JP3397277B2 - Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip - Google Patents

Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip

Info

Publication number
JP3397277B2
JP3397277B2 JP26868395A JP26868395A JP3397277B2 JP 3397277 B2 JP3397277 B2 JP 3397277B2 JP 26868395 A JP26868395 A JP 26868395A JP 26868395 A JP26868395 A JP 26868395A JP 3397277 B2 JP3397277 B2 JP 3397277B2
Authority
JP
Japan
Prior art keywords
steel strip
ultra
magnetic flux
annealing
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26868395A
Other languages
Japanese (ja)
Other versions
JPH09111346A (en
Inventor
憲人 阿部
洋介 黒崎
浩明 佐藤
顯太郎 筑摩
英一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26868395A priority Critical patent/JP3397277B2/en
Publication of JPH09111346A publication Critical patent/JPH09111346A/en
Application granted granted Critical
Publication of JP3397277B2 publication Critical patent/JP3397277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として用いられる{110}<001>方位集積度を高
度に発達させた超高磁束密度一方向性電磁鋼帯の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-high magnetic flux density unidirectional magnetic steel strip having a highly developed {110} <001> orientation integration used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼帯は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/
mの磁場における磁束密度B(以下これをB8 と示す)
が使用される。また鉄損特性を表す代表的数値として
は、W17/50 (周波数50Hzにおいて1.7Tまで磁
化させた時の単位Kgあたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electromagnetic steel strips are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic properties such as excitation properties and iron loss properties. The value that shows the excitation characteristics is usually 800 A /
Magnetic flux density B in a magnetic field of m (hereinafter referred to as B 8 )
Is used. W 17/50 (iron loss per unit Kg when magnetized to 1.7 T at a frequency of 50 Hz) is used as a representative numerical value showing the iron loss characteristics.

【0003】磁束密度は鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損はよい。た
だしあまり磁束密度が高くなると、二次再結晶粒が大き
くなることに起因して異常渦電流損失が大きくなり鉄損
を悪くすることがある。これに対しては、磁区制御する
ことによって二次再結晶粒に関係なく鉄損を改善するこ
とができる。
The magnetic flux density is an important controlling factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss. However, if the magnetic flux density becomes too high, the abnormal eddy current loss may increase due to the increase in the size of the secondary recrystallized grains, which may deteriorate the iron loss. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains.

【0004】一方向性電磁鋼帯は製造工程の仕上焼鈍に
おいて、二次再結晶を起こさせて鋼帯面に{110}、
圧延方向に<001>を有するいわゆるGoss組織を
発達させることによって得られる。その中でB8 ≧1.
88Tの優れた励磁特性を持つものは高磁束密度一方向
性電磁鋼帯と呼ばれている。
The unidirectional electrical steel strip undergoes secondary recrystallization during finish annealing in the manufacturing process to cause {110},
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B 8 ≧ 1.
Those with excellent excitation characteristics of 88T are called high magnetic flux density unidirectional electromagnetic steel strip.

【0005】高磁束密度一方向性電磁鋼帯の代表的製造
方法としては、田口らによる特公昭40−15644号
公報、および特公昭51−13469号公報が挙げられ
る。Goss組織の二次再結晶を起こさせる主なインヒ
ビターとして、前者においてはMnS及びAlNを、後
者ではMnS,MnSe,Sb等を用いている。上記特
許に基づく製品は現在、世界的規模で生産されている。
特公昭40−15644号公報によればその製造方法
は、熱延板焼鈍を施した後、冷延率80〜95%の一回
冷延を行うことを特徴としている。
Typical methods for producing a high magnetic flux density unidirectional magnetic steel strip include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13469 by Taguchi et al. MnS and AlN are used in the former and MnS, MnSe, Sb, etc. are used in the latter as the main inhibitors that cause secondary recrystallization of the Goss structure. Products based on the above patents are currently produced on a global scale.
According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is characterized by performing hot-rolled sheet annealing and then performing cold rolling once at a cold rolling rate of 80 to 95%.

【0006】また一方向性電磁鋼帯の表面には、電気的
に絶縁性を有する被膜が形成されていることが要求され
る。この被膜は絶縁性を保持する役割の他、鋼帯に張力
を付与し鉄損を低減させる役割も担っている。そのため
均一に形成させることは極めて重要である。
Further, it is required that a film having an electrically insulating property is formed on the surface of the unidirectional electromagnetic steel strip. In addition to maintaining insulating properties, this film also plays a role of applying tension to the steel strip to reduce iron loss. Therefore, it is extremely important to form it uniformly.

【0007】高磁束密度一方向性電磁鋼帯の被膜は、一
次被膜と二次被膜の二段構成である。そのうち一次被膜
は、製造工程の脱炭焼鈍において鋼帯表面に形成された
SiO2 が、その後に塗布された焼鈍分離剤と反応して
得られる。一般的に焼鈍分離剤はMgOを主成分とした
ものが用いられ、仕上げ焼鈍時にSiO2 と反応してM
2 SiO4 となり、これが一次被膜となる。
The coating of the high magnetic flux density unidirectional magnetic steel strip has a two-stage structure of a primary coating and a secondary coating. Among them, the primary coating is obtained by reacting SiO 2 formed on the surface of the steel strip during decarburization annealing in the manufacturing process with the annealing separating agent applied thereafter. In general, an annealing separator containing MgO as a main component is used, and it reacts with SiO 2 at the time of finish annealing to react with M.
It becomes g 2 SiO 4 , which becomes the primary coating.

【0008】ところで最近、高嶋らによって、B8
1.94Tの極めて優れた励磁特性を持つ超高磁束密度
一方向性電磁鋼帯が報告されている。その代表的例とし
ては、特開平6−88174号公報が挙げられる。また
その製造方法の代表的例としては、特開平6−8817
1号公報が挙げられる。いずれもスラブ中にBiを含む
ことを特徴としているが、その他は特段、田口らによる
特公昭40−15644号公報で述べられている製造方
法と変わりなく、大きな制約もない。
By the way, recently, by Takashima et al., B 8
An ultrahigh magnetic flux density unidirectional electrical steel strip having an extremely excellent excitation characteristic of 1.94T has been reported. As a typical example thereof, there is JP-A-6-88174. Further, as a typical example of the manufacturing method thereof, JP-A-6-8817
No. 1 publication is mentioned. All of them are characterized by containing Bi in the slab, but the others are not different from the manufacturing method described in Japanese Patent Publication No. 40-15644 by Taguchi et al.

【0009】[0009]

【発明が解決しようとする課題】しかし磁束密度が1.
94T以上得られているにもかかわらず、鋼中にBiを
含むことによると考えられる、一次被膜密着性の劣化
や、一次被膜が形成されにくい場合が少なくない。その
ため到達鉄損レベルが、磁束密度が1.94T以上得ら
れているにもかかわらず良くないという問題がある。こ
れは、一次被膜形成量が少ないために付与張力不足が生
じて、鉄損を低減させる寄与が少なくなっているためで
ある。
However, when the magnetic flux density is 1.
Despite the fact that 94T or more has been obtained, it is often the case that deterioration of the adhesion of the primary coating and the difficulty of forming the primary coating, which is considered to be due to the inclusion of Bi in the steel. Therefore, there is a problem that the ultimate iron loss level is not good even though the magnetic flux density is 1.94 T or more. This is because the applied tension is insufficient due to the small amount of the primary coating formed, and the contribution of reducing the iron loss is reduced.

【0010】そこで、超高磁束密度一方向性電磁鋼帯の
一次被膜を安定して形成させるために、各工程のそれぞ
れの条件に対して、極めて厳しい条件を設ける必要があ
ると考えられるが、どの工程にどのような条件を設ける
必要があるかがはっきりしないのが現状である。
Therefore, in order to stably form the primary coating of the super high magnetic flux density unidirectional electromagnetic steel strip, it is considered necessary to provide extremely strict conditions for each condition of each process. It is the current situation that it is not clear which conditions should be set for which process.

【0011】本発明は、かかる問題を解消し、極めて磁
束密度の高い一方向性電磁鋼帯の一次被膜の安定製造を
可能にし、一次被膜密着性の劣化や、一次被膜が形成さ
れないための付与張力不足による鉄損不良を改善するこ
とを目的とする。
The present invention solves such a problem, enables stable production of a primary coating of a unidirectional magnetic steel strip having an extremely high magnetic flux density, and is provided for deterioration of adhesion of the primary coating and formation of the primary coating. The purpose is to improve iron loss failure due to insufficient tension.

【0012】[0012]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1) 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.
0%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 sol.Al:0.015〜0.040%、 N :0.0030〜0.0150%、Bi:0.00
05〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材として加熱した後熱延し、さらに熱延板焼鈍
後仕上げ冷延する工程、あるいは中間焼鈍を含む複数の
冷延を行う工程、あるいは熱延板焼鈍後中間焼鈍を含む
複数の冷延を行う工程の何れかの工程によって製品板厚
に仕上げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕
上げ焼鈍をする超高磁束密度一方向性電磁鋼帯の製造方
法において、仕上げ焼鈍における雰囲気ガス流量を下式
に示す範囲とすることを特徴とするB8 ≧1.94Tの
超低鉄損超高磁束密度一方向性電磁鋼帯の製造方法。 雰囲気ガス流量/鋼帯総表面積≧0.002(Nm3 /h・m 2 ) ここで鋼帯総表面積とは、鋼帯6面の表面積の和を示
す。 2) 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.
0%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 sol.Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.0
5〜0.50%、 Bi:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材とすることを特徴とする前記1)記載の超低
鉄損超高磁束密度一方向性電磁鋼帯の製造方法。 3) 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0
%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 sol.Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.0
5〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜
0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材とすることを特徴とする前記1)記載の超低
鉄損超高磁束密度一方向性電磁鋼帯の製造方法。 4) 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0
%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 sol.Al:0.015〜0.040%、 N :0.0030〜0.0150%、 SbおよびMo:0.0030〜0.3%、 Bi:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材とすることを特徴とする前記1)記載の超低
鉄損超高磁束密度一方向性電磁鋼帯の製造方法。
The features of the present invention are as follows. 1) By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.
0%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005 to 0.040
%, Sol.Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.00
A step of heating a slab containing 0.05 to 0.02 % of the balance Fe and unavoidable impurities as a starting material, followed by hot rolling, and further hot-rolled sheet annealing followed by finish cold-rolling, or a plurality of cold-treatments including intermediate annealing. After finishing the product sheet thickness by one of the steps of performing rolling or a plurality of steps of performing cold rolling including intermediate annealing after hot-rolled sheet annealing, decarburization annealing, after applying an annealing separator, finish annealing In the method for producing an ultra-high magnetic flux density unidirectional electrical steel strip, the atmosphere gas flow rate in finish annealing is set to a range shown in the following formula: ultra-low iron loss ultra-high magnetic flux of B 8 ≧ 1.94T Method for producing density unidirectional electrical steel strip. Atmospheric gas flow rate / total surface area of steel strip ≧ 0.002 (Nm 3 / h · m 2 ) Here, the total surface area of the steel strip refers to the sum of the surface areas of the 6 surfaces of the steel strip. 2) C: 0.03 to 0.15% by weight, Si: 2.5 to 4.
0%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005 to 0.040
%, Sol.Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.0
5 to 0.50%, Bi: 0.0005 to 0.02 %, and a slab composed of the balance Fe and inevitable impurities is used as a starting material. Manufacturing method of high magnetic flux density unidirectional electromagnetic steel strip. 3) By weight, C: 0.03 to 0.15%, Si: 2.5 to 4.0
%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005 to 0.040
%, Sol.Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.0
5 to 0.50%, Cu: 0.01 to 0.10%, Bi: 0.0005 to
The method for producing an ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip as described in 1) above, wherein a slab containing 0.02 % and the balance Fe and unavoidable impurities is used as a starting material. 4) By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0
%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005 to 0.040
%, Sol.Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sb and Mo: 0.0030 to 0.3%, Bi: 0.0005 to 0.02 %. The method for producing an ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip as described in 1) above, wherein a slab containing the balance Fe and unavoidable impurities is used as a starting material.

【0013】[0013]

【発明の実施の態様】以下本発明の詳細について説明す
る。本発明者は、いわゆる超高磁束密度一方向性電磁鋼
帯を安定的に得るべく種々の研究を鋭意重ねた結果、B
iを含んだMnSとAlNを主インヒビターとする一方
向性電磁鋼帯用スラブを出発材として加熱した後熱延
し、熱延板焼鈍後仕上げ冷延、あるいは中間焼鈍を含む
複数の冷延、あるいは熱延板焼鈍後中間焼鈍を含む複数
の冷延の何れかの工程によって製品板厚に仕上げた後
に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上焼鈍をする
超高磁束密度一方向性電磁鋼帯の製造方法において、仕
上げ焼鈍における雰囲気ガス流量を下式に示す範囲とす
ることによって、極めて磁束密度の高くかつ鉄損の低
い、超高磁束密度一方向性電磁鋼帯の安定製造に成功し
た。 雰囲気ガス流量/鋼帯総表面積≧0.002(Nm3 /h・
m 2 ) ここで鋼帯総表面積とは、鋼帯6面の表面積の和を示
す。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below. The present inventor has conducted various studies to stably obtain a so-called ultra-high magnetic flux density unidirectional electromagnetic steel strip, and as a result, B
A slab for unidirectional electrical steel strip containing MnS and AlN containing i as a main inhibitor is heated as a starting material and then hot-rolled, followed by hot-rolled sheet annealing, finish cold-rolling, or a plurality of cold-rolling including intermediate annealing, Alternatively, after finishing the product sheet thickness by one of the steps of multiple cold rolling including intermediate annealing after hot-rolled sheet annealing, decarburization annealing, after applying an annealing separator, finish annealing, super high magnetic flux density one direction In the manufacturing method for high-strength electromagnetic steel strip, stable production of ultra-high magnetic flux density unidirectional electromagnetic steel strip with extremely high magnetic flux density and low iron loss by setting the atmospheric gas flow rate during finish annealing to the range shown in the following formula succeeded in. Atmospheric gas flow rate / total steel strip surface area ≥ 0.002 (Nm 3 / h ・
m 2 ) Here, the total surface area of the steel strip indicates the sum of the surface areas of the 6 surfaces of the steel strip.

【0014】なお、雰囲気ガス流量/鋼帯総表面積の上
限値は、特に限定されるものではないが、コストの観点
から0.4(Nm3 /h・m 2 )以下とすることが望まし
い。また雰囲気ガスについては窒素と水素の混合ガスが
望ましいが、その混合比は特に限定されるものではな
い。
The upper limit of the atmospheric gas flow rate / total surface area of the steel strip is not particularly limited, but is preferably 0.4 (Nm 3 / h · m 2 ) or less from the viewpoint of cost. The atmosphere gas is preferably a mixed gas of nitrogen and hydrogen, but the mixing ratio thereof is not particularly limited.

【0015】[0015]

【発明の実施の態様】本発明成分条件について説明す
る。CはO.03%未満では、熱延に先立つスラブ加熱
時において結晶粒が異常粒成長し、製品において線状細
粒と呼ばれる二次再結晶不良を起こすので好ましくな
い。一方0.15%を超えた場合は、冷延後の脱炭焼鈍
において脱炭時間が長時間必要となり経済的でないばか
りでなく、脱炭が不完全となり易く、製品での磁気時効
と呼ばれる磁性不良を起こすので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION Conditions for the components of the present invention will be described. C is O. If it is less than 03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, when the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization is likely to be incomplete, resulting in magnetic aging called magnetic aging in products. It is not preferable because it causes defects.

【0016】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合は、加工性が著しく劣
化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0017】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnS及び、又はMnSeを形成する重要な
元素である。0.02%未満では、二次再結晶を生じさ
せるのに必要なMnSの絶対量が不足するので好ましく
ない。一方0.30%を超えた場合は、スラブ加熱時の
固溶が困難になるばかりでなく、熱延時の析出サイズが
粗大化し易くインヒビターとしての最適サイズ分布が損
なわれて好ましくない。
Mn is an important element that forms MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0018】S,Seはこれらのうちの1種又は2種を
含有し、上掲したMnとMnS及び、又はMnSeを形
成する重要な元素である。上記範囲を逸脱すると充分な
インヒビター効果が得られないので、0.005〜0.
040%に限定する必要がある。
S and Se contain one or two of these and are important elements forming Mn and MnS and / or MnSe described above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.005 to 0.
It is necessary to limit it to 040%.

【0019】sol.(酸可溶性)Alは、高磁束密度一方
向性電磁鋼帯のための主要インヒビター構成元素であ
り、0.015%未満では量的に不足してインヒビター
強度が不足するので好ましくない。一方0.040%超
ではインヒビターとして析出させるAlNが粗大化し、
結果としてインヒビター強度を低下させるので好ましく
ない。
Sol. (Acid-soluble) Al is a main inhibitor constituent element for high magnetic flux density unidirectional electrical steel strip, and if less than 0.015%, it is insufficient in quantity and the inhibitor strength is insufficient, which is preferable. Absent. On the other hand, if it exceeds 0.040%, AlN precipitated as an inhibitor becomes coarse,
As a result, the inhibitor strength is lowered, which is not preferable.

【0020】Nは上掲したsol.AlとAlNを形成する
重要な元素である。上記範囲を逸脱すると充分なインヒ
ビター効果が得られないので、0.0030〜0.01
50%に限定する必要がある。
N is an important element forming AlN and sol.Al described above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.01
It should be limited to 50%.

【0021】更にSnについては、薄手製品の二次再結
晶を安定して得る元素として有効であり、また二次再結
晶粒径を小さくする作用もある。この効果を得るために
は、0.05%以上の添加が必要であり、0.50%を
超えた場合にはその作用が飽和するので、コストアップ
の点から0.50%以下に限定する。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of thin products, and also has an effect of reducing the secondary recrystallization grain size. In order to obtain this effect, it is necessary to add 0.05% or more, and when it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less. .

【0022】Cuについては、Sn添加鋼の一次被膜向
上元素として有効である。0.01%未満では効果が少
なく、0.10%を超えると製品の磁束密度が低下する
ので好ましくない。
Cu is effective as an element for improving the primary coating of Sn-added steel. If it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product decreases, which is not preferable.

【0023】SbMoは、これらの両方を含有するも
のであり、薄手製品の二次再結晶を安定して得る元素と
して有効である。この効果を得るためには、0.003
0%以上の添加が必要であり、0.30%を超えた場合
にはその作用が飽和するので、コストアップの点から
0.30%以下に限定する。
[0023] Sb and Mo are those containing these both, is effective secondary recrystallization of thin products as stable obtained element. To obtain this effect, 0.003
It is necessary to add 0% or more, and when it exceeds 0.30%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.30% or less.

【0024】Biは本発明であるB8 ≧1.94Tの超
高磁束密度一方向性電磁鋼帯の製造において、そのスラ
ブ中に必須の元素である。すなわち磁束密度向上効果が
ある。0.0005%未満ではその効果が充分に得られ
ず、また0.02%を超えた場合は磁束密度向上効果が
飽和するだけでなく、熱延コイルの端部に割れが発生す
るので好ましくない。
Bi is an essential element in the slab in the production of the superhigh magnetic flux density unidirectional electrical steel strip of B 8 ≧ 1.94T according to the present invention. That is, there is an effect of improving the magnetic flux density. If it is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.02 %, not only the effect of improving the magnetic flux density is saturated, but also cracks occur at the end of the hot rolled coil, which is not preferable. .

【0025】次に、本発明である超高磁束密度一方向性
電磁鋼帯の一次被膜製造方法について説明する。上記の
如く成分を調整した超高磁束密度一方向性電磁鋼帯製造
用溶鋼は、通常の方法で鋳造する。特に鋳造方法に限定
はない。次いで通常の熱間圧延によって熱延コイルに圧
延される。
Next, the method for producing the primary coating of the ultrahigh magnetic flux density unidirectional electromagnetic steel strip of the present invention will be described. The super-high magnetic flux density unidirectional electromagnetic steel strip for producing molten steel having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

【0026】引き続いて、熱延板焼鈍後仕上げ焼鈍する
工程、或いは中間焼鈍を含む複数の冷延を行う工程、又
は熱延板焼鈍後中間焼鈍を含む複数の冷延を行う工程の
何れかの工程によって、製品板厚に仕上げるわけである
が、仕上げ冷延前の焼鈍では結晶組織の均質化と、Al
Nの析出制御を行う。
Subsequently, either one of the step of performing finish annealing after hot-rolled sheet annealing, the step of performing a plurality of cold rolling including intermediate annealing, or the step of performing a plurality of cold rolling including intermediate annealing after hot-rolled sheet annealing. Depending on the process, the product sheet thickness is finished, but in the annealing before finish cold rolling, homogenization of the crystal structure and Al
The precipitation of N is controlled.

【0027】冷延後に連続脱炭焼鈍を施し、MgOを主
成分とする焼鈍分離剤を塗布後、仕上げ焼鈍をするが、
この時の雰囲気ガス流量を以下に示す式の範囲とするこ
とを本発明の特徴としている。 雰囲気ガス流量/鋼帯総表面積≧0.002(Nm3 /h・
m 2 ) 仕上げ焼鈍後は、連続歪取り焼鈍・二次被膜塗布及び焼
き付けを行う。更に必要に応じてレーザー照射、溝形成
等の磁区細分化処理を施す。
After cold rolling, continuous decarburization annealing is applied, and after applying an annealing separator containing MgO as a main component, finish annealing is carried out.
It is a feature of the present invention that the flow rate of the atmospheric gas at this time is within the range of the formula shown below. Atmospheric gas flow rate / total steel strip surface area ≥ 0.002 (Nm 3 / h ・
m 2 ) After finish annealing, continuous strain relief annealing / secondary film coating and baking are performed. Further, magnetic domain subdivision processing such as laser irradiation and groove formation is performed if necessary.

【0028】これまで超高磁束密度一方向性電磁鋼帯の
製造における一次被膜形成については特に言及されてい
なかった。特開平6−88171号公報では、全く述べ
られていない。それにもかかわらず一次被膜不良になる
場合があり、安定製造には至っていないのが現状であ
る。
So far, no particular reference has been made to the formation of a primary coating in the production of ultra high magnetic flux density unidirectional electrical steel strip. In JP-A-6-88171, nothing is mentioned. Nevertheless, the primary coating may be defective in some cases, and the current situation is that stable production has not been achieved.

【0029】しかし、仕上げ焼鈍時の雰囲気ガス流量を
以下に示す範囲とすることが、{110}〈001〉方
位集積度の極めて優れた一方向性電磁鋼帯の一次被膜の
安定形成に極めて重要で、その結果として、極めて鉄損
の優れた製品となることが判明した。 雰囲気ガス流量/鋼帯総表面積≧0.002(Nm3 /h・
m 2 ) ここで鋼帯総表面積とは、鋼帯6面の表面積の和を示
す。
However, setting the atmospheric gas flow rate during finish annealing within the range shown below is extremely important for the stable formation of the primary coating of the unidirectional electromagnetic steel strip having a very high degree of {110} <001> orientation integration. As a result, it was found that the product had extremely excellent iron loss. Atmospheric gas flow rate / total steel strip surface area ≥ 0.002 (Nm 3 / h ・
m 2 ) Here, the total surface area of the steel strip indicates the sum of the surface areas of the 6 surfaces of the steel strip.

【0030】図1に、C:0.079%、Si:3.2
0%、Mn:0.08%、S:0.024%、sol.A
l:0.025%、N:0.0086%、Bi:0〜
0.0200%を含有する0.965m幅の3トンスラ
ブを、通常工程で板厚0.220mmに仕上げ(鋼帯総表
面積= 3565.5236m3 )、MgOを主成分とする焼鈍分
離剤塗布まで行った。その後、容積が8m3 の仕上焼鈍
炉に装入し、窒素:水素=1:1で構成される雰囲気ガ
スの流量を1〜40Nm3 /hとして焼鈍し、後工程処理し
た時のBi含有量と磁束密度B8 と一次被膜密着性評点
と磁区制御後の鉄損W17/50 を示す。評点はAが一番良
好で、続いてB,C,D,Eと続く。
In FIG. 1, C: 0.079%, Si: 3.2
0%, Mn: 0.08%, S: 0.024%, sol.A
1: 0.025%, N: 0.0086%, Bi: 0
A 0.965 m wide 3 ton slab containing 0.0200% was finished to a plate thickness of 0.220 mm in a normal process (steel strip total surface area = 3565.5236 m 3 ), and an annealing separator containing MgO as a main component was applied. . After that, it was charged into a finishing annealing furnace having a volume of 8 m 3 , annealed with a flow rate of an atmosphere gas composed of nitrogen: hydrogen = 1: 1 at 1 to 40 Nm 3 / h, and a Bi content when subjected to a post-process. And magnetic flux density B 8 , primary coating adhesion rating and iron loss W 17/50 after magnetic domain control. A is the best score, followed by B, C, D and E.

【0031】Bi含有量が5ppm 未満の場合は、雰囲気
ガス流量/鋼帯総表面積<0.002(Nm3 /h・m 2
でも一次被膜密着性評点は、0.002(Nm3 /h・m
2 )以上とした場合のそれと差異が認められない。し
かしBi含有量が5ppm 以上の場合、仕上焼鈍中のガス
流量/鋼帯総表面積<0.002(Nm3 /h・m 2 )以上
とした場合では、一次被膜密着性評点がCが殆どである
のに対して、0.002(Nm3 /h・m 2 )以上とした場
合では、一次被膜密着性評点がA、或いはBとなってい
る。それに伴って極めて低い鉄損が得られている。
When the Bi content is less than 5 ppm, the atmospheric gas flow rate / total steel strip surface area <0.002 (Nm 3 / h · m 2 ).
However, the primary coating adhesion score was 0.002 (Nm 3 / h ・ m
2 ) There is no difference from the above. However, when the Bi content is 5 ppm or more, when the gas flow rate during finish annealing / total steel strip surface area <0.002 (Nm 3 / h · m 2 ) or more, the primary coating adhesion score is almost C. On the other hand, when it is 0.002 (Nm 3 / h · m 2 ) or more, the primary coating adhesion score is A or B. Accordingly, extremely low iron loss is obtained.

【0032】図2は、C:0.076%、Si:3.2
2%、Mn:0.08%、S:0.025%、sol.A
l:0.027%、N:0.0088%、Sn:0.0
9%、Bi:0.0078%を含有する0.965m幅
の3トンスラブを、通常工程で製品板厚0.220mmま
で仕上げて(鋼帯総表面積= 3565.5236m3 )、MgO
を主成分とする焼鈍分離剤塗布まで行った。その後、炉
内容積が8m3 の仕上焼鈍炉に装入し、窒素:水素=
1:2で構成される雰囲気ガスの流量を1〜40Nm3 /h
として焼鈍し、二次被膜塗布、磁区制御の後工程処理し
た時の、一次被膜量と磁束密度B8 と鉄損W17/50 を示
す。
FIG. 2 shows C: 0.076% and Si: 3.2.
2%, Mn: 0.08%, S: 0.025%, sol.A
1: 0.027%, N: 0.0088%, Sn: 0.0
A 9 ton slab with a width of 0.965 m containing 9% and Bi: 0.0078% is finished to a product plate thickness of 0.220 mm in a normal process (steel strip total surface area = 3565.5236 m 3 ), and MgO
The process was performed up to the application of the annealing separator containing as a main component. Then, it was charged into a finishing annealing furnace having a furnace volume of 8 m 3 , and nitrogen: hydrogen =
The flow rate of the atmospheric gas composed of 1: 2 is 1 to 40 Nm 3 / h
The following shows the amount of primary coating, magnetic flux density B 8 and iron loss W 17/50 after annealing, coating of secondary coating, and post-treatment of magnetic domain control.

【0033】雰囲気ガス流量/鋼帯総表面積<0.00
2(Nm3 /h・m 2 )では、一次被膜量が2g/m2 未満
となっているため、付与張力不足が原因と考えられる鉄
損過多となっている。しかし、雰囲気ガス流量/鋼帯総
表面積≧0.002(Nm3 /h・m 2 )では、一次被膜量
が2g/m2 以上となっているため、付与張力も充分と
なり、優れた鉄損が得られていることがわかる。
Atmospheric gas flow rate / total steel strip surface area <0.00
At 2 (Nm 3 / h · m 2 ), the amount of primary coating is less than 2 g / m 2, so iron loss is considered excessive due to insufficient applied tension. However, when the atmospheric gas flow rate / total surface area of steel strip ≧ 0.002 (Nm 3 / h · m 2 ), the primary coating amount was 2 g / m 2 or more, so the applied tension was sufficient and excellent iron loss was achieved. It can be seen that is obtained.

【0034】この理由としては、次のように考えてい
る。すなわち、仕上げ焼鈍は一般的にコイル状で行われ
るが、雰囲気ガス流量/鋼帯総表面積≧0.002(Nm
3 /h・m 2 )にすることによって、仕上げ焼鈍途中での
地鉄中のBiが拡散でき、地鉄中のBiが地鉄と酸化層
との界面、或いは酸化層中に長時間滞在することなく抜
けることが可能となるため、一次被膜形成後の破壊が行
われることなく安定形成されたと考える。
The reason for this is as follows. That is, finish annealing is generally performed in the form of a coil, but the flow rate of atmospheric gas / total surface area of steel strip ≧ 0.002 (Nm
3 / h · m 2 ) allows Bi in the base metal to diffuse during finish annealing, and Bi in the base iron stays at the interface between the base iron and the oxide layer or in the oxide layer for a long time. Since it can be removed without any damage, it is considered that stable formation was achieved without destruction after the formation of the primary coating.

【0035】高磁束密度一方向性電磁鋼帯の製造におい
て、仕上げ焼鈍のガス流量を制御することは、これまで
にも述べられている。例えば、特開平2−125815
号公報が挙げられる。これは、仕上げ焼鈍中のガス流量
を2cc/分・kg以上とすることによって、地鉄中とフォ
ルステライト中のS,Se,Nの純化が著しく改善され
て、磁束密度や鉄損特性が向上するとしている。
The control of the gas flow rate of the finish annealing in the production of high magnetic flux density unidirectional electrical steel strip has been previously described. For example, JP-A-2-125815
The gazette is mentioned. This is because, by setting the gas flow rate during finish annealing to 2 cc / min · kg or more, the purification of S, Se, N in the base steel and forsterite is significantly improved, and the magnetic flux density and iron loss characteristics are improved. I'm supposed to.

【0036】これに対し本発明は、地鉄中のBiの仕上
げ焼鈍における挙動が一次被膜形成挙動に多大な影響を
及ぼすとの考えに基づいている。すなわち、Biを0.
0005〜0.0200%含有していることと、ガス流
量制御を雰囲気ガス流量/鋼帯総表面積≧0.002
(Nm3 /h・m 2 )とすることで、B8 ≧1.94Tかつ
極めて優れた一次被膜が得られるとするものであり、従
来技術とは全く異なる。
On the other hand, the present invention is based on the idea that the behavior of Bi in the base metal during finish annealing has a great influence on the behavior of forming the primary coating. That is, Bi is 0.
0005 to 0.0200 % content and control of gas flow rate: atmosphere gas flow rate / total steel strip surface area ≧ 0.002
By setting (Nm 3 / h · m 2 ), B 8 ≧ 1.94T and an extremely excellent primary coating can be obtained, which is completely different from the prior art.

【0037】[0037]

【実施例】【Example】

(実施例1)C:0.077%、Si:3.22%、M
n:0.08%、S:0.026%、sol.Al:0.0
26%、N:0.0084%、Bi:0.0070%を
含有する0.965m幅の3トンスラブを、1350℃
で加熱後直ちに熱延して2.4mm厚の熱延コイルとし
た。熱延コイルに1100℃の焼鈍を施し、一回冷延で
0.220mm厚とした後(鋼帯総表面積= 3565.5236m
3 )、860℃で脱炭焼鈍を行った。
(Example 1) C: 0.077%, Si: 3.22%, M
n: 0.08%, S: 0.026%, sol.Al:0.0
A 3 ton slab with a width of 0.965 m containing 26%, N: 0.0084%, and Bi: 0.0070% at 1350 ° C.
Immediately after it was heated in, a hot rolled coil having a thickness of 2.4 mm was obtained. After the hot rolled coil is annealed at 1100 ° C and cold rolled once to a thickness of 0.220 mm (total steel strip surface area = 3565.5236m
3 ), decarburization annealing was performed at 860 ° C.

【0038】次にMgOを主成分とする焼鈍分離剤を塗
布した後、炉内容積が1m3 の仕上焼鈍炉に装入し、窒
素:水素=3:1で構成される雰囲気ガスの流量を5Nm
3 /hと10Nm3 /hとして焼鈍した。その後、二次被膜塗
布、さらにはレーザー照射による磁区制御を行った。一
次被膜密着性を評価するために、60mm幅×300mm長
にそれぞれ5枚を試料として切り出した。雰囲気ガス流
量/鋼帯総表面積と磁束密度B8 と一次被膜密着性評点
と磁区制御後の鉄損W17/50 を表1に示す。評点はAが
一番良好で、続いてB,C,D,Eと続く。
Next, after applying an annealing separating agent containing MgO as a main component, it was charged into a finishing annealing furnace having a furnace internal volume of 1 m 3 and a flow rate of an atmosphere gas composed of nitrogen: hydrogen = 3: 1. 5 Nm
Annealed at 3 / h and 10 Nm 3 / h. After that, the secondary coating was applied and the magnetic domain was controlled by laser irradiation. In order to evaluate the adhesion of the primary coating, 5 sheets each having a width of 60 mm and a length of 300 mm were cut out as samples. Table 1 shows the atmospheric gas flow rate / total steel strip surface area, magnetic flux density B 8 , primary coating adhesion rating, and iron loss W 17/50 after magnetic domain control. A is the best score, followed by B, C, D and E.

【0039】[0039]

【表1】 [Table 1]

【0040】表1より明らかなように、雰囲気ガス流量
/鋼帯総表面積≧0.002(Nm3/h・m 2 )とするこ
とで、極めて優れた一次被膜密着性評点が得られてい
る。そして0.75W/kg以下の極めて優れた鉄損特性
を示している。
As is clear from Table 1, by setting the atmospheric gas flow rate / total surface area of steel strip ≧ 0.002 (Nm 3 / h · m 2 ), an extremely excellent primary coating adhesion rating was obtained. . And it shows an extremely excellent iron loss characteristic of 0.75 W / kg or less.

【0041】(実施例2)C:0.075%、Si:
3.20%、Mn:0.08%、S:0.025%、so
l.Al:0.028%、N:0.0080%、Sn:
0.12%、Bi:0.00114%を含有する0.9
65m幅の3トンスラブを、1330℃で加熱後直ちに
熱延して2.3mm厚の熱延コイルとした。酸洗後1.6
mmに予備冷延し、1000℃の焼鈍後0.220mmとし
た(鋼帯総表面積= 3565.5236m3 )。次にMgOを主
成分とする焼鈍分離剤を塗布した後、炉内容積が8m3
の仕上焼鈍炉に装入し、窒素と水素で構成される雰囲気
ガスの流量を2Nm3 /hと20Nm3 /hとして焼鈍した。そ
の後は実施例1と同様の処理をした。雰囲気ガス流量/
鋼帯総表面積と磁束密度B8 と一次被膜量を表2に示
す。
(Example 2) C: 0.075%, Si:
3.20%, Mn: 0.08%, S: 0.025%, so
l.Al: 0.028%, N: 0.0080%, Sn:
0.9 containing 0.12%, Bi: 0.00114%
A 3-ton slab having a width of 65 m was heated at 1330 ° C. and immediately hot-rolled into a hot-rolled coil having a thickness of 2.3 mm. After pickling 1.6
It was pre-cold rolled to mm and annealed at 1000 ° C. to 0.220 mm (total surface area of steel strip = 3565.5236 m 3 ). Next, after applying an annealing separator containing MgO as a main component, the furnace internal volume was 8 m 3
It was charged into the finishing annealing furnace of and was annealed with the flow rate of the atmosphere gas composed of nitrogen and hydrogen being 2 Nm 3 / h and 20 Nm 3 / h. After that, the same treatment as in Example 1 was performed. Atmosphere gas flow rate /
Table 2 shows the total surface area of the steel strip, the magnetic flux density B 8 and the amount of primary coating.

【0042】[0042]

【表2】 [Table 2]

【0043】表2より明らかなように、雰囲気ガス流量
/鋼帯総表面積≧0.002(Nm3/h・m 2 )とするこ
とで、一次被膜量が確保、形成されていることがわか
る。表2に示す比較例1と、本発明例1の磁区制御後の
磁束密度B8 とW17/50 を表3に示す。
As is clear from Table 2, it can be seen that the primary coating amount is secured and formed by setting the atmospheric gas flow rate / total steel strip surface area ≧ 0.002 (Nm 3 / h · m 2 ). . Table 3 shows Comparative Example 1 shown in Table 2 and the magnetic flux densities B 8 and W 17/50 after magnetic domain control in Example 1 of the present invention.

【0044】[0044]

【表3】 表3より明らかなように、磁区細分化処理後の鉄損特性
も極めて優れており、工業的に非常に価値の高い有益な
ものといえる。
[Table 3] As is clear from Table 3, the iron loss characteristics after the magnetic domain refinement treatment are also extremely excellent, and can be said to be industrially very valuable and useful.

【0045】(実施例3)C:0.078%、Si:
3.30%、Mn:0.08%、S:0.025%、so
l.Al:0.022%、N:0.0084%、Sn:
0.16%、Cu:0.060%を含有する溶鋼に、B
iを0.00178%添加含有した0.965m幅の3
トンスラブを、1350℃で加熱後直ちに熱延して2.
5mm厚の熱延コイルとした。熱延コイルに1000℃の
焼鈍を施し、980℃の中間焼鈍を挟む二回冷延で0.
220mm厚とした後(鋼帯総表面積= 3565.5236
3 )、850℃で脱炭焼鈍を行った。
(Example 3) C: 0.078%, Si:
3.30%, Mn: 0.08%, S: 0.025%, so
l.Al: 0.022%, N: 0.0084%, Sn:
In molten steel containing 0.16%, Cu: 0.060%, B
3 with a width of 0.965 m containing i added 0.00178%
1. Heat the tongue slab immediately after heating at 1350 ° C.
A hot rolled coil having a thickness of 5 mm was used. The hot-rolled coil is annealed at 1000 ° C., and an intermediate anneal at 980 ° C. is sandwiched between two cold-rollings to reach 0.
After making 220mm thick (steel strip total surface area = 3565.5236
m 3 ), decarburization annealing was performed at 850 ° C.

【0046】次にMgOを主成分とする焼鈍分離剤を塗
布した後、炉内容積が8m3 の仕上焼鈍炉に装入し、窒
素と水素で構成される雰囲気ガスの流量を7Nm3 /hと1
0Nm3 /hとして焼鈍した。その後は実施例1と同様の処
理をした。雰囲気ガス流量/鋼帯総表面積と磁束密度B
8 と一次被膜密着性評点と磁区制御後の鉄損W17/50
表4に示す。評点はAが一番良好で、続いてB,C,
D,Eと続く。
Next, after applying an annealing separating agent containing MgO as a main component, it was charged into a finishing annealing furnace having a furnace internal volume of 8 m 3 , and the flow rate of an atmosphere gas composed of nitrogen and hydrogen was 7 Nm 3 / h. And 1
Annealed at 0 Nm 3 / h. After that, the same treatment as in Example 1 was performed. Atmospheric gas flow rate / total steel strip surface area and magnetic flux density B
8 and the primary coating adhesion rating and the iron loss W 17/50 after controlling the magnetic domains are shown in Table 4. A is the best score, followed by B, C,
Followed by D and E.

【0047】[0047]

【表4】 [Table 4]

【0048】表4より明らかなように、雰囲気ガス流量
/鋼帯総表面積≧0.002(Nm3/h・m 2 )とするこ
とで、極めて優れた一次被膜密着性評点が得られてい
る。そして0.75W/kg以下の極めて優れた鉄損特性
を示している。
As is clear from Table 4, by setting the atmospheric gas flow rate / total steel strip surface area ≧ 0.002 (Nm 3 / h · m 2 ), an extremely excellent primary coating adhesion rating was obtained. . And it shows an extremely excellent iron loss characteristic of 0.75 W / kg or less.

【0049】(実施例4)C:0.078%、Si:
3.28%、Mn:0.08%、S:0.024%、so
l.Al:0.026%、N:0.0084%、Sb:
0.020%、Mo:0.014%、Bi:0.003
5%を含有する0.965m幅の3トンスラブを、13
50℃で加熱後直ちに熱延して2.3mm厚の熱延コイル
とした。1000℃の中間焼鈍を挟む二回冷延で0.2
20mm厚とした後(鋼帯総表面積= 3565.5236m3 )、
860℃で脱炭焼鈍を行った。
(Example 4) C: 0.078%, Si:
3.28%, Mn: 0.08%, S: 0.024%, so
l.Al: 0.026%, N: 0.0084%, Sb:
0.020%, Mo: 0.014%, Bi: 0.003
3 ton slab 0.965 m wide containing 5%
Immediately after heating at 50 ° C., hot rolling was performed to obtain a hot rolled coil having a thickness of 2.3 mm. 0.2 in cold-rolled twice with 1000 ℃ intermediate annealing
After making it 20 mm thick (steel strip total surface area = 3565.5236 m 3 ),
Decarburization annealing was performed at 860 ° C.

【0050】次にMgOを主成分とする焼鈍分離剤を塗
布した後、炉内容積が8m3 の仕上焼鈍炉に装入し、窒
素と水素で構成される雰囲気ガスの流量を1Nm3 /hと4
0Nm3 /hとして焼鈍した。その後は実施例1と同様の処
理をした。雰囲気ガス流量/鋼帯総表面積と磁束密度B
8 と一次被膜量を表5に示す。
Next, after applying an annealing separator containing MgO as a main component, the furnace was charged into a finishing annealing furnace having an internal volume of 8 m 3 , and the flow rate of an atmosphere gas composed of nitrogen and hydrogen was 1 Nm 3 / h. And 4
Annealed at 0 Nm 3 / h. After that, the same treatment as in Example 1 was performed. Atmospheric gas flow rate / total steel strip surface area and magnetic flux density B
8 and the primary coating amount are shown in Table 5.

【0051】[0051]

【表5】 [Table 5]

【0052】表5より明らかなように、雰囲気ガス流量
/鋼帯総表面積≧0.002(Nm3/h・m 2 )とするこ
とで、極めて優れた一次被膜量が確保、形成されている
ことがわかる。表5に示す比較例2と、本発明例4の磁
区制御後の磁束密度B8 とW17/50 を表6に示す。
As is clear from Table 5, by setting the atmospheric gas flow rate / total steel strip surface area ≧ 0.002 (Nm 3 / h · m 2 ), an extremely excellent primary coating amount was secured and formed. I understand. Table 6 shows Comparative Example 2 shown in Table 5 and the magnetic flux densities B 8 and W 17/50 after magnetic domain control in Example 4 of the present invention.

【0053】[0053]

【表6】 表6より明らかなように、磁区細分化処理後の鉄損特性
も極めて優れており、工業的に非常に価値の高い有益な
ものといえる。
[Table 6] As is clear from Table 6, the iron loss characteristics after the magnetic domain refinement treatment are also extremely excellent, and can be said to be industrially very valuable and useful.

【0054】[0054]

【発明の効果】Biを添加含有した一方向性電磁鋼帯用
スラブから得た熱延コイルを、熱延板焼鈍後仕上げ冷延
する工程、或いは中間焼鈍を含む複数の冷延をする工
程、或いは熱延板焼鈍後中間焼鈍を含む複数の冷延をす
る工程の何れかの工程によって製品板厚に仕上げた後
に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上焼鈍をする
超高磁束密度一方向性電磁鋼帯の一次被膜製造方法にお
いて、仕上焼鈍における雰囲気ガス流量を下式に示す範
囲とすることによって、密着性の優れた一次被膜を有す
る超高磁束密度一方向性電磁鋼帯が得られるとともに、
磁区細分化処理後の鉄損特性も極めて優れており、工業
的に非常に価値の高い有益な製品が得られる。 雰囲気ガス流量/鋼帯総表面積≧0.002(Nm3 /h・
m 2 ) ここで鋼帯総表面積とは、鋼帯6面の表面積の和を示
す。
EFFECT OF THE INVENTION A step of hot-rolling a hot-rolled coil obtained from a slab for unidirectional electromagnetic steel strips containing Bi, followed by finish cold-rolling, or a step of performing a plurality of cold-rolling including intermediate annealing, Alternatively, ultra-high magnetic flux that performs finish annealing after decarburizing annealing after applying a sheet thickness by one of the steps of multiple cold rolling including intermediate annealing after hot-rolled sheet annealing, and applying an annealing separator. In the method for producing a primary coating of a density unidirectional electrical steel strip, by setting the atmospheric gas flow rate during finish annealing within the range shown in the following formula, an ultrahigh magnetic flux density unidirectional electrical steel strip having a primary coating with excellent adhesion is obtained. As well as
The iron loss property after the magnetic domain refinement treatment is also extremely excellent, and a useful product having a very high industrial value can be obtained. Atmospheric gas flow rate / total steel strip surface area ≥ 0.002 (Nm 3 / h ・
m 2 ) Here, the total surface area of the steel strip indicates the sum of the surface areas of the 6 surfaces of the steel strip.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi含有量と仕上焼鈍における雰囲気ガス流量
/鋼帯総表面積と磁束密度B8と一次被膜密着性評点と
磁区制御後の鉄損W17/50 を示す図表。
FIG. 1 is a chart showing Bi content, atmospheric gas flow rate in finish annealing / total steel strip surface area, magnetic flux density B 8 , primary coating adhesion rating, and iron loss W 17/50 after magnetic domain control.

【図2】一次被膜量と磁束密度B8 と鉄損W17/50 を示
す図表。
FIG. 2 is a chart showing the amount of primary coating, magnetic flux density B 8 and iron loss W 17/50 .

フロントページの続き (72)発明者 筑摩 顯太郎 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (72)発明者 難波 英一 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (56)参考文献 特開 平6−88174(JP,A) 特開 平6−184640(JP,A) 特開 平2−125815(JP,A) 特開 平5−171284(JP,A) 特開 平5−117752(JP,A) 前山公夫ら,珪素鋼用回転焼鈍炉,川 崎製鉄技法,日本,川崎製鉄株式会社, 1983年12月,第15巻第4号,p.56〜60Continued front page    (72) Inventor Chitaro Chikuma               1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo               Inside the Hirohata Works (72) Inventor Eiichi Namba               1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo               Inside the Hirohata Works                (56) Reference JP-A-6-88174 (JP, A)                 JP-A-6-184640 (JP, A)                 JP-A-2-125815 (JP, A)                 JP-A-5-171284 (JP, A)                 JP-A-5-117752 (JP, A)                 Kimio Maeyama et al., Rotary annealing furnace for silicon steel, Kawa               Saki Steel Works, Japan, Kawasaki Steel Co., Ltd.,               December 1983, Vol. 15, No. 4, p. 56-60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材として加熱した後熱延し、さらに熱延板焼鈍
後仕上げ冷延する工程、あるいは中間焼鈍を含む複数の
冷延を行う工程、あるいは熱延板焼鈍後中間焼鈍を含む
複数の冷延を行う工程の何れかの工程によって製品板厚
に仕上げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕
上げ焼鈍をする超高磁束密度一方向性電磁鋼帯の製造方
法において、仕上げ焼鈍における雰囲気ガス流量を下式
に示す範囲とすることを特徴とするB8 ≧1.94Tの
超低鉄損超高磁束密度一方向性電磁鋼帯の製造方法。 雰囲気ガス流量/鋼帯総表面積≧0.002(Nm3 /h・m 2 ) ここで鋼帯総表面積とは、鋼帯6面の表面積の和を示
す。
1. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.02 %, and a slab containing the balance Fe and inevitable impurities. After heating as a starting material, hot-rolling, further hot-rolled sheet annealing and finish cold-rolling step, or multiple cold-rolling step including intermediate annealing, or multiple cold-rolling including hot-rolled sheet annealing after intermediate annealing After finishing the product sheet thickness by any of the steps to be performed, decarburization annealing, after applying the annealing separator, in the method of manufacturing an ultra-high magnetic flux density unidirectional electrical steel strip to perform finish annealing, in finish annealing A method for producing an ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip having B 8 ≧ 1.94 T, characterized in that an atmospheric gas flow rate is set to a range shown in the following formula. Atmospheric gas flow rate / total surface area of steel strip ≧ 0.002 (Nm 3 / h · m 2 ) Here, the total surface area of the steel strip refers to the sum of the surface areas of the 6 surfaces of the steel strip.
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Bi:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材とすることを特徴とする請求項1記載の超低
鉄損超高磁束密度一方向性電磁鋼帯の製造方法。
2. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.05 to 0.50%, Bi: 0.0005 to 0.02 % The method for producing an ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip according to claim 1, wherein a slab consisting of the balance Fe and unavoidable impurities is used as a starting material.
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材とすることを特徴とする請求項1記載の超低
鉄損超高磁束密度一方向性電磁鋼帯の製造方法。
3. In weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.05 to 0.50%, Cu: 0.01 to 0.10%, Bi: The ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip according to claim 1, wherein a slab containing 0.0005 to 0.02 % and the balance Fe and unavoidable impurities is used as a starting material. Manufacturing method.
【請求項4】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの少なくとも1種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 SbおよびMo:0.0030〜0.3%、 Bi:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを出発材とすることを特徴とする請求項1記載の超低
鉄損超高磁束密度一方向性電磁鋼帯の製造方法。
4. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, at least one of S and Se: 0.005-0.040
%, Acid soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sb and Mo: 0.0030 to 0.3%, Bi: 0.0005 to 0.02 %. The method for producing an ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel strip according to claim 1, characterized in that a slab containing the balance Fe and unavoidable impurities is used as a starting material.
JP26868395A 1995-10-17 1995-10-17 Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip Expired - Lifetime JP3397277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26868395A JP3397277B2 (en) 1995-10-17 1995-10-17 Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26868395A JP3397277B2 (en) 1995-10-17 1995-10-17 Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip

Publications (2)

Publication Number Publication Date
JPH09111346A JPH09111346A (en) 1997-04-28
JP3397277B2 true JP3397277B2 (en) 2003-04-14

Family

ID=17461950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26868395A Expired - Lifetime JP3397277B2 (en) 1995-10-17 1995-10-17 Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip

Country Status (1)

Country Link
JP (1) JP3397277B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159349A1 (en) * 2015-04-02 2016-10-06 新日鐵住金株式会社 Manufacturing method for unidirectional electromagnetic steel sheet
US20220042153A1 (en) 2018-09-27 2022-02-10 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same
EP4273278A1 (en) 2021-03-03 2023-11-08 JFE Steel Corporation Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method
KR20230170744A (en) * 2021-05-28 2023-12-19 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
前山公夫ら,珪素鋼用回転焼鈍炉,川崎製鉄技法,日本,川崎製鉄株式会社,1983年12月,第15巻第4号,p.56〜60

Also Published As

Publication number Publication date
JPH09111346A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR100293140B1 (en) Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH09310124A (en) Manufacture of nonoriented silicon steel sheet excellent in shape and magnetic property
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP4213784B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term