JPH07268469A - Sheet material for grain oriented silicon steel sheet with high magnetic flux density - Google Patents

Sheet material for grain oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JPH07268469A
JPH07268469A JP6059556A JP5955694A JPH07268469A JP H07268469 A JPH07268469 A JP H07268469A JP 6059556 A JP6059556 A JP 6059556A JP 5955694 A JP5955694 A JP 5955694A JP H07268469 A JPH07268469 A JP H07268469A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
magnetic flux
flux density
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6059556A
Other languages
Japanese (ja)
Inventor
Norito Abe
憲人 阿部
Yoshiyuki Ushigami
義行 牛神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6059556A priority Critical patent/JPH07268469A/en
Publication of JPH07268469A publication Critical patent/JPH07268469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably produce a grain oriented silicon steel sheet extremely excellent in magnetic properties by controlling the average diameter (d) of primary recrystallized grains, the fluctuation coefficient (sigma) of diameter, and the texture in a grain oriented silicon steel sheet for transformer, in the steel sheet condition after decarburizing annealing and before finish annealing. CONSTITUTION:In the steel sheet condition after decarburizing annealing and before finish annealing, this steel sheet has a texture which is a crystalline structure having >=15mum average diameter (d) of primary recrystallized grains and <=0.6 fluctuation coefficient (sigma) of diameter and in which the value of [111]/[110], as the ratio between [111] pole density and [110] pole density, is regulated to <=50. By providing these values, the grain oriented silicon steel sheet having high magnetic flux density and extremely excellent in magnetic properties can be stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て用いられる{110}〈001〉方位集積度を高度に
発達させた高磁束密度一方向性電磁鋼板用に製造される
板材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate material produced for a high magnetic flux density unidirectional electrical steel sheet having a highly developed {110} <001> orientation integration degree used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/m
の磁場における磁束密度B(これをB8 と以下示す)が
使用される。また鉄損特性を表す代表的数値としては、
17/50 (周波数50Hzにおいて1.7Tまで磁化させ
た時の単位kgあたりの鉄損)が用いられる。磁束密度は
鉄損特性の重要支配因子であり、一般的にいって磁束密
度が高いほど鉄損はよい。ただしあまり磁束密度が高く
なると、二次再結晶粒が大きくなることに起因して異常
渦電流損失が大きくなり鉄損を悪くすることがある。こ
れに対しては、磁区制御することによって二次再結晶粒
に関係なく鉄損を改善することができる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. Normally, 800A / m is used as the numerical value for the excitation characteristics.
The magnetic flux density B in the magnetic field of B (which is shown below as B 8 ) is used. Moreover, as a typical numerical value showing the iron loss characteristic,
W 17/50 (iron loss per unit kg when magnetized to 1.7 T at a frequency of 50 Hz) is used. The magnetic flux density is an important controlling factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss. However, if the magnetic flux density becomes too high, the abnormal eddy current loss may increase due to the increase in the size of the secondary recrystallized grains, which may deteriorate the iron loss. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains.

【0003】また製品板厚も鉄損特性の重要支配因子で
ある。磁束密度を保ちながら板厚を薄くすることによっ
て、渦電流損失は小さくなり鉄損特性を向上させること
ができる。一方向性電磁鋼板は製造工程の仕上げ焼鈍に
おいて、二次再結晶を起こさせて鋼板面に{110}、
圧延方向に〈001〉を有するいわゆるGoss組織を
発達させることによって得られる。その中でB8 ≧1.
88Tの優れた励磁特性を持つものは高磁束密度一方向
性電磁鋼板と呼ばれている。
The product thickness is also an important controlling factor of iron loss characteristics. By reducing the plate thickness while maintaining the magnetic flux density, the eddy current loss is reduced and the iron loss characteristics can be improved. A unidirectional electrical steel sheet undergoes secondary recrystallization during finish annealing in the manufacturing process to cause {110},
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B 8 ≧ 1.
Those having excellent excitation characteristics of 88T are called high magnetic flux density grain-oriented electrical steel sheets.

【0004】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、田口らによる特公昭40−15644号
公報、および特公昭51−13469号公報が挙げられ
る。Goss組織の二次再結晶を起こさせる主なインヒ
ビターとして前者においては、MnSおよびAlNを、
後者ではMnS,MnSe,Sb等を用いている。上記
特許に基づく製品は現在、世界的規模で生産されてい
る。特公昭40−15644号公報によればその製造方
法は、熱延板焼鈍を施した後、冷延率80〜95%の一
回冷延を行うことを特徴としている。
Typical methods for producing high magnetic flux density unidirectional electrical steel sheets include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13469 by Taguchi et al. In the former, MnS and AlN were used as the main inhibitors that caused the secondary recrystallization of the Goss structure.
In the latter, MnS, MnSe, Sb, etc. are used. Products based on the above patents are currently produced on a global scale. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is characterized by performing hot-rolled sheet annealing and then performing cold rolling once at a cold rolling rate of 80 to 95%.

【0005】ところで、高磁束密度一方向性電磁鋼板の
製造においては、各工程の様々な因子が磁気特性に影響
を与えるため、各工程のそれぞれの条件に対して極めて
厳しい基準を設けている。そのため工程管理に多大な労
力と費用が費やされる。それにもかかわらず、原因のは
っきりとしない二次再結晶不良、あるいは二次再結晶し
ても磁束密度が低い磁気特性不良が生じることも少なく
ない。もし製品の上記問題が、製造工程における途中段
階、すなわち中間製品で予測ができるならば、その時点
で対策を講じることが可能となり、二次再結晶不良、あ
るいは磁気特性不良を解決することが可能である。
By the way, in the production of high magnetic flux density unidirectional electrical steel sheet, various factors in each process affect the magnetic properties, so that extremely strict standards are set for each condition in each process. Therefore, a great deal of labor and cost are spent on process control. Nevertheless, it is not uncommon for secondary recrystallization defects whose cause is unclear or defective magnetic properties with low magnetic flux density to occur even after secondary recrystallization. If the above problems of the product can be predicted in the middle of the manufacturing process, that is, in the intermediate product, it is possible to take measures at that time, and it is possible to solve the secondary recrystallization defect or the magnetic characteristic defect. Is.

【0006】高橋らは特開平2−182866号公報に
おいて、脱炭焼鈍後仕上げ焼鈍前の状態における一次再
結晶粒径の平均粒径と直径変動係数に着目すると、途中
段階で製品の品質予測ができ、ある範囲内に制御するこ
とによって優れた磁気特性を持つ一方向性電磁鋼板を安
定して製造することが可能であると述べている。しか
し、脱炭焼鈍後仕上げ焼鈍前の状態において、ある一次
再結晶粒径の平均粒径と直径変動係数を有していても、
二次再結晶不良、あるいは磁気特性不良が完全に解消さ
れるには至っていないのが現状である。
Takahashi et al., In Japanese Patent Laid-Open No. 182866/1990, paying attention to the average grain size of primary recrystallized grains and the coefficient of variation of diameter in the state after decarburization annealing and before finish annealing, product quality prediction at an intermediate stage. It is said that it is possible to stably produce a grain-oriented electrical steel sheet having excellent magnetic properties by controlling the content within a certain range. However, in the state after decarburization annealing and before finish annealing, even if it has an average particle diameter and a diameter variation coefficient of a certain primary recrystallized particle diameter,
The current situation is that secondary recrystallization defects or magnetic property defects have not been completely resolved.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる問題を
回避し、磁気特性の優れた一方向性電磁鋼用板材を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to avoid such problems and provide a plate material for unidirectional electromagnetic steel having excellent magnetic properties.

【0008】[0008]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。1)脱炭焼鈍後仕上げ焼鈍前の
鋼板状態において、一次再結晶粒の平均直径dが15μ
m以上で直径の変動係数σが0.6以下である結晶組織
を備え、かつ{111}極密度と{110}極密度の比
である{111}/{110}が50以下である集合組
織を有することを特徴とする高磁束密度一方向性電磁鋼
板用板材。
The features of the present invention are as follows. 1) In the steel sheet state after decarburization annealing and before finish annealing, the average diameter d of the primary recrystallized grains is 15 μm.
A texture having a crystalline structure with a coefficient of variation σ of diameter of 0.6 or less at m or more, and {111} / {110} which is a ratio of {111} polar density to {110} polar density of 50 or less. A plate material for a high magnetic flux density unidirectional electrical steel sheet, which comprises:

【0009】以下本発明の詳細について説明する。本発
明者はいわゆる磁束密度の高い一方向性電磁鋼板の途中
製造工程における最終製品品質予測精度を高めて、安定
製造技術を確立するべく種々の研究を鋭意重ねた結果、
脱炭焼鈍後仕上げ焼鈍前の鋼板状態において、一次再結
晶粒の平均直径dと直径の変動係数σ、さらには再結晶
集合組織である範囲に制御することによって、磁気特性
の優れた一方向性電磁鋼板を安定して製造することに成
功した。
The details of the present invention will be described below. The present inventor has improved the final product quality prediction accuracy in the middle manufacturing process of so-called high magnetic flux density unidirectional electrical steel sheet, and as a result of various studies to establish a stable manufacturing technology,
In the steel sheet state after decarburization annealing and before finish annealing, by controlling the average diameter d of primary recrystallized grains and the coefficient of variation σ of the recrystallized grain, and the recrystallized texture within a certain range, the unidirectionality with excellent magnetic properties can be obtained. Succeeded in stable production of electrical steel sheets.

【0010】以下実験結果を基に詳細に説明する。図
1,図2および図3は、光学顕微鏡で観察した脱炭焼鈍
板のL断面全厚組織から画像解析することによって得た
平均直径d、および直径の変動係数σと、X線回折より
求めた{111}極密度と{110}極密度の比{11
1}/{110}が製品の磁束密度B8 に与える影響を
示したものである。ここでは重量%で、C:0.02〜
0.06%、Si:3.2〜3.3%、酸可溶性Al:
0.01〜0.045%、N:0.003〜0.010
%、残部Feおよび不可避的不純物からなるスラブを1
100〜1300℃に加熱し、2.3mm厚に熱延後、9
00〜1200℃の温度で熱延板焼鈍を行い、約88%
の最終強冷延を行って最終板厚0.220mmの冷延板と
した。その後800〜1000℃の温度で脱炭焼鈍を行
い、引き続いてMgOを主成分とする焼鈍分離剤の役割
も果たす一次被膜生成剤を塗布して最終仕上げ焼鈍を行
った。
A detailed description will be given below based on experimental results. 1, FIG. 2 and FIG. 3 are obtained from X-ray diffraction and the average diameter d obtained by image analysis from the L-thickness full-thickness structure of the decarburized annealed plate observed with an optical microscope, and the variation coefficient σ of the diameter. Ratio of {111} pole density to {110} pole density {11
It shows the effect of 1} / {110} on the magnetic flux density B 8 of the product. Here, in% by weight, C: 0.02
0.06%, Si: 3.2 to 3.3%, acid-soluble Al:
0.01-0.045%, N: 0.003-0.010
%, The balance Fe and unavoidable impurities in the slab 1
After heating to 100 ~ 1300 ℃ and hot rolling to 2.3mm thickness, 9
Hot-rolled sheet is annealed at a temperature of 00 to 1200 ° C, about 88%
The final strong cold rolling was performed to obtain a cold rolled sheet having a final sheet thickness of 0.220 mm. After that, decarburization annealing was performed at a temperature of 800 to 1000 ° C., and subsequently, a primary film forming agent that also serves as an annealing separating agent containing MgO as a main component was applied to perform final finish annealing.

【0011】図1,図2および図3から明らかなよう
に、平均直径dが15μn以上で直径の変動係数σが
0.6以下である結晶組織を備え、かつ{111}極密
度と{110}極密度の比である{111}/{11
0}が50以下である集合組織を有する範囲でB8
1.88Tの高い磁束密度が得られている。また図1,
図2および図3は、脱炭焼鈍板の平均粒径d、直径の変
動係数σ、および{111}極密度と{110}極密度
の比である{111}/{110}を適正に制御するこ
とによって、二次再結晶および磁気特性を良好にするこ
とが可能であることを示している。
As is apparent from FIGS. 1, 2 and 3, a crystal structure having an average diameter d of 15 μn or more and a diameter variation coefficient σ of 0.6 or less, and having a {111} polar density and a {110} pole density. } The pole density ratio {111} / {11
B 8 ≧ within a range having a texture in which 0} is 50 or less
A high magnetic flux density of 1.88T is obtained. In addition,
2 and 3 properly control the average grain size d of the decarburized annealed sheet, the variation coefficient σ of the diameter, and {111} / {110} which is the ratio of the {111} polar density to the {110} polar density. It has been shown that it is possible to improve secondary recrystallization and magnetic properties by doing so.

【0012】脱炭焼鈍板の平均直径d、直径の変動係数
σ、および{111}/{110}と製品の二次再結晶
不良、磁束密度B8 との間に上述した関係が成立する理
由については、必ずしも明らかではないが、本発明者ら
は次のように推察している。二次再結晶の方位を含めて
二次再結晶挙動に影響をおよぼす因子としては、一次再
結晶の結晶組織(平均直径、粒径分布)、集合組織、イ
ンヒビター強度等がある。
The reason why the above-described relationship is established between the average diameter d of the decarburized annealed sheet, the variation coefficient σ of the diameter, and {111} / {110} and the secondary recrystallization defect of the product and the magnetic flux density B 8. Although it is not always clear about this, the present inventors presume as follows. Factors that influence the secondary recrystallization behavior, including the orientation of secondary recrystallization, include the crystal structure (average diameter, particle size distribution) of primary recrystallization, texture, inhibitor strength, and the like.

【0013】一次再結晶終了後、結晶粒成長にともなっ
て結晶粒径分布に変化が生じるので、平均直径は間接的
に結晶粒径分布を表していると考えられる。また平均直
径は結晶粒界面積に逆比例する量であり、これらの結晶
粒界エネルギーが二次再結晶粒成長の駆動力になる。し
たがって平均直径は二次再結晶現象に影響すると考えら
れる結晶粒径分布、結晶粒界面積を同時に表しているパ
ラメータと考えられることができる。
After the completion of primary recrystallization, the crystal grain size distribution changes with the growth of crystal grains, so that the average diameter is considered to indirectly represent the crystal grain size distribution. The average diameter is an amount that is inversely proportional to the crystal grain boundary area, and these crystal grain boundary energies serve as the driving force for secondary recrystallized grain growth. Therefore, the average diameter can be considered as a parameter that simultaneously represents the grain size distribution and the grain boundary area, which are considered to influence the secondary recrystallization phenomenon.

【0014】直径の変動係数σは結晶粒径の不均一性を
表し、この値が高くなると二次再結晶の核化、粒成長が
難しくなり、二次再結晶不良が発生するものと推察され
る。集合組織は、結晶方位の量的割合を表しているが、
一方向性電磁鋼板においては主に、二次再結晶する方位
粒({110}〈001〉粒等)、二次再結晶粒を成長
させやすい方位粒({111}〈112〉粒等)が重要
である。これらの方位を含む{110},{111}粒
について、その量や量的バランスを制御することが製品
の{110}〈001〉方位集積度、すなわち磁束密度
を高めて磁気特性を良好にするためには大変重要であ
る。このように平均粒径dと変動係数σは、二次再結晶
の不良発生と密接な関係にあり、集合組織{111}/
{110}強度比は、二次再結晶が良好な場合の磁束密
度と密接な関係にある。
The diameter variation coefficient σ represents the nonuniformity of the crystal grain size. If this value becomes high, it is presumed that nucleation of secondary recrystallization and grain growth become difficult and secondary recrystallization failure occurs. It The texture represents the quantitative ratio of crystal orientation,
In the grain-oriented electrical steel sheet, there are mainly oriented grains that undergo secondary recrystallization ({110} <001> grains, etc.) and oriented grains that facilitate secondary recrystallization grains ({111} <112> grains, etc.). is important. For {110} and {111} grains including these orientations, controlling the amount and the quantitative balance enhances the {110} <001> orientation integration degree of the product, that is, the magnetic flux density to improve the magnetic characteristics. It is very important for that. Thus, the average grain size d and the coefficient of variation σ are closely related to the occurrence of defects in secondary recrystallization, and the texture {111} /
The {110} intensity ratio is closely related to the magnetic flux density when the secondary recrystallization is good.

【0015】本発明のスラブ成分条件について説明す
る。Cは0.03%未満では、熱延に先立つスラブ加熱
時において結晶粒が異常粒成長し、製品において線状細
粒と呼ばれる二次再結晶不良を起こす可能性があるので
好ましくない。一方0.15%を超えた場合では、冷延
後の脱炭焼鈍において脱炭時間が長時間必要となり経済
的でないばかりでなく、脱炭が不完全となりやすく、製
品での磁気時効と呼ばれる磁性不良を起こすので好まし
くない。
The slab component conditions of the present invention will be described. If C is less than 0.03%, crystal grains may grow abnormally during slab heating prior to hot rolling, which may cause secondary recrystallization defects called linear fine grains in the product, which is not preferable. On the other hand, if the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization tends to be incomplete, resulting in a magnetic aging called magnetic aging in the product. It is not preferable because it causes defects.

【0016】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
インヒビター構成元素として、必要に応じてAl,N,
Mn,S,Se,Sb,B,Cu,Bi,Nb,Cr,
Sn,Tiを添加することができる。
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.
As an inhibitor constituent element, if necessary, Al, N,
Mn, S, Se, Sb, B, Cu, Bi, Nb, Cr,
Sn and Ti can be added.

【0017】次に本発明である製造方法について説明す
る。上記のごとく成分を調整したスラブの加熱温度は、
特に限定されるものではないが、コストの面から130
0℃以下とすることが望ましい。次いで通常の熱間圧延
によって熱延コイルに圧延される。熱延コイルは必要に
応じて焼鈍処理、酸洗される。その後一回の冷延、また
は中間焼鈍を挟んだ二回以上の冷延によって最終製品板
厚とする。この時の最終冷延率は特に限定するものでは
ないが、80%以上とすることが磁束密度B8 を高める
上で好ましい。圧延率を上記範囲とすることによって、
脱炭焼鈍板において尖鋭な{110}〈001〉粒とこ
れに蚕食されやすい対応方位粒({111}〈112〉
粒等)を適正量得ることができる。
Next, the manufacturing method of the present invention will be described. The heating temperature of the slab with the ingredients adjusted as above is:
Although not particularly limited, the cost is 130
It is desirable that the temperature is 0 ° C. or lower. Then, it is rolled into a hot rolled coil by ordinary hot rolling. The hot rolled coil is annealed and pickled if necessary. Then, the final product sheet thickness is obtained by cold rolling once or two or more times with intermediate annealing sandwiched. The final cold rolling rate at this time is not particularly limited, but it is preferably 80% or more in order to increase the magnetic flux density B 8 . By setting the rolling rate within the above range,
In decarburized and annealed sheet, sharp {110} <001> grains and corresponding oriented grains ({111} <112> that are easily eroded by silkworms)
Granules) can be obtained in an appropriate amount.

【0018】冷延後は、連続脱炭焼鈍・一次被膜生成剤
塗布、仕上げ焼鈍、連続歪取り焼鈍・二次被膜塗布およ
び焼き付けを行う。この仕上げ焼鈍前の連続脱炭焼鈍・
一次被膜生成剤塗布の状態において、一次再結晶粒の平
均直径dを15μm以上、直径の変動係数σを0.6以
下、かつ{111}/{110}強度比が50以下とし
ている。このような状態に結晶組織、集合組織を制御す
る方法は、特に限定されるものではない。例えば、冷延
率や冷延前の粒径等により一次再結晶核の数や集合組織
を調整する方法、インヒビター構成元素の成分範囲、ス
ラブ加熱温度、熱延巻取り温度、熱延板焼鈍温度等によ
って脱炭焼鈍時のインヒビター強度を調整し、脱炭焼鈍
時の結晶粒成長を抑制する方法等を採用することができ
る。また、熱延板焼鈍温度、脱炭焼鈍温度、昇温速度は
集合組織を抑制する方法となる。
After cold rolling, continuous decarburization annealing / primary film forming agent coating, finish annealing, continuous strain relief annealing / secondary film coating and baking are performed. Continuous decarburization annealing before this finish annealing
The average diameter d of the primary recrystallized grains is 15 μm or more, the variation coefficient σ of the diameter is 0.6 or less, and the {111} / {110} strength ratio is 50 or less in the state where the primary film forming agent is applied. The method for controlling the crystal structure and texture in such a state is not particularly limited. For example, a method of adjusting the number of primary recrystallization nuclei and texture by cold rolling rate or grain size before cold rolling, component range of inhibitor constituent elements, slab heating temperature, hot rolling coiling temperature, hot rolled sheet annealing temperature For example, a method of adjusting the inhibitor strength during decarburization annealing to suppress crystal grain growth during decarburization annealing can be adopted. Further, the hot-rolled sheet annealing temperature, the decarburizing annealing temperature, and the temperature rising rate are methods for suppressing the texture.

【0019】焼鈍分離の目的も兼ねた一次被膜生成剤、
仕上げ焼鈍、連続歪取り焼鈍・二次被膜塗布および焼き
付け等については、特に限定された条件が付されるもの
ではないが、脱炭焼鈍板の適正な結晶組織が、仕上げ焼
鈍昇温中の粒成長で不適当にならないように、仕上げ焼
鈍昇温中にインヒビター強度が高くなるような処置(例
えば浸窒、浸硫等)を行うことは、安定製造上有利であ
る。
A primary film-forming agent which also serves the purpose of annealing separation,
There are no particular restrictions on finish annealing, continuous strain relief annealing, secondary coating application, baking, etc., but the proper crystal structure of the decarburized annealed sheet is It is advantageous for stable production to carry out a treatment (for example, nitrification, sulfurization, etc.) such that the inhibitor strength is increased during the final annealing temperature rise so that the growth does not become unsuitable.

【0020】また比較的低温(〜800℃)の脱炭焼鈍
で所期の結晶組織を得るためには、脱炭焼鈍時のインヒ
ビター強度を低めなければならないが、このインヒビタ
ー強度が二次再結晶を安定して行わせるうえで不足の時
には、仕上げ焼鈍における上記インヒビター強化の処置
が必要となる。インヒビター強化法の一例としては、A
lを含有する鋼において仕上げ焼鈍雰囲気ガスの窒素分
圧を高めに設定する方法が知られている。比較的高冷延
率(90%)を施した冷延板は{110}粒が不足して
いるので、脱炭焼鈍で所期の集合組織を得るためには、
脱炭焼鈍時にこれを補う必要がある。その方法の一例と
しては、脱炭焼鈍時の昇温速度を速めに設定する方法が
知られている。
Further, in order to obtain a desired crystal structure by decarburization annealing at a relatively low temperature (up to 800 ° C.), the inhibitor strength during decarburization annealing must be lowered, but this inhibitor strength causes secondary recrystallization. When it is insufficient to stably carry out the heat treatment, the above-mentioned inhibitor strengthening treatment in finish annealing is required. As an example of the inhibitor strengthening method, A
A method is known in which the nitrogen partial pressure of the finish annealing atmosphere gas is set high in the steel containing 1 l. Since the cold-rolled sheet subjected to a relatively high cold-rolling rate (90%) lacks {110} grains, in order to obtain the desired texture by decarburizing annealing,
It is necessary to supplement this during decarburization annealing. As an example of such a method, a method is known in which the temperature rising rate during decarburization annealing is set to a high value.

【0021】[0021]

【実施例】【Example】

(実施例1)C:0.054%、Si:3.25%、M
n:0.15%、S:0.005%、酸可溶性Al:
0.027%、N:0.0078%を含有するスラブを
1150℃で加熱後直ちに熱延して2.3mm厚の熱延コ
イルとした。熱延コイルに1150℃の焼鈍を施し、冷
延率約90%で0.220mm厚とした。
(Example 1) C: 0.054%, Si: 3.25%, M
n: 0.15%, S: 0.005%, acid-soluble Al:
A slab containing 0.027% and N: 0.0078% was heated at 1150 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. The hot rolled coil was annealed at 1150 ° C. to have a cold rolling ratio of about 90% and a thickness of 0.220 mm.

【0022】引き続き810,830,850,870
℃で60,600sec 保持する脱炭焼鈍を行い、MgO
を主成分とする一次被膜・焼鈍分離剤を塗布後、120
0℃の仕上げ焼鈍を行った。水洗後、60mm幅×300
mm長に剪断し、850℃で歪取り焼鈍を行った後磁気測
定に供した。脱炭焼鈍後、画像解析器を用いて脱炭焼鈍
板(断面全厚)の平均直径dと、直径の変動係数σを測
定した。またX線回折装置を用いて、{111}極密度
と{110}極密度を測定した。表1は、画像解析結果
およびX線回折結果と二次再結晶率、磁束密度を示して
いる。
Continuing, 810, 830, 850, 870
Decarburization annealing at 60 ℃ for 60,600sec.
After applying the primary coating / annealing separation agent containing
Finish annealing was performed at 0 ° C. After washing with water, 60mm width x 300
It was sheared to a length of mm, subjected to strain relief annealing at 850 ° C., and then subjected to magnetic measurement. After the decarburization annealing, the average diameter d of the decarburized annealed sheet (total cross-section thickness) and the variation coefficient σ of the diameter were measured using an image analyzer. Moreover, {111} polar density and {110} polar density were measured using an X-ray diffractometer. Table 1 shows the image analysis result, the X-ray diffraction result, the secondary recrystallization rate, and the magnetic flux density.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)C:0.055%、Si:
3.25%、Mn:0.15%、S:0.007%、酸
可溶性Al:0.027%、N:0.0078%を含有
するスラブを1150℃で加熱後直ちに熱延して1.8
mm厚の熱延コイルとした。熱延コイルに1100℃の焼
鈍を施し、冷延率約91%で0.170mm厚とした。引
き続き830,870℃で70sec 保持する脱炭焼鈍を
100,30,15.5℃/secの昇温速度で行い、その
後MgOを主成分とする一次被膜・焼鈍分離剤を塗布
し、1200℃の仕上げ焼鈍を行った。水洗後、60mm
幅×300mm長に剪断し、850℃で歪取り焼鈍を行っ
た後磁気測定に供した。
(Example 2) C: 0.055%, Si:
A slab containing 3.25%, Mn: 0.15%, S: 0.007%, acid-soluble Al: 0.027%, N: 0.0078% was heated at 1150 ° C. and immediately hot-rolled to 1 .8
A hot rolled coil having a thickness of mm was used. The hot rolled coil was annealed at 1100 ° C. to have a cold rolling rate of about 91% and a thickness of 0.170 mm. Then, decarburization annealing at 830,870 ° C. for 70 seconds is performed at a temperature rising rate of 100,30,15.5 ° C./sec, and then a primary coating / annealing separating agent containing MgO as a main component is applied and then 1200 ° C. Finish annealing was performed. 60 mm after washing with water
It was sheared to a width of 300 mm and subjected to strain relief annealing at 850 ° C., and then subjected to magnetic measurement.

【0025】脱炭焼鈍後、画像解析器を用いて脱炭焼鈍
板(断面全厚)の平均直径dと、直径の変動係数σを測
定した。またX線回折装置を用いて、{111}極密度
と{110}極密度を測定した。表2は、画像解析結果
およびX線回折結果と二次再結晶率、磁束密度を示して
いる。
After decarburization annealing, the average diameter d of the decarburized annealed plate (total cross-section thickness) and the variation coefficient σ of the diameter were measured using an image analyzer. Moreover, {111} polar density and {110} polar density were measured using an X-ray diffractometer. Table 2 shows the image analysis result, the X-ray diffraction result, the secondary recrystallization rate, and the magnetic flux density.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例3)C:0.054%、Si:
3.22%、Mn:0.12%、S:0.005%、酸
可溶性Al:0.027%、N:0.0078%、S
n:0.002%と0.05%を含有するスラブを11
50℃で加熱後直ちに熱延して1.4mm厚の熱延コイル
とした。熱延コイルに1100℃の焼鈍を施し、冷延率
約90%で0.145mm厚とした。引き続き810℃で
70sec 保持する脱炭焼鈍を行い、その後MgOを主成
分とする一次被膜・焼鈍分離剤を塗布し、1200℃の
仕上げ焼鈍を行った。水洗後、60mm幅×300mm長に
剪断し、850℃で歪取り焼鈍を行った後磁気測定に供
した。
(Example 3) C: 0.054%, Si:
3.22%, Mn: 0.12%, S: 0.005%, acid-soluble Al: 0.027%, N: 0.0078%, S
n: 11 slabs containing 0.002% and 0.05%
Immediately after heating at 50 ° C., hot rolling was performed to obtain a hot rolled coil having a thickness of 1.4 mm. The hot rolled coil was annealed at 1100 ° C. to have a cold rolling rate of about 90% and a thickness of 0.145 mm. Subsequently, decarburization annealing was performed at 810 ° C. for 70 seconds, then a primary coating / annealing separating agent containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. After washing with water, it was sheared to a width of 60 mm and a length of 300 mm, subjected to strain relief annealing at 850 ° C., and then subjected to magnetic measurement.

【0028】脱炭焼鈍後、画像解析器を用いて脱炭焼鈍
板(断面全厚)の平均直径dと、直径の変動係数σを測
定した。またX線回折装置を用いて、{111}極密度
と{110}極密度を測定した。表3は、画像解析結果
およびX線回折結果と二次再結晶率、磁束密度を示して
いる。
After decarburization annealing, the average diameter d and the variation coefficient σ of the diameter of the decarburized annealed plate (total cross-section thickness) were measured using an image analyzer. Moreover, {111} polar density and {110} polar density were measured using an X-ray diffractometer. Table 3 shows the image analysis result, the X-ray diffraction result, the secondary recrystallization rate, and the magnetic flux density.

【0029】[0029]

【表3】 [Table 3]

【0030】(実施例4)C:0.054%、Si:
3.24%、Mn:0.10%、S:0.007%、酸
可溶性Al:0.027%、N:0.0078%、S
n:0.002%と0.05%を含有するスラブを11
50℃で加熱後直ちに熱延して1.8mm厚の熱延コイル
とした。熱延コイルに1100℃の焼鈍を施す前に1.
4mmまで冷延し、冷延率約90%で0.145mm厚とし
た。引き続き850℃で70sec 保持する脱炭焼鈍を行
い、その後MgOを主成分とする一次被膜・焼鈍分離剤
を塗布し、1200℃の仕上げ焼鈍を行った。水洗後、
60mm幅×300mm長に剪断し、850℃で歪取り焼鈍
を行った後磁気測定に供した。脱炭焼鈍後、画像解析器
を用いて脱炭焼鈍板(断面全厚)の平均直径dと、直径
の変動係数σを測定した。またX線回折装置を用いて、
{111}極密度と{110}極密度を測定した。表4
は、画像解析結果およびX線回折結果と二次再結晶率、
磁束密度を示している。
(Example 4) C: 0.054%, Si:
3.24%, Mn: 0.10%, S: 0.007%, acid-soluble Al: 0.027%, N: 0.0078%, S
n: 11 slabs containing 0.002% and 0.05%
Immediately after heating at 50 ° C., hot rolling was performed to obtain a hot rolled coil having a thickness of 1.8 mm. Before annealing the hot rolled coil at 1100 ° C 1.
It was cold rolled to 4 mm, and the cold rolling rate was about 90% to a thickness of 0.145 mm. Subsequently, decarburization annealing was carried out at 850 ° C. for 70 seconds, after which a primary coating / annealing separating agent containing MgO as a main component was applied, and finish annealing was carried out at 1200 ° C. After washing with water
It was sheared to a width of 60 mm and a length of 300 mm, subjected to strain relief annealing at 850 ° C., and then subjected to magnetic measurement. After the decarburization annealing, the average diameter d of the decarburized annealed sheet (total cross-section thickness) and the variation coefficient σ of the diameter were measured using an image analyzer. Using an X-ray diffractometer,
The {111} pole density and the {110} pole density were measured. Table 4
Is the image analysis result and X-ray diffraction result and the secondary recrystallization rate,
The magnetic flux density is shown.

【0031】[0031]

【表4】 [Table 4]

【0032】(実施例5)C:0.055%、Si:
3.25%、Mn:0.10%、S:0.007%、酸
可溶性Al:0.028%、N:0.0078%、S
n:0.05%を含有するスラブを1150℃で加熱後
直ちに熱延して2.3mm厚の熱延コイルとした。熱延コ
イルに1100℃の焼鈍を施し、冷延率約90%で0.
220mm厚とした。引き続き、830,850℃で60
0sec 保持する脱炭焼鈍を行い、その後MgOを主成分
とする一次被膜・焼鈍分離剤を塗布し、N2 :25%+
2 :75%、N2 :75%+H2 :25%の雰囲気ガ
ス中で1200℃の仕上げ焼鈍を行った。水洗後、60
mm幅×300mm長に剪断し、850℃で歪取り焼鈍を行
った後磁気測定に供した。
(Example 5) C: 0.055%, Si:
3.25%, Mn: 0.10%, S: 0.007%, acid-soluble Al: 0.028%, N: 0.0078%, S
The slab containing n: 0.05% was heated at 1150 ° C. and immediately hot rolled to obtain a hot rolled coil having a thickness of 2.3 mm. The hot-rolled coil was annealed at 1100 ° C., and the cold rolling rate was about 90%.
It was 220 mm thick. Continue to 60 at 830 and 850 ° C
Decarburization annealing is carried out for 0 sec, and then a primary coating / annealing separating agent containing MgO as a main component is applied. N 2 : 25% +
Finish annealing was performed at 1200 ° C. in an atmosphere gas of H 2 : 75%, N 2 : 75% + H 2 : 25%. After washing with water, 60
mm width × 300 mm length was sheared, strain relief annealing was performed at 850 ° C., and then subjected to magnetic measurement.

【0033】脱炭焼鈍後、画像解析器を用いて脱炭焼鈍
板(断面全厚)の平均直径dと、直径の変動係数σを測
定した。またX線回折装置を用いて、{111}極密度
と{110}極密度を測定した。表5は、画像解析結果
およびX線回折結果と二次再結晶率、磁束密度を示して
いる。
After decarburization annealing, the average diameter d of the decarburized annealed plate (total cross-section thickness) and the variation coefficient σ of the diameter were measured using an image analyzer. Moreover, {111} polar density and {110} polar density were measured using an X-ray diffractometer. Table 5 shows the image analysis result, the X-ray diffraction result, the secondary recrystallization rate, and the magnetic flux density.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【発明の効果】本発明においては、脱炭焼鈍後仕上げ焼
鈍前の鋼板状態において、一次再結晶粒の平均値径dが
15μm以上で直径の変動係数σが0.6以下である結
晶組織であり、かつ{111}極密度と{110}極密
度の比である{111}/{110}が50以下である
集合組織を有することによって、極めて優れた磁気特性
を有する高磁束密度一方向性電磁鋼板を安定して製造す
ることが可能である。
According to the present invention, in the steel sheet state after decarburization annealing and before finish annealing, the average grain diameter d of the primary recrystallized grains is 15 μm or more and the variation coefficient σ of the diameter is 0.6 or less. And having a texture with {111} / {110}, which is the ratio of {111} pole density to {110} pole density, of 50 or less, high magnetic flux density unidirectionality with extremely excellent magnetic characteristics It is possible to stably manufacture an electromagnetic steel sheet.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱炭焼鈍板の平均直径と磁束密度の関係の図
表。
FIG. 1 is a diagram showing the relationship between the average diameter and the magnetic flux density of a decarburized annealed plate.

【図2】脱炭焼鈍板の直径変動係数と磁束密度の関係の
図表。
FIG. 2 is a graph showing the relationship between the diameter variation coefficient and the magnetic flux density of a decarburized annealed plate.

【図3】脱炭焼鈍板の{111}/{110}と磁束密
度の関係の図表。
FIG. 3 is a diagram showing the relationship between {111} / {110} and magnetic flux density of a decarburized annealed plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 脱炭焼鈍後仕上げ焼鈍前の鋼板状態にお
いて、一次再結晶粒の平均値径dが15μm以上で直径
の変動係数σが0.6以下である結晶組織を備え、かつ
{111}極密度と{110}極密度の比である{11
1}/{110}が50以下である集合組織を有するこ
とを特徴とする高磁束密度一方向性電磁鋼板用板材。
1. In a steel sheet state after decarburization annealing and before finish annealing, the primary recrystallized grains have a crystal structure having an average diameter d of 15 μm or more and a variation coefficient σ of diameter of 0.6 or less, and {111 {11} which is the ratio of the pole density to the {110} pole density
A plate material for high magnetic flux density unidirectional electrical steel sheet, having a texture of 1} / {110} of 50 or less.
JP6059556A 1994-03-29 1994-03-29 Sheet material for grain oriented silicon steel sheet with high magnetic flux density Pending JPH07268469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059556A JPH07268469A (en) 1994-03-29 1994-03-29 Sheet material for grain oriented silicon steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059556A JPH07268469A (en) 1994-03-29 1994-03-29 Sheet material for grain oriented silicon steel sheet with high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH07268469A true JPH07268469A (en) 1995-10-17

Family

ID=13116653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059556A Pending JPH07268469A (en) 1994-03-29 1994-03-29 Sheet material for grain oriented silicon steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH07268469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060182A1 (en) * 1998-05-18 1999-11-25 Kawasaki Steel Corporation Electrical sheet of excellent magnetic characteristics and method of manufacturing the same
JP2004115858A (en) * 2002-09-25 2004-04-15 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182866A (en) * 1989-01-07 1990-07-17 Nippon Steel Corp Sheet for grain-oriented silicon steel sheet
JPH0533056A (en) * 1991-07-31 1993-02-09 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182866A (en) * 1989-01-07 1990-07-17 Nippon Steel Corp Sheet for grain-oriented silicon steel sheet
JPH0533056A (en) * 1991-07-31 1993-02-09 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060182A1 (en) * 1998-05-18 1999-11-25 Kawasaki Steel Corporation Electrical sheet of excellent magnetic characteristics and method of manufacturing the same
US6322639B1 (en) 1998-05-18 2001-11-27 Kawasaki Steel Corporation Magnetic steel sheet having excellent magnetic properties and method of producing the same
JP2004115858A (en) * 2002-09-25 2004-04-15 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property

Similar Documents

Publication Publication Date Title
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
EP0378131B1 (en) A method of manufacturing a grain-oriented electrical steel strip
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH07268469A (en) Sheet material for grain oriented silicon steel sheet with high magnetic flux density
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JP2562257B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JPH0688170A (en) Thick grain-oriented silicon steel sheet excellent in magnetic property
JP4075088B2 (en) Method for producing grain-oriented electrical steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4021503B2 (en) Method for controlling primary recrystallized grain size of grain-oriented electrical steel sheet
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980210