焼
鈍方式で均熱温度が650 〜750 ℃の場合及び連続焼鈍方
式で均熱温度が860 〜940 ℃の場合には、いずれも比較
的均一で結晶粒径の大きい再結晶組織であった。これに
対して、均熱温度が、箱焼鈍方式で650 ℃に満たない場
合や連続焼鈍方式で860 ℃に満たない場合には極めて細
粒の再結晶組織か未再結晶組織であり、また、均熱温度
が、箱焼鈍方式で750℃を超える場合や、連続焼鈍方式
で940 ℃を越える場合には、鋼板の表層部に巨大な結晶
粒(例えば最大粒径が150 〜400 μm )が大量に生じて
いた。これらを二次冷間圧延し、一次再結晶焼鈍を施し
た後の平均結晶粒径は、中間焼鈍条件により変動してい
るが、すべて17〜24μm の範囲にあり、後述する本発明
が規定する一次再結晶焼鈍後の平均結晶粒径の条件を満
たしていた。Observation of the crystal structure after the intermediate annealing shows that the box annealing method has a relatively uniform soaking temperature of 650-750 ° C. and the continuous annealing method has a soaking temperature of 860-940 ° C. And a recrystallized structure having a large crystal grain size. On the other hand, when the soaking temperature is less than 650 ° C in the box annealing method or less than 860 ° C in the continuous annealing method, the recrystallized structure is extremely fine or unrecrystallized. If the soaking temperature exceeds 750 ° C in the box annealing method or exceeds 940 ° C in the continuous annealing method, a large amount of large grains (for example, a maximum grain size of 150 to 400 μm) will be present on the surface layer of the steel sheet. Had occurred. The average grain size after secondary cold rolling of these and primary recrystallization annealing varies depending on the intermediate annealing conditions, but all are in the range of 17 to 24 μm, and are defined by the present invention described later. The condition of the average crystal grain size after the primary recrystallization annealing was satisfied.
【0029】以上の結果は、仕上焼鈍後の鉄損が、一次
再結晶焼鈍後の平均結晶粒径以外に中間焼鈍後の結晶組
織によっても影響されることを示している。中間焼鈍後
の結晶組織が二次冷間圧延・一次再結晶焼鈍・仕上焼鈍
を経て二次再結晶集合組織の形成過程に影響し、仕上焼
鈍後のゴス方位の集積度や鉄損値に差が生じるものと考
えられる。The above results show that iron loss after finish annealing is affected by the crystal structure after intermediate annealing as well as the average crystal grain size after primary recrystallization annealing. The crystal structure after intermediate annealing affects the formation process of secondary recrystallization texture after secondary cold rolling, primary recrystallization annealing and finish annealing, and the difference in the degree of Goss orientation and iron loss value after finish annealing. Is considered to occur.
【0030】これらのことから本発明では、中間焼鈍の
均熱条件を、これを箱焼鈍方式で施す場合には650 〜75
0 ℃の温度範囲で0.5 〜60時間保持し、連続焼鈍方式で
施す場合には860 〜940 ℃の温度範囲で5〜180 秒保持
するものとする。鋼板の全長にわたる結晶組織の均一性
を確保するために、箱焼鈍方式の場合では0.5 時間以
上、連続焼鈍方式の場合では5秒以上の均熱時間が必要
である。また、鋼板表層部に結晶粒が巨大に成長するの
を避けるために、均熱時間の上限を、箱焼鈍方式では60
時間、連続焼鈍方式では180 秒とする。From the above, according to the present invention, the soaking condition of the intermediate annealing is set to 650 to 75 when the soaking is performed by the box annealing method.
It is to be kept at a temperature of 0 ° C for 0.5 to 60 hours, and in the case of a continuous annealing method, it is to be kept at a temperature of 860 to 940 ° C for 5 to 180 seconds. In order to ensure the uniformity of the crystal structure over the entire length of the steel sheet, a soaking time of 0.5 hours or more is required in the case of the box annealing method, and 5 seconds or more in the case of the continuous annealing method. In order to avoid crystal grains growing on the surface layer of the steel sheet, the upper limit of the soaking time is 60
Time, 180 seconds for continuous annealing.
【0031】二次冷間圧延:中間焼鈍された鋼板は、二
次冷間圧延(2回目の冷間圧延)によって所定の製品板
厚まで圧延する。二次冷間圧延の圧下率は40〜90%が好
ましく、50〜80%がより好ましい。一次冷間圧延の望ま
しい圧下率とここで述べた二次冷間圧延の望ましい圧下
率の組み合わせにより、次工程の一次再結晶焼鈍時に、
二次再結晶集合組織の発達に有利な一次再結晶集合組織
が形成できると考えられる。Secondary cold rolling: The intermediately annealed steel sheet is rolled to a predetermined product thickness by secondary cold rolling (second cold rolling). The rolling reduction of the secondary cold rolling is preferably from 40 to 90%, more preferably from 50 to 80%. By the combination of the desired rolling reduction of the primary cold rolling and the desired rolling reduction of the secondary cold rolling described here, at the time of primary recrystallization annealing in the next step,
It is considered that a primary recrystallization texture advantageous for the development of the secondary recrystallization texture can be formed.
【0032】一次再結晶焼鈍:後述の仕上焼鈍でゴス方
位への集積度が高く、かつ安定した二次再結晶を生じさ
せるためには、一次再結晶焼鈍では均熱温度までの加熱
速度を1℃/秒以上の急速加熱でおこなう必要がある。
加熱速度が遅すぎるとゴス方位を持つ一次再結晶粒が少
なくなり、ゴス方位への集積度が高い二次再結晶集合組
織が得られない。この意味で、仕上焼鈍前の一次再結晶
焼鈍方式は連続焼鈍方式が好適である。Primary recrystallization annealing: In order to generate a stable secondary recrystallization with a high degree of integration in the Goss orientation in the finish annealing described below, the heating rate up to the soaking temperature is set to 1 in the primary recrystallization annealing. It is necessary to perform rapid heating at a rate of at least ° C / sec.
If the heating rate is too slow, the number of primary recrystallized grains having the Goss orientation decreases, and a secondary recrystallization texture having a high degree of integration in the Goss orientation cannot be obtained. In this sense, a continuous annealing method is preferable as the primary recrystallization annealing method before the finish annealing.
【0033】ここで、一次再結晶焼鈍後の平均結晶粒径
は極めて重要な磁気特性制御因子であり、Al 含有量と
の関係で適正な範囲にする必要がある。この関係を、以
下に実験結果を基に詳細に説明する。図2は、鋼のsol.
Al 含有量と一次再結晶焼鈍後の平均結晶粒径とが仕上
焼鈍後の鉄損に及ぼす影響を示すグラフである。ここで
は、C:0.002 %、Si :2.5 %、Mn :2%、N:0.
005 %で種々の量のsol.Al を含み残部はFe 及び不可
避的不純物からなる化学組成のスラブを、1180℃に加熱
後、840 ℃で仕上圧延を完了して3mm厚の熱延鋼板と
し、これを酸洗後、1.4 mm厚まで一次冷間圧延(圧下
率:53%)をおこない、次に箱焼鈍炉で700℃で20時間
均熱する中間焼鈍を施し、0.35mm厚まで二次冷間圧延
(圧下率:75%)をおこなった。その後、連続焼鈍方式
による一次再結晶焼鈍を施す際に均熱温度を変化させて
種々の一次再結晶粒径のコイルを作り、860 ℃で48時間
均熱の仕上焼鈍をおこない、その後圧延方向の試験片を
採取して鉄損を求めた。仕上焼鈍の雰囲気は、均熱の前
半部24時間まではH2 :85容積%、残N2 、それ以降は
H2 :100 容積%とした。中間焼鈍後の結晶組織は均一
で良好な再結晶組織であった。Here, the average crystal grain size after the primary recrystallization annealing is a very important factor for controlling magnetic properties, and it is necessary to set the average crystal grain size in an appropriate range in relation to the Al content. This relationship will be described in detail below based on experimental results. Figure 2 shows the steel sol.
4 is a graph showing the effect of Al content and average crystal grain size after primary recrystallization annealing on iron loss after finish annealing. Here, C: 0.002%, Si: 2.5%, Mn: 2%, N: 0.
A slab having a chemical composition of 005% containing various amounts of sol.Al and the remainder consisting of Fe and unavoidable impurities was heated to 1180 ° C, and finish rolling was completed at 840 ° C to form a hot-rolled steel sheet having a thickness of 3 mm. After pickling, it is subjected to primary cold rolling (rolling reduction: 53%) to a thickness of 1.4 mm, followed by intermediate annealing in a box annealing furnace at 700 ° C for 20 hours, followed by secondary cooling to a thickness of 0.35 mm Cold rolling (rolling reduction: 75%) was performed. After that, when performing primary recrystallization annealing by the continuous annealing method, the soaking temperature was changed to make coils of various primary recrystallized grain sizes, and finish annealing with soaking at 860 ° C for 48 hours was performed. Specimens were collected to determine iron loss. Atmosphere of the finishing annealing, until the first half 24 hours of soaking H 2: 85% by volume, remainder N 2, the H 2 later: was 100 vol%. The crystal structure after the intermediate annealing was a uniform and good recrystallization structure.
【0034】図2に示されているように、仕上焼鈍後の
鉄損は、一次再結晶焼鈍後の平均結晶粒径が式で求め
られる範囲内にある場合に最も良好になることがわか
る。As shown in FIG. 2, it can be seen that iron loss after finish annealing is best when the average crystal grain size after primary recrystallization annealing is within the range determined by the equation.
【0035】 ―1000×sol.Al+26≦D≦―1200×sol.Al+37---- ただし、D:平均結晶粒径(単位:μm ) sol.Al :sol.Al 含有量(重量%) 一次再結晶焼鈍後の平均結晶粒径をsol.Al 量との関係
で上記の範囲にすることが必要な理由は、以下のように
推測される。-1000 × sol.Al + 26 ≦ D ≦ −1200 × sol.Al + 37 where D: average crystal grain size (unit: μm) sol.Al: sol.Al content (% by weight) The reason why it is necessary to set the average crystal grain size after the crystal annealing in the above range in relation to the sol.Al amount is presumed as follows.
【0036】二次再結晶を制御するインヒビター効果の
強さは、インヒビターである析出物が持つ粒界拘束力と
一次再結晶粒径との積に比例することが知られている。
このインヒビター効果が強すぎても弱すぎてもゴス方位
への集積度の高い二次再結晶を安定して生じさせること
は出来ない。本発明のインヒビターとなる析出物はAl
を含有した窒化物であり、Al 含有量により窒化物の分
散状態が変化し、それにともない窒化物の粒界拘束力も
変化するはずである。従って、平均結晶粒径とsol.Al
含有量の両者で決定されるインヒビター効果が、ある一
定の条件でゴス方位への集積度の高い二次再結晶が生じ
たと考えられる。It is known that the intensity of the inhibitor effect for controlling the secondary recrystallization is proportional to the product of the grain boundary restraining force of the precipitate serving as the inhibitor and the primary recrystallization particle size.
If the inhibitor effect is too strong or too weak, secondary recrystallization with a high degree of integration in the Goss orientation cannot be stably generated. The precipitate serving as the inhibitor of the present invention is Al
The dispersion state of the nitride changes depending on the Al content, and the grain boundary restraining force of the nitride should change accordingly. Therefore, the average crystal grain size and sol.
It is considered that the inhibitor effect determined by both the contents causes secondary recrystallization with a high degree of integration in the Goss orientation under certain conditions.
【0037】一次再結晶焼鈍は、900 〜980 ℃前後で5
秒以上10分以下均熱する連続焼鈍方式でおこなうのが好
適である。均熱温度は、一次再結晶粒の平均粒径を適正
な範囲に制御するために900 〜980 ℃の範囲が好まし
く、均熱時間は、一次再結晶粒の均一成長を得るために
5秒以上が望ましく、10分を超えて均熱するのは連続焼
鈍の設備や操業条件から経済的に見合わない。連続焼鈍
時の雰囲気は、従来の方向性電磁鋼板を焼鈍する場合の
ように0℃以上の高露点雰囲気でも構わないが、本発明
では脱炭焼鈍の必要がないので、0℃未満の低露点で十
分である。磁気特性を損なわないためには表面に酸化皮
膜が生じないのが好ましく、この意味ではむしろ低露点
の方が望ましい。The primary recrystallization annealing is performed at around 900 to 980 ° C. for 5 hours.
It is preferable to perform the continuous annealing method in which the heat is soaked for at least 10 seconds and not more than 10 seconds. The soaking temperature is preferably in the range of 900 to 980 ° C. in order to control the average grain size of the primary recrystallized grains within an appropriate range, and the soaking time is 5 seconds or more in order to obtain uniform growth of the primary recrystallized grains. However, it is not economically feasible to soak for more than 10 minutes due to the continuous annealing equipment and operating conditions. The atmosphere at the time of continuous annealing may be a high dew point atmosphere of 0 ° C. or more as in the case of annealing conventional grain-oriented electrical steel sheet. However, in the present invention, there is no need for decarburization annealing. Is enough. In order not to impair the magnetic properties, it is preferable that no oxide film is formed on the surface. In this sense, a lower dew point is more desirable.
【0038】一次再結晶焼鈍後の結晶粒径は、鋼の化学
組成やそれまでの製造条件などに応じて上記の条件範囲
内で予め最適な一次再結晶焼鈍条件を設定して焼鈍する
ことで調整できる。また、必要に応じて、一次再結晶焼
鈍後の結晶粒径などをオンラインで測定し、最適の焼鈍
条件を求めてそれ以降の一次再結晶焼鈍条件をリアルタ
イムで制御する等の方法で製造することもできる。The crystal grain size after the primary recrystallization annealing is determined by setting the optimum primary recrystallization annealing conditions in advance within the above-mentioned condition range according to the chemical composition of the steel and the manufacturing conditions up to that time and annealing. Can be adjusted. Also, if necessary, measure the crystal grain size after primary recrystallization annealing on-line, find the optimal annealing conditions, and control the subsequent primary recrystallization annealing conditions in real time. Can also.
【0039】平均結晶粒径は、JIS G 0552に記載されて
いる鋼のフェライト結晶粒度試験方法に準じて求めた粒
度番号から結晶粒の平均断面積を求め、その断面積に対
応した円の直径として定義する。結晶粒径は光学顕微鏡
や画像解析装置を用いて測定できる。The average crystal grain size is obtained by calculating the average cross-sectional area of crystal grains from the grain size number obtained according to the ferrite crystal grain size test method described in JIS G 0552, and calculating the diameter of a circle corresponding to the cross-sectional area. Is defined as The crystal grain size can be measured using an optical microscope or an image analyzer.
【0040】仕上焼鈍:仕上焼鈍では、ゴス方位への集
積度を高めるために二次再結晶をおこなわせる。また、
必要に応じて、磁気特性をさらに改善するための純化処
理(インヒビターやC等の不純物の除去)を施す。本発
明では、純化処理を施さなくても比較的良好な特性が得
られるので、要求される磁気特性レベルによっては純化
処理を省略しても構わない。Finish annealing: In finish annealing, secondary recrystallization is performed to increase the degree of integration in the Goss orientation. Also,
If necessary, a purifying process (removal of an inhibitor or an impurity such as C) is performed to further improve the magnetic characteristics. In the present invention, relatively good characteristics can be obtained without performing the purification process. Therefore, the purification process may be omitted depending on the required magnetic characteristic level.
【0041】仕上焼鈍の均熱温度は800 ℃を下限とす
る。均熱温度が800 ℃に満たない場合には二次再結晶が
不十分になり、良好な磁気特性が期待できない。均熱温
度の上限は、鋼のα−γ変態点未満のフェライト単相領
域でかつ1050℃以下の範囲とする。本発明鋼ではα−γ
変態点が存在するためにα−γ変態点以上に加熱すると
ゴス方位が損なわれるので好ましくない。さらに均熱温
度を1050℃以下に制限するのは、均熱温度が高くなるほ
ど焼鈍設備や操業費用が高価になり、生産性が劣るなど
の問題があり、本発明が目的とする低コストでの製造法
の実現の支障になるからである。本発明の製造方法は成
分と製造条件の適正化により低温の仕上焼鈍で安定した
二次再結晶を生じさせるものであり、一般的な方向性電
磁鋼板の場合のような1100℃以上の高温での仕上焼鈍は
おこなわない。The lower limit of the soaking temperature in the finish annealing is 800 ° C. If the soaking temperature is less than 800 ° C., secondary recrystallization becomes insufficient, and good magnetic properties cannot be expected. The upper limit of the soaking temperature is in a ferrite single phase region below the α-γ transformation point of steel and in a range of 1050 ° C or less. In the steel of the present invention, α-γ
Heating above the α-γ transformation point due to the presence of the transformation point is not preferable because the Goss orientation is impaired. Further limiting the soaking temperature to 1050 ° C. or less, the higher the soaking temperature, the higher the cost of annealing equipment and operating costs, there is a problem such as poor productivity, the present invention aims at low cost. This is because it hinders the realization of the manufacturing method. The production method of the present invention is to produce stable secondary recrystallization by low-temperature finish annealing by optimizing the components and production conditions, and at a high temperature of 1100 ° C. or more as in the case of a general grain-oriented electrical steel sheet. No finish annealing is performed.
【0042】二次再結晶は、良好な集合組織を得るため
に800 ℃以上で、少なくとも4時間以上均熱することが
望ましい。しかし、100 時間を超える均熱は効果がなく
経済的にも見合わない。この場合の焼鈍雰囲気は、H
2 :100 容積%、あるいはAr:100 容積%でもよい
が、二次再結晶が完了するまでは窒素含有雰囲気とする
ことが望ましい。これはインヒビターとなる窒化物の分
解を抑制するためで、さらに積極的な意義としては窒化
によるインヒビター強化を狙うためである。このような
効果を得るには、N2 :5〜100 容積%、残:H2 の雰
囲気で焼鈍するのが望ましい。The secondary recrystallization is desirably soaked at 800 ° C. or more for at least 4 hours in order to obtain a good texture. However, soaking for more than 100 hours has no effect and is not economically viable. The annealing atmosphere in this case is H
2 : 100% by volume or Ar: 100% by volume may be used, but it is preferable to maintain a nitrogen-containing atmosphere until the secondary recrystallization is completed. This is to suppress the decomposition of the nitride serving as the inhibitor, and more positively to strengthen the inhibitor by nitriding. To obtain such effects, N 2: 5 to 100% by volume, remainder: it is desirable to anneal in an atmosphere of H 2.
【0043】二次再結晶完了後に純化処理を施す場合に
は、H2 :100 容積%の雰囲気中で、870 ℃以上で4〜
100 時間均熱するのが好ましい。この処理により、窒化
物や鋼中の不純物が除去されて磁気特性が向上する。In the case where the purification treatment is performed after the completion of the secondary recrystallization, the purification is performed at 870 ° C. or higher in an atmosphere of H 2 : 100% by volume.
It is preferable to soak for 100 hours. By this treatment, nitrides and impurities in the steel are removed, and the magnetic properties are improved.
【0044】鋼のα−γ変態点は、例えば鋼を加熱、冷
却した時の寸法変化を膨張計を用いて測定して得られる
熱膨張曲線から求められる。The α-γ transformation point of steel is obtained from a thermal expansion curve obtained by measuring a dimensional change when the steel is heated and cooled using a dilatometer, for example.
【0045】仕上焼鈍の前に焼鈍時の鋼板間での焼き付
き防止のために、鋼板表面に焼鈍分離剤を塗布すること
は、通常の方向性電磁鋼板と同じである。塗布方法は、
スラリー状にして塗布する方法や、粉体を静電塗布する
方法などがあるがいずれでもかまわない。仕上焼鈍後の
工程としては通常の方向性電磁鋼板と同様に、焼鈍分離
剤を除去した後、必要に応じて絶縁コーティングを施し
たり平坦化焼鈍をおこなう。Applying an annealing separating agent to the steel sheet surface to prevent seizure between the steel sheets during annealing before the finish annealing is the same as in the case of a normal grain-oriented electrical steel sheet. The application method is
There are a method of applying in the form of a slurry, a method of electrostatically applying powder, and the like. As a process after the finish annealing, as in the case of a normal grain-oriented electrical steel sheet, after removing the annealing separating agent, an insulating coating is applied or flattening annealing is performed as necessary.
【0046】[0046]
(実施例1)C:0.002 %、Si :2.7 %、Mn :2.2
%、sol.Al :0.009 %、N:0.004 %で、残部はFe
及び不可避的不純物からなる組成のスラブを、1180℃に
加熱し、840 ℃の仕上温度で熱間圧延して3mm厚とし
た。この鋼のα−γ変態点は約960 ℃であった。これを
酸洗後、1mm厚まで一次冷間圧延(圧下率:67%)をお
こない、種々の均熱条件での中間焼鈍を実施し、その後
0.3 mm厚まで二次冷間圧延(圧下率:70%)、一次再結
晶焼鈍および仕上焼鈍を施した。連続焼鈍方式でおこな
う一次再結晶焼鈍では、その均熱温度を種々調整して一
次再結晶後の平均結晶粒径を変化させた。また、仕上焼
鈍は、870 ℃で24時間均熱(H2 :75容積%、残:N2
雰囲気)の後、さらに920 ℃で24時間均熱(H2 :100
容積%雰囲気)する二段均熱でおこなった。中間焼鈍条
件、一次再結晶後の平均の結晶粒径および仕上焼鈍後の
圧延方向の磁気特性を表1に示した。なお、本sol.Al
含有量の場合の本発明が規定する一次再結晶焼鈍後の平
均結晶粒径の範囲は17〜26μm である。(Example 1) C: 0.002%, Si: 2.7%, Mn: 2.2
%, Sol. Al: 0.009%, N: 0.004%, the balance being Fe
A slab having a composition comprising unavoidable impurities was heated to 1180 ° C. and hot-rolled at a finishing temperature of 840 ° C. to a thickness of 3 mm. The α-γ transformation point of this steel was about 960 ° C. After pickling, this is subjected to primary cold rolling (reduction rate: 67%) to a thickness of 1 mm, and intermediate annealing under various soaking conditions.
Secondary cold rolling (rolling reduction: 70%), primary recrystallization annealing and finish annealing were performed to a thickness of 0.3 mm. In the primary recrystallization annealing performed by the continuous annealing method, the soaking temperature was variously adjusted to change the average crystal grain size after the primary recrystallization. The final annealing was carried out at 870 ° C. for 24 hours (H 2 : 75% by volume, balance: N 2
Atmosphere), and further soaked at 920 ° C. for 24 hours (H 2 : 100)
(Volume% atmosphere) in two stages. Table 1 shows the conditions of the intermediate annealing, the average crystal grain size after the primary recrystallization, and the magnetic properties in the rolling direction after the finish annealing. In addition, this sol.
In the case of the content, the range of the average crystal grain size after primary recrystallization annealing specified by the present invention is 17 to 26 µm.
【0047】[0047]
【表1】 [Table 1]
【0048】試験番号1、2、4〜7は中間焼鈍を箱焼
鈍方式でおこない、3および8〜11は連続焼鈍方式でお
こなったものである。中間焼鈍の均熱温度が、本発明が
規定する下限に満たない試験番号4、8及び本発明が規
定する上限を超えた試験番号7、11の鉄損は、本発明が
規定する条件範囲内で製造された試験番号1、2あるい
は3に較べて劣っている。試験番号1、2、5、6は、
中間焼鈍条件は同一であるが、一次再結晶焼鈍条件の差
により一次再結晶焼鈍後の平均結晶粒径が異なってい
る。これらを比較すると、一次再結晶焼鈍後の平均結晶
粒径が本発明が規定する条件から外れた試験番号5、6
の鉄損に較べて、本発明の条件を満たす試験番号1、2
の鉄損は明らかに良好である。同様に、中間焼鈍を連続
焼鈍方式で施した試験番号3、9、10でも、一次再結晶
焼鈍後の平均結晶粒径が本発明が規定する条件外である
試験番号9、10の鉄損に比べて、本発明が規定する条件
を満たす試験番号3は明らかに良好な値を示している。
なお、鉄損と共に重要な磁気特性である磁束密度B8
(磁化力800 A/mで磁化した場合の磁束密度の値。単
位:Tesla)の値も表1示すが、本発明が規定する条件
を満たす試験番号1〜3は良好な値を示している。In Test Nos. 1, 2, 4 to 7, intermediate annealing was performed by a box annealing method, and in Test Nos. 3 and 8 to 11, continuous annealing was performed. The iron losses of Test Nos. 4 and 8 in which the soaking temperature of the intermediate annealing is less than the lower limit specified by the present invention and Test Nos. 7 and 11 whose upper limit exceeds the upper limit specified by the present invention are within the condition range specified by the present invention. Is inferior to Test Nos. 1, 2 or 3 manufactured by. Test numbers 1, 2, 5, and 6
The intermediate annealing conditions were the same, but the average crystal grain size after the primary recrystallization annealing was different due to the difference in the primary recrystallization annealing conditions. When these were compared, the average crystal grain size after the primary recrystallization annealing was out of the conditions specified by the present invention, and test numbers 5 and 6
Test Nos. 1 and 2 satisfying the conditions of the present invention
The iron loss is clearly good. Similarly, in Test Nos. 3, 9, and 10 in which the intermediate annealing was performed by the continuous annealing method, the iron loss of Test Nos. 9 and 10 in which the average crystal grain size after the primary recrystallization annealing was out of the conditions specified by the present invention. In comparison, Test No. 3, which satisfies the conditions defined by the present invention, clearly shows a good value.
The magnetic flux density B8, which is an important magnetic property together with iron loss,
The values of the magnetic flux density when magnetized at a magnetization force of 800 A / m (unit: Tesla) are also shown in Table 1. Test numbers 1 to 3 satisfying the conditions specified by the present invention show good values. .
【0049】(実施例2)sol.Al 含有量が異なる化学
組成のスラブを、1150℃に加熱し、800 ℃の仕上温度で
熱間圧延して2.9 mm厚とし、これを酸洗後670 ℃で20時
間均熱の箱焼鈍を施し、1mm厚に一次冷間圧延し(圧下
率:66%)、700 ℃で20時間均熱する中間焼鈍を箱焼鈍
方式で実施した。その後、0.27mm厚まで二次冷間圧延
(圧下率:73%)をおこない、さらに940 ℃で均熱する
連続焼鈍を施して一次再結晶させた後、仕上焼鈍を実施
した。仕上焼鈍は、H2 :50容積%、残:N2 雰囲気中
で890℃で24時間均熱した後、H2 :100 容積%の雰囲
気中で930 ℃で24時間均熱する二段均熱で実施した。ス
ラブの化学組成、一次再結晶焼鈍後の平均結晶粒径およ
び仕上焼鈍後の圧延方向の磁気特性を表2に示した。こ
れらの鋼のα−γ変態点は約950 ℃であった。Example 2 Slabs having different chemical compositions of sol.Al were heated to 1150 ° C., hot-rolled at a finishing temperature of 800 ° C. to a thickness of 2.9 mm, and pickled at 670 ° C. At room temperature for 20 hours, first cold-rolled to a thickness of 1 mm (reduction rate: 66%), and intermediate annealing at 700 ° C. for 20 hours was carried out by a box annealing method. Thereafter, secondary cold rolling (rolling reduction: 73%) was performed to a thickness of 0.27 mm, continuous annealing was performed at 940 ° C. for primary recrystallization, and then finish annealing was performed. In the final annealing, a two-stage soaking process is performed in which an atmosphere of H 2 : 50% by volume and the balance: N 2 atmosphere at 890 ° C. for 24 hours and then in an atmosphere of H 2 : 100% by volume at 930 ° C. for 24 hours. It was carried out in. Table 2 shows the chemical composition of the slab, the average crystal grain size after the primary recrystallization annealing, and the magnetic properties in the rolling direction after the finish annealing. The α-γ transformation point of these steels was about 950 ° C.
【0050】[0050]
【表2】 [Table 2]
【0051】表2に示されているように、sol.Al 含有
量が本発明が規定する条件の下限に満たない試験番号12
及びその上限を超えた試験番号15では、二次再結晶焼鈍
時のゴス方位への集積度が弱く、磁気特性が劣ってい
る。これに対して、本発明が規定する条件を満たす試験
番号13、14は仕上焼鈍時に適度のインヒビター効果があ
り、ゴス方位への集積度の高い二次再結晶が生じ、良好
な磁気特性を示している。As shown in Table 2, when the content of sol.Al is less than the lower limit of the condition specified by the present invention, Test No. 12
In Test No. 15 exceeding the upper limit, the degree of integration in the Goss orientation during the secondary recrystallization annealing is weak, and the magnetic properties are inferior. On the other hand, Test Nos. 13 and 14 satisfying the conditions specified by the present invention have a moderate inhibitory effect at the time of finish annealing, and secondary recrystallization with a high degree of integration in the Goss orientation occurs, showing good magnetic properties. ing.
【0052】[0052]
【発明の効果】本発明によれば、磁気特性が優れた方向
性電磁鋼板が、高温のスラブ加熱や脱炭焼鈍を用いない
で安定して製造できる。本発明の製造方法は、特殊な設
備を必要とせず、製造条件も厳しくないので製造歩留も
良く、極めて経済性に富む。According to the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties can be stably manufactured without using high-temperature slab heating or decarburizing annealing. The production method of the present invention does not require special equipment and the production conditions are not strict, so that the production yield is good and the production method is very economical.
【図1】本発明の製造方法に関する方向性電磁鋼板の中
間焼鈍条件と鉄損W17/50 との関係を示す図である。FIG. 1 is a view showing a relationship between intermediate annealing conditions of a grain-oriented electrical steel sheet and iron loss W17 / 50 in the production method of the present invention.
【図2】本発明の製造方法に関する一次再結晶焼鈍後の
平均結晶粒径と鉄損W17/50 との関係を示す図である。FIG. 2 is a graph showing the relationship between the average crystal grain size after primary recrystallization annealing and iron loss W17 / 50 in the production method of the present invention.
Claims (1)
超えて4%以下、Mn :1.5 〜4%、sol.Al :0.003
〜0.025 %、N:0.001 〜0.01%を含み、かつSi とM
n がSi (%)−0.5 ×Mn (%)≦2の関係を満た
し、残部はFe 及び不可避的不純物からなる組成のスラ
ブを、熱間圧延のまま、または熱間圧延後に焼鈍した
後、中間焼鈍をはさむ2回の冷間圧延をおこない、均熱
温度までの加熱を1℃/秒以上で急速加熱する一次再結
晶焼鈍後に仕上焼鈍する方向性電磁鋼板の製造方法であ
って、その中間焼鈍を、650 〜750 ℃で0.5 〜60時間、
または、860 〜940℃で5〜180 秒のいずれかの条件で
施し、一次再結晶焼鈍を一次再結晶焼鈍後の平均結晶粒
径Dが下記式に示す範囲になるような条件でおこな
い、仕上焼鈍を800 ℃以上、α−γ変態点未満のフェラ
イト単相領域でかつ1050℃以下の範囲で施すことを特徴
とする、磁気特性の良好な方向性電磁鋼板の製造方法。 ―1000×sol.Al+26≦D≦―1200×sol.Al+37---- ただし、D:平均結晶粒径(単位:μm ) sol.Al :sol.Al 含有量(重量%)C: 0.01% or less, Si: more than 2% and 4% or less, Mn: 1.5 to 4%, sol.Al: 0.003% by weight.
-0.025%, N: 0.001-0.01%, and Si and M
n satisfies the relationship of Si (%) − 0.5 × Mn (%) ≦ 2, and the remainder is a slab having a composition composed of Fe and unavoidable impurities. This is a method for producing a grain-oriented electrical steel sheet which is subjected to finish rolling after primary recrystallization annealing in which cold rolling is performed twice, including annealing, and rapidly heated to a soaking temperature of 1 ° C / sec or more, and the intermediate annealing is performed. At 650-750 ° C for 0.5-60 hours,
Alternatively, the first recrystallization annealing is performed at 860 to 940 ° C. for 5 to 180 seconds, and the primary recrystallization annealing is performed under such conditions that the average crystal grain size D after the first recrystallization annealing is in the range shown in the following formula. A method for producing a grain-oriented electrical steel sheet having good magnetic properties, wherein annealing is performed in a ferrite single phase region of 800 ° C or higher and lower than the α-γ transformation point and 1050 ° C or lower. —1000 × sol.Al + 26 ≦ D ≦ −1200 × sol.Al + 37 ---, where D: average crystal grain size (unit: μm) sol.Al: sol.Al content (% by weight)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8345140A JPH10183249A (en) | 1996-12-25 | 1996-12-25 | Production of grain oriented silicon steel sheet excellent in magnetic property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8345140A JPH10183249A (en) | 1996-12-25 | 1996-12-25 | Production of grain oriented silicon steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10183249A true JPH10183249A (en) | 1998-07-14 |
Family
ID=18374558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8345140A Pending JPH10183249A (en) | 1996-12-25 | 1996-12-25 | Production of grain oriented silicon steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10183249A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001741A (en) * | 2010-06-14 | 2012-01-05 | Jfe Steel Corp | Method for manufacturing grain-oriented electrical steel sheet |
EP2584054A4 (en) * | 2010-06-18 | 2017-06-14 | JFE Steel Corporation | Oriented electromagnetic steel plate production method |
CN111417737A (en) * | 2017-12-28 | 2020-07-14 | 杰富意钢铁株式会社 | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same |
-
1996
- 1996-12-25 JP JP8345140A patent/JPH10183249A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001741A (en) * | 2010-06-14 | 2012-01-05 | Jfe Steel Corp | Method for manufacturing grain-oriented electrical steel sheet |
EP2584054A4 (en) * | 2010-06-18 | 2017-06-14 | JFE Steel Corporation | Oriented electromagnetic steel plate production method |
CN111417737A (en) * | 2017-12-28 | 2020-07-14 | 杰富意钢铁株式会社 | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same |
US11459633B2 (en) | 2017-12-28 | 2022-10-04 | Jfe Steel Corporation | Low-iron-loss grain-oriented electrical steel sheet and production method for same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0762436A (en) | Production of grain oriented silicon steel sheet having extremely low iron loss | |
JPH10152724A (en) | Manufacture of grain oriented silicon steel sheet with extremely low iron loss | |
JPH0241565B2 (en) | ||
JPWO2019131853A1 (en) | Low iron loss grain-oriented electrical steel sheet and its manufacturing method | |
JPH0567683B2 (en) | ||
JPH06128646A (en) | Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density | |
JPH03294427A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3323052B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7159595B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH059666A (en) | Grain oriented electrical steel sheet and its manufacture | |
JPH08100216A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
CN114829657A (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JPH10183249A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP2002030340A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JPH06256847A (en) | Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic | |
JPH10110218A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JPH09104923A (en) | Production of grain-oriented silicon steel sheet | |
JP2819994B2 (en) | Manufacturing method of electrical steel sheet with excellent magnetic properties | |
JP3498978B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH10158740A (en) | Manufacture of grain oriented silicon steel sheet excellent in magnetic property | |
JPH07305116A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JPH0762437A (en) | Production of grain oriented silicon steel sheet having extremely low iron loss | |
JP2819993B2 (en) | Manufacturing method of electrical steel sheet with excellent magnetic properties | |
JP3061515B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss |