JPH0673509A - Grain oriented silicon steel sheet excellent in magnetic property and its production - Google Patents

Grain oriented silicon steel sheet excellent in magnetic property and its production

Info

Publication number
JPH0673509A
JPH0673509A JP21791892A JP21791892A JPH0673509A JP H0673509 A JPH0673509 A JP H0673509A JP 21791892 A JP21791892 A JP 21791892A JP 21791892 A JP21791892 A JP 21791892A JP H0673509 A JPH0673509 A JP H0673509A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
diameter
recrystallized grains
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21791892A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
康成 吉冨
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21791892A priority Critical patent/JPH0673509A/en
Publication of JPH0673509A publication Critical patent/JPH0673509A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet excellent in magnetic properties by forming a silicon steel sheet having a specific composition consisting of Si, C, Al, N, Mn, S, and Fe so that primary recrystallized grains after decarburizing annealing become respectively specified grain size and coefficient of variation. CONSTITUTION:A slab of a silicon steel which has a composition consisting of, by weight, 2.5-4.0% Si, 0.03-0.10% C, 0.010-0.065% acid soluble Al, 0.0010-0.0150% N, 0.02-0.30% Mn, 0.005-0.040% S, and the balance Fe with inevitable impurities and further containing, if necessary, <=0.4% of one or more elements among Sn, Cu, Sb, and Se is heated up to >=1300 deg.C, hot-rolled, annealed, and subjected to final cold rolling at >=80%. Resulting sheet is subjected to decarburizing annealing and to final finish annealing. At this time, the average diameter of primary recrystallized grains after decarburizing annealing and the coefficient of variation of diameter are regulated to 6-11mum and <=0.5, respectively. Further, final finish annealing is done in a state of a coil of >=300nm inside diameter, and the average diameter of the primary recrystallized grains is increased by 5-30% just before the initiation of the secondary recrystallization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The magnetic field strength is 800A as a numerical value showing the excitation characteristics.
The magnetic flux density B 8 at / m is usually used.

【0003】また、鉄損特性を表す数値としては、周波
数50Hzで1.7テスラー(T)まで磁化したときの1
kg当りの鉄損W17/50 を使用している。磁束密度は、鉄
損特性の最大支配因子であり、一般的にいって磁束密度
が高いほど鉄損特性が良好になる。なお、一般的に磁束
密度を高くすると二次再結晶粒が大きくなり、鉄損特性
が不良となる場合がある。これに対しては、磁区制御に
より、二次再結晶粒の粒径に拘らず、鉄損特性を改善す
ることができる。
The numerical value representing the iron loss characteristic is 1 when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz.
Iron loss W 17/50 per kg is used. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持った、いわゆるゴス組織を発達
させることにより製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度に揃えることが必要である。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction.

【0005】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに田口悟等による特公昭4
0−15644号公報及び今中拓一等による特公昭51
−13469号公報記載の方法がある。前者においては
MnS及びAlNを、後者ではMnS,MnSe,Sb
等を主なインヒビターとして用いている。従って現在の
技術においてはこれらインヒビターとして機能する析出
物の大きさ、形態及び分散状態を適正に制御することが
不可欠である。
A representative technique for manufacturing such a high magnetic flux density grain-oriented electrical steel sheet is Satoshi Taguchi et al.
0-15644 and Japanese Patent Publication Sho 51
There is a method described in JP-A-13469. MnS and AlN are used in the former, and MnS, MnSe and Sb are used in the latter.
Etc. are used as main inhibitors. Therefore, in the current technology, it is essential to properly control the size, morphology and dispersion state of the precipitates that function as these inhibitors.

【0006】一方向性電磁鋼板は、機能材料であり、磁
気特性を向上させることに技術開発の主眼があるが、工
業的には、安定的に製造する技術が備っていることが必
要である。こういった観点から本発明者らは、中間製品
で最終製品の特性を予測し、制御する技術の開発(特願
平1−1778号等)を行ってきた。
[0006] The unidirectional electrical steel sheet is a functional material, and its main purpose is to improve the magnetic properties, but industrially, it is necessary to have a stable manufacturing technique. is there. From such a viewpoint, the present inventors have developed a technique for predicting and controlling the characteristics of an end product with an intermediate product (Japanese Patent Application No. 1-1778, etc.).

【0007】[0007]

【発明が解決しようとする課題】本発明は、製鋼段階か
ら熱延、焼鈍、冷延等の一連の工程を過て、長期間を要
して製品となる一方向性電磁鋼板の製造工程において、
中間製品から最終製品の特性が予測し難く、その制御も
容易でないという課題に対する定量的評価基準を与え、
その技術で得られる磁気特性の優れた製品を与えるもの
である。
DISCLOSURE OF THE INVENTION The present invention is directed to a process for producing a grain-oriented electrical steel sheet which requires a long period of time to pass through a series of steps such as hot rolling, annealing and cold rolling from the steelmaking stage to become a product. ,
It gives a quantitative evaluation standard for the problem that the characteristics of the final product are difficult to predict from the intermediate product and its control is not easy,
It provides a product with excellent magnetic properties obtained by that technique.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)重量比で、Si:2.5〜4.0%含有する一方
向性電磁鋼板において、絶縁コーティングを除去し表面
被膜付の鋼板のAl量を重量比で、Al(WG)(%)
とし、この表面被膜をも除去した後の鋼板のAl量を重
量比でAl(WOG)(%)とした時 Al(WG)−Al(WOG)≧0.0050% であり、製品板の平均結晶直径(円相当直径)が1.5
〜10mmであり、結晶粒の圧延方向の最大長lR と圧延
方向と直角方向の最大長lT の比lR /lT の平均値が
1.0〜3.5であって、平均直径5mm超の結晶粒にお
ける重心位置の結晶方位に対して、0.5〜5度の方位
分散が、その結晶粒内に存在し、製品の磁束密度がB8
≧1.88Tとなる一方向性電磁鋼板。
The subject matter of the present invention is as follows. (1) In the unidirectional electrical steel sheet containing Si: 2.5 to 4.0% by weight ratio, the Al amount of the steel sheet with the insulating film removed and the surface coating is Al (WG) (% )
When the Al amount of the steel sheet after removing the surface coating is Al (WOG) (%) in weight ratio, Al (WG) -Al (WOG) ≧ 0.0050%, and the average of the product sheets Crystal diameter (circle equivalent diameter) is 1.5
The average value of the ratio l R / l T between the maximum length l R of the crystal grains in the rolling direction and the maximum length l T in the direction perpendicular to the rolling direction is 1.0 to 3.5, and the average diameter is With respect to the crystal orientation of the center of gravity in the crystal grain of more than 5 mm, the orientation dispersion of 0.5 to 5 degrees exists in the crystal grain, and the magnetic flux density of the product is B 8
A grain-oriented electrical steel sheet with ≧ 1.88T.

【0009】(2)重量比で、Si:2.5〜4.0
%、C:0.03〜0.10%、酸可溶性Al:0.0
10〜0.065%、N:0.0010〜0.0150
%、Mn:0.02〜0.30%、S:0.005〜
0.040%を含有し、残部がFe及び不可避不純物か
らなる珪素鋼熱延鋼板に、必要に応じて熱延板焼鈍を行
い、次いで圧下率80%以上の最終冷延を含み、必要に
応じて中間焼鈍を挟む1回以上の冷延を行い、次いで脱
炭焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製造
する方法において、脱炭焼鈍後の鋼板の一次再結晶粒の
平均直径を、6〜11μmとし、一次再結晶粒の直径の
変動係数を0.5以下とし、内径で300mm以上のコイ
ル状で行う最終仕上焼鈍の二次再結晶開始直前までに、
一次再結晶粒の平均直径を脱炭焼鈍後の鋼板での平均直
径に対して5〜30%大きくすることを特徴とする
(1)記載の一方向性電磁鋼板の製造方法。
(2) By weight ratio, Si: 2.5 to 4.0.
%, C: 0.03 to 0.10%, acid-soluble Al: 0.0
10 to 0.065%, N: 0.0010 to 0.0150
%, Mn: 0.02-0.30%, S: 0.005-
A silicon steel hot-rolled steel sheet containing 0.040% and the balance of Fe and unavoidable impurities is annealed by hot-rolled steel sheet if necessary, and then includes final cold rolling with a rolling reduction of 80% or more, and if necessary. The average diameter of the primary recrystallized grains of the steel sheet after decarburization annealing in the method of manufacturing a unidirectional electrical steel sheet by performing cold rolling one or more times with intermediate annealing between them, followed by decarburization annealing and final finishing annealing. Is 6 to 11 μm, the coefficient of variation of the diameter of the primary recrystallized grains is 0.5 or less, and immediately before the start of secondary recrystallization of the final finish annealing performed in a coil shape with an inner diameter of 300 mm or more,
(1) The method for producing a unidirectional electrical steel sheet according to (1), wherein the average diameter of the primary recrystallized grains is increased by 5 to 30% with respect to the average diameter of the steel sheet after decarburization annealing.

【0010】(3)スラブに、0.4%以下のSn,C
u,Sb,Seの1種又は2種以上を含有することを特
徴とする(2)記載の鋼板の製造方法。
(3) 0.4% or less Sn, C in the slab
The method for producing a steel sheet according to (2), which contains one or more of u, Sb, and Se.

【0011】[0011]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
或いは造塊法で鋳造し、必要に応じて分塊工程を挟んで
スラブとし、引き続き熱間圧延して熱延板とし、次いで
この熱延板に必要に応じて焼鈍を施し、次いで圧下率8
0%以上の最終冷延を含み、必要に応じて中間焼鈍を挟
む1回以上の冷延、脱炭焼鈍、最終仕上焼鈍を順次行う
ことによって製造される。
The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by a conventional steelmaking method is cast by a continuous casting method or an ingot making method, and if necessary, a slab may be sandwiched between slabs, followed by hot rolling to a hot rolled sheet, and then this The hot-rolled sheet is annealed if necessary, and then the rolling reduction is 8
It is manufactured by including 0% or more of final cold rolling, and if necessary, performing one or more cold rollings with intermediate annealing, decarburizing annealing, and final finishing annealing in this order.

【0012】本発明者らは、一方向性電磁鋼板の製造工
程において、中間製品から最終製品の特性を予測し、制
御する方法を広範にわたって研究したところ、脱炭焼鈍
後最終仕上焼鈍前の材料の結晶組織及び、最終仕上焼鈍
中の二次再結晶開始までの間の結晶組織変化が製品の磁
気特性に大きく影響し、その変化が鋼中のAl量の減少
と関係するという新知見を得た。
The inventors of the present invention have extensively studied a method of predicting and controlling the properties of an intermediate product to a final product in the production process of grain-oriented electrical steel sheets. As a result, the material after decarburization annealing and before final finishing annealing is A new finding was obtained that the change in the crystal structure of Fe and the change in the crystal structure until the start of secondary recrystallization during final finish annealing greatly affect the magnetic properties of the product, and the change is related to the decrease in the Al content in steel. It was

【0013】以下実験結果を基に詳細に説明する。図1
に、光学顕微鏡で観察した脱炭焼鈍後の鋼板(以下、脱
炭焼鈍板と称す)の結晶組織(板厚方向全厚)を画像解
析することによって求めた一次再結晶板の平均直径d
(円相当直径)及び直径の変動係数σ* (一次再結晶粒
の平均直径dで規格化した結晶直径の分布の標準偏差)
が製品の磁束密度(B8 値)に与える影響を示す。
A detailed description will be given below based on experimental results. Figure 1
In addition, the average diameter d of the primary recrystallized plate obtained by image analysis of the crystal structure (total thickness in the plate thickness direction) of the steel plate after decarburization annealing (hereinafter referred to as decarburization annealed plate) observed with an optical microscope.
(Circle equivalent diameter) and diameter variation coefficient σ * (standard deviation of crystal diameter distribution standardized by average diameter d of primary recrystallized grains)
Shows the effect of on the magnetic flux density (B 8 value) of the product.

【0014】この場合、重量比で、Si:3.0〜3.
4%、C:0.068〜0.090%、酸可溶性Al:
0.014〜0.032%、N:0.0071〜0.0
090%、Mn:0.071〜0.086%、S:0.
024〜0.030%、残部がFe及び不可避不純物か
らなる珪素鋼スラブを1300〜1400℃に1時間加
熱し、熱延して、2.3mm厚の熱延板とし、次いで、
(1)この熱延板に、980℃の熱延板焼鈍を施した後
1.6mm厚に冷延し、次いで1100℃の中間焼鈍を施
した後、圧下率約86%で冷延し、0.22mm厚の冷延
板とする、(2)この熱延板を、1.6mm厚に冷延し、
次いで1100℃の中間焼鈍を施した後、圧下率約86
%で冷延して、0.22mm厚の冷延板とする、(3)こ
の熱延板に、1100℃の熱延板焼鈍を施した後、圧下
率約90%で冷延して、0.22mm厚の冷延板とする、
という3種類のプロセスで、0.22mm厚の最終冷延板
とした。
In this case, the weight ratio of Si: 3.0-3.
4%, C: 0.068 to 0.090%, acid-soluble Al:
0.014-0.032%, N: 0.0071-0.0
090%, Mn: 0.071 to 0.086%, S: 0.
A silicon steel slab of 024 to 0.030% and the balance of Fe and unavoidable impurities is heated to 1300 to 1400 ° C. for 1 hour and hot-rolled to a hot-rolled sheet having a thickness of 2.3 mm.
(1) The hot-rolled sheet was annealed at 980 ° C., cold-rolled to a thickness of 1.6 mm, then subjected to intermediate annealing at 1100 ° C., and then cold-rolled at a rolling reduction of about 86%, 0.22 mm thick cold rolled sheet, (2) cold rolled this hot rolled sheet to 1.6 mm thick,
Then, after subjecting to an intermediate annealing at 1100 ° C., a reduction rate of about 86
% To obtain a 0.22 mm-thick cold-rolled sheet. (3) This hot-rolled sheet is annealed at 1100 ° C., and then cold-rolled at a reduction rate of about 90%. 0.22mm thick cold rolled sheet,
The final cold-rolled sheet having a thickness of 0.22 mm was obtained by the three types of processes.

【0015】かかる冷延板を820〜900℃の温度域
で脱炭焼鈍(25%N2 +75%H2 、露点58〜68
℃)を施した。この脱炭焼鈍板の一次再結晶粒の平均直
径と直径の変動係数を光学顕微鏡と画像解析を用いて測
定した。
The cold rolled sheet was decarburized and annealed in the temperature range of 820 to 900 ° C. (25% N 2 + 75% H 2 , dew point 58 to 68).
C) was applied. The average diameter of the primary recrystallized grains of this decarburized annealed plate and the coefficient of variation of the diameter were measured using an optical microscope and image analysis.

【0016】次いで、MgOを主成分とする焼鈍分離剤
を鋼板に塗布し、内径の直径400mmのコイル状(5ト
ン)とし、N2 を0〜100%(残部H2 )含む焼鈍雰
囲気中で、15℃/Hrの昇温速度で1200℃まで昇温
し、H2 焼鈍雰囲気中で、1200℃に20時間保持す
る最終仕上焼鈍を施した。
Then, an annealing separator containing MgO as a main component is applied to the steel sheet to form a coil shape (5 tons) having an inner diameter of 400 mm and in an annealing atmosphere containing 0 to 100% of N 2 (the balance is H 2 ). Then, the temperature was raised to 1200 ° C. at a heating rate of 15 ° C./Hr, and a final finishing annealing was carried out at 1200 ° C. for 20 hours in an H 2 annealing atmosphere.

【0017】しかる後、SSTサイズに切断し、平板状
とし、850℃に4時間保持する歪取り焼鈍を施し、磁
気測定を行った。
After that, it was cut into SST size, made into a flat plate shape, subjected to strain relief annealing at 850 ° C. for 4 hours, and subjected to magnetic measurement.

【0018】図1から明らかなように、一次再結晶粒
(脱炭焼鈍板)の平均直径d=6〜11μm、一次再結
晶粒の直径の変動係数を0.5以下とした範囲内での
み、B8≧1.88Tと良好な磁気特性をもつ製品が得
られた。
As is apparent from FIG. 1, the average diameter d of primary recrystallized grains (decarburized and annealed plate) is 6 to 11 μm, and the variation coefficient of the diameter of primary recrystallized grains is 0.5 or less only. , B 8 ≧ 1.88T, and a product having good magnetic properties was obtained.

【0019】但し、この範囲内でもB8 <1.88Tと
なる場合も生じたので、この原因を詳細に検討した。こ
の検討結果について以下に説明する。
However, even within this range, there were cases where B 8 <1.88 T, so the cause was examined in detail. The results of this examination will be described below.

【0020】図2に、図1に示した実験において、脱炭
焼鈍板の一次再結晶粒の平均直径dが6〜11μmで、
かつ、一次再結晶粒の直径の変動係数σ* が0.5以下
であった同一材料における脱炭焼鈍後から最終仕上焼鈍
の二次再結晶開始直前までの粒成長割合Δd/d((二
次再結晶直前と脱炭焼鈍板での一次再結晶粒の平均直径
の差)/(脱炭焼鈍板での一次再結晶粒の平均直径))
(%)と磁束密度(B8 )の関係を示す。
In the experiment shown in FIG. 1, the average diameter d of the primary recrystallized grains of the decarburized and annealed plate in the experiment shown in FIG.
And grain growth rate until the secondary recrystallization starting just before the final annealing after decarburization annealing in the same material variation coefficient of the diameter of the primary recrystallized grains sigma * was 0.5 or less [Delta] d / d ((two Difference between the average diameter of the primary recrystallized grains immediately before the next recrystallization and in the decarburized annealed plate) / (average diameter of the primary recrystallized grains in the decarburized annealed plate)
(%) And the magnetic flux density (B 8 ) are shown.

【0021】この場合、再度行った最終仕上焼鈍の昇温
過程の炉温が1100℃(板温901〜1080℃(計
算値))の時に鋼板を焼鈍炉から引き出した。この試料
は低温部が一次再結晶組織で、高温部が二次再結晶組織
である。
In this case, the steel sheet was drawn out from the annealing furnace when the furnace temperature during the temperature rising process of the final finishing annealing performed again was 1100 ° C. (sheet temperature 901 to 1080 ° C. (calculated value)). In this sample, the low temperature part has a primary recrystallization structure and the high temperature part has a secondary recrystallization structure.

【0022】この結晶組織を観察し、板厚を貫通した粒
(二次再結晶粒)が発生した部分の近傍で、一次再結晶
組織である部分を二次再結晶(開始)直前の状態と呼
ぶ。
By observing this crystal structure, the portion having the primary recrystallization structure in the vicinity of the portion where the grain penetrating the plate thickness (secondary recrystallized grain) was set to the state immediately before the secondary recrystallization (start). Call.

【0023】図2から明らかなように、脱炭焼鈍から最
終仕上焼鈍の二次再結晶開始直前までの粒成長割合Δd
/dが5〜30%の場合にいずれも、B8 ≧1.88T
なる良好な磁気特性が得られた。
As is clear from FIG. 2, the grain growth ratio Δd from the decarburization annealing to immediately before the start of secondary recrystallization in the final finish annealing.
In all cases where / d is 5 to 30%, B 8 ≧ 1.88T
Good magnetic properties were obtained.

【0024】図1及び図2に示した関係が成立する理由
については、必ずしも明らかではないが、本発明者ら
は、次のように推察している。一次再結晶粒の平均直径
は、粒界面積の総和(単位体積当り)に逆比例する量で
あり、これらの粒界エネルギーが二次再結晶粒の粒成長
の駆動力となる。
The reason why the relationships shown in FIGS. 1 and 2 are established is not necessarily clear, but the present inventors presume as follows. The average diameter of the primary recrystallized grains is an amount inversely proportional to the total grain boundary area (per unit volume), and these grain boundary energies serve as a driving force for grain growth of the secondary recrystallized grains.

【0025】この駆動力が低いと、二次再結晶が低温か
ら生じ、この駆動力が高いと、二次再結晶が生じる温度
が高温となり、極端な場合には、二次再結晶が生じなく
なる。一方、直径の変動係数は、大きい程、混粒状態に
あることを示し、混粒状態にあるものは、粒成長に伴
い、その混粒状態がより顕著となる(直径の変動係数が
より大きくなる)傾向がある。
When this driving force is low, secondary recrystallization occurs from a low temperature, and when this driving force is high, the temperature at which secondary recrystallization occurs becomes high, and in extreme cases, secondary recrystallization does not occur. . On the other hand, the larger the coefficient of variation of the diameter, the more the mixed particles are in the mixed particle state, and the mixed particle in the mixed particle state becomes more prominent as the particle grows. There is a tendency.

【0026】一次再結晶組織が混粒状態にある場合、
{110}〈001〉方位粒に他の方位の粗大粒が隣接
する確率が増加し、{110}〈001〉方位粒が粒成
長し、二次再結晶粒化するのを防げる可能性が増すこと
となる。従って、混粒状態(直径の変動係数が大きい状
態)は、二次再結晶粒の発生にとって不利である。
When the primary recrystallization structure is in a mixed grain state,
The probability that coarse grains of other orientations are adjacent to {110} <001> oriented grains increases, and the possibility that {110} <001> oriented grains grow and secondary recrystallized grains can be prevented is increased. It will be. Therefore, the mixed grain state (state in which the variation coefficient of the diameter is large) is disadvantageous for the generation of secondary recrystallized grains.

【0027】一方、本発明の如き、高温スラブ加熱で、
AlN,MnSを完全固溶させ、熱延、熱延板焼鈍等で
AlN,MnSを微細析出させる製造プロセスにおいて
は、二次再結晶進行時のインヒビター強度を高くするこ
とで、粒界移動の粒界性格依存性を高め、{110}
〈001〉方位に高度に集積した方位粒だけを二次再結
晶させるためには、不可避的に、脱炭焼鈍時のインヒビ
ターが強くなり、一次再結晶粒径の調整が短時間焼鈍で
ある脱炭焼鈍だけでは不十分となる。
On the other hand, by high temperature slab heating as in the present invention,
In the manufacturing process in which AlN and MnS are completely solid-solved and AlN and MnS are finely precipitated by hot rolling, hot-rolled sheet annealing, etc., grain size of grain boundary migration is increased by increasing inhibitor strength during secondary recrystallization. Increase the field character dependence, {110}
In order to secondary recrystallize only the oriented grains highly accumulated in the <001> orientation, the inhibitor during decarburization annealing becomes inevitably strong, and the adjustment of the primary recrystallized grain size is a short time annealing. Carbon annealing alone is not enough.

【0028】従って、この一次再結晶粒径の調整を長時
間焼鈍である仕上焼鈍で施すことが必要となる。この一
次再結晶粒径の調整を行う場合、脱炭焼鈍板で既に混粒
組織(直径の変動係数が大きい状態)になっていると、
粒成長に伴って、混粒傾向が増し、二次再結晶が生じに
くくなり好ましくない。
Therefore, it is necessary to adjust the primary recrystallized grain size by finish annealing which is annealing for a long time. When adjusting this primary recrystallized grain size, if the decarburized annealed plate has already had a mixed grain structure (state with a large variation coefficient of diameter),
Along with the grain growth, the tendency of mixed grains increases and secondary recrystallization is less likely to occur, which is not preferable.

【0029】そして、直径の変動係数が本発明の如く低
い値に制御された状態で、最終仕上焼鈍中の粒成長を生
ぜしめ、平均直径を二次再結晶直前で所定の範囲にする
ことにより、二次再結晶温度及び二次再結晶粒の粒成長
の駆動力を好ましい範囲に制御することが可能となる。
Then, while the coefficient of variation of the diameter is controlled to a low value as in the present invention, grain growth is caused during the final annealing, and the average diameter is set within a predetermined range immediately before secondary recrystallization. It is possible to control the secondary recrystallization temperature and the driving force for grain growth of the secondary recrystallized grains within a preferable range.

【0030】従って、脱炭焼鈍板の平均直径、直径の変
動係数及び脱炭焼鈍後から最終仕上焼鈍での二次再結晶
開始直前までの平均直径の変化率と二次再結晶方位の
{110}〈001〉集積度(製品の磁束密度B8 )が
強い相関があるものと推察される。
Therefore, the average diameter of the decarburized annealed sheet, the coefficient of variation of the diameter, the change rate of the average diameter from after decarburization annealing to immediately before the start of secondary recrystallization in the final finish annealing, and the secondary recrystallization orientation {110 } <001> It is assumed that the degree of integration (magnetic flux density B 8 of the product) has a strong correlation.

【0031】この二次再結晶直前までの粒成長の起因に
ついて種々検討を行った。本発明の材料はAlNとMn
Sをインヒビターとしており、AlNとMnSの分解は
表面層での酸化現象と関係していると考えられる。
Various studies were conducted on the cause of the grain growth immediately before the secondary recrystallization. The materials of the present invention are AlN and Mn.
S is used as an inhibitor, and the decomposition of AlN and MnS is considered to be related to the oxidation phenomenon in the surface layer.

【0032】特にAlNの場合酸化されAl2 3 の形
になることにより、脱Alが進行すると考えられる。従
って、脱Alが粒成長の重要な支配因子となっていると
推察される。
Particularly, in the case of AlN, it is considered that deoxidation proceeds by being oxidized to form Al 2 O 3 . Therefore, it is presumed that Al removal is an important controlling factor for grain growth.

【0033】そこで、図1に示した実験において、脱炭
焼鈍板の一次再結晶粒径の平均直径dが6〜11μm
で、かつ、一次再結晶粒の直径の変動係数σ* が0.5
以下であって、図2で示した粒成長割合Δd/d(%)
=5〜30%であった材料について、最終仕上焼鈍後平
板状とし、歪取り焼鈍を施した試料の表面被膜付の鋼板
のAl量を重量でAl(WG)(%)とし、この表面被
膜をも除去した時の鋼板のAl量を重量でAl(WO
G)(%)とした時、図3に示す如く、いずれの試料も
Al(WG)−Al(WOG)≧0.0050%であっ
た。
Therefore, in the experiment shown in FIG. 1, the average diameter d of the primary recrystallized grains of the decarburized annealed sheet is 6 to 11 μm.
And the coefficient of variation σ * of the diameter of the primary recrystallized grains is 0.5
Below, the grain growth rate Δd / d (%) shown in FIG.
= 5 to 30% of the material, after the final annealing, it was made into a flat plate shape, and the Al amount of the steel sheet with the surface coating of the sample subjected to strain relief annealing was Al (WG) (%) by weight, and this surface coating Al (WO
G) (%), all samples had Al (WG) -Al (WOG) ≧ 0.0050% as shown in FIG.

【0034】これは、最終仕上焼鈍中に、Alが表面被
膜中に濃化していることを示しており、この現象は、A
lが鋼中から被膜中に濃化し、鋼中のAlN量が減少
し、インヒビターが弱体化するため二次再結晶直前まで
に、一次再結晶粒の粒成長が生じ得ることと関係してお
り、Alが表面被膜中に濃化していくことは、良好な磁
気特性を得る必要条件と考えられる。
This shows that Al was concentrated in the surface coating during the final finish annealing.
It is related to the possibility that the grain growth of the primary recrystallized grains occurs before the secondary recrystallization due to the fact that l is concentrated in the film from the steel, the amount of AlN in the steel is reduced, and the inhibitor is weakened. , Al being concentrated in the surface coating is considered to be a necessary condition for obtaining good magnetic properties.

【0035】他方、製品板の平均結晶粒径は鉄損特性の
支配因子の1つであり、図3に示した材料の結晶粒の平
均直径(円相当直径)を画像解析機を用いて測定したと
ころ、図4に示した如く、平均直径は、1.5〜10mm
であった。この平均直径は、小さいほど鉄損が良いが、
磁束密度をも良好にするには、この範囲が好ましい。ま
た、本発明の如く、コイル状で二次再結晶を生ぜしめ、
その後、平板状として、製品となる場合には、平板状に
する際に、圧延方向に、二次再結晶の方位分散が生じ、
これが、製品の磁束密度や鉄損に影響を与える。
On the other hand, the average crystal grain size of the product plate is one of the controlling factors of the iron loss characteristics, and the average diameter (circle equivalent diameter) of the crystal grains of the material shown in FIG. 3 is measured by using an image analyzer. Then, as shown in FIG. 4, the average diameter is 1.5 to 10 mm.
Met. The smaller this average diameter, the better the iron loss,
This range is preferable for improving the magnetic flux density. Further, as in the present invention, a secondary recrystallization is produced in a coil shape,
Then, as a flat plate, in the case of a product, in the flat plate shape, in the rolling direction, orientation dispersion of secondary recrystallization occurs,
This affects the magnetic flux density and iron loss of the product.

【0036】そこで、この方位分散をECP法(Ele
ctron ChannelingPattern)で
測定した。方位分散の評価は、直径5mm以上の各二次再
結晶粒の重心位置の方位とその粒の重心位置から圧延方
向に最も遠い粒内の点での方位の差を分位分散とした。
この分位分散は、図5に示した如く、0.5〜5度であ
った。この分位分散は、レーザー等を用いた磁区制御や
被膜張力で磁区細分化を行うに必要である。
Therefore, this azimuth dispersion is determined by the ECP method (Ele
ctron Channeling Pattern). For the evaluation of orientation dispersion, the difference between the orientation of the center of gravity of each secondary recrystallized grain having a diameter of 5 mm or more and the orientation at the point in the grain farthest from the center of gravity of the grain in the rolling direction was used as the quantile dispersion.
This quantile dispersion was 0.5 to 5 degrees as shown in FIG. This quantile dispersion is necessary for magnetic domain control using a laser or the like and for magnetic domain subdivision by film tension.

【0037】また、圧延方向に、一次再結晶集合組織に
コロニーが存在しやすいことやコイル状で圧延方向に二
次再結晶粒が成長が成長するに伴い、対応方位関係にあ
る方位粒が減少する等の理由で、製品の二次再結晶粒の
圧延方向の最大長lR と圧延方向と直角方向の最大長l
T の比が1からずれてくる。
In addition, as the colonies are likely to exist in the primary recrystallization texture in the rolling direction and the secondary recrystallized grains grow in the coil direction in the rolling direction, the orientation grains in the corresponding orientation relationship decrease. For example, the maximum length l R in the rolling direction of the secondary recrystallized grains of the product and the maximum length l in the direction perpendicular to the rolling direction
The ratio of T deviates from 1.

【0038】図3に示した材料の場合、この比lR /l
T の平均値は、図6に示した如く、1.0〜3.5であ
った。この値を1.0未満にするには、仕上焼鈍前に局
所歪を圧延直角方向に数mm間隔で付与する等コストアッ
プを伴う方法を用いる必要があり、好ましくなく、3.
5超では、平板にした時の磁束密度が顕しく低下するこ
とになり好ましくない。
For the material shown in FIG. 3, this ratio l R / l
The average value of T was 1.0 to 3.5 as shown in FIG. In order to reduce this value to less than 1.0, it is necessary to use a method involving cost increase such as applying local strain at a few mm interval in the direction perpendicular to the rolling before finish annealing, which is not preferable.
If it exceeds 5, the magnetic flux density when formed into a flat plate is significantly reduced, which is not preferable.

【0039】次に本発明の構成要件の限定理由について
述べる。本発明の出発素材であるスラブの成分について
は、重量比で、Si:2.5〜4.0%、C:0.03
〜0.10%、酸可溶性Al:0.010〜0.065
%、N:0.0010〜0.0150%、Mn:0.0
2〜0.30%、S:0.005〜0.040%を含有
する必要がある。
Next, the reasons for limiting the constituent features of the present invention will be described. The weight ratio of the components of the slab, which is the starting material of the present invention, is Si: 2.5 to 4.0% and C: 0.03.
~ 0.10%, acid-soluble Al: 0.010-0.065
%, N: 0.0010 to 0.0150%, Mn: 0.0
2 to 0.30%, S: 0.005 to 0.040% must be contained.

【0040】Siは4.0%を超すと脆化が激しくなる
ため冷間圧延が困難となり好ましくない。一方2.5%
未満では電気抵抗が低く、良好な鉄損特性が得難い。
If Si exceeds 4.0%, embrittlement becomes severe and cold rolling becomes difficult, which is not preferable. On the other hand, 2.5%
If it is less than 1, the electric resistance is low and it is difficult to obtain good iron loss characteristics.

【0041】Cは0.03%未満では脱炭焼鈍以前での
γ量が極めて少なくなってしまい脱炭焼鈍後の金属組織
が不適切なものとなる。一方0.10%を超えると脱炭
不良となり好ましくない。
If C is less than 0.03%, the γ amount before decarburization annealing becomes extremely small, and the metal structure after decarburization annealing becomes unsuitable. On the other hand, if it exceeds 0.10%, decarburization becomes poor, which is not preferable.

【0042】酸可溶性Al,Nは本発明において高磁束
密度を得るために必須の主インヒビターAlNを得るた
めの基本成分であり、上記範囲を外れると二次再結晶が
不安定となるので酸可溶性Alは0.010〜0.06
5%、Nは0.0010〜0.0150%とする。
The acid-soluble Al, N is a basic component for obtaining the main inhibitor AlN essential for obtaining a high magnetic flux density in the present invention, and if it deviates from the above range, the secondary recrystallization becomes unstable. Al is 0.010 to 0.06
5% and N are 0.0010 to 0.0150%.

【0043】Mn,SはインヒビターMnSを形成する
ために必要な元素であり、上記範囲を外れると二次再結
晶が不安定となるのでMnは0.02〜0.30%、S
は0.005〜0.040%と定める。
Mn and S are elements necessary for forming the inhibitor MnS. If the content of Mn and S deviates from the above range, secondary recrystallization becomes unstable. Therefore, Mn is 0.02 to 0.30% and S
Is set to 0.005 to 0.040%.

【0044】更にインヒビター構成元素であるSn,C
u,Sb,Seの1種又は2種以上を各0.4%以下含
有することは本発明の如き一次再結晶粒成長を制御する
技術においては好ましい。0.4%超では、粒成長が顕
しく抑制されるので好ましくない。
Further, Sn and C which are the constituent elements of the inhibitor
Containing 0.4% or less of each of one or more of u, Sb, and Se is preferable in the technique of controlling primary recrystallized grain growth as in the present invention. If it exceeds 0.4%, grain growth is significantly suppressed, which is not preferable.

【0045】かかるスラブは1300℃以上の温度で加
熱して熱延を行う。スラブ加熱温度が1300℃未満で
は、AlN,MnSの固溶が不十分となり、二次再結晶
が不安定となり好ましくない。熱延は通常の方法で行わ
れる。
The slab is heated at a temperature of 1300 ° C. or higher for hot rolling. If the slab heating temperature is lower than 1300 ° C., the solid solution of AlN and MnS becomes insufficient and the secondary recrystallization becomes unstable, which is not preferable. Hot rolling is performed by a usual method.

【0046】かかる熱延板は、必要に応じて熱延板焼鈍
を施し、次いで圧下率80%以上の最終冷延を含み、必
要に応じて中間焼鈍を挟む1回以上の冷延を行い、次い
で脱炭焼鈍、最終仕上焼鈍を順次施す工程を前提として
いる。最終冷延の圧下率が80%未満では高磁束密度が
得難く、好ましくない。
Such hot-rolled sheet is annealed by hot-rolled sheet if necessary, and then includes final cold rolling with a rolling reduction of 80% or more, and if necessary, one or more cold-rolling steps with intermediate annealing are performed. Next, it is premised on a step of sequentially performing decarburization annealing and final finishing annealing. If the final cold rolling reduction is less than 80%, it is difficult to obtain a high magnetic flux density, which is not preferable.

【0047】脱炭焼鈍後の鋼板の一次再結晶粒の平均直
径を6〜11μmとし、一次再結晶粒の直径の変動係数
を0.5以下とし、最終仕上焼鈍の二次再結晶開始直前
までに、一次再結晶粒の平均直径を脱炭焼鈍後の鋼板の
平均直径に対して5〜30%大きくする必要がある。
The average diameter of the primary recrystallized grains of the steel sheet after decarburization annealing is set to 6 to 11 μm, the variation coefficient of the diameter of the primary recrystallized grains is set to 0.5 or less, until just before the start of secondary recrystallization of the final annealing. First, it is necessary to make the average diameter of the primary recrystallized grains 5 to 30% larger than the average diameter of the steel sheet after decarburization annealing.

【0048】これは図1,図2に示した如く、上記の範
囲に制御することによりB8 ≧1.88Tなる良好な磁
気特性が安定して得られる。上記の如き範囲に脱炭焼鈍
板の一次再結晶粒の平均直径、変動係数及び最終仕上焼
鈍中の粒成長挙動を制御する手段については特に限定す
るものではない。
As shown in FIGS. 1 and 2, good magnetic characteristics of B 8 ≧ 1.88 T can be stably obtained by controlling within the above range. Means for controlling the average diameter of the primary recrystallized grains, the coefficient of variation, and the grain growth behavior during final finish annealing within the above range are not particularly limited.

【0049】インヒビター構成元素の成分範囲、熱延板
焼鈍の熱サイクル、脱炭焼鈍の熱サイクル、雰囲気ガ
ス、焼鈍分離剤への添加物の種類、量、最終仕上焼鈍の
熱サイクル、雰囲気ガス等の組合わせにより、上記の値
を必要とする範囲に制御することができる。
Component range of inhibitor constituent elements, heat cycle of hot-rolled sheet annealing, heat cycle of decarburizing annealing, atmosphere gas, kind and amount of additive to annealing separator, heat cycle of final annealing, atmosphere gas, etc. The above values can be controlled within the required range by the combination of.

【0050】最終仕上焼鈍は内径が直径で300mm以上
のコイル状で行う。この直径が300mm未満だと、コイ
ル状で二次再結晶し、平板状にして製品として使用する
ための二次再結晶方位の粒内方位分散が大きくなりすぎ
て好ましくない。このコイルの内径の直径の上限は、特
に限定されるものではないが、10000mm以上では焼
鈍炉が大きくなりすぎて、焼鈍炉の制御性が低下し、好
ましくない。
The final finish annealing is performed in a coil shape having an inner diameter of 300 mm or more. If the diameter is less than 300 mm, secondary recrystallization in a coil shape is performed, and the intragranular orientation dispersion of the secondary recrystallization orientation for flattening and using as a product becomes too large, which is not preferable. The upper limit of the inner diameter of the coil is not particularly limited, but if it is 10000 mm or more, the annealing furnace becomes too large and the controllability of the annealing furnace deteriorates, which is not preferable.

【0051】最終仕上焼鈍後に、張力を付与する絶縁コ
ーティングやレーザー等を用いた磁区制御を施すと磁気
特性が一層向上する。
After the final finish annealing, magnetic properties are further improved by performing magnetic domain control using an insulating coating that gives tension or a laser.

【0052】上記技術で得られる製品は、重量比でS
i:2.5〜4.0%を含有する。これは、上記出鋼成
分から必然的に決るものである。また、絶縁コーティン
グを除去し、表面被膜付の鋼板のAl量を重量で、Al
(WG)(%)とし、この表面被膜をも除去した時の鋼
板のAl量をAl(WOG)(%)とした時、図3に示
した如く、Al(WG)−Al(WOG)≧0.005
0%とならなければならない。
The product obtained by the above-mentioned technique has a weight ratio of S
i: 2.5 to 4.0% is contained. This is inevitably determined from the above steel composition. Also, the insulating coating was removed, and the Al amount of the steel sheet with surface coating was expressed as
(WG) (%) and the Al amount of the steel sheet when this surface coating is also removed is Al (WOG) (%), as shown in FIG. 3, Al (WG) -Al (WOG) ≧ 0.005
It must be 0%.

【0053】これは上記製造法が最終仕上焼鈍中の脱A
lによる一次再結晶粒の粒成長を基本技術としているた
めであり、この技術を用いることにより高磁束密度を可
能としているためである。Al(WG)−Al(WO
G)の上限値は特に限定するものではないが、製造法に
おける酸可溶性Alの上限値と通常のスラブでの非酸可
溶性Alの量(0.001%)から判断すると、0.0
66%となる。ここでコーティングを除去すると規定し
たのは、コーティング成分としてAlを含む場合があ
り、その影響を除くためである。
This is because the above-mentioned manufacturing method removes A during the final finish annealing.
This is because the basic technique is the grain growth of the primary recrystallized grains by l, and the use of this technique enables a high magnetic flux density. Al (WG) -Al (WO
The upper limit of G) is not particularly limited, but when judged from the upper limit of acid-soluble Al in the production method and the amount of non-acid-soluble Al in a normal slab (0.001%), 0.0
66%. The reason that the coating is removed here is to remove the influence of Al which may be contained as a coating component.

【0054】一方、製品板の平均結晶直径は、図4に示
した如く、1.5〜10mmであり、結晶粒の圧延方向の
最大長lR と圧延方向と直角方向の最大長lT の比lR
/lT の各サンプル平均値は、図6に示した如く1.0
〜3.5であり、各サンプルの平均直径5mm超の結晶粒
(計90個)における重心位置の結晶方位に対して、図
5に示した如く0.5〜5度の方位分散が存在する。
On the other hand, the average crystal diameter of the product sheet is 1.5 to 10 mm as shown in FIG. 4, and the maximum length l R of the crystal grains in the rolling direction and the maximum length l T in the direction perpendicular to the rolling direction are obtained. Ratio l R
The average value of each sample of / l T is 1.0 as shown in FIG.
.About.3.5, and there is an orientation dispersion of 0.5 to 5 degrees as shown in FIG. 5 with respect to the crystal orientation of the center of gravity in the crystal grains with an average diameter of more than 5 mm (a total of 90). .

【0055】図4,図5,図6に示された特性は、本願
の製造法で得られる製品の特徴的特性であり、前述の如
く、これらの範囲を守らなければ、良好な磁気特性が得
られない。製品の磁束密度は図2に示した如く、B8
1.88Tでなければならない。
The characteristics shown in FIGS. 4, 5, and 6 are characteristic characteristics of the product obtained by the manufacturing method of the present application. As described above, good magnetic characteristics are obtained unless these ranges are observed. I can't get it. As shown in Fig. 2, the magnetic flux density of the product is B 8
Must be 1.88T.

【0056】[0056]

【実施例】【Example】

実施例1 重量比で、Si:3.26%、C:0.081%、酸可
溶性Al:0.026%、N:0.0079%、Mn:
0.077%、S:0.024%を含有する250mm厚
のスラブを1350℃に1時間保持した後熱延し、2.
3mm厚の熱延板とした。
Example 1 By weight ratio, Si: 3.26%, C: 0.081%, acid-soluble Al: 0.026%, N: 0.0079%, Mn:
1. A 250 mm thick slab containing 0.077% and S: 0.024% was held at 1350 ° C. for 1 hour and then hot rolled.
A hot rolled sheet having a thickness of 3 mm was used.

【0057】この熱延板に1120℃に30秒保持した
後900℃に30秒保持して急冷する熱延板焼鈍を施し
た後、圧下率約88%で0.285mm厚まで冷延し、8
40℃に150秒保持する脱炭焼鈍(25%N2 +75
%H2 、露点63℃の雰囲気ガス中)を施した。光学顕
微鏡と画像解析機を用い、この脱炭焼鈍板の一次再結晶
粒の平均直径dと直径の変動係数σ* を測定した。
The hot-rolled sheet was annealed at 1120 ° C. for 30 seconds and then at 900 ° C. for 30 seconds to be rapidly cooled, followed by cold rolling to a thickness of 0.285 mm at a rolling reduction of about 88%. 8
Decarburization annealing (25% N 2 +75 held at 40 ° C for 150 seconds)
% H 2 in an atmosphere gas having a dew point of 63 ° C.). Using an optical microscope and an image analyzer, the average diameter d of the primary recrystallized grains of this decarburized annealed plate and the coefficient of variation σ * of the diameter were measured.

【0058】かかる脱炭焼鈍板にMgOを主成分とする
焼鈍分離剤を塗布し、コイル内径600mmの5トンコイ
ルとし、15℃/Hrで1200℃まで昇温し、1200
℃で20時間保持する最終仕上焼鈍を施した。かかる最
終仕上焼鈍の1200℃での保持中の焼鈍雰囲気は10
0%H2 とし、昇温中の雰囲気ガスを15%N2 +85
%H2 とした。
An annealing separator containing MgO as a main component was applied to the decarburized annealed plate to form a 5-ton coil having a coil inner diameter of 600 mm, and the temperature was raised to 1200 ° C. at 15 ° C./Hr.
Final finishing annealing was carried out at 20 ° C. for 20 hours. The annealing atmosphere during the holding of the final finish annealing at 1200 ° C. was 10
0% H 2 and 15% N 2 + 85% atmosphere gas during temperature rise
% H 2 .

【0059】また、上記5トンコイルと同一成分、同一
プロセス条件で作成した5トンコイルに、焼鈍分離剤塗
布後、上記の雰囲気条件で、15℃/Hrで昇温し、炉温
が1100℃(板温921〜1092℃(計算値))の
時に鋼板を焼鈍炉から引き出し、二次再結晶粒の近傍の
一次再結晶組織を光学顕微鏡と画像解析機を用いて調査
し、一次再結晶粒の平均直径を測定した。
Further, after applying an annealing separator to a 5 ton coil prepared under the same process conditions and the same components as the above 5 ton coil, the temperature was raised at 15 ° C./Hr under the above atmosphere conditions, and the furnace temperature was 1100 ° C. (plate At a temperature of 921 to 1092 ° C (calculated value), the steel sheet was pulled out from the annealing furnace, and the primary recrystallized structure in the vicinity of the secondary recrystallized grains was investigated using an optical microscope and an image analyzer, and the average of the primary recrystallized grains was examined. The diameter was measured.

【0060】表1に本条件で得られた脱炭焼鈍板、二次
再結晶直前の状態の鋼板、最終仕上焼鈍後の鋼板の特徴
量を示す。磁気測定、二次再結晶粒の平均直径、平均縦
横比、方位測定、Al量測定は、最終仕上焼鈍後試料を
SSTサイズにし、平板状として850℃に4時間保持
する歪取り焼鈍後に行った。
Table 1 shows the characteristic amounts of the decarburized annealed sheet obtained under these conditions, the steel sheet immediately before secondary recrystallization, and the steel sheet after the final finish annealing. The magnetic measurement, the average diameter of the secondary recrystallized grains, the average aspect ratio, the orientation measurement, and the Al amount measurement were performed after the strain relief annealing in which the sample was made into SST size after the final finish annealing and was kept flat at 850 ° C. for 4 hours. .

【0061】[0061]

【表1】 [Table 1]

【0062】実施例2 重量比で、Si:3.30%、C:0.079%、酸可
溶性Al:0.025%、N:0.0080%、Mn:
0.080%、S:0.023%を含有し、更に、
(A)添加なし、(B)Sn:0.15%添加、(C)
Cu:0.07%添加、(D)Sn:0.12%、C
u:0.06%添加、(E)Sb:0.03%添加、
(F)Se:0.03添加なる250mm厚の6種類のス
ラブを1350℃に1時間保持した後熱延し、2.3mm
厚の熱延板とした。
Example 2 By weight ratio, Si: 3.30%, C: 0.079%, acid-soluble Al: 0.025%, N: 0.0080%, Mn:
0.080%, S: 0.023%, and
(A) no addition, (B) Sn: 0.15% addition, (C)
Cu: 0.07% added, (D) Sn: 0.12%, C
u: 0.06% addition, (E) Sb: 0.03% addition,
(F) Se: 6 kinds of slabs with a thickness of 250 mm added with 0.03 are held at 1350 ° C. for 1 hour and then hot rolled to 2.3 mm
A thick hot rolled sheet was used.

【0063】次いで、(1)この熱延板に950℃の熱
延板焼鈍を施した後、1.6mm厚に冷延し、次いで、1
100℃の中間焼鈍を施した後、圧下率約86%で冷延
して、0.22mm厚の冷延板とする、(2)この熱延板
を1.6mmに冷延し、次いで1100℃の中間焼鈍を施
した後圧下率約86%で冷延して、0.22mm厚の冷延
板とする、(3)この熱延板に、1100℃の熱延板焼
鈍を施した後、圧下率約90%で冷延して、0.22mm
厚の冷延板とする、なる3種類のプロセスで、0.22
mm厚の最終冷延板とした。
Next, (1) this hot rolled sheet was annealed at 950 ° C., then cold rolled to a thickness of 1.6 mm, and then 1
After performing an intermediate annealing at 100 ° C, cold rolling is performed at a reduction rate of about 86% to obtain a cold rolled sheet having a thickness of 0.22 mm. (2) This hot rolled sheet is cold rolled to 1.6 mm, and then 1100 After the intermediate annealing at ℃, it is cold rolled at a rolling reduction of about 86% to make a 0.22 mm thick cold rolled sheet. (3) After this hot rolled sheet is annealed at 1100 ° C , Cold rolled with a reduction rate of about 90%, 0.22mm
0.22 in 3 kinds of process, which is to make thick cold rolled sheet
The final cold-rolled sheet with a thickness of mm was used.

【0064】この最終冷延板を最終仕上焼鈍までの工程
を実施例1記載の条件で処理した。この場合、脱炭焼鈍
板、二次再結晶直前の一次再結晶組織の調査及び最終仕
上焼鈍後の鋼板の特徴量の調査(含磁気測定)を実施例
1と同様にして行った。その結果を表2に示す。
This final cold-rolled sheet was processed under the conditions described in Example 1 until the final finish annealing. In this case, the decarburization annealed sheet, the primary recrystallized structure immediately before the secondary recrystallization, and the characteristic amount of the steel sheet after the final finish annealing (magnetic content measurement) were examined in the same manner as in Example 1. The results are shown in Table 2.

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【発明の効果】本発明に従って、脱炭焼鈍後の鋼板の一
次再結晶粒の平均直径、直径の変動係数及び最終仕上焼
鈍の二次再結晶開始直前と脱炭焼鈍後の状態での一次再
結晶粒の平均直径の比率(粒成長割合)を制御すること
により、磁気特性の優れた一方向性電磁鋼板をコイル状
で最終仕上焼鈍して、安定して製造することができる。
更に、Sn,Cu,Sb,Seの1種又は2種以上を添
加することにより、一層優れた磁気特性を有する一方向
性電磁鋼板を安定して製造できるので、これらの技術の
工業的意義は極めて大である。
INDUSTRIAL APPLICABILITY According to the present invention, the average diameter of the primary recrystallized grains of the steel sheet after decarburization annealing, the coefficient of variation of the diameter, and the primary recrystallization just before the start of secondary recrystallization of the final finish annealing and after the decarburization annealing are performed. By controlling the ratio of the average diameter of the crystal grains (grain growth ratio), the unidirectional electrical steel sheet having excellent magnetic properties can be finally annealed in a coil shape and stably manufactured.
Furthermore, by adding one or more of Sn, Cu, Sb, and Se, it is possible to stably produce a grain-oriented electrical steel sheet having even more excellent magnetic properties. Therefore, these technologies have industrial significance. It is extremely large.

【0068】上記本発明で得られた製品は、表面被膜
に、Alの濃化があり、二次再結晶粒の平均結晶直径、
圧延方向最大長と圧延方向と直角方向最大長の比の平均
値、平均直径5mm超の結晶粒内の方位分散に顕著な特長
を有した磁気特性の優れたものになっている。
The product obtained according to the present invention has an Al concentration in the surface coating and has an average crystal diameter of secondary recrystallized grains.
The average value of the ratio of the maximum length in the rolling direction and the maximum length in the direction perpendicular to the rolling direction, and the outstanding magnetic properties with remarkable features in the orientation dispersion in the crystal grains with an average diameter of more than 5 mm.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱炭焼鈍板の一次再結晶粒の平均直径及び直径
の変動係数が製品の磁束密度に与える影響を示す図表で
ある。
FIG. 1 is a chart showing the influence of the average diameter of primary recrystallized grains and the coefficient of variation of the diameter on the magnetic flux density of a product in a decarburized annealed plate.

【図2】脱炭焼鈍後から最終仕上焼鈍の二次再結晶開始
直前までの粒成長割合と製品の磁束密度の関係を示す図
表である。
FIG. 2 is a table showing the relationship between the grain growth rate and the magnetic flux density of the product after decarburization annealing and immediately before the start of secondary recrystallization in final annealing.

【図3】最終仕上焼鈍後の試料の表面被膜付の鋼板のA
l量(Al(WG))と、この表面被膜をも除去した時
の鋼板のAl量(Al(WOG))の量の差の頻度を示
す図表である。
FIG. 3A of the steel sheet with surface coating of the sample after final finish annealing
It is a chart showing the frequency of the difference between the amount of Al (Al (WG)) and the amount of Al (Al (WOG)) of the steel sheet when this surface coating is also removed.

【図4】製品の二次再結晶粒の平均直径の頻度を示す図
表である。
FIG. 4 is a chart showing the frequency of the average diameter of the secondary recrystallized grains of the product.

【図5】製品の二次再結晶粒内の方位分散の頻度を示す
図表である。
FIG. 5 is a chart showing the frequency of orientation dispersion in secondary recrystallized grains of a product.

【図6】製品の二次再結晶粒の圧延方向最大長lR と圧
延直角方向最大長lT の比のサンプル内平均値の頻度を
示す図表である。
FIG. 6 is a chart showing the frequency of the in-sample average value of the ratio of the maximum length l R in the rolling direction and the maximum length l T in the direction perpendicular to the rolling of the secondary recrystallized grains of the product.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月28日[Submission date] August 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)重量比で、Si:2.5〜4.0%含有する一方
向性電磁鋼板において、絶縁コーティングを除去し表面
被膜付の鋼板のAl量を重量比で、Al(WG)(%)
とし、この表面被膜をも除去した後の鋼板のAl量を重
量比でAl(WOG)(%)とした時 Al(WG)−Al(WOG)≧0.0050% であり、製品板の平均結晶直径(円相当直径)が1.5
〜10mmであり、結晶粒の圧延方向の最大長lR と圧延
方向と直角方向の最大長lT の比lR /lT の平均値が
1.0〜3.5であって、直径5mm超の結晶粒における
重心位置の結晶方位に対して、0.5〜5度の方位分散
が、その結晶粒内に存在し、製品の磁束密度がB8
1.88Tとなる一方向性電磁鋼板。
The subject matter of the present invention is as follows. (1) In the unidirectional electrical steel sheet containing Si: 2.5 to 4.0% by weight ratio, the Al amount of the steel sheet with the insulating film removed and the surface coating is Al (WG) (% )
When the Al amount of the steel sheet after removing the surface coating is Al (WOG) (%) in weight ratio, Al (WG) -Al (WOG) ≧ 0.0050%, and the average of the product sheets Crystal diameter (circle equivalent diameter) is 1.5
The average value of the ratio l R / l T between the maximum length l R in the rolling direction of the crystal grains and the maximum length l T in the direction perpendicular to the rolling direction is 1.0 to 3.5, and the diameter is 5 mm. The orientation dispersion of 0.5 to 5 degrees with respect to the crystal orientation of the center of gravity in the super crystal grain exists in the crystal grain, and the magnetic flux density of the product is B 8
1.88T unidirectional electrical steel sheet.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0054[Correction target item name] 0054

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0054】一方、製品板の平均結晶直径は、図4に示
した如く、1.5〜10mmであり、結晶粒の圧延方向の
最大長lR と圧延方向と直角方向の最大長lT の比lR
/lT の各サンプル平均値は、図6に示した如く1.0
〜3.5であり、各サンプルの直径5mm超の結晶粒(計
90個)における重心位置の結晶方位に対して、図5に
示した如く0.5〜5度の方位分散が存在する。
On the other hand, the average crystal diameter of the product sheet is 1.5 to 10 mm as shown in FIG. 4, and the maximum length l R of the crystal grains in the rolling direction and the maximum length l T in the direction perpendicular to the rolling direction are obtained. Ratio l R
The average value of each sample of / l T is 1.0 as shown in FIG.
.About.3.5, and there is an orientation dispersion of 0.5 to 5 degrees as shown in FIG. 5 with respect to the crystal orientation of the center of gravity in the crystal grains with a diameter of more than 5 mm (90 in total) in each sample.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0061[Correction target item name] 0061

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0061】[0061]

【表1】 [Table 1]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0065[Correction target item name] 0065

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0065】[0065]

【表2】 [Table 2]

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0066[Correction target item name] 0066

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0066】[0066]

【表3】 [Table 3]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0068[Correction target item name] 0068

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0068】上記本発明で得られた製品は、表面被膜
に、Alの濃化があり、二次再結晶粒の平均結晶直径、
圧延方向最大長と圧延方向と直角方向最大長の比の平均
値、直径5mm超の結晶粒内の方位分散に顕著な特長を有
した磁気特性の優れたものになっている。
The product obtained according to the present invention has an Al concentration in the surface coating and has an average crystal diameter of secondary recrystallized grains.
It has excellent magnetic properties, with remarkable features in the average value of the ratio of the maximum length in the rolling direction and the maximum length in the direction perpendicular to the rolling direction, and the azimuth dispersion within the crystal grains with a diameter of more than 5 mm.

【手続補正書】[Procedure amendment]

【提出日】平成5年11月11日[Submission date] November 11, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】また、圧延方向に、一次再結晶集合組織に
コロニーが存在しやすいことやコイル状で圧延方向に二
次再結晶粒が成長するに伴い、対応方位関係にある方位
粒が減少する等の理由で、製品の二次再結晶粒の圧延方
向の最大長lR と圧延方向と直角方向の最大長lT の比
が1からずれてくる。
Further, as the colonies are likely to exist in the primary recrystallization texture in the rolling direction and the secondary recrystallized grains grow in the coil direction in the rolling direction, the orientation grains in the corresponding orientation relationship decrease. For this reason, the ratio of the maximum length l R in the rolling direction of the secondary recrystallized grains of the product and the maximum length l T in the direction perpendicular to the rolling direction deviates from 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、Si:2.5〜4.0%含有
する一方向性電磁鋼板において、絶縁コーティングを除
去し、表面被膜付の鋼板のAl量を重量比で、Al(W
G)(%)とし、この表面被膜をも除去した後の鋼板の
Al量を重量比でAl(WOG)(%)とした時 Al(WG)−Al(WOG)≧0.0050% であり、製品板の平均結晶直径(円相当直径)が1.5
〜10mmであり、結晶粒の圧延方向の最大長lR と圧延
方向と直角方向の最大長lT の比lR /lT の平均値が
1.0〜3.5であって、平均直径5mm超の結晶粒にお
ける重心位置の結晶方位に対して、0.5〜5度の方位
分散が、その結晶粒内に存在し、製品の磁束密度がB8
≧1.88Tであることを特徴とする磁気特性の優れた
一方向性電磁鋼板。
1. In a unidirectional electrical steel sheet containing Si: 2.5 to 4.0% by weight, the insulating coating is removed, and the Al content of the steel sheet with a surface coating is expressed by Al (W
G) (%), and the Al content of the steel sheet after removal of this surface coating is also Al (WOG) (%) in weight ratio Al (WG) -Al (WOG) ≧ 0.0050% , The average crystal diameter of the product plate (circle equivalent diameter) is 1.5
The average value of the ratio l R / l T between the maximum length l R of the crystal grains in the rolling direction and the maximum length l T in the direction perpendicular to the rolling direction is 1.0 to 3.5, and the average diameter is With respect to the crystal orientation of the center of gravity in the crystal grain of more than 5 mm, the orientation dispersion of 0.5 to 5 degrees exists in the crystal grain, and the magnetic flux density of the product is B 8
A grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that ≧ 1.88T.
【請求項2】 重量比で Si:2.5〜4.0%、 C :0.03〜0.10%、 酸可溶性Al:0.010〜0.065%、 N :0.0010〜0.0150%、 Mn:0.02〜0.30%、 S :0.005〜0.040%、 残部がFe及び不可避不純物からなる珪素鋼スラブを1
300℃以上の温度で加熱し、熱延を施し、次いで、熱
延板に、必要に応じて熱延板焼鈍を行い、次いで圧下率
80%以上の最終冷延を含み、必要に応じて中間焼鈍を
挟む1回以上の冷延を行い、次いで脱炭焼鈍、最終仕上
焼鈍を施して一方向性電磁鋼板を製造する方法におい
て、脱炭焼鈍後の鋼板の一次再結晶粒の平均直径(円相
当直径)を、6〜11μmとし、一次再結晶粒の直径の
変動係数を0.5以下とし、内径で300mm以上のコイ
ル状で行う最終仕上焼鈍の二次再結晶開始直前までに、
一次再結晶粒の平均直径を脱炭焼鈍後の鋼板での平均直
径に対して5〜30%大きくすることを特徴とする磁気
特性の優れた一方向性電磁鋼板の製造方法。
2. By weight ratio, Si: 2.5-4.0%, C: 0.03-0.10%, acid-soluble Al: 0.010-0.065%, N: 0.0010-0. 0.0150%, Mn: 0.02 to 0.30%, S: 0.005 to 0.040%, 1 balance of the silicon steel slab consisting of Fe and unavoidable impurities
It is heated at a temperature of 300 ° C or higher, hot-rolled, and then the hot-rolled sheet is annealed, if necessary, and finally cold-rolled at a reduction rate of 80% or more, and if necessary, intermediate In the method of producing a unidirectional electrical steel sheet by performing cold rolling one or more times with annealing between them, followed by decarburization annealing and final finishing annealing, the average diameter of the primary recrystallized grains of the steel sheet after decarburization annealing (circle Equivalent diameter) is 6 to 11 μm, the coefficient of variation of the diameter of the primary recrystallized grains is 0.5 or less, and immediately before the start of secondary recrystallization of the final finish annealing performed in a coil shape with an inner diameter of 300 mm or more,
A method for producing a unidirectional electrical steel sheet having excellent magnetic properties, characterized in that the average diameter of primary recrystallized grains is made 5 to 30% larger than the average diameter of the steel sheet after decarburization annealing.
【請求項3】 珪素鋼スラブに、0.4%以下のSn,
Cu,Sb,Seの1種又は2種以上を含有することを
特徴とする請求項2記載の磁気特性の優れた一方向性電
磁鋼板の製造方法。
3. A silicon steel slab containing 0.4% or less Sn,
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 2, which contains one or more of Cu, Sb, and Se.
JP21791892A 1992-08-17 1992-08-17 Grain oriented silicon steel sheet excellent in magnetic property and its production Withdrawn JPH0673509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21791892A JPH0673509A (en) 1992-08-17 1992-08-17 Grain oriented silicon steel sheet excellent in magnetic property and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21791892A JPH0673509A (en) 1992-08-17 1992-08-17 Grain oriented silicon steel sheet excellent in magnetic property and its production

Publications (1)

Publication Number Publication Date
JPH0673509A true JPH0673509A (en) 1994-03-15

Family

ID=16711781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21791892A Withdrawn JPH0673509A (en) 1992-08-17 1992-08-17 Grain oriented silicon steel sheet excellent in magnetic property and its production

Country Status (1)

Country Link
JP (1) JPH0673509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046416A1 (en) * 1998-03-11 1999-09-16 Nippon Steel Corporation Unidirectional magnetic steel sheet and method of its manufacture
JP2009235471A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor
WO2012017669A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented electrical steel sheet, and method for producing same
WO2017057487A1 (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and hot-rolled steel sheet for grain-oriented electromagnetic steel sheet
JP2019119933A (en) * 2017-12-28 2019-07-22 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and manufacturing method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046416A1 (en) * 1998-03-11 1999-09-16 Nippon Steel Corporation Unidirectional magnetic steel sheet and method of its manufacture
KR100293140B1 (en) * 1998-03-11 2001-06-15 아사무라 타카싯 Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
JP2009235471A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor
WO2012017669A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented electrical steel sheet, and method for producing same
CN103069034A (en) * 2010-08-06 2013-04-24 杰富意钢铁株式会社 Grain-oriented electrical steel sheet, and method for producing same
KR20180043351A (en) * 2015-09-28 2018-04-27 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet for directional electromagnetic steel sheet and directional electromagnetic steel sheet
WO2017057487A1 (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and hot-rolled steel sheet for grain-oriented electromagnetic steel sheet
CN108026622A (en) * 2015-09-28 2018-05-11 新日铁住金株式会社 The hot rolled steel plate of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
JPWO2017057487A1 (en) * 2015-09-28 2018-08-09 新日鐵住金株式会社 Oriented electrical steel sheet and hot rolled steel sheet for grain oriented electrical steel sheet
US20180258508A1 (en) * 2015-09-28 2018-09-13 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and hot-rolled steel sheet for grain-oriented electrical steel sheet
RU2687781C1 (en) * 2015-09-28 2019-05-16 Ниппон Стил Энд Сумитомо Метал Корпорейшн Electrotechnical steel sheet with oriented grain structure and hot-rolled steel sheet for electrotechnical steel sheet with oriented grain structure
CN108026622B (en) * 2015-09-28 2020-06-23 日本制铁株式会社 Grain-oriented electrical steel sheet and hot-rolled steel sheet for grain-oriented electrical steel sheet
US11680302B2 (en) 2015-09-28 2023-06-20 Nippon Steel Corporation Grain-oriented electrical steel sheet and hot-rolled steel sheet for grain-oriented electrical steel sheet
JP2019119933A (en) * 2017-12-28 2019-07-22 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPS6250529B2 (en)
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JP2562257B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP2659655B2 (en) Thick grain-oriented electrical steel sheet with excellent magnetic properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH11269543A (en) Production of grain oriented electric steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3215178B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07268469A (en) Sheet material for grain oriented silicon steel sheet with high magnetic flux density
JPH0717962B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0791586B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JP2001192733A (en) Method for producing grain oriented silicon steel sheet high in accumulation degree in goss orientation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102