JPH10110218A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH10110218A
JPH10110218A JP8264113A JP26411396A JPH10110218A JP H10110218 A JPH10110218 A JP H10110218A JP 8264113 A JP8264113 A JP 8264113A JP 26411396 A JP26411396 A JP 26411396A JP H10110218 A JPH10110218 A JP H10110218A
Authority
JP
Japan
Prior art keywords
hot
temperature
magnetic properties
slab
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8264113A
Other languages
Japanese (ja)
Inventor
Kunihiro Senda
邦浩 千田
Toshito Takamiya
俊人 高宮
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8264113A priority Critical patent/JPH10110218A/en
Publication of JPH10110218A publication Critical patent/JPH10110218A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PROBLEM TO BE SOLVED: To obtain a grain oriented silicon steel sheet excellent in magnetic properties and reduced in iron loss at a low cost by further incorporating Nb into steel having respectively specified C, Si, and Mn contents and specifying hot rolling, cooling velocity, and coiling temp., respectively. SOLUTION: Nb is further incorporated by 0.002-0.10wt.% into a silicon steel having a composition containing, by weight, 0.005-0.080% C, 2.0-5.0% Si, and 0.03-0.20% Mn. A slab of this silicon steel is heated to >=1100 deg.C, hot-rolled, cold-rolled while process-annealed between cold rolling stages, and then subjected to decarburizing annealing and final finish annealing. At this time, hot rolling finishing temp. is regulated to 850-1050 deg.C, and the resultant hot rolled plate is cooled while regulating the average cooling rate, from directly after the completion of hot rolling until after 5sec, to (20 to 55) deg.C/sec, followed by coiling at 450-650 deg.C. If <=0.050% sol.Al and <=0.020% N are incorporated to the silicon steel if necessary, magnetic properties can be improved. Further, it is desirable to control the value of (S+Se), contained in the slab, to <=0.010%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器やその他
の電気機器の鉄心に用いる磁気特性に優れかつ製造コス
トの低減がはかれる方向性電磁鋼板の製造方法を提案す
るものである。
BACKGROUND OF THE INVENTION The present invention proposes a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties and reducing manufacturing costs for use in iron cores of transformers and other electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板には、磁気特性として、
磁束密度が高いこと、鉄損が低いことが要求される。前
者はB8(磁化力800A/mにおける磁束密度)で代表され、
後者はW17/50(周波数50Hzで1.7T まで磁化したときの
エネルギー損失)で代表される。
2. Description of the Related Art Grain-oriented electrical steel sheets have the following magnetic properties:
High magnetic flux density and low iron loss are required. The former is represented by B8 (magnetic flux density at 800 A / m magnetizing force),
The latter is represented by W 17/50 (energy loss when magnetized to 1.7 T at a frequency of 50 Hz).

【0003】方向性電磁鋼板が高磁束密度、低鉄損とな
るためには、鉄の磁化容易軸である〈001〉方位が鋼
板の圧延方向に高度に集積する必要があり、この集合組
織は方向性電磁鋼板の製造工程中、最終仕上げ焼鈍の際
にゴス方位と呼ばれる{110}〈001〉方位を有す
る結晶粒を優先的に巨大成長させる2次再結晶と呼ばれ
る現象を通じて形成される。このような結晶方位制御技
術としては、たとえば特公昭33-4710 号公報(方向性を
有する硅素鋼帯を製造する方法)や特公昭40-15644号公
報(高磁束密度一方向性硅素鋼板の製造方法)には、素
材中にAlを含有させ、最終冷間圧延の圧下率を81〜95%
の高圧下にするとともに最終冷間圧延前の焼鈍でAlN を
析出させる技術が、また特公昭46-23820号公報(高磁束
密度電磁鋼板の熱処理法)には、この最終焼鈍における
冷却速度を750 〜950 ℃の温度領域から400 ℃まで2〜
200 秒間で急冷する技術がそれぞれ開示されている。
[0003] In order for a grain-oriented electrical steel sheet to have a high magnetic flux density and a low iron loss, the <001> orientation, which is the axis of easy magnetization of iron, must be highly integrated in the rolling direction of the steel sheet. During the manufacturing process of a grain-oriented electrical steel sheet, it is formed through a phenomenon called secondary recrystallization, in which crystal grains having a {110} <001> orientation called a Goss orientation are preferentially giganticly grown during final finish annealing. Such crystal orientation control techniques include, for example, Japanese Patent Publication No. Sho 33-4710 (a method for producing a silicon steel strip having directivity) and Japanese Patent Publication No. 40-15644 (production of a high magnetic flux density unidirectional silicon steel sheet). Method), the Al is contained in the material, and the final cold rolling reduction is 81-95%.
And the precipitation of AlN by annealing before final cold rolling, and Japanese Patent Publication No. 46-23820 (heat treatment of high magnetic flux density magnetic steel sheet), the cooling rate in this final annealing is 750. From 950 ℃ to 400 ℃
Each of the techniques for quenching in 200 seconds is disclosed.

【0004】上記のような製造技術の進歩により、近年
ではB8が1.92T を超える鋼板の工業生産が可能になり、
たとえば板厚が0.23mmの鋼板ではW17/50が0.90W/Kgに達
する製品が工業生産されている。しかしながら今日の高
磁束密度化を主眼とした方向性電磁鋼板の製造方法にお
いては次の2点の問題が生じている。
[0004] Advances in manufacturing technology as described above have enabled industrial production of steel sheets with a B8 exceeding 1.92 T in recent years.
For example, with a steel plate having a thickness of 0.23 mm, products whose W17 / 50 reaches 0.90 W / Kg are industrially produced. However, the following two problems have arisen in today's method of manufacturing a grain-oriented electrical steel sheet with a focus on increasing the magnetic flux density.

【0005】まず第1点は、磁束密度の向上に伴って製
品の結晶粒径が粗大化し、180 °磁区幅が増大する結
果、渦電流損の増加を招くことである。
[0005] The first point is that the crystal grain size of the product is increased with the improvement of the magnetic flux density, and the magnetic domain width is increased, resulting in an increase in eddy current loss.

【0006】また第2点は、高磁束密度化を達成するた
めに複雑な工程が必要になり、これが方向性電磁鋼板の
製造コストを増加させていることである。特に、熱間圧
延前のスラブの高温加熱や最終仕上げ焼鈍における高温
長時間の焼鈍は、方向性電磁鋼板製造の生産コストを増
加させる要因となっており、さらに熱延板焼鈍、中間焼
鈍も、これを省略することができれば製造コストを大き
く削減することができる。
A second point is that a complicated process is required to achieve a high magnetic flux density, which increases the manufacturing cost of grain-oriented electrical steel sheets. In particular, high-temperature heating of the slab before hot rolling and high-temperature long-time annealing in the final finish annealing is a factor that increases the production cost of grain-oriented electrical steel sheet production, further hot-rolled sheet annealing, also intermediate annealing, If this can be omitted, manufacturing costs can be greatly reduced.

【0007】これまで、第1の問題点の解決策として、
特公昭50-26493号公報(高磁束密度一方向性電磁鋼板の
冷間圧延方法)には、冷間圧延のパス間温度を所定の温
度に保持して時効させる技術が開示されているが、この
方法によっても2次粒の粒径を完全に制御することは困
難であり、しかも実操業上きわめて煩雑である。
Heretofore, as a solution to the first problem,
Japanese Patent Publication No. 50-26493 (a method of cold rolling of high magnetic flux density unidirectional electrical steel sheet) discloses a technique of keeping the inter-pass temperature of the cold rolling at a predetermined temperature and aging, Even with this method, it is difficult to completely control the particle size of the secondary particles, and it is extremely complicated in actual operation.

