JP3527276B2 - Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet - Google Patents

Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3527276B2
JP3527276B2 JP02401694A JP2401694A JP3527276B2 JP 3527276 B2 JP3527276 B2 JP 3527276B2 JP 02401694 A JP02401694 A JP 02401694A JP 2401694 A JP2401694 A JP 2401694A JP 3527276 B2 JP3527276 B2 JP 3527276B2
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
cold rolling
rolled
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02401694A
Other languages
Japanese (ja)
Other versions
JPH07233417A (en
Inventor
憲人 阿部
邦秀 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02401694A priority Critical patent/JP3527276B2/en
Publication of JPH07233417A publication Critical patent/JPH07233417A/en
Application granted granted Critical
Publication of JP3527276B2 publication Critical patent/JP3527276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て用いられる{110}〈001〉方位集積度を高度に
発達させた超高磁束密度一方向性電磁鋼板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet having a highly developed degree of {110} <001> orientation used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/
mの磁場における磁束密度B(これをB8 と以下示す)
が使用される。また鉄損特性を表す代表的数値として
は、W17/50 (周波数50Hzにおいて1.7Tまで磁化
させた時の単位kgあたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The value that shows the excitation characteristics is usually 800 A /
Magnetic flux density B in a magnetic field of m (this is shown below as B 8 )
Is used. W 17/50 (iron loss per unit kg when magnetized to 1.7 T at a frequency of 50 Hz) is used as a representative numerical value representing the iron loss characteristic.

【0003】磁束密度は鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損はよい。た
だしあまり磁束密度が高くなると、二次再結晶粒が大き
くなることに起因して異常渦電流損失が大きくなり鉄損
を悪くすることがある。これに対しては、磁区制御する
ことによって二次再結晶粒に関係なく鉄損を改善するこ
とができる。また製品板厚も鉄損特性の重要支配因子で
ある。磁束密度を保ちながら板厚を薄くすることによっ
て、渦電流損失は小さくなり鉄損特性を向上させること
ができる。
The magnetic flux density is an important controlling factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss. However, if the magnetic flux density becomes too high, the abnormal eddy current loss may increase due to the increase in the size of the secondary recrystallized grains, which may deteriorate the iron loss. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains. The product thickness is also an important controlling factor of iron loss characteristics. By reducing the plate thickness while maintaining the magnetic flux density, the eddy current loss is reduced and the iron loss characteristics can be improved.

【0004】一方向性電磁鋼板は製造工程の仕上焼鈍に
おいて、二次再結晶を起こさせて鋼板面に{110}、
圧延方向に〈001〉を有するいわゆるGoss組織を
発達させることによって得られる。その中でB8 ≧1.
88Tの優れた励磁特性を持つものは高磁束密度一方向
性電磁鋼板と呼ばれている。高磁束密度一方向性電磁鋼
板の代表的製造方法としては、田口らによる特公昭40
−15644号公報、および特公昭51−13469号
公報が挙げられる。Goss組織の二次再結晶を起こさ
せる主なインヒビターとして前者においては、MnSお
よびAlNを、後者ではMnS,MnSe,Sb等を用
いている。上記特許に基づく製品は現在、世界的規模で
生産されている。特公昭40−15644号公報によれ
ばその製造方法は、熱延板焼鈍を施した後、冷延率80
〜95%の一回冷延を行うことを特徴としている。
The unidirectional electrical steel sheet undergoes secondary recrystallization during finish annealing in the manufacturing process to cause {110},
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B 8 ≧ 1.
Those having excellent excitation characteristics of 88T are called high magnetic flux density grain-oriented electrical steel sheets. As a typical method for producing a high magnetic flux density grain-oriented electrical steel sheet, Taguchi et al.
No. 15644 and Japanese Patent Publication No. 51-13469. MnS and AlN are used in the former, and MnS, MnSe, Sb, etc. are used in the latter as main inhibitors that cause secondary recrystallization of the Goss structure. Products based on the above patents are currently produced on a global scale. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is as follows.
The feature is that cold rolling is performed once to 95%.

【0005】しかし特公昭40−15644号公報によ
る製造方法では、以下のような問題点があった。まず鉄
損低減化の一方策として0.23mm以下の製品板厚の薄
手化を試みた場合、冷延・一次再結晶後の結晶組織と集
合組織に、あるいは仕上焼鈍時のインヒビター挙動に起
因して二次再結晶が不安定になり、B8 ≧1.88Tが
安定して得られないという点である。特に冷延・一次再
結晶後の結晶組織と集合組織は、熱延板から製品板厚に
仕上げる冷延率に強く依存していることが知られてい
る。そこでB8 ≧1.88Tを安定して得るため、最適
冷延率を保つ方法として、熱延板焼鈍前に予備的に冷延
を施すいわゆる二回冷延方法が特開昭59−12672
2号公報で提案されている。更には、二回冷延における
予備的冷延の前に焼鈍を施すいわゆる予備焼鈍が、二次
再結晶を安定させてB8 ≧1.88Tが得られることを
特公昭62−50529号公報で紹介されている。
However, the manufacturing method according to Japanese Patent Publication No. 40-15644 has the following problems. First, when attempting to thin the product sheet thickness of 0.23 mm or less as one of the measures to reduce iron loss, it was caused by the crystal structure and texture after cold rolling and primary recrystallization, or the inhibitor behavior during finish annealing. Secondary recrystallization becomes unstable, and B 8 ≧ 1.88T cannot be stably obtained. In particular, it is known that the crystal structure and texture after cold rolling and primary recrystallization strongly depend on the cold rolling rate for finishing a hot rolled sheet into a product sheet thickness. Therefore, in order to stably obtain B 8 ≧ 1.88 T, a so-called two-time cold rolling method in which preliminary cold rolling is performed before hot-rolled sheet annealing is a method for maintaining an optimum cold rolling rate.
It is proposed in Japanese Patent No. 2 publication. Further, JP-B-62-50529 discloses that so-called pre-annealing in which annealing is performed before preliminary cold-rolling in the double cold-rolling stabilizes secondary recrystallization and B 8 ≧ 1.88 T is obtained. Has been introduced.

【0006】いずれにおいても、0.23mm以下0.1
5mm以上の製品板厚の薄手化を試みる中で、B8 ≧1.
88Tを安定して得るためには、予備的に冷延を施した
り、更には予備的に焼鈍を施した後に本冷延、あるいは
本焼鈍をする必要があり、工程増加にともなうコストア
ップは必須である。また最適冷延率を保つ別の試みとし
て、熱延板の薄手化が挙げられる。しかし熱延工程にお
ける上記のAlN析出回避のための仕上熱延温度確保が
困難になる問題、あるいは生産性のダウンといった問題
があり、安定製造するには様々な問題を抱えている。
In any case, 0.23 mm or less 0.1
While trying to reduce the product plate thickness of 5 mm or more, B 8 ≧ 1.
In order to obtain 88T stably, it is necessary to perform preliminary cold rolling, or further to perform preliminary cold rolling and then preliminary cold rolling, or to perform main annealing, and it is essential to increase costs with the increase in the number of processes. Is. Another attempt to maintain the optimum cold rolling rate is thinning of the hot rolled sheet. However, there is a problem that it is difficult to secure the finish hot rolling temperature for avoiding the above AlN precipitation in the hot rolling process, or there is a problem that productivity is reduced, and various problems are involved in stable production.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる問題
を回避し、極めて磁束密度の高い一方向性電磁鋼板の製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to avoid such a problem and to provide a method for manufacturing a grain-oriented electrical steel sheet having a very high magnetic flux density.

【0008】[0008]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1)重量%で、C :0.03〜0.15%、 S
i:2.5〜4.0%、Mn:0.02〜0.30%、
Sおよび/またはSe:0.005〜0.040%、酸
可溶性Al:0.010〜0.065%、N :0.0
030〜0.0150%、Bi:0.0005〜0.0
5%、残部:Feおよび不可避的不純物からなるスラブ
を出発材とし、該スラブを1350℃以上に加熱した
後、熱延し、次いで熱延板焼鈍を施したのちに、冷延率
81〜94.25%の一回強冷延で0.23〜0.15
mmの製品板厚を得て、脱炭焼鈍、仕上焼鈍により8
1.94Tとし、磁区細分化処理後に低鉄損を得ること
を特徴とする超高磁束密度一方向性電磁鋼板の製造方
法。
The features of the present invention are as follows. 1) wt%, C: 0.03 to 0.15%, S
i: 2.5 to 4.0%, Mn: 0.02 to 0.30%,
S and / or Se: 0.005-0.040%, acid-soluble Al: 0.010-0.065%, N: 0.0
030 to 0.0150%, Bi: 0.0005 to 0.0
5%, balance: Fe and a slab consisting of unavoidable impurities as a starting material , the slab was heated to 1350 ° C. or higher , hot-rolled, then hot-rolled sheet annealed, and then cold-rolled.
81-94.25 % 0.23 to 0.15 in one strong cold rolling
B 8by decarburization annealing and finish annealing after obtaining the product thickness of mm.
A method for producing an ultra-high magnetic flux density grain- oriented electrical steel sheet, characterized in that the iron loss is 1.94 T and a low iron loss is obtained after the magnetic domain refinement treatment .

【0009】2)重量%でさらに、Sn:0.05〜
0.50%を含有することを特徴とす前記1)記載の
8 1.94Tの超高磁束密度一方向性電磁鋼板の製造
方法。
2) In addition , Sn: 0.05-
B according to 1) above, which contains 0.50%.
81.94 T Ultra-high magnetic flux density grain-oriented electrical steel sheet manufacturing method.

【0010】3)重量%で、C:0.03〜0.15
%、 Si:2.5〜4.0%、Mn:0.02〜
0.30%、Sおよび/またはSe:0.005〜0.
040%、酸可溶性Al:0.010〜0.065%、
N :0.0030〜0.0150%、Sn:0.05
〜0.50%、Cu:0.01〜0.10%、 B
i:0.0005〜0.05%、残部:Feおよび不可
避的不純物からなるスラブを出発材とし、該スラブを1
350℃以上に加熱した後、熱延し、次いで熱延板焼鈍
を施したのちに、冷延率81〜94.25%の一回強冷
延で0.23〜0.15mmの製品板厚を得て、脱炭焼
鈍、仕上焼鈍により8 1.94Tとし、磁区細分化
処理後に低鉄損を得ることを特徴とする超高磁束密度一
方向性電磁鋼板の製造方法。
3) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02
0.30%, S and / or Se: 0.005 to 0.
040%, acid soluble Al: 0.010 to 0.065%,
N: 0.0030 to 0.0150%, Sn: 0.05
~ 0.50%, Cu: 0.01-0.10%, B
i: 0.0005 to 0.05%, balance: Fe and a slab consisting of inevitable impurities as a starting material , and the slab was 1
After heating to 350 ° C or higher , hot rolling, and then hot-rolled sheet annealing, cold rolling rate 81 to 94.25 %, single strong cold rolling 0.23 to 0.15 mm product sheet thickness To obtain B 81.94 T by decarburization annealing and finish annealing , and subdividing the magnetic domains.
A method for producing an ultra-high magnetic flux density grain- oriented electrical steel sheet, characterized in that a low iron loss is obtained after the treatment .

【0011】以下本発明の詳細について説明する。本発
明はいわゆる薄手高磁束密度一方向性電磁鋼板の磁束密
度を、製造工程を増やすことなく更に高めるべく種々の
研究を鋭意重ねた結果、Biを含んだMnSとAlNを
主インヒビターとする一方向性電磁鋼板用スラブを出発
材として加熱した後、熱延し、次いで熱延板焼鈍を施し
たのちに冷延、脱炭焼鈍、仕上焼鈍をする一方向性電磁
鋼板を製造するに際し、冷延方法を冷延率81〜94.
25%の一回強冷延で行うことによって0.23〜0.
15mmの製品板厚において、B8 1.94Tの極めて
高い磁束密度と共に磁区細分化処理によって低鉄損を得
ることができる超高磁束密度一方向性電磁鋼板を製造す
ることに成功した。
The details of the present invention will be described below. The present invention has earnestly studied variously to further increase the magnetic flux density of a so-called thin high magnetic flux density unidirectional electrical steel sheet without increasing the manufacturing process. After the slab for heat-resistant electrical steel sheet is heated as a starting material, it is hot-rolled, then hot-rolled sheet is annealed, and then cold-rolled, decarburized, and finish-annealed. Cold rolling rate 81-94.
0.23 to 0 by performing 25% of the single strength cold rolled.
At product thickness of 15 mm, B 81.94 T
High magnetic flux density and low iron loss due to magnetic domain refinement processing
We have succeeded in producing a super high magnetic flux density unidirectional electrical steel sheet that can be manufactured.

【0012】本発明の成分条件について説明する。Cは
0.03%未満では、熱延に先立つスラブ加熱時におい
て結晶粒が異常粒成長し、製品において線状細粒と呼ば
れる二次再結晶不良を起こすので好ましくない。一方
0.15%を超えた場合では、冷延後の脱炭焼鈍におい
て脱炭時間が長時間必要となり経済的でないばかりでな
く、脱炭が不完全となりやすく、製品での磁気時効と呼
ばれる磁性不良を起こすので好ましくない。Siは鋼の
電気抵抗を高めて鉄損の一部を構成する渦電流損失を低
減するのに極めて有効な元素であるが、2.5%未満で
は製品の渦電流損失を抑制できない。また4.0%を超
えた場合では、加工性が著しく劣化して常温での冷延が
困難になるので好ましくない。
The component conditions of the present invention will be described. If C is less than 0.03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, when the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization is likely to be incomplete, resulting in a magnetic aging called magnetic aging in the product. It is not preferable because it causes defects. Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0013】Mnは二次再結晶を左右するインヒビター
と呼ばれる、MnSおよび/またはMnSeを形成する
重要な元素である。0.02%未満では、二次再結晶を
生じさせるのに必要なMnSの絶対量が不足するので好
ましくない。一方0.30%を超えた場合は、スラブ加
熱時の固溶が困難になるばかりでなく、熱延時の析出サ
イズが粗大化しやすくインヒビターとしての最適サイズ
分布が損なわれて好ましくない。Sおよび/またはSe
は上掲したMnとMnSおよび/またはMnSeを形成
する重要な元素である。上記範囲を逸脱すると充分なイ
ンヒビター効果が得られないので0.005〜0.04
0%に限定する必要がある。
Mn is an important element that forms MnS and / or MnSe, which is called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable. S and / or Se
Is an important element forming Mn and MnS and / or MnSe described above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.005-0.04
It should be limited to 0%.

【0014】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
10%未満では量的に不足してインヒビター強度が不足
するので好ましくない。一方0.065%超ではインヒ
ビターとして析出させるAlNが粗大化し、結果として
インヒビター強度を低下させるので好ましくない。Nは
上掲した酸可溶性AlとAlNを形成する重要な元素で
ある。上記範囲を逸脱すると充分なインヒビター効果が
得られないので0.0030〜0.0150%に限定す
る必要がある。
Acid-soluble Al is the main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheets, and is 0.0
If it is less than 10%, the amount is insufficient and the inhibitor strength is insufficient, which is not preferable. On the other hand, if it exceeds 0.065%, AlN precipitated as an inhibitor becomes coarse and, as a result, the inhibitor strength is lowered, which is not preferable. N is an important element that forms AlN with the acid-soluble Al described above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so it is necessary to limit the content to 0.0030 to 0.0150%.

【0015】更にSnについては薄手製品の二次再結晶
を安定して得る元素として有効であり、また二次再結晶
粒径を小さくする作用もある。この効果を得るために
は、0.05%以上の添加が必要であり、0.50%を
超えた場合にはその作用が飽和するのでコストアップの
点から0.50%以下に限定する。CuについてはSn
添加鋼の一次被膜向上元素として有効である。0.01
%未満では効果が少なく、0.10%を超えると製品の
磁束密度が低下するので好ましくない。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of thin products, and also has an effect of reducing the secondary recrystallization particle size. In order to obtain this effect, it is necessary to add 0.05% or more, and if it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less. Sn for Cu
It is effective as an element for improving the primary coating of added steel. 0.01
If it is less than 0.1%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product decreases, which is not preferable.

【0016】Biは、本発明である0.23〜0.15
mmの製品板厚においてB8 1.94Tを得る冷延を冷
延率81〜94.25%の一回強冷延で行うことを特徴
とする超高磁束密度一方向性電磁鋼板の製造方法におい
て、その出発スラブ中に必須の元素である。即ち磁束密
度向上効果がある。0.0005%未満ではその効果が
充分に得られず、また0.05%を超えた場合は磁束密
度向上効果が飽和するだけでなく、熱延板の端部に割れ
が発生するので好ましくない。
Bi is 0.23 to 0.15 of the present invention.
of a super high magnetic flux density unidirectional electrical steel sheet, characterized in that cold rolling to obtain B 81.94 T at a product sheet thickness of mm is carried out by single strong cold rolling at a cold rolling rate of 81 to 94.25 %. In the manufacturing method, it is an essential element in the starting slab. That is, there is an effect of improving the magnetic flux density. If it is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the effect of improving the magnetic flux density is saturated, but also cracks occur at the ends of the hot-rolled sheet, which is not preferable. .

【0017】一方向性電磁鋼板用素材にBiを添加含有
せしめることは特開昭50−72817号公報、特開昭
51−78733号公報、特開昭53−39922号公
報等に記載されているが、これらの特許は何れも必須の
インヒビターとしてS,Seを含有し、かつSb,As
等と同様の作用効果を持つ元素の一つとしての意味であ
り、Sbの代替元素としての位置づけにしか過ぎない。
更にこれらの特許は本質的にAlをインヒビター元素と
して含有せず、本発明とはその性格を全く異にするもの
といえる。更にBiを含有せしめることは特開昭51−
107499号公報、特開昭63−100127号公報
にも記載されている。これらの特許では必須のインヒビ
ター構成元素としてAlを含有している点では本発明と
同様であるが、何れもSb,As等の同一元素の位置づ
けで、したがってBi添加含有の実施例の記載もない。
The inclusion of Bi in the material for unidirectional electrical steel sheets is described in JP-A-50-72817, JP-A-51-78733, JP-A-53-39922 and the like. However, all of these patents contain S and Se as essential inhibitors, and Sb and As
It is meant as one of the elements having the same action and effect as the above, and is merely positioned as an alternative element of Sb.
Furthermore, these patents do not essentially contain Al as an inhibitor element, and it can be said that these patents have completely different characteristics from the present invention. Furthermore, it is disclosed in JP-A-51-51
It is also described in JP-A-107499 and JP-A-63-100127. Although these patents are similar to the present invention in that they contain Al as an essential inhibitor constituent element, they are all positioned as the same element such as Sb and As, and accordingly, there is no description of an example containing Bi added. .

【0018】次に本発明である製造方法について説明す
る。上記のごとく成分を調整し、BiまたはBi含有物
を添加した超高磁束密度一方向性電磁鋼板製造用溶鋼
は、通常の方法で鋳造する。特に鋳造方法に限定はな
い。次いで通常の熱間圧延によって熱延コイルに圧延さ
れる。熱延コイルは引き続き950〜1200℃で30
秒〜30分間の焼鈍処理され、更に急冷をすることによ
って結晶組織の均質化とAlNの析出制御を施されると
同時に酸洗される。
Next, the manufacturing method of the present invention will be described. The molten steel for producing an ultra-high magnetic flux density unidirectional electrical steel sheet in which the components are adjusted as described above and Bi or a Bi-containing material is added is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling. The hot rolled coil is continuously heated at 950 to 1200 ° C for 30
It is annealed for 2 seconds to 30 minutes, and then rapidly cooled to homogenize the crystal structure and control the precipitation of AlN, and at the same time pickled.

【0019】その後冷間圧延によって最終製品板厚とす
るわけであるが、0.23〜0.15mmの薄手製品板厚
においてB8 1.94Tを得るために、冷延率81〜
94.25%の一回強冷延で行うことを本発明の特徴と
している。冷延後は、通常の方法で連続脱炭焼鈍・一次
被膜生成剤塗布、仕上焼鈍、連続歪取り焼鈍・二次被膜
塗布および焼き付けを行う。更にレーザー照射、溝等の
磁区細分化処理を施す。
After that, the final product sheet thickness is cold-rolled, but in order to obtain B 81.94 T at a thin product sheet thickness of 0.23 to 0.15 mm , the cold rolling rate 81 to
It is a feature of the present invention that the single strong cold rolling is performed at 94.25 %. After cold rolling, continuous decarburization annealing / primary coating film forming agent coating, finish annealing, continuous strain relief annealing / secondary coating coating and baking are carried out by usual methods. Further, laser irradiation and magnetic domain subdivision processing such as grooves are performed.

【0020】これまで0.23〜0.15mmの薄手製品
でB8 ≧1.88Tを得るための最適冷延率を保つ試み
として、熱延板の薄手化が試みられてきた。しかし上述
したように、熱延工程における仕上熱延温度確保が困難
になり、粗大なAlNが析出してインヒビター強度が低
下してB8 ≧1.88Tが安定して得られていなかっ
た。また通常の熱延板厚から一回強冷延で製造を行う
と、冷延率が高すぎて{110}〈001〉核が極端に
減少するため、従来の成分でのインヒビター強度ではB
8 ≧1.88Tが安定して得られていなかった。
Up to now, thinning of hot-rolled sheet has been attempted as an attempt to maintain an optimum cold rolling rate for obtaining B 8 ≧ 1.88T in a thin product of 0.23 to 0.15 mm. However, as described above, it becomes difficult to secure the finish hot rolling temperature in the hot rolling process, coarse AlN precipitates and the inhibitor strength decreases, and B 8 ≧ 1.88 T was not stably obtained. In addition, if the production is carried out once from the normal hot-rolled sheet thickness by strong cold rolling, the cold rolling rate is too high and the {110} <001> nuclei are extremely reduced.
8 ≧ 1.88T was not stably obtained.

【0021】しかしスラブにBiを添加含有されている
ものを出発材とすることによって、一回強冷延で製造を
行っても、Biのインヒビター強化効果によって高温ま
でインヒビター効果が保持されるために、熱延工程にお
いて仕上熱延温度確保が困難なことによる粗大なAlN
析出が生じても、インヒビター強度が低下せず、したが
って{110}〈001〉核の選択成長させることが可
能になり、更には{110}〈001〉方位集積度の極
めて優れたB8 1.94Tが製造可能となったと考え
られる。またBiのインヒビター強化効果によって高温
までインヒビター効果が保持されることは、冷延率が高
すぎることによる{110}〈001〉核の減少を、仕
上焼鈍における高温域の結晶粒界移動速度が増す段階で
の{110}〈001〉核の選択成長で補うことも可能
になり、更には{110}〈001〉方位集積度の極め
て優れたB8 1.94Tが製造可能となったと考えら
れる。
However, by using a slab containing Bi added as a starting material, even if the slab is manufactured by single strong cold rolling, the inhibitor effect of Bi is retained up to a high temperature because of the inhibitor strengthening effect. , Coarse AlN due to difficulty in securing finish hot rolling temperature in hot rolling process
Even if precipitation does not decrease inhibitor strength, thus the {110} <001> it is possible to selectively grow the nuclei, more {110} <001> very good B orientation integration degree 81 It is considered that the manufacturing of .94 T has become possible. In addition, the fact that the inhibitor strengthening effect of Bi maintains the inhibitor effect up to a high temperature means that the reduction of {110} <001> nuclei due to the too high cold rolling rate increases the grain boundary migration speed in the high temperature region during finish annealing. It is possible to compensate by selective growth of {110} <001> nuclei at the stage, and it is considered that B 81.94 T, which has an extremely high degree of {110} <001> orientation integration, can be manufactured. To be

【0022】[0022]

【実施例】(実施例1) C:0.078%、Si:3.28%、Mn:0.08
%、S:0.025%、酸可溶性Al:0.025%、
N:0.0082%、Bi:0.0078%を含有する
スラブを1350℃で加熱後直ちに熱延して2.3mm厚
の熱延コイルとした。熱延コイルに1050℃の焼鈍を
施し、一回冷延で0.170mm厚とした。引き続き85
0℃で脱炭焼鈍を行い、MgOを主成分とする一次被膜
・焼鈍分離剤を塗布後、1200℃の仕上焼鈍を行っ
た。水洗後、60mm幅×300mm長に剪断し、850℃
で歪取り焼鈍を行った後磁気測定に供した。製品磁束密
度を表1に示す。表1より明らかなように、Biを添加
含有したスラブは熱延板後、冷延率92.6%の一回強
冷延でもB8 1.94Tが得られている。
EXAMPLES (Example 1) C: 0.078%, Si: 3.28%, Mn: 0.08
%, S: 0.025%, acid-soluble Al: 0.025%,
A slab containing N: 0.0082% and Bi: 0.0078% was heated at 1350 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. The hot rolled coil was annealed at 1050 ° C. and once cold rolled to a thickness of 0.170 mm. Continue to 85
Decarburization annealing was performed at 0 ° C., and a primary coating / annealing separating agent containing MgO as a main component was applied, followed by finish annealing at 1200 ° C. After washing with water, shearing to 60mm width x 300mm length, 850 ℃
After the strain relief annealing was performed, the magnetic field was measured. Table 1 shows the product magnetic flux density. As is clear from Table 1, the slab containing Bi was obtained with B 81.94 T after the hot-rolled sheet even in the single strong cold rolling of 92.6%.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2) 実施例1で得られた製品に5mmピッチでレーザーを照射
し、磁区細分化処理を行った。その結果を表2に示す。
表2で明らかなように、本発明材は磁束密度が極めて高
く、かつ板厚も薄いため、磁区細分化によって0.60
W/kg以下の従来法では到底得られないような鉄損特性
を得ることができた。
Example 2 The product obtained in Example 1 was irradiated with a laser at a pitch of 5 mm to subdivide the magnetic domains. The results are shown in Table 2.
As is clear from Table 2, the material of the present invention has an extremely high magnetic flux density and a thin plate thickness.
It was possible to obtain iron loss characteristics which were not obtained by the conventional method of W / kg or less.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例3) 実施例1の熱延コイルに1050℃の焼鈍を施し、一回
冷延で0.145mm厚とした。以後の工程は実施例1と
同様に行った。結果を表3に示す。表3より明らかなよ
うに、Biを添加含有したスラブは熱延板後、冷延率9
3.7%の一回強冷延でもB8 1.94Tが得られて
いる。
Example 3 The hot rolled coil of Example 1 was annealed at 1050 ° C. and once cold rolled to a thickness of 0.145 mm. The subsequent steps were the same as in Example 1. The results are shown in Table 3. As is clear from Table 3, the slab containing Bi added was subjected to a cold rolling reduction of 9 after hot rolling.
B 81.94 T was obtained even after 3.7% single strong cold rolling .

【0027】[0027]

【表3】 [Table 3]

【0028】(実施例4) 実施例3で得られた製品に5mmピッチでレーザー照射
し、磁区細分化処理を行った。その結果を表4に示す。
表4で明らかなように、本発明材は磁束密度が極めて高
く、かつ板厚も薄いため、磁区細分化によって0.50
W/kg以下の従来法では到底得られないような鉄損特性
を得ることができた。
(Example 4) The product obtained in Example 3 was irradiated with laser at a pitch of 5 mm to subdivide the magnetic domains. The results are shown in Table 4.
As is clear from Table 4, the magnetic material of the present invention has an extremely high magnetic flux density and a thin plate thickness.
It was possible to obtain iron loss characteristics which were not obtained by the conventional method of W / kg or less.

【0029】[0029]

【表4】 [Table 4]

【0030】(実施例5) C:0.079%、Si:3.29%、Mn:0.08
%、S:0.025%、酸可溶性Al:0.025%、
N:0.0084%、Sn:0.12%、Bi:0.0
033%を含有するスラブを1350℃で加熱後直ちに
熱延して2.3mm厚の熱延コイルとした。熱延コイルに
1050℃の焼鈍を施し、一回冷延で0.220mm厚と
した。以後の工程は実施例1と同様に行った。製品磁束
密度を表5に示す。表5より明らかなように、Biを添
加含有したスラブは熱延板後、冷延率90.4%の一回
強冷延でもB8 1.94Tが得られている。
(Example 5) C: 0.079%, Si: 3.29%, Mn: 0.08
%, S: 0.025%, acid-soluble Al: 0.025%,
N: 0.0084%, Sn: 0.12%, Bi: 0.0
The slab containing 033% was heated at 1350 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. The hot rolled coil was annealed at 1050 ° C. and once cold rolled to a thickness of 0.220 mm. The subsequent steps were the same as in Example 1. The product magnetic flux density is shown in Table 5. As is clear from Table 5, the slab containing Bi was obtained with B 81.94 T even after the hot-rolled sheet and even after the single strong cold rolling of the cold rolling rate of 90.4%.

【0031】[0031]

【表5】 [Table 5]

【0032】(実施例6) 実施例5の熱延コイルに1050℃の焼鈍を施し、一回
冷延で0.170mm厚とした。以後の工程は実施例1と
同様に行った。結果を表6に示す。表6より明らかなよ
うに、Biを添加含有したスラブは熱延板後、冷延率9
2.6%の一回強冷延でもB8 1.94Tが得られて
いる。
Example 6 The hot rolled coil of Example 5 was annealed at 1050 ° C. and once cold rolled to a thickness of 0.170 mm. The subsequent steps were the same as in Example 1. The results are shown in Table 6. As is clear from Table 6, the slab containing Bi added was 9% cold rolled after hot rolling.
B 81.94 T was obtained even in a single strong cold rolling of 2.6%.

【0033】[0033]

【表6】 [Table 6]

【0034】(実施例) C:0.078%、Si:3.30%、Mn:0.08
%、Se:0.026%、酸可溶性Al:0.026
%、N:0.0084%、Sn:0.12%、Cu:
0.074%、Bi:0.0174%を含有するスラブ
を1350℃で加熱後直ちに熱延して2.3mm厚の熱延
コイルとした。熱延コイルに1050℃の焼鈍を施し、
一回冷延で0.220mm厚とした。以後の工程は実施例
1と同様に行った。製品磁束密度を表に示す。表
り明らかなように、Biを添加含有したスラブは熱延板
後、冷延率90.4%の一回強冷延でもB8 1.94
Tが得られている。
(Example 7 ) C: 0.078%, Si: 3.30%, Mn: 0.08
%, Se: 0.026%, acid-soluble Al: 0.026
%, N: 0.0084%, Sn: 0.12%, Cu:
A slab containing 0.074% and Bi: 0.0174% was heated at 1350 ° C. and immediately hot rolled to obtain a hot rolled coil having a thickness of 2.3 mm. The hot rolled coil is annealed at 1050 ° C,
Cold rolled once to a thickness of 0.220 mm. The subsequent steps were the same as in Example 1. Table 7 shows the product magnetic flux density. As is apparent from Table 7, after the slab has been added containing Bi is hot-rolled sheet, B 81.94 at once strong cold rolled in cold rolling ratio 90.4%
T has been obtained.

【0035】[0035]

【表7】 [Table 7]

【0036】(実施例) 実施例の熱延コイルに1050℃の焼鈍を施し、一回
冷延で0.145mm厚とした。以後の工程は実施例1と
同様に行った。結果を表に示す。表より明らかなよ
うに、Biを添加含有したスラブは熱延板後、冷延率9
3.7%の一回強冷延でもB8 1.94Tが得られて
いる。
Example 8 The hot rolled coil of Example 7 was annealed at 1050 ° C. and once cold rolled to a thickness of 0.145 mm. The subsequent steps were the same as in Example 1. The results are shown in Table 8 . As is clear from Table 8 , the slab containing Bi added was subjected to a cold rolling reduction of 9 after hot rolling.
B 81.94 T was obtained even after 3.7% single strong cold rolling .

【0037】[0037]

【表8】 [Table 8]

【0038】(実施例) C:0.078%、Si:3.30%、Mn:0.08
%、Se:0.025%、酸可溶性Al:0.026
%、N:0.0084%、Sn:0.12%、Cu:
0.074%を含有する溶鋼にBiを0〜0.048%
添加含有したスラブを1350℃で加熱後直ちに熱延し
て1.8mm厚の熱延コイルとした。熱延コイルに105
0℃の焼鈍を施し、一回冷延で0.170mm厚とした。
以後の工程は実施例1と同様に行った。製品磁束密度を
図1に示す。Bi=3ppm ではB8 =1.912Tと磁
束密度向上効果がほとんど認められないのに対して、B
i=5ppm ではB8 =1.968Tと著しい磁束密度向
上効果が認められる。
(Example 9 ) C: 0.078%, Si: 3.30%, Mn: 0.08
%, Se: 0.025%, acid-soluble Al: 0.026
%, N: 0.0084%, Sn: 0.12%, Cu:
Bi of 0 to 0.048% in molten steel containing 0.074%
The slab containing the addition was heated at 1350 ° C. and immediately hot rolled to obtain a hot rolled coil having a thickness of 1.8 mm. 105 for hot rolled coil
It was annealed at 0 ° C. and once cold rolled to a thickness of 0.170 mm.
The subsequent steps were the same as in Example 1. The product magnetic flux density is shown in FIG. At Bi = 3 ppm, B 8 = 1.912T, which is almost no effect on improving the magnetic flux density.
At i = 5 ppm, B 8 = 1.968T, which is a remarkable magnetic flux density improving effect.

【0039】(実施例10) C:0.078%、Si:3.30%、Mn:0.08
%、Se:0.025%、酸可溶性Al:0.026
%、N:0.0084%、Sn:0.12%、Cu:
0.074%、Bi=0.008%を含有するスラブを
1350℃で加熱後直ちに熱延して1〜5mm厚の熱延コ
イルとした。熱延コイルに1050℃の焼鈍を施し、一
回冷延で0.230mm厚とした。以後の工程は実施例1
と同様に行った。製品磁束密度を図2に示す。
Example 10 C: 0.078%, Si: 3.30%, Mn: 0.08
%, Se: 0.025%, acid-soluble Al: 0.026
%, N: 0.0084%, Sn: 0.12%, Cu:
A slab containing 0.074% and Bi = 0.08% was heated at 1350 ° C. and immediately hot rolled to obtain a hot rolled coil having a thickness of 1 to 5 mm. The hot rolled coil was annealed at 1050 ° C. and once cold rolled to a thickness of 0.230 mm. Subsequent steps are those in Example 1.
I went the same way. The product magnetic flux density is shown in FIG.

【0040】熱延板厚1.0mm、即ち冷延率=77.0
%の場合、B8 =1.866T、熱延板厚1.1mm、即
ち冷延率=79.1%の場合、B8 =1.902T、熱
延板厚5.0mm、即ち冷延率=95.4%の場合、B8
=1.870Tであるのに対して、熱延板厚1.4mm、
即ち冷延率=83.6%の場合、B8 =1.978T、
熱延板厚2.0mm、即ち冷延率=88.5%の場合、B
8 =1.992T、熱延板厚2.3mm、即ち冷延率=9
0.0%の場合、B8 =1.985T、熱延板厚4.0
mm、即ち冷延率=94.25%の場合、B8 =1.94
0Tが得られており、いずれも超高磁束密度といえる。
Hot-rolled sheet thickness 1.0 mm, that is, cold rolling rate = 77.0
%, B 8 = 1.866T, hot rolled sheet thickness 1.1 mm, ie cold rolling rate = 79.1%, B 8 = 1.902 T, hot rolled sheet thickness 5.0 mm, ie cold rolling rate = 95.4%, B 8
= 1.870T, while the hot-rolled sheet thickness is 1.4 mm,
That is, when the cold rolling rate = 83.6%, B 8 = 1.978T,
When the hot-rolled sheet thickness is 2.0 mm, that is, when the cold rolling rate is 88.5%, B
8 = 1.992T, hot rolled sheet thickness 2.3 mm, that is, cold rolling rate = 9
In the case of 0.0%, B 8 = 1.985T, hot rolled sheet thickness 4.0
mm, that is, when the cold rolling rate is 94.25%, B 8 = 1.94
0T was obtained, and it can be said that all are ultrahigh magnetic flux densities.

【0041】[0041]

【発明の効果】Biを添加含有した一方向性電磁鋼板用
スラブから得た熱延コイルを、冷延率81〜94.25
%の一回強冷延によって板厚0.23〜0.15mmの製
品を製造すると、B8 1.94Tの極めて磁束密度の
高い製品が得られるとともに、磁区細分化処理後の鉄損
特性も極めて優れており、工業的に非常に価値の高い有
益なものといえる。
The hot rolling coil obtained from the slab for a grain- oriented electrical steel sheet containing Bi is cold-rolled at 81 to 94.25.
%, A product with a plate thickness of 0.23 to 0.15 mm is produced by a single strong cold rolling, and a product with an extremely high magnetic flux density of B 81.94 T is obtained, and the iron loss after magnetic domain refinement treatment is obtained. It has extremely excellent characteristics and can be said to be industrially very valuable and valuable.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi添加含有量と磁束密度B8 の関係を示す図
表。
FIG. 1 is a chart showing the relationship between the Bi addition content and the magnetic flux density B 8 .

【図2】冷延率と磁束密度B8 の関係を示す図表。FIG. 2 is a chart showing the relationship between cold rolling rate and magnetic flux density B 8 .

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 - 38/60 H01F 1/16 - 1/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00-38/60 H01F 1/16-1/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび/またはSe:0.005〜0.040%、 酸可溶性Al:0.010〜0.065%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05%、 残部:Feおよび不可避的不純物からなるスラブを出発
材とし、該スラブを1350℃以上に加熱した後、熱延
し、次いで熱延板焼鈍を施したのちに、冷延率81〜9
4.25%の一回強冷延で0.23〜0.15mmの製品
板厚を得て、脱炭焼鈍、仕上焼鈍によりB8 1.94
Tとし、磁区細分化処理後に低鉄損を得ることを特徴と
する超高磁束密度一方向性電磁鋼板の製造方法。
1. By weight%, C: 0.03-0.15%, Si: 2.5-4.0%, Mn: 0.02-0.30%, S and / or Se: 0. 005 to 0.040%, acid-soluble Al: 0.010 to 0.065%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and unavoidable impurities the becomes slabs as the starting material, after heating the slab to above 1350 ° C., heat rolled, then the after subjected to hot rolled sheet annealing, cold rolling ratio 81-9
To obtain a product thickness of 0.23~0.15mm 4.25 percent one strong cold rolled, B 81.94 by decarburization annealing, finish annealing
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, wherein T is T and a low iron loss is obtained after the magnetic domain subdivision processing .
【請求項2】 重量%でさらに、Sn:0.05〜0.
50%を含有することを特徴とする請求項1記載の超高
磁束密度一方向性電磁鋼板の製造方法。
2. Further , Sn: 0.05-0.
50% is contained, The manufacturing method of the ultra high magnetic flux density grain-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned.
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび/またはSe:0.005〜0.040%、 酸可溶性Al:0.010〜0.065%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜0.05%、 残部:Feおよび不可避的不純物からなるスラブを出発
材とし、該スラブを1 350℃以上に加熱した後、熱延
し、次いで熱延板焼鈍を施したのちに、冷延率81〜9
4.25%の一回強冷延で0.23〜0.15mmの製品
板厚を得て、脱炭焼鈍、仕上焼鈍によりB8 1.94
Tとし、磁区細分化処理後に低鉄損を得ることを特徴と
する超高磁束密度一方向性電磁鋼板の製造方法。
3. By weight%, C: 0.03-0.15%, Si: 2.5-4.0%, Mn: 0.02-0.30%, S and / or Se: 0. 005 to 0.040%, acid-soluble Al: 0.010 to 0.065%, N: 0.0030 to 0.0150%, Sn: 0.05 to 0.50%, Cu: 0.01 to 0. 10%, Bi: 0.0005 to 0.05%, balance: Fe and a slab consisting of unavoidable impurities as a starting material , the slab is heated to 1350 ° C. or higher , hot rolled, and then hot rolled sheet annealing After applying the cold rolling rate 81 to 9
To obtain a product thickness of 0.23~0.15mm 4.25 percent one strong cold rolled, B 81.94 by decarburization annealing, finish annealing
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, wherein T is T and a low iron loss is obtained after the magnetic domain subdivision processing .
JP02401694A 1994-02-22 1994-02-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3527276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02401694A JP3527276B2 (en) 1994-02-22 1994-02-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02401694A JP3527276B2 (en) 1994-02-22 1994-02-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH07233417A JPH07233417A (en) 1995-09-05
JP3527276B2 true JP3527276B2 (en) 2004-05-17

Family

ID=12126753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02401694A Expired - Lifetime JP3527276B2 (en) 1994-02-22 1994-02-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3527276B2 (en)

Also Published As

Publication number Publication date
JPH07233417A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4200526B2 (en) Method for producing unidirectional silicon steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH0257125B2 (en)
JPH0892644A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

EXPY Cancellation because of completion of term