【0008】また第2の問題の回避策として、特公昭61
-7447 号公報(方向性電磁鋼板の製造方法)には鋼中C
を制限し、さらに仕上げ焼鈍を温度勾配下で行うことに
よって、低温でのスラブ加熱を可能とする方法が、特公
平4-71990 号公報(方向性電磁鋼板及びその製造方法)
にはCおよびSiを所定の含有量以下に制限することによ
って、低温での仕上げ焼鈍を可能にする方法が、特公昭
59-45730号公報(高磁束密度一方向性珪素鋼板の熱延方
法)には、熱延後の巻き取り温度を高温にて行うことに
よって熱延板焼鈍の省略を可能にする技術が、さらに、
特公平7-94689号公報(磁気特性の優れた一方向性電磁
鋼板の製造方法)には、仕上げ熱延の最終3パスの累積
圧下率と熱間圧延温度とを適正に制御することによっ
て、中間焼鈍を含まない製造工程において熱延板焼鈍の
省略を可能にする方法が、それぞれ開示されている。し
かしながら、以上の方法によって方向性電磁鋼板を製造
する場合、製造コストの低減はある程度達成されるもの
の、未だ十分な磁気特性を有する製品が得られないとい
った欠点があった。
As a workaround for the second problem, Japanese Patent Publication No. Sho 61
-7447 (Method of manufacturing grain-oriented electrical steel sheet) states that
Japanese Patent Publication No. 4-71990 (Oriented electrical steel sheet and manufacturing method thereof) is a method that enables slab heating at a low temperature by performing finish annealing under a temperature gradient.
A method that enables finish annealing at a low temperature by limiting the contents of C and Si to a predetermined amount or less is disclosed in
Japanese Patent Application Laid-Open No. 59-45730 (Hot-rolling method for high magnetic flux density unidirectional silicon steel sheet) discloses a technology that enables the omission of hot-rolled sheet annealing by setting the winding temperature after hot rolling at a high temperature. ,
In Japanese Patent Publication No. 7-94689 (a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties), by appropriately controlling the cumulative rolling reduction and the hot rolling temperature in the final three passes of finish hot rolling, Disclosed are methods that enable omission of hot-rolled sheet annealing in a manufacturing process that does not include intermediate annealing. However, when the grain-oriented electrical steel sheet is manufactured by the above method, although the manufacturing cost can be reduced to some extent, there is a defect that a product having sufficient magnetic properties cannot be obtained yet.

【0009】[0009]

【発明が解決しようとする課題】この発明は、Nbを所定
量だけ含有させたスラブを所定の条件下で熱間圧延する
ことにより、上記問題を有利に解決するものであり、こ
の発明のうち、請求項1ないし3に記載の発明は、2次
粒が細かく鉄損の低い方向性電磁鋼板を低コストで製造
可能とする方向性電磁鋼板の製造方法を提案することを
目的とするものであり、請求項4に記載の発明は、磁気
特性のより優れる方向性電磁鋼板の製造方法を提案する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems by hot rolling a slab containing a predetermined amount of Nb under predetermined conditions. An object of the present invention is to propose a method for manufacturing a grain-oriented electrical steel sheet which enables a grain-oriented electrical steel sheet having fine secondary grains and low iron loss to be produced at low cost. In addition, an object of the invention described in claim 4 is to propose a method of manufacturing a grain-oriented electrical steel sheet having more excellent magnetic properties.

【0010】なお、これまでけい素鋼スラブにNbを含有
させることにより、方向性電磁鋼板の磁気特性の向上、
あるいは製造コストの低減を図る方法としては、特開昭
52-24116号公報(高磁束密度一方向性電磁鋼板用素材及
びその処理法)や特開平6-25747 号公報(薄手高磁束密
度一方向性電磁鋼板の製造方法)などに開示されている
が、これらの方法においては、いずれも熱間圧延工程に
おいてNb化合物の析出に対する制御がなされていないこ
とから、十分な磁気特性を有する製品が安定して得られ
るとは考えられない。
[0010] By adding Nb to silicon steel slabs, the magnetic properties of grain-oriented electrical steel sheets have been improved.
Alternatively, as a method of reducing the manufacturing cost, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 52-24116 (Material for High Magnetic Flux Density Unidirectional Electrical Steel Sheet) and Japanese Patent Application Laid-Open No. 6-25747 (Method of Manufacturing Thin High Magnetic Flux Unidirectional Electrical Steel Sheet) However, none of these methods control the precipitation of the Nb compound in the hot rolling step, so that it is not considered that a product having sufficient magnetic properties can be stably obtained.

【0011】[0011]

【課題を解決するための手段】発明者らは、上記の問題
を解決すべく研究を行った結果、鋼中にNbを含有させた
スラブを厳密に制御した温度条件のもとで熱間圧延する
ことによって、スラブ加熱温度の低温化、仕上げ焼鈍時
間の短縮あるいは熱延板焼鈍の省略などを可能にすると
ともに、2次粒を細かくして鉄損を低減することが可能
であることを見出し、この発明を達成するに至ったもの
である。すなわち、この発明の要旨とするところは以下
の通りである。
Means for Solving the Problems As a result of research conducted to solve the above problems, the inventors have found that a slab containing Nb in steel is hot-rolled under strictly controlled temperature conditions. By doing so, it is possible to lower the slab heating temperature, shorten the finish annealing time, or omit the hot-rolled sheet annealing, and find that it is possible to reduce the iron loss by making the secondary grains finer. The present invention has been accomplished. That is, the gist of the present invention is as follows.

【0012】 C:0.005 〜0.080 wt%、Si:2.0 〜
5.0 wt%およびMn:0.03〜0.20wt%を含有するけい素鋼
スラブを素材として、該スラブを1100℃以上の温度に加
熱したのち、熱間圧延し、1回もしくは中間焼鈍を挟む
2回以上の冷間圧延を行ったのち、脱炭焼鈍と最終仕上
げ焼鈍とを施す方向性電磁鋼板の製造方法において、該
スラブにNb:0.002 〜0.10wt%を含有させること、熱間
圧延終了温度を850 〜1050℃の範囲とし、熱間圧延終了
直後から5秒間後までの熱延板の平均冷却速度を20〜55
℃/秒の範囲とすることおよび熱延板の巻取り温度を45
0 〜650 ℃の範囲とすることとを特徴とする磁気特性に
優れる方向性電磁鋼板の製造方法(第1発明)であり、
かかる製造方法により、熱延板焼鈍の省略や長時間の仕
上げ焼鈍の時間を短縮しても、磁気特性の優れる方向性
電磁鋼板が得られ、製造コストを大幅に低減させること
ができる。
C: 0.005 to 0.080 wt%, Si: 2.0 to
Using a silicon steel slab containing 5.0 wt% and Mn: 0.03 to 0.20 wt% as a raw material, the slab is heated to a temperature of 1100 ° C. or more, then hot-rolled, and once or twice or more with intermediate annealing In the method for producing a grain-oriented electrical steel sheet that is subjected to decarburizing annealing and final finishing annealing after cold rolling of Nb: 0.002 to 0.10 wt% of Nb in the slab, and hot rolling end temperature of 850 And the average cooling rate of the hot-rolled sheet from immediately after the completion of hot rolling to after 5 seconds is 20 to 55
° C / sec and the coiling temperature of the hot rolled sheet is 45
0 to 650 ° C., a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties (first invention),
According to such a manufacturing method, a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained even if the omission of hot-rolled sheet annealing is omitted or the time for long-time finish annealing is shortened, and the manufacturing cost can be significantly reduced.

【0013】 第1発明のけい素鋼スラブの成分組成
に加えて、sol.Al:0.050 wt%以下およびN:0.020 wt
%以下を含有させる磁気特性の優れる方向性電磁鋼板の
製造方法(第2発明)であり、かかる製造方法によりさ
らなる磁気特性の向上がはかれる。
[0013] In addition to the component composition of the silicon steel slab of the first invention, sol. Al: 0.050 wt% or less and N: 0.020 wt%
% Or less, which is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties (second invention), whereby the magnetic properties can be further improved.

【0014】 該スラブに含有するS+Seの値を0.01
0 wt%以下に規制し、かつ、該スラブの加熱温度を1100
℃〜1250℃の範囲にすることを特徴とする第1または第
2発明に記載の磁気特性に優れる方向性電磁鋼板の製造
方法(第3発明)であり、かかる製造方法により、低温
域のスラブ加熱温度であっても優れる磁気特性の製品を
得ることができ、製造コストの大幅な低減をはかること
が可能になる。
The value of S + Se contained in the slab is 0.01
0 wt% or less, and the heating temperature of the slab is 1100
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the first or second invention (third invention), wherein the slab is in a low-temperature range. A product having excellent magnetic properties can be obtained even at the heating temperature, and the production cost can be significantly reduced.

【0015】 熱間圧延後、850 〜1200℃の温度範囲
で20〜120 秒間の範囲の熱延板焼鈍を施すことを特徴と
する第1,第2または第3発明に記載の磁気特性に優れ
る方向性電磁鋼板の製造方法(第4発明)であり、かか
る製造方法によれば、磁気特性のより優れる製品を得る
ことができる。
The hot-rolled sheet is annealed at a temperature in the range of 850 to 1200 ° C. for 20 to 120 seconds after the hot rolling, and has excellent magnetic properties according to the first, second or third invention. This is a method for manufacturing a grain-oriented electrical steel sheet (fourth invention). According to this manufacturing method, a product having more excellent magnetic properties can be obtained.

【0016】[0016]

【発明の実施の形態】まず、この発明を構成する要件に
ついて、実験例に基づいて以下に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, requirements constituting the present invention will be described below based on experimental examples.

【0017】C:0.040 wt%(以下単に%であらわ
す)、Si:3.30%、Mn:0.07%、Se:0.015 %およびS
b:0.020 %を含有し、残部は実質的にFeおよび不可避
的不純物からなる組成の溶鋼と、該溶鋼にNbを0.20%以
下の範囲で含有量を変化させて添加したそれぞれの溶鋼
を鋼塊に鋳造した。
C: 0.040 wt% (hereinafter simply expressed as%), Si: 3.30%, Mn: 0.07%, Se: 0.015% and S
b: A molten steel containing 0.020%, with the balance being substantially composed of Fe and unavoidable impurities, and each molten steel obtained by adding Nb to the molten steel in a range of 0.20% or less and changing the content. Cast into.

【0018】これらの鋼塊に1400℃・60分間の加熱処理
を施したのち、熱間圧延しそれぞれ板厚:2.2mm の熱延
板とした。これらの熱延板を酸洗後、冷間圧延を施して
最終板厚:0.35mmの冷延板としたのち、870 ℃の温度で
脱炭焼鈍を行い、その後MgOを主成分とする焼鈍分離剤
を塗布してから、図1に示すヒートパターンにてそれぞ
れ最終仕上げ焼鈍を行った。ここで、図1は短時間の最
終仕上げ焼鈍のヒートパターンを示すグラフである。
After heating these ingots at 1400 ° C. for 60 minutes, they were hot-rolled into hot-rolled sheets each having a thickness of 2.2 mm. After pickling these hot-rolled sheets, they are cold-rolled to give cold-rolled sheets with a final thickness of 0.35 mm, decarburized at 870 ° C, and then annealed mainly with MgO. After the agent was applied, final finishing annealing was performed in each of the heat patterns shown in FIG. Here, FIG. 1 is a graph showing a heat pattern of the short-time final finish annealing.

【0019】ついで、上記工程によって得られた各鋼板
に張力コーティングを焼き付けた製品板について、エプ
スタイン試験法により、B8(磁化力:800A/mにおける磁
束密度)およびW17/50(最大磁束密度:1.7T、周波数:
50Hzにおける鉄損)をそれぞれ測定するとともに平均2
次粒径をそれぞれ測定した。Nb含有量と鉄損W17/50、磁
束密度B8および平均2次粒径との関係のグラフを図2に
示す。
Next, for the product sheet obtained by baking a tension coating on each of the steel sheets obtained in the above process, B 8 (magnetizing force: magnetic flux density at 800 A / m) and W 17/50 (maximum magnetic flux density) were determined by the Epstein test method. : 1.7T, frequency:
Core loss at 50Hz) and average 2
The secondary particle size was measured. FIG. 2 is a graph showing the relationship between the Nb content, the iron loss W 17/50 , the magnetic flux density B 8 and the average secondary particle size.

【0020】図2から明らかなように、Nb含有量が0.00
2 〜0.10%の範囲で鉄損が低減し平均2次粒径も小さく
なっている。したがって、Nb添加による鉄損の低減効果
は製品板の2次粒径の細粒化によるといえる。
As apparent from FIG. 2, the Nb content is 0.00
In the range of 2 to 0.10%, the iron loss is reduced and the average secondary particle size is also reduced. Therefore, it can be said that the effect of reducing the iron loss by adding Nb is due to the refinement of the secondary particle size of the product sheet.

【0021】この実験により、熱延板焼鈍を省略した製
造工程であっても、Nbの添加により良好な磁気特性を有
する製品が得られる可能性のあることが見出された。し
かしながら、図2を見ると、鉄損のばらつきはかなり大
きく、Nbを単に添加するのみでは大幅な鉄損の改善効果
が期待できないことから、この鉄損のばらつきの原因を
調査したところ、Nbを含有するときに磁束密度B8の劣化
が起きる場合があり、このことが鉄損を劣化させている
ことが明らかとなった。
From this experiment, it was found that even in the manufacturing process in which the hot-rolled sheet annealing was omitted, there is a possibility that a product having good magnetic properties can be obtained by adding Nb. However, looking at FIG. 2, the variation in iron loss is quite large, and simply adding Nb cannot be expected to significantly improve the iron loss. Therefore, when investigating the cause of this variation in iron loss, may deteriorate the magnetic flux density B 8 when containing occurs, this has revealed that degrade the iron loss.

【0022】ここで、Nb添加によるB8の劣化は、熱間圧
延におけるNb化合物の析出状態が不適正になることによ
るものと考えられる。そこで、Nbを添加した場合に良好
な磁気特性を安定して得るため、熱間圧延時の温度条件
について検討した。
[0022] Here, the deterioration of the B 8 by Nb addition, precipitation state of Nb compound in hot rolling is believed to be due to be improper. Therefore, in order to stably obtain good magnetic properties when Nb is added, temperature conditions during hot rolling were examined.

【0023】図3に、上記実験のNb含有量が0.002 〜0.
10%の範囲の試料について、熱間圧延終了温度と磁束密
度B8との関係のグラフを示す。この図より、熱間圧延終
了温度が850 〜1050℃の範囲にあるとき、B8が高い水準
にあることが分る。したがって、熱間圧延終了温度を適
正に制御することによって、磁束密度の劣化を防止でき
ることが明らかとなった。
FIG. 3 shows that the Nb content in the above experiment was 0.002 to 0.2.
About 10% of the range of samples, shows a graph of the relationship between hot rolling finishing temperature and the magnetic flux density B 8. From this figure, when the hot rolling finishing temperature is in the range of 850 to 1050 ° C., B 8 is seen to be in the high level. Therefore, it has been clarified that the deterioration of the magnetic flux density can be prevented by appropriately controlling the hot rolling end temperature.

【0024】つづいて、熱間圧延後の冷却条件に関する
実験を行った。Nbを0.010 %含有する鋼塊を用いて方向
性電磁鋼板を製造するにあたり、熱間圧延終了温度を85
0 〜1050℃の範囲とし、熱間圧延終了直後から5秒間後
までの平均冷却速度を10〜70℃/秒および熱延板の巻取
り温度を450 〜650 ℃とそれぞれの範囲で変化させ、こ
れらの条件以外は前述の実験と同様の工程で製品板と
し、得られた各製品板についてそれぞれ鉄損W17/50を調
査した。これらの調査結果を図4に示す。図4は熱間圧
延終了直後から5秒間後までの平均冷却速度および巻取
り温度と鉄損W17/50との関係のグラフである。
Subsequently, an experiment on cooling conditions after hot rolling was conducted. In manufacturing grain-oriented electrical steel sheets using a steel ingot containing 0.010% Nb, the hot rolling end temperature was set at 85.
0 to 1050 ° C, the average cooling rate from immediately after the completion of hot rolling to 5 seconds later is changed to 10 to 70 ° C / sec and the winding temperature of the hot-rolled sheet is changed to 450 to 650 ° C, respectively. Except for these conditions, a product plate was formed in the same process as in the above-mentioned experiment, and the iron loss W 17/50 was examined for each of the obtained product plates. FIG. 4 shows the results of these investigations. FIG. 4 is a graph showing the relationship between the average cooling rate and the winding temperature from immediately after hot rolling to 5 seconds later and the iron loss W 17/50 .

【0025】図4から明らかなように、熱間圧延終了直
後から5秒間後までの平均冷却速度を20〜55℃/秒の範
囲とし、熱延板の巻取り温度を450 〜650 ℃の範囲とす
ることによって、優れる磁気特性の方向性電磁鋼板の安
定製造が可能であり、これらの範囲が好適範囲であるこ
とが分る。
As is apparent from FIG. 4, the average cooling rate from immediately after the completion of hot rolling to after 5 seconds is in the range of 20 to 55 ° C./sec, and the winding temperature of the hot rolled sheet is in the range of 450 to 650 ° C. By doing so, it is possible to stably produce a grain-oriented electrical steel sheet having excellent magnetic properties, and it is understood that these ranges are preferable ranges.

【0026】さらに、Nb添加と熱間圧延条件の制御によ
る磁気特性の改善効果を確認する実験を行った。鋼中の
Nb含有量を0.20%以下で変化させ、熱間圧延終了温度を
1000℃、熱間圧延終了から5秒間後までの熱延板の平均
冷却速度を40℃/秒および熱延板の巻取り温度を550 ℃
として、これらの条件以外は前述の実験と同様の工程で
それぞれ方向性電磁鋼板を製造し、得られた各製品板の
磁気特性を調査した。これらの調査結果として、図5に
Nb含有量と鉄損W17/50との関係のグラフを示す。
Further, an experiment was conducted to confirm the effect of improving the magnetic properties by adding Nb and controlling the hot rolling conditions. In steel
By changing the Nb content to 0.20% or less,
1000 ° C, average cooling rate of hot rolled sheet from end of hot rolling to 5 seconds after completion of 40 ° C / sec and winding temperature of hot rolled sheet at 550 ° C
With the exception of these conditions, grain-oriented electrical steel sheets were manufactured in the same steps as in the above-described experiment, and the magnetic properties of the obtained product sheets were investigated. Figure 5 shows the results of these surveys.
4 shows a graph of the relationship between Nb content and iron loss W 17/50 .

【0027】図5より明らかなように、前掲図2に比し
鉄損のばらつきが少なく、Nb含有量が0.002 〜0.010 %
の範囲にて安定して低鉄損の製品が得られることがわか
る。よって、Nbを適正量含有させたスラブを厳密に制御
した条件下で熱間圧延することによって、安定して良好
な磁気特性を有する製品が得られることが確かめられ
た。
As is clear from FIG. 5, the variation in iron loss is smaller and the Nb content is 0.002 to 0.010% as compared to FIG.
It can be seen that a product with low iron loss can be obtained stably in the range of. Therefore, it was confirmed that a product having stable and good magnetic properties can be obtained by hot rolling a slab containing an appropriate amount of Nb under strictly controlled conditions.

【0028】なお、上記実験後、Nbを添加したものと添
加しないものとの脱炭焼鈍板の粒径と集合組織について
調査した。その結果、Nbを添加して磁気特性が改善され
たものは、脱炭焼鈍板の粒径が微細化し、さらに{11
1}〈112〉方位の強度が増大していた。また、Nbを
添加したにもかかわらず、熱間圧延条件が適正でなかっ
たため良好な磁気特性が得られなかったものでは、熱延
板中に粗大なNb化合物が析出していたのに対し、良好な
磁気特性が得られたものでは、Nb化合物が均一微細に分
散していた。
After the above experiment, the grain size and texture of the decarburized annealed sheets with and without Nb were investigated. As a result, when the magnetic properties were improved by adding Nb, the grain size of the decarburized annealed sheet became finer, and
The intensity in the 1} <112> direction was increasing. In addition, despite the addition of Nb, those in which good magnetic properties could not be obtained because the hot rolling conditions were not appropriate, whereas coarse Nb compounds were precipitated in the hot-rolled sheet, In those having good magnetic properties, the Nb compound was uniformly and finely dispersed.

【0029】これらの一連の実験により、Nb含有量と熱
間圧延における温度条件を適正化することによって、磁
気特性に優れる方向性電磁鋼板を低コストで製造できる
方法を確立した。
Through a series of these experiments, a method was established in which a grain-oriented electrical steel sheet having excellent magnetic properties could be produced at low cost by optimizing the Nb content and the temperature conditions in hot rolling.

【0030】以上述べたように、この発明では、工程を
省略した場合でも、良好な磁気特性を有する方向性電磁
鋼板の製造を、Nbの適性添加によって可能にしている。
As described above, according to the present invention, even when the steps are omitted, it is possible to manufacture a grain-oriented electrical steel sheet having good magnetic properties by appropriately adding Nb.

【0031】このような鋼中のNbは、NbC, NbNなどの析
出物を形成することによって、熱延板の再結晶組織を微
細化して脱炭焼鈍板の結晶粒径分布や集合組織を改善
し、最終仕上げ焼鈍においては、正常粒成長を抑制する
インイビタとして作用するものと考えられる。このよう
な作用により、鋼中へのNbの添加は、熱延板焼鈍や中間
焼鈍を省略し、仕上げ焼鈍時間を短縮した場合にも良好
な磁気特性が得られることを可能にしたといえる。
Nb in such steel forms precipitates such as NbC and NbN, thereby refining the recrystallized structure of the hot-rolled sheet and improving the crystal grain size distribution and texture of the decarburized annealed sheet. However, in the final finish annealing, it is considered to act as an inhibitor for suppressing normal grain growth. By such an action, it can be said that the addition of Nb to steel has enabled omission of hot-rolled sheet annealing and intermediate annealing, thereby enabling good magnetic properties to be obtained even when the finish annealing time is shortened.

【0032】したがって、Nb添加による磁気特性改善の
ためには、Nb化合物を鋼中に均一・微細に析出させるこ
とが重要であり、このためには熱間圧延条件の適正化が
重要になる。
Therefore, in order to improve the magnetic properties by adding Nb, it is important to uniformly and finely precipitate the Nb compound in the steel. For this purpose, it is important to optimize the hot rolling conditions.

【0033】この発明で規定する熱間圧延条件により磁
気特性に優れる方向性電磁鋼板が得られる理由は、以下
のような機構によりNb化合物の均一・微細析出が実現さ
れたためと推定される。
The reason why a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained by the hot rolling conditions specified in the present invention is presumed to be the fact that uniform and fine precipitation of the Nb compound was realized by the following mechanism.

【0034】すなわち、熱間圧延終了温度が低すぎる場
合、圧延中にNb化合物(NbC, NbN等)が析出し、この析
出物の分布が不均一になる。逆に熱間圧延終了温度が高
すぎる場合、圧延後の冷却過程における温度履歴が不均
一になり、析出状態に不均一さが生じると考えられる。
That is, when the hot rolling end temperature is too low, Nb compounds (NbC, NbN, etc.) precipitate during rolling, and the distribution of the precipitates becomes uneven. Conversely, if the hot-rolling termination temperature is too high, it is considered that the temperature history in the cooling process after rolling becomes non-uniform, and the precipitation state becomes non-uniform.

【0035】さらに、熱間圧延終了直後から5秒間後ま
での間において、熱延板を平均冷却速度20℃/秒以上で
急冷することによって、Nb化合物の析出物が微細化する
ものと考えられる。しかし、この平均冷却速度が55℃/
秒を超えると、熱延板中の固溶Nbが過飽和となり、析出
物が減少しその絶対量が不足するために磁気特性が劣化
するものと考えられる。
Further, it is considered that the precipitate of the Nb compound is refined by rapidly cooling the hot-rolled sheet at an average cooling rate of 20 ° C./sec or more from immediately after the end of the hot rolling to after 5 seconds. . However, this average cooling rate is 55 ° C /
It is considered that if the time exceeds seconds, the solute Nb in the hot-rolled sheet becomes supersaturated, the precipitates decrease, and the absolute amount becomes insufficient, so that the magnetic properties deteriorate.

【0036】また、熱延板の巻取り温度を450 〜650 ℃
の範囲とすることによって良好な磁気特性が得られる理
由は、板厚方向でのNb化合物の析出個数の分布が、この
温度範囲で適正なものになるためではないかと推定され
る。
Further, the winding temperature of the hot rolled sheet is set at 450 to 650 ° C.
It is presumed that the reason why good magnetic properties can be obtained by setting the range as described above is that the distribution of the number of precipitated Nb compounds in the plate thickness direction becomes appropriate within this temperature range.

【0037】つぎに、この発明において使用するけい素
鋼素材の成分組成について述べる。この発明の成分組成
は、C:0.005 〜0.080 %、Si:2.0 〜5.0 %およびM
n:0.03〜0.20%を基本成分とする鋼に、Nb:0.002 〜
0.10%の範囲で含有させる。以下、この発明において成
分組成を上記範囲に限定した理由ならび好適成分組成に
ついて述べる。
Next, the component composition of the silicon steel material used in the present invention will be described. The component composition of the present invention is as follows: C: 0.005 to 0.080%, Si: 2.0 to 5.0% and M
n: 0.03 to 0.20% for steel with basic components, Nb: 0.002 to
It is contained in the range of 0.10%. Hereinafter, the reason why the composition of the present invention is limited to the above range and the preferable composition of the composition will be described.

【0038】C:0.005 〜0.080 % Cは、変態を利用して熱延組織を改善するのに有用な成
分であり、含有量は少なくとも0.005 %を必要とする
が、0.080 %を超えると脱炭焼鈍において脱炭不良を起
すので好ましくない。したがってその含有量は0.005 %
以上、0.080 %以下とする。
C: 0.005 to 0.080% C is a component useful for improving the hot-rolled structure by utilizing transformation, and the content is required to be at least 0.005%, but when it exceeds 0.080%, decarburization is performed. This is not preferable because of poor decarburization during annealing. Therefore its content is 0.005%
At least 0.080%.

【0039】Si:2.0 〜5.0 % Siは、電気抵抗を高めて鉄損を低減させる主要な成分で
あり、含有量は少なくとも2.0 %を必要とするが、5.0
%を超えると冷間圧延が困難となり好ましくない。した
がってその含有量は2.0 %以上、5.0 %以下とする。
Si: 2.0 to 5.0% Si is a main component for increasing electric resistance and reducing iron loss, and the content is required to be at least 2.0%.
%, The cold rolling becomes difficult, which is not preferable. Therefore, its content should be 2.0% or more and 5.0% or less.

【0040】Mn:0.03〜0.20% Mnは、鋼の熱間加工性の改善に有効に寄与するだけでな
く、SもしくはSeが混在する場合には、MnS やMnSe等の
析出物を形成し抑制剤としての機能を発揮するので、そ
の含有量は0.03%以上、0.20%以下の範囲を必要とす
る。
Mn: 0.03 to 0.20% Mn not only effectively contributes to the improvement of hot workability of steel, but also forms precipitates such as MnS and MnSe when S or Se is mixed. Since it functions as an agent, its content needs to be in the range of 0.03% or more and 0.20% or less.

【0041】Nb:0.002 〜0.10% Nbは、熱間圧延での冷却条件を適正に制御することによ
って、従来の製造工程を大幅に簡略化しても良好な磁気
特性を得ることを可能とする有効な成分である。また、
Nbには2次再結晶粒径を微細化して渦電流損を低減させ
る働きも有する。含有量が0.002 %未満ではそれらの効
果が十分でなく、一方、0.10%を超えるとNb化合物が粗
大析出し、磁気特性にかえって悪影響を及ぼす。したが
ってその含有量は0.002 %以上、0.10%以下とする。
Nb: 0.002 to 0.10% Nb is an effective material that can obtain good magnetic properties even if the conventional manufacturing process is greatly simplified by appropriately controlling the cooling conditions in hot rolling. Component. Also,
Nb also has a function of reducing the eddy current loss by reducing the secondary recrystallized grain size. If the content is less than 0.002%, these effects are not sufficient. On the other hand, if the content exceeds 0.10%, the Nb compound precipitates coarsely and adversely affects magnetic properties. Therefore, its content should be not less than 0.002% and not more than 0.10%.

【0042】一方、通常の方向性電磁鋼板と同様に、抑
制力補強成分として、上記成分組成に加えてS,Seおよ
びAl, N等を含有させることも良好な磁気特性を得るた
めに有効である。
On the other hand, as in the case of a normal grain-oriented electrical steel sheet, it is also effective to include S, Se and Al, N, etc. in addition to the above-mentioned component composition as a suppressing force reinforcing component in order to obtain good magnetic properties. is there.

【0043】SおよびSeは、スラブの加熱温度が低温で
あるとき、SおよびSeの含有量が多いと不均一な析出が
起り、かえって磁気特性劣化の原因となる。このため、
この発明(第3発明)では、スラブの加熱熱温度を低温
化する場合には、S+Se含有量を0.010 %以下とする。
さらに、この発明ではNbの添加によって、抑制剤形成成
分としてのSおよびSeの働きを補完している。
When the heating temperature of the slab is low, if the content of S and Se is large, non-uniform precipitation occurs, which causes deterioration of magnetic properties. For this reason,
In the present invention (third invention), when the heating temperature of the slab is lowered, the S + Se content is set to 0.010% or less.
Further, in the present invention, the addition of Nb complements the functions of S and Se as inhibitor-forming components.

【0044】また、Alは、Nと結合してAlN として析出
し、インヒビタとして正常粒(ゴス方位の粒)以外の粒
成長を抑制する効果を有し、Nb化合物の作用を高める働
きをもつ。この効果の発現のために、Alは、sol.Alとし
て0.050 %以下の範囲で含有させ、Nは、0.020 %以下
で含有させることが好ましい。但し、sol.Alが0.050%
を超える場合やNが0.020 %を超える場合は析出AlN が
粗大化し、2次再結晶粒の成長を阻害し、磁気特性を劣
化させるので、sol.Alは0.050 %以下、Nは0.020 %以
下とする。
Also, Al combines with N and precipitates as AlN, and as an inhibitor, has the effect of suppressing the growth of grains other than normal grains (grain in the Goss orientation), and has the function of increasing the action of the Nb compound. In order to exhibit this effect, it is preferable that Al is contained in a range of 0.050% or less as sol.Al, and N is contained in a range of 0.020% or less. However, sol.Al is 0.050%
If N exceeds 0.020%, the precipitated AlN becomes coarse and hinders the growth of secondary recrystallized grains, deteriorating the magnetic properties. Therefore, sol.Al is 0.050% or less and N is 0.020% or less. I do.

【0045】上述した成分組成とすることによってこの
発明の目的は達成されるが、これらのほかにも抑制力の
補強のために、Sb, Bi, Mo, Cu, PおよびSnなどを添加
してもよい。
The object of the present invention can be achieved by the above-mentioned composition, but in addition to these, Sb, Bi, Mo, Cu, P, Sn and the like are added for reinforcing the suppressing force. Is also good.

【0046】SbおよびBiは、粒界に偏析して抑制力を高
める効果を、またMoは、2次粒の核をゴス方位にせん鋭
化させる効果をそれぞれ有し、これらはいずれも含有量
が0.001 〜0.20%の範囲でそれらの効果が顕著である。
Sb and Bi have the effect of segregating at the grain boundaries to increase the suppressing power, and Mo has the effect of sharpening the nuclei of the secondary grains to the Goss orientation. However, those effects are remarkable in the range of 0.001 to 0.20%.

【0047】Cuは、Mnと同様にSやSeと結合して析出物
を形成し抑制力を高める成分であり、その効果は含有量
が0.01〜0.30%の範囲がよい。
Cu, like Mn, is a component that combines with S and Se to form precipitates and enhance the suppressing power, and its effect is preferably in the range of 0.01 to 0.30%.

【0048】Pは、Sbと同様に粒界に偏析して抑制力を
高める成分であり、含有量が0.010%未満では添加効果
に乏しく、一方0.030 %を超えると磁気特性、表面性状
を不安定化させるので、その含有量は0.010 〜0.030 %
の範囲がよい。
P, like Sb, is a component that segregates at the grain boundaries to increase the suppressing power. If the content is less than 0.010%, the effect of addition is poor, while if it exceeds 0.030%, the magnetic properties and surface properties are unstable. So that the content is 0.010-0.030%
Range is good.

【0049】Snは、鉄損の低減に有効な成分であり、0.
008 〜0.025 %の範囲で含有させることがよい。
Sn is a component effective for reducing iron loss.
It is preferable to contain 008 to 0.025%.

【0050】なお、上記の各成分において、C,S,S
e, AlおよびN等はそれぞれの機能を果たしたのち、C
は主として脱炭焼鈍時に、S,Se, AlおよびN等は仕上
げ焼鈍後半の鈍化焼鈍において除去されるので、製品の
地鉄中には不純物として微量残存するのみである。
In each of the above components, C, S, S
e, Al, N, etc. perform their respective functions,
Is mainly removed during decarburization annealing, S, Se, Al, N, etc. are removed in the annealing after the final annealing, so that only a trace amount of impurities remains in the base iron of the product.

【0051】つぎに、この発明の製造方法について述べ
る。上記した成分組成を有する方向性電磁鋼板用素材
(スラブ)は、従来より公知のいかなる方法によっても
製造することができる。ついで、この電磁鋼板用素材
は、通常の熱間圧延によって熱延板としコイルに巻取ら
れる。
Next, the manufacturing method of the present invention will be described. The material (slab) for a grain-oriented electrical steel sheet having the above-described component composition can be produced by any conventionally known method. Next, the material for an electromagnetic steel sheet is formed into a hot-rolled sheet by ordinary hot rolling and wound around a coil.

【0052】この発明は、上記熱間圧延工程において、
熱間圧延終了温度を850 〜1050℃の範囲、熱間圧延終了
直後から5秒間後までの平均冷却速度を20〜55℃/秒の
範囲および熱延板の巻取り温度を450 〜650 ℃の範囲と
することによって、従来必要とされてきた工程の大幅な
省略を可能とする。
According to the present invention, in the hot rolling step,
The hot-rolling end temperature is in the range of 850 to 1050 ° C, the average cooling rate from immediately after hot-rolling to 5 seconds later is in the range of 20 to 55 ° C / sec, and the hot-rolled sheet winding temperature is 450 to 650 ° C. By setting the range, it is possible to largely omit the conventionally required steps.

【0053】ここで、熱間圧延終了時から熱延板の巻取
りまでの温度条件が上記各条件をはずれると、熱延板中
にNb化合物が均一・微細に析出しなくなり磁気特性を損
ねることになるため、この発明のNbを含有させた素材を
用いる場合には、上記条件下での巻取りを含む熱間圧延
を行うことが圧倒的に有利であり、かつ上記条件を必須
とするものである。
If the temperature conditions from the end of hot rolling to the winding of the hot-rolled sheet deviate from the above-mentioned conditions, the Nb compound is not uniformly and finely precipitated in the hot-rolled sheet and magnetic properties are impaired. Therefore, when the material containing Nb of the present invention is used, it is overwhelmingly advantageous to perform hot rolling including winding under the above conditions, and the above conditions are essential. It is.

【0054】なお、この発明の構成の主要部分は、鋼中
へのNbの添加と熱間圧延工程における温度制御によっ
て、良好な2次再結晶を容易にするところにあるが、こ
のNbの添加により、スラブの加熱温度をより低温化する
ことができる。スラブ加熱温度の低温化技術としては、
前掲特開昭52-24116号公報にNb等の窒化物形成成分を所
定量含有させる方法が開示されている。ところが、この
方法では析出物の分散状態に対する制御が行なわれてい
ないため、十分に満足できる磁気特性が得られるとはい
えなかった。
The main part of the structure of the present invention lies in that good secondary recrystallization is facilitated by adding Nb to the steel and controlling the temperature in the hot rolling step. Thereby, the heating temperature of the slab can be further reduced. As a technology for lowering the slab heating temperature,
The above-mentioned Japanese Patent Application Laid-Open No. 52-24116 discloses a method of including a predetermined amount of a nitride-forming component such as Nb. However, this method does not control the dispersion state of the precipitates, so that it cannot be said that sufficiently satisfactory magnetic characteristics can be obtained.

【0055】これに対し、発明者らはとくにNbに着目
し、Nb化合物の分散析出状態を制御し、磁気特性を改善
する方法を確立したが、さらに鋼中のS+Se量を規制す
ることによって、スラブ加熱温度をより低温化しても良
好な磁気特性の製品が得られることが判明し、この発明
(第3発明)を達成した。すなわち、スラブに含有する
S+Se量を0.010 %以下とした上でスラブ加熱温度を11
00〜1250℃の範囲とすることでも磁気特性に優れる方向
性電磁鋼板を得ることができる。
On the other hand, the present inventors have focused on Nb, and established a method for controlling the dispersed precipitation state of the Nb compound and improving the magnetic properties. However, by further controlling the amount of S + Se in the steel, It has been found that a product having good magnetic properties can be obtained even when the slab heating temperature is lowered, and this invention (third invention) has been achieved. That is, the amount of S + Se contained in the slab was set to 0.010% or less, and the slab heating temperature was set to 11%.
Even when the temperature is in the range of 00 to 1250 ° C., a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained.

【0056】上記において、鋼中のSおよびSeは、MnS
およびMnSeとして析出し、2次再結晶に影響を及ぼす
が、スラブ加熱温度が低い場合、MnS およびMnSeの固溶
が不完全になり、SおよびSeの偏析が生じて磁気特性を
劣化させる。これに対し、SおよびSeの含有量を低減す
ることは、このような偏析の発生を回避し、さらにNbを
含有させることによって、SおよびSeを減少させた場合
でも良好な磁気特性を得ることができる。これは、鋼中
に均一・微細に析出したNb化合物がインヒビタとして作
用することにより、MnS およびMnSeが減少した場合でも
良好な2次再結晶化が進行するためと考えられる。
In the above, S and Se in steel are MnS
And precipitates as MnSe, affecting secondary recrystallization. However, when the slab heating temperature is low, solid solution of MnS and MnSe becomes incomplete, and segregation of S and Se occurs to deteriorate magnetic properties. On the other hand, reducing the content of S and Se avoids the occurrence of such segregation, and obtains good magnetic properties even when S and Se are reduced by adding Nb. Can be. This is presumably because the Nb compound precipitated uniformly and finely in the steel acts as an inhibitor, whereby favorable secondary recrystallization proceeds even when MnS and MnSe are reduced.

【0057】熱間圧延後は、1回または中間焼鈍を挟む
2回以上の冷間圧延ののち、通常の脱炭焼鈍と最終仕上
げ焼鈍を施し、必要に応じて張力コーティングを施して
製品板とする。
After hot rolling, cold rolling is performed once or two or more times with intermediate annealing, followed by ordinary decarburizing annealing and final finishing annealing, and, if necessary, by applying tension coating to the product sheet. I do.

【0058】以上述べた方法により、熱延板焼鈍工程を
省略した場合でも磁気特性に優れる方向性電磁鋼板の製
造が可能であるが、鋼中析出物の分散状態をより均一・
微細に制御するために、850 〜1200℃の温度範囲で20〜
120 秒間の時間範囲の熱延板焼鈍工程を付加させること
で(第4発明)、さらに優れる磁気特性を得ることがで
きる。さらに、上記熱延板焼鈍の有無にかかわらず、圧
下率が20〜40%の範囲の一次冷間圧延後に、800 〜1200
℃の温度範囲で30〜240 秒間の時間範囲の中間焼鈍を施
すことによって、さらに優れた磁気特性が得られる。
By the above-described method, it is possible to produce a grain-oriented electrical steel sheet having excellent magnetic properties even when the hot-rolled sheet annealing step is omitted, but the dispersion state of precipitates in the steel can be made more uniform.
20 to 850 to 1200 ° C for fine control
By adding a hot-rolled sheet annealing step for a time range of 120 seconds (fourth invention), more excellent magnetic properties can be obtained. Further, regardless of the presence or absence of the above-mentioned hot-rolled sheet annealing, after the primary cold rolling in the rolling reduction range of 20 to 40%, 800 to 1200
Even better magnetic properties are obtained by subjecting the intermediate anneal to a temperature range of 30 ° C. for a time range of 30 to 240 seconds.

【0059】[0059]

【実施例】【Example】

実施例1 C:0.040 %、Si:3.30%、Mn:0.07%、Se:0.015 %
およびSb:0.020 %を含有し残部は実質的にFeおよび不
可避的不純物からなる組成のスラブならびに上記成分組
成にNbを0.03%以下の範囲で含有量を変化させて含有さ
せた組成の各スラブを、1400℃の温度で60分間の加熱
後、下記の条件で熱間圧延しそれぞれ板厚:2.2mm の熱
延板とした。 ・熱間圧延終了温度:700 ℃、1000℃ ・熱間圧延終了直後から5秒間後までの熱延板の平均冷
却速度:10℃/秒、30℃/秒 ・熱延板巻取り温度:500 ℃、700 ℃
Example 1 C: 0.040%, Si: 3.30%, Mn: 0.07%, Se: 0.015%
And Sb: a slab containing 0.020% and the balance substantially consisting of Fe and unavoidable impurities, and each slab having a composition in which Nb is added to the above-mentioned component composition in a range of 0.03% or less. After heating at a temperature of 1400 ° C. for 60 minutes, hot rolling was performed under the following conditions to obtain a hot-rolled sheet having a sheet thickness of 2.2 mm.・ Hot rolling end temperature: 700 ° C, 1000 ° C ・ Average cooling rate of hot rolled sheet from immediately after hot rolling to 5 seconds later: 10 ° C / sec, 30 ° C / sec ・ Hot rolling sheet winding temperature: 500 ℃, 700 ℃

【0060】かくして得られた各熱延板を酸洗後、圧下
率:85%の冷間圧延を施して最終板厚:0.35mmの冷延板
としたのち、840 ℃の温度で脱炭焼鈍を行い、その後Mg
O を主成分とする焼鈍分離剤を塗布してから前掲図1に
示したヒートパターンにてそれぞれ最終仕上げ焼鈍を施
した。以上の工程により得られた各鋼板に張力コーティ
ングを焼付け製品板とし、それぞれの製品板について磁
気特性を調査した。各製品板の磁気特性の調査結果を表
1にまとめて示す。
Each hot-rolled sheet thus obtained was pickled, cold-rolled at a rolling reduction of 85% to give a cold-rolled sheet having a final thickness of 0.35 mm, and then decarburized and annealed at a temperature of 840 ° C. And then Mg
After applying an annealing separator containing O 2 as a main component, each was subjected to final finish annealing according to the heat pattern shown in FIG. Tensile coatings were baked on each steel sheet obtained by the above steps to produce product sheets, and the magnetic properties of each product sheet were investigated. Table 1 summarizes the results of the investigation of the magnetic properties of each product plate.

【0061】[0061]

【表1】 [Table 1]

【0062】表1より明らかなように、Nb含有量が0.00
2 〜0.10%の範囲、熱間圧延終了温度が850 〜1050℃の
範囲、熱間圧延終了直後から5秒間後までの平均冷却速
度が20〜55℃/秒の範囲および熱延板の巻取り温度が45
0 〜650 ℃の範囲にあるこの発明の適合例は、熱延板焼
鈍を省略し、仕上げ焼鈍を短時間化したにもかかわら
ず、いずれも良好な磁気特性を示している。
As is clear from Table 1, the Nb content was 0.00
2 to 0.10%, hot rolling end temperature in the range of 850 to 1050 ° C, average cooling rate from immediately after hot rolling to 5 seconds later in the range of 20 to 55 ° C / sec, and winding of hot rolled sheet Temperature 45
All of the applicable examples of the present invention in the range of 0 to 650 ° C. show good magnetic properties despite omitting the hot-rolled sheet annealing and shortening the finish annealing.

【0063】実施例2 C:0.035 %、Si:3.20%、Mn:0.07%、Sb:0.020 %
ならびにNbおよびS,Seを種々の量含有し、残部は実質
的にFeおよび不可避不純物からなる組成の各スラブを、
それぞれ1150℃の温度で60分間加熱したのち、熱間圧延
し板厚:2.2mmの熱延板とした。
Example 2 C: 0.035%, Si: 3.20%, Mn: 0.07%, Sb: 0.020%
Each slab containing various amounts of Nb, S, and Se, and the balance substantially consisting of Fe and unavoidable impurities.
After heating at a temperature of 1150 ° C. for 60 minutes, hot rolling was performed to obtain a hot-rolled sheet having a sheet thickness of 2.2 mm.

【0064】このとき、熱延板終了温度:1000℃、熱延
板の平均冷却速度(圧延終了直後から5秒間後まで):
50℃/秒、熱延板巻取り温度:550 ℃とした。これらの
熱延板に1000℃・1分間の熱延板焼鈍を施し、酸洗後、
圧下率:85%の冷間圧延を施し最終板厚:0.35mmの冷延
板としたのち、870 ℃の温度で脱炭焼鈍を行った。その
後MgO を主成分とする焼鈍分離剤を塗布してから前掲図
1に示したヒートパターンにて最終仕上げ焼鈍を行った
のち張力コーティングを焼付けそれぞれ製品板とした。
かくして得られた各製品板について調査した磁気特性の
調査結果を表2にまとめて示す。
At this time, the hot-rolled sheet end temperature: 1000 ° C., the average cooling rate of the hot-rolled sheet (from immediately after the end of rolling to after 5 seconds):
50 ° C./sec, hot-rolled sheet winding temperature: 550 ° C. These hot rolled sheets are subjected to hot rolled sheet annealing at 1000 ° C for 1 minute, and after pickling,
After cold rolling at a rolling reduction of 85% to obtain a cold-rolled sheet having a final thickness of 0.35 mm, decarburizing annealing was performed at a temperature of 870 ° C. Thereafter, an annealing separating agent containing MgO as a main component was applied, and then a final finish annealing was performed according to the heat pattern shown in FIG. 1 described above.
Table 2 summarizes the results of the investigation of the magnetic properties of each product plate obtained in this manner.

【0065】[0065]

【表2】 [Table 2]

【0066】表2より明らかなように、スラブ加熱温度
を1150℃と従来に比し低くした場合にも、この発明を適
用することによって良好な磁気特性が得られており、こ
の場合、S+Se含有量を0.010 %以下とする(第3発
明)ことによって、さらに磁気特性は向上している。
As is clear from Table 2, even when the slab heating temperature was set to 1150 ° C. lower than the conventional one, good magnetic characteristics were obtained by applying the present invention. By setting the amount to 0.010% or less (third invention), the magnetic properties are further improved.

【0067】実施例3 C:0.07%、Si:3.30%、Mn:0.07%、sol.Al:0.025
%、N:0.008 %、Se:0.020 %およびSb:0.025 %を
含有し、残部は実質的にFeおよび不可避的不純物からな
る組成のスラブならびに上記成分組成にNbを0.20%以下
の範囲で含有量を変化させて含有させた組成の各スラブ
を、1400℃の温度で60分間加熱後、熱間圧延終了温度:
1000℃、熱延板の平均冷却速度(圧延終了直後から5秒
間後まで):40℃/秒、熱延板巻取り温度:600 ℃とす
る条件のもとに熱間圧延して厚板:2.2mm の熱延板とし
た。
Example 3 C: 0.07%, Si: 3.30%, Mn: 0.07%, sol. Al: 0.025
%, N: 0.008%, Se: 0.020%, and Sb: 0.025%, with the balance being a slab substantially composed of Fe and unavoidable impurities, and Nb in the above composition within a range of 0.20% or less. Is heated at a temperature of 1400 ° C. for 60 minutes, and then hot-rolling termination temperature:
Hot rolling under the conditions of 1000 ° C, average cooling rate of hot rolled sheet (from immediately after rolling to 5 seconds later): 40 ° C / sec, and hot rolling sheet winding temperature: 600 ° C. A 2.2 mm hot rolled sheet was used.

【0068】これらの熱延板を中央で2分割し、一方に
は1000℃の温度で1分間の熱延板焼鈍を施したのち、他
の一方はそのままの状態でそれぞれ酸洗し、圧下率:30
%の1次冷間圧延を施し、ついで1100℃の温度で1分間
の中間焼鈍を行った。その後、酸洗、2次冷間圧延を施
して最終板厚:0.23mmの冷延板とし、870 ℃の温度での
脱炭焼鈍ののち、MgO を主成分とする焼鈍分離剤を塗布
してから前掲図1に示すヒートパターンにて最終仕上げ
焼鈍し、張力コーティングを焼付けてそれぞれ製品板と
した。かくして得られた各製品板について調査した磁気
特性の調査結果を表3にまとめて示す。
These hot-rolled sheets were divided into two parts at the center, and one of them was subjected to hot-rolled sheet annealing at a temperature of 1000 ° C. for 1 minute, and then the other was pickled in the same state, and the reduction rate was reduced. : 30
% Primary cold rolling, and then an intermediate annealing at a temperature of 1100 ° C. for 1 minute. Thereafter, it is subjected to pickling and second cold rolling to form a cold-rolled sheet having a final sheet thickness of 0.23 mm. After decarburizing annealing at a temperature of 870 ° C., an annealing separator containing MgO as a main component is applied. 1 was subjected to final finish annealing according to the heat pattern shown in FIG. Table 3 summarizes the results of the investigation of the magnetic properties of each product sheet obtained in this manner.

【0069】[0069]

【表3】 [Table 3]

【0070】表3より明らかなように、Nbを0.002 〜0.
10%の範囲で含有させたこの発明の適合例は、いずれも
良好な磁気特性を示しており、これらは熱延板焼鈍を付
加することによって、さらに鉄損が低減することを示し
ている。
As is evident from Table 3, the Nb content was 0.002 to 0.2.
All of the conforming examples of the present invention contained in the range of 10% show good magnetic properties, and show that the addition of hot-rolled sheet annealing further reduces iron loss.

【0071】[0071]

【発明の効果】この発明の請求項1ないし4に記載の発
明は、方向性電磁鋼板を製造するにあたり、限定された
素材成分組成にNbを含有させ、熱間圧延での圧延終了温
度、圧延終了後の冷却速度および熱延板巻取り温度など
を特定するものであり、この請求項1または2に記載の
発明によれば、熱延板焼鈍を省略したり仕上げ焼鈍を短
時間化したりしても良好な磁気特性が得られるなど、経
済性に優れるとともに磁気特性に優れる方向性電磁鋼板
が製造できる。
According to the first to fourth aspects of the present invention, in producing a grain-oriented electrical steel sheet, Nb is contained in a limited material component composition, a rolling end temperature in hot rolling, and a rolling end temperature. The present invention specifies the cooling rate after completion of the process, the hot rolled sheet winding temperature, and the like. According to the first or second aspect of the present invention, the hot rolled sheet annealing can be omitted or the finish annealing can be shortened. Thus, a grain-oriented electrical steel sheet having excellent economic properties and excellent magnetic properties, such as good magnetic properties, can be manufactured.

【0072】また、請求項3に記載の発明は、S+Se含
有量を制限することにより、スラブの加熱温度を低温化
しても良好な磁気特性を得ることができ、大幅なコスト
低減がはかれるものであり、さらに、請求項4に記載の
発明は、温度および時間を特定した熱延板焼鈍を付加す
ることにより、より優れる磁気特性を有する方向性電磁
鋼板の製造を可能とするものである。
Further, according to the third aspect of the invention, by limiting the S + Se content, good magnetic properties can be obtained even when the slab heating temperature is lowered, and the cost can be greatly reduced. In addition, the invention according to claim 4 makes it possible to manufacture a grain-oriented electrical steel sheet having more excellent magnetic properties by adding hot-rolled sheet annealing with a specified temperature and time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単時間の最終仕上げ焼鈍のヒートパターンを示
すグラフである。
FIG. 1 is a graph showing a heat pattern of final finishing annealing for one hour.

【図2】Nb含有量と鉄損W17/50、磁束密度B8および平均
2次粒径との関係のグラフである。
FIG. 2 is a graph showing the relationship between the Nb content and iron loss W 17/50 , magnetic flux density B 8 and average secondary particle size.

【図3】熱間圧延終了温度と磁束密度B8との関係のグラ
フである。
3 is a graph of the relationship between hot rolling finishing temperature and the magnetic flux density B 8.

【図4】熱間圧延終了直後から5秒間後までの平均冷却
速度および巻取り温度と鉄損W1 7/50との関係のグラフで
ある。
4 is a graph of the relationship between the average cooling rate and coiling temperature and the iron loss W 1 7/50 from immediately after completion of hot rolling until after 5 seconds.

【図5】Nb含有量と鉄損W17/50との関係のグラフであ
る。
FIG. 5 is a graph showing the relationship between Nb content and iron loss W 17/50 .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.005 〜0.080 wt%、Si:2.0 〜5.
0 wt%およびMn:0.03〜0.20wt%を含有するけい素鋼ス
ラブを素材として、該スラブを1100℃以上の温度に加熱
したのち、熱間圧延し、1回もしくは中間焼鈍を挟む2
回以上の冷間圧延を行ったのち、脱炭焼鈍と最終仕上げ
焼鈍とを施す方向性電磁鋼板の製造方法において、 該スラブにNb:0.002 〜0.10wt%を含有させること、 熱間圧延終了温度を850 〜1050℃の範囲とし、熱間圧延
終了直後から5秒間後までの熱延板の平均冷却速度を20
〜55℃/秒の範囲とすることおよび熱延板の巻取り温度
を450 〜650 ℃の範囲とすることとを特徴とする磁気特
性に優れる方向性電磁鋼板の製造方法。
C: 0.005 to 0.080 wt%, Si: 2.0 to 5.
Using a silicon steel slab containing 0 wt% and Mn: 0.03 to 0.20 wt% as a raw material, the slab is heated to a temperature of 1100 ° C. or higher, then hot-rolled, and subjected to one or intermediate annealing 2
In a method for producing a grain-oriented electrical steel sheet which is subjected to decarburizing annealing and final finishing annealing after cold rolling at least once, Nb: 0.002 to 0.10 wt% is contained in the slab, hot rolling end temperature In the range of 850 to 1050 ° C., and the average cooling rate of the hot-rolled sheet from immediately after the completion of hot rolling to after 5 seconds is 20
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that the temperature is in the range of ~ 55 ° C / sec and the winding temperature of the hot-rolled sheet is in the range of 450-650 ° C.
【請求項2】 C:0.005 〜0.080 wt%、Si:2.0 〜5.
0 wt%、Mn:0.03〜0.20wt%、sol.Al:0.050 wt%以下
およびN:0.020 wt%以下を含有するけい素鋼スラブを
素材として、該スラブを1100℃以上の温度に加熱したの
ち、熱間圧延し、1回もしくは中間焼鈍を挟む2回以上
の冷間圧延を行ったのち、脱炭焼鈍と最終仕上げ焼鈍と
を施す方向性電磁鋼板の製造方法において、 該スラブにNb:0.002 〜0.10wt%を含有させること、 熱間圧延終了温度を850 〜1050℃の範囲とし、熱間圧延
終了直後から5秒間後までの熱延板の平均冷却速度を20
〜55℃/秒の範囲とすることおよび熱延板の巻取り温度
を450 〜650 ℃の範囲とすることとを特徴とする磁気特
性に優れる方向性電磁鋼板の製造方法。
2. C: 0.005 to 0.080 wt%, Si: 2.0 to 5.
Using a silicon steel slab containing 0 wt%, Mn: 0.03 to 0.20 wt%, sol. Al: 0.050 wt% or less and N: 0.020 wt% or less, heating the slab to a temperature of 1100 ° C or more. A hot rolling, a cold rolling of one time or two or more times of intermediate annealing, followed by a decarburizing annealing and a final finishing annealing, wherein the slab has Nb: 0.002 The hot-rolling end temperature is in the range of 850 to 1050 ° C., and the average cooling rate of the hot-rolled sheet immediately after the end of the hot rolling to 5 seconds later is 20%.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that the temperature is in the range of ~ 55 ° C / sec and the winding temperature of the hot-rolled sheet is in the range of 450-650 ° C.
【請求項3】 該スラブに含有するS+Seの値を0.010
wt%以下に規制し、かつ、該スラブの加熱温度を1100℃
〜1250℃の範囲にすることを特徴とする請求項1または
2に記載の磁気特性に優れる方向性電磁鋼板の製造方
法。
3. The value of S + Se contained in the slab is 0.010
wt% or less, and the heating temperature of the slab is 1100 ° C
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, wherein the temperature is in the range of 1 to 1250 ° C.
【請求項4】 熱間圧延後、850 〜1200℃の温度範囲で
20〜120 秒間の範囲の熱延板焼鈍を施すことを特徴とす
る請求項1,2または3に記載の磁気特性に優れる方向
性電磁鋼板の製造方法。
4. After hot rolling, in a temperature range of 850 to 1200 ° C.
4. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the hot-rolled sheet is annealed for 20 to 120 seconds.
JP8264113A 1996-10-04 1996-10-04 Production of grain oriented silicon steel sheet excellent in magnetic property Pending JPH10110218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8264113A JPH10110218A (en) 1996-10-04 1996-10-04 Production of grain oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8264113A JPH10110218A (en) 1996-10-04 1996-10-04 Production of grain oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH10110218A true JPH10110218A (en) 1998-04-28

Family

ID=17398685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8264113A Pending JPH10110218A (en) 1996-10-04 1996-10-04 Production of grain oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH10110218A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132095A1 (en) * 2005-06-10 2006-12-14 Nippon Steel Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
WO2011013858A1 (en) * 2009-07-31 2011-02-03 Jfeスチール株式会社 Grain-oriented magnetic steel sheet
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
RU2503728C1 (en) * 2010-05-25 2014-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of making sheet from electric steel with aligned grain structure
CN109983143A (en) * 2016-11-25 2019-07-05 杰富意钢铁株式会社 Non orientation electromagnetic steel plate and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132095A1 (en) * 2005-06-10 2006-12-14 Nippon Steel Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
KR100953755B1 (en) 2005-06-10 2010-04-19 신닛뽄세이테쯔 카부시키카이샤 Process for producing the grain-oriented magnetic steel sheet with extremely high magnetic property
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
JP4954876B2 (en) * 2005-06-10 2012-06-20 新日本製鐵株式会社 Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same
EP2460902A1 (en) * 2009-07-31 2012-06-06 JFE Steel Corporation Grain-oriented magnetic steel sheet
JP2011047045A (en) * 2009-07-31 2011-03-10 Jfe Steel Corp Grain-oriented magnetic steel sheet
WO2011013858A1 (en) * 2009-07-31 2011-02-03 Jfeスチール株式会社 Grain-oriented magnetic steel sheet
EP2460902A4 (en) * 2009-07-31 2013-02-20 Jfe Steel Corp Grain-oriented magnetic steel sheet
RU2496905C1 (en) * 2009-07-31 2013-10-27 ДжФЕ СТИЛ КОРПОРЕЙШН Electrical steel plate with oriented grains
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
RU2503728C1 (en) * 2010-05-25 2014-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of making sheet from electric steel with aligned grain structure
CN109983143A (en) * 2016-11-25 2019-07-05 杰富意钢铁株式会社 Non orientation electromagnetic steel plate and its manufacturing method
US11142813B2 (en) 2016-11-25 2021-10-12 Jfe Steel Corporation Non-oriented electrical steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0241565B2 (en)
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4200526B2 (en) Method for producing unidirectional silicon steel sheet
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP4075088B2 (en) Method for producing grain-oriented electrical steel sheet
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JPH0257125B2 (en)
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet