JPH0533056A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH0533056A
JPH0533056A JP21323491A JP21323491A JPH0533056A JP H0533056 A JPH0533056 A JP H0533056A JP 21323491 A JP21323491 A JP 21323491A JP 21323491 A JP21323491 A JP 21323491A JP H0533056 A JPH0533056 A JP H0533056A
Authority
JP
Japan
Prior art keywords
rolling
annealing
cold rolling
steel sheet
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21323491A
Other languages
Japanese (ja)
Inventor
Mitsumasa Kurosawa
光正 黒沢
Toshito Takamiya
俊人 高宮
Fumihiko Takeuchi
文彦 竹内
Takashi Obara
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21323491A priority Critical patent/JPH0533056A/en
Publication of JPH0533056A publication Critical patent/JPH0533056A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic properties by specifying roll diameter and conditions at the time of final cold rolling, respectively, in a method for subjecting a steel slab to hot rolling, to cold rolling where rapid cooling and rolling are done after continuous annealing, to decarburizing annealing, and to final finish annealing. CONSTITUTION:A slab of a steel having a composition containing, by weight, 0.02-0.10% C, 2.5-4.5% Si, 0.05-0.15% Mn, 0.01-0.04% Sb, and further 0.01-0.04% Se and/or 0.01-0.04% S is hot-rolled and cooled rapidly at least before final cold rolling and after continuous annealing at 900-1150 deg.C. Subsequently, this steel stock is cold-rolled once or twice or more, where rolling is made at 40-90% draft. The resulting, steel sheet is subjected to decarburizing annealing and then to final finish annealing, by which a grain-oriented silicon steel sheet can be obtained. In this method, final cold rolling is by plural passes by means of small-diameter rolls of 50-150mm diameter at 150-350 deg.C in the former stage until 30% of the total draft is reached and at <150 deg.C in the remaining latter stage. By this method, the balance between the (110)<001> orientation and the (111)<112> orientation in the texture can be properly regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主にトランスやその
他の電気機器の鉄心材料として使用される方向性けい素
鋼板における磁気特性の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of magnetic properties in grain-oriented silicon steel sheets mainly used as core materials for transformers and other electric equipment.

【0002】この種電気機器の鉄心材料としては、磁気
特性に優れること、具体的には磁場の強さ800 A/mに
おける磁束密度B8 (T)が高く、また50Hzの交流磁束
密度1.7 Tにおける鉄損特性W17/50 (W/kg)が低い
ことが要求される。このため方向性けい素鋼板は、2次
再結晶を利用して{110}<001>方位いわゆるゴ
ス方位の結晶粒を発達させたものである。そして磁気特
性の優れた材料を得るには、適当な圧延と熱処理を組合
せた諸工程を経た後の2次再結晶によって、磁化容易軸
である<001>軸を圧延方向に高度に揃えることが重
要である。特にインヒビターと呼ばれるMnS, MnSe, AlN
等の析出物を均一かつ微細に分散させること及び上記2
次再結晶に有利な集合組織を有することが必須条件であ
るのは既に知られたところである。
As an iron core material of this kind of electric equipment, it has excellent magnetic properties, specifically, high magnetic flux density B 8 (T) at a magnetic field strength of 800 A / m, and AC magnetic flux density of 1.7 T at 50 Hz. The iron loss characteristic W 17/50 (W / kg) in is required to be low. For this reason, the grain-oriented silicon steel sheet is one in which crystal grains of {110} <001> orientation, so-called Goss orientation, are developed by utilizing secondary recrystallization. In order to obtain a material with excellent magnetic properties, it is necessary to align the <001> axis, which is the easy axis of magnetization, to a high degree in the rolling direction by secondary recrystallization after going through various steps that combine appropriate rolling and heat treatment. is important. Especially MnS, MnSe, AlN called inhibitors
Uniformly and finely disperse precipitates such as
It has already been known that it is essential to have a texture that is advantageous for secondary recrystallization.

【0003】[0003]

【従来の技術】2次再結晶に有利な集合組織を得る方法
としては、例えば最終冷間圧延の特に後半でロール径を
300 mm以下にすること(特開昭49−34417 号公報参照)
が方向性けい素鋼板の冷間圧延に広く採用されている。
これは方向性けい素鋼板の冷間圧延によって、すなわち
再結晶集合組織の極く僅かな変化によって、磁気特性が
大きな影響を受けるためである。
2. Description of the Related Art As a method for obtaining a texture advantageous for secondary recrystallization, for example, the roll diameter is changed in the latter half of the final cold rolling.
To be less than 300 mm (see Japanese Patent Laid-Open No. 49-34417)
Is widely used for cold rolling of grain-oriented silicon steel sheets.
This is because the cold rolling of the grain-oriented silicon steel sheet, that is, the slightest change in the recrystallization texture has a great influence on the magnetic properties.

【0004】同様に方向性けい素鋼板の冷間圧延に関し
特開昭54−71028 号及び同57-73127号各公報には、溝付
きロールやダルロール等の特殊なロールを冷間圧延に用
いることが提案され、また特開昭61−238916号公報には
CBS 圧延を用いることが提案されている。これらの方法
はいずれも先鋭な{110}<001>方位粒を強く集
積する効果を期待できるが、ロール磨耗、圧延形状及び
生産性の点で実操業には不向きである。さらに適度な集
合組織を得ることが難しく、2次再結晶粒径の微細化に
伴う磁束密度の著しい低下がしばしば生じる不利があ
る。
Similarly, regarding cold rolling of grain-oriented silicon steel sheets, Japanese Patent Laid-Open Nos. 54-71028 and 57-73127 disclose that special rolls such as grooved rolls and dull rolls are used for cold rolling. Has been proposed, and in JP-A-61-238916,
It has been proposed to use CBS rolling. All of these methods can be expected to have the effect of strongly accumulating sharp {110} <001> oriented grains, but are unsuitable for actual operation in terms of roll wear, rolling shape and productivity. Further, it is difficult to obtain a proper texture, and there is a disadvantage that the magnetic flux density is often significantly reduced due to the refinement of the secondary recrystallized grain size.

【0005】また特公昭50−26493 号及び特開昭60−12
1223号各公報には、冷間圧延において50〜350 ℃或いは
50〜500 ℃の温度域での圧延を施すことによって、冷間
圧延時に生じるすべりを変化して2次再結晶に有利な集
合組織を得ることが示されている。しかしながら上記の
温間圧延は圧延自体が不安定になる等の技術的問題もあ
り、得られる効果に比べて実施に手間がかかるため、工
業的規模での適用は難しい。さらに特開平2−282422号
公報には、小径ロールと温間圧延を組合わせ、特に冷間
圧延の後半に温間圧延を施す、薄手方向性けい素鋼板の
製造方法が提案されているが、冷間圧延後半の温間圧延
は、板の形状制御が困難で、また回復が起こり易いため
適正温度範囲が狭いところに問題が残る。
Japanese Patent Publication No. 50-26493 and Japanese Patent Laid-Open No. 60-12
No. 1223 discloses that in cold rolling, 50 to 350 ° C or
It has been shown that by performing rolling in the temperature range of 50 to 500 ° C., the slip that occurs during cold rolling is changed and a texture that is advantageous for secondary recrystallization is obtained. However, the above-mentioned warm rolling has technical problems such as instability of the rolling itself, and it takes more time to carry out than the effects obtained, so that it is difficult to apply it on an industrial scale. Further, JP-A-2-282422 proposes a method for producing a thin grain-oriented silicon steel sheet by combining a small diameter roll and warm rolling, and particularly performing warm rolling in the latter half of cold rolling. In the warm rolling in the latter half of the cold rolling, it is difficult to control the shape of the plate and recovery is likely to occur, so that a problem remains in a place where the appropriate temperature range is narrow.

【0006】[0006]

【発明が解決しようとする課題】ところで2次再結晶に
有利な集合組織には{110}<001>方位粒の存在
が重要であるが、この結晶粒に蚕食されるマトリックス
の集合組織も極めて重要である。特に{110}<00
1>方位と{111}<112>方位とは良い対応関係
があり、両者のバランスの採り方によって2次再結晶粒
の成長挙動が左右されることがある。上記の従来技術
は、冷間圧延工程で不安定方位である{110}<00
1>方位粒を如何に保存するかに腐心しているが、同時
に{111}<112>方位粒とのバランスを適切に採
らないと2次再結晶は不安定になり、{110}<00
1>方位粒を保存した効果をほとんど有効利用できな
い。そこでこの発明は上記の問題を解消し、もって磁気
特性の優れた方向性けい素鋼板を有利に製造し得る方法
について提案することを目的とする。
By the way, the presence of {110} <001> oriented grains is important for the texture advantageous for secondary recrystallization, and the texture of the matrix eroded by these crystal grains is also extremely large. is important. Especially {110} <00
There is a good correspondence between the 1> orientation and the {111} <112> orientation, and the growth behavior of the secondary recrystallized grains may depend on how to balance the two. The above-mentioned conventional technique has an unstable orientation of {110} <00 in the cold rolling process.
I am concerned about how to store 1> oriented grains, but at the same time, if I do not properly balance with {111} <112> oriented grains, secondary recrystallization becomes unstable and {110} <00
1> The effect of storing the oriented grains cannot be effectively used. Therefore, an object of the present invention is to solve the above problems and propose a method capable of advantageously producing a grain-oriented silicon steel sheet having excellent magnetic properties.

【0007】[0007]

【課題を解決するための手段】この発明は、C:0.02〜
0.10wt%(以下単に%で示す)、Si:2.5 〜4.5 %、M
n:0.05〜0.15%及びSb:0.01〜0.04%を含み、さらにS
e:0.01〜0.04%及びS:0.01〜0.04%のいずれか少な
くとも1種を含有する組成になる鋼スラブを熱間圧延
し、少なくとも最終冷間圧延前に900 〜1150℃の温度域
での連続焼鈍後に急速冷却し次いで圧下率:40〜90%の
範囲の圧延を行う、1回又は2回以上の冷間圧延を施
し、引続き脱炭焼鈍ついで最終仕上げ焼鈍を施す一連の
工程によって方向性けい素鋼板を製造するに当たり、該
最終冷間圧延は、50〜150 mm径の小径ロールを用いた複
数パスにて、全圧下率の30%までの前段は150 〜350 ℃
の温度域で行い、残りの後段は150 ℃未満の温度域で行
うことを特徴とする磁気特性の優れた方向性けい素鋼板
の製造方法である。またこの発明は、さらにsol.Al:0.
01〜0.06wt%及びN:0.003 〜0.015 wt%を含有した組
成になる鋼スラブを用いる磁気特性の優れた方向性けい
素鋼板の製造方法である。
The present invention provides C: 0.02 to
0.10wt% (hereinafter simply expressed as%), Si: 2.5-4.5%, M
n: 0.05 to 0.15% and Sb: 0.01 to 0.04%, and further S
e: 0.01 to 0.04% and S: 0.01 to 0.04% of a steel slab having a composition containing at least one of them is hot-rolled, and continuously at least in the temperature range of 900 to 1150 ° C before the final cold rolling. After annealing, rapid cooling followed by rolling in the range of 40 to 90%, one or more cold rolling, followed by decarburization annealing and final finishing annealing. In producing a raw steel sheet, the final cold rolling is performed in multiple passes using small diameter rolls with a diameter of 50 to 150 mm, and the former stage up to 30% of the total reduction is 150 to 350 ° C.
Is carried out in the temperature range of 1, and the rest of the subsequent steps are carried out in the temperature range of less than 150 ° C, which is a method for producing grain-oriented silicon steel sheet with excellent magnetic properties. In addition, this invention is further sol.Al: 0.
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties using a steel slab having a composition containing 01 to 0.06 wt% and N: 0.003 to 0.015 wt%.

【0008】以下この発明の基礎となった実験結果を詳
細に説明する。発明者らは、2次再結晶に及ぼす温間圧
延の影響に関する実験を行った。実験は、C:0.045
%、Si:3.35%、Mn:0.08%、Se:0.018 %、S:0.01
0%、Sb:0.024 %を含み残部鉄及び不可避不純物から
なる、板厚0.78mmの中間焼鈍後の冷延板を出発材料とし
た。この冷延板を4パスの冷間圧延にて最終板厚:0.27
mmに仕上げるに当たり、温間圧延が最も効果的に作用す
る条件を明らかにするために、各パス毎に温間圧延を行
った。温間圧延は、300 ℃で2分間の加熱後にただちに
圧延を行うものとし、また圧延機のロール径は100 mmと
した。温間圧延後は、湿水素中にて820 ℃で3分間の脱
炭焼鈍を施してから、中で850 ℃で50時間の2次再結晶
焼鈍と、H2 雰囲気にて1200℃で5時間の最終仕上焼鈍
を行った。得られた製品の磁気特性について調べた結果
を表1に示す。
The experimental results, which are the basis of the present invention, will be described in detail below. The inventors conducted experiments on the effect of warm rolling on secondary recrystallization. Experiment is C: 0.045
%, Si: 3.35%, Mn: 0.08%, Se: 0.018%, S: 0.01
A cold-rolled sheet having a sheet thickness of 0.78 mm after the intermediate annealing and containing 0% and Sb: 0.024% and the balance iron and inevitable impurities was used as a starting material. This cold-rolled sheet was cold-rolled in 4 passes to give a final sheet thickness of 0.27
In order to clarify the conditions under which warm rolling works most effectively for finishing to mm, warm rolling was performed for each pass. The warm rolling was carried out by heating immediately after heating at 300 ° C. for 2 minutes, and the roll diameter of the rolling mill was 100 mm. After warm rolling, decarburization annealing was performed at 820 ° C for 3 minutes in wet hydrogen, and then secondary recrystallization annealing was performed at 850 ° C for 50 hours and 1200 ° C for 5 hours in H 2 atmosphere. The final finish annealing was performed. Table 1 shows the results of examining the magnetic properties of the obtained products.

【0009】 [0009]

【0010】同表から、温間圧延を施した鋼板は冷間圧
延のみを施した鋼板よりも磁気特性に優れること、特に
圧延の前段、中でも第1パスのみを温間圧延とした実験
No.3は同No.2のように全て温間圧延とした場合よりもむ
しろ優れた特性の鋼板が得られることが判明した。
From the table, it can be seen that the steel sheet that has been subjected to warm rolling has superior magnetic properties to the steel sheet that has been subjected to only cold rolling.
It was found that No. 3 produced a steel sheet with superior properties, as compared with the case of all No. 2, in which it was warm-rolled.

【0011】次に温間圧延における圧延ロール径の最適
化について実験を行った。実験は上記の実験と同様に0.
60mmまでの温間圧延を100 mm径のロールで行い、その後
種々の径のロールにより残りの圧延を行った。得られた
製品の磁気特性について調べた結果を表2に示す。
Next, an experiment was conducted on optimization of the rolling roll diameter in warm rolling. The experiment is the same as the above experiment.
Warm rolling up to 60 mm was performed with rolls having a diameter of 100 mm, and then the remaining rolling was performed with rolls having various diameters. The results of examining the magnetic properties of the obtained product are shown in Table 2.

【0012】 [0012]

【0013】同表に示した結果から、最終冷延の前段で
温間圧延を施した後150 mm以下の小径ロールで圧延を行
うことによって、温間圧延の効果を高い効率で引出せる
ことが判る。この理由は必ずしも明らかではないが、温
間圧延によって{110}<001>方位の集積を損な
うことなしに、{111}<112>方位の集積も顕著
に図られることが、X線回折の結果から判明している。
From the results shown in the table, it is possible to bring out the effect of warm rolling with high efficiency by carrying out warm rolling in the preceding stage of final cold rolling and then rolling with a small diameter roll of 150 mm or less. I understand. The reason for this is not necessarily clear, but the result of X-ray diffraction shows that the warm rolling can significantly enhance the accumulation of the {111} <112> orientation without impairing the accumulation of the {110} <001> orientation. It is known from.

【0014】さらに温間圧延における温度及び圧下率に
ついても、実験を行った。まず温間圧延温度に関する実
験は、C:0.045 %、Si:3.32%、Mn:0.07%、Se:0.
021 %、Sb:0.026 %を含み残部鉄及び不可避不純物か
らなる連鋳スラブを1430℃で15分間加熱した後板厚2.7m
m の熱延板とし、次いで1000℃で30sの熱延板焼鈍後に
1回目の冷間圧延にて0.78mm厚まで圧延し、1050℃で60
sの中間焼鈍後にロール径90mmのリバースミルにて2回
目の冷間圧延を施した。ここで2回目の冷間圧延は、ミ
ル入口に設けた誘導加熱装置により鋼板温度を50〜400
℃の範囲の種々の温度に変化して0.55mm厚まで圧延し、
その後ストリップクーラントにより室温まで冷却してか
ら0.27mmの最終板厚に仕上げた。さらに湿水素中にて82
0 ℃で3分間の脱炭焼鈍を施してから、MgO を主成分と
する焼鈍分離剤を塗布後に最終仕上焼鈍を行った。得ら
れた製品の磁気特性について調べた結果を図1に示すよ
うに、150 〜350 ℃の温度域での温間圧延を経た鋼板で
良好な磁気特性が得られた。
Further, an experiment was conducted on the temperature and the rolling reduction in the warm rolling. First, the experiment on the warm rolling temperature was as follows: C: 0.045%, Si: 3.32%, Mn: 0.07%, Se: 0.
A continuous cast slab containing 021% and Sb: 0.026% and the balance of iron and inevitable impurities was heated at 1430 ℃ for 15 minutes, and then the plate thickness was 2.7m.
m hot rolled sheet, then hot rolled sheet annealed at 1000 ℃ for 30s, then cold rolled to 0.78mm thickness at 60 ℃ at 1050 ℃
After the intermediate annealing of s, the second cold rolling was performed with a reverse mill having a roll diameter of 90 mm. Here, in the second cold rolling, the steel plate temperature was 50 to 400 by the induction heating device installed at the mill entrance.
Rolled to 0.55 mm thickness by changing to various temperatures in the range of ℃,
After that, it was cooled to room temperature with strip coolant and finished to a final plate thickness of 0.27 mm. 82 in wet hydrogen
After decarburization annealing at 0 ° C. for 3 minutes, final annealing was performed after applying an annealing separating agent containing MgO 2 as a main component. As a result of investigating the magnetic properties of the obtained product, as shown in FIG. 1, good magnetic properties were obtained with the steel sheet that was subjected to warm rolling in the temperature range of 150 to 350 ° C.

【0015】次に温間圧延圧下率に関する実験は、C:
0.040 %、Si:3.35%、Mn:0.07%、Se:0.015 %、S
b:0.022 %、Cu:0.08%、S:0.008 %を含み残部鉄
及び不可避不純物からなる連鋳スラブを1430℃で15分間
加熱した後板厚2.7mm の熱延板とし、次いで1000℃で30
sの熱延板焼鈍後に1回目の冷間圧延にて0.78mm厚まで
圧延し、1050℃で60sの中間焼鈍後にロール径120mm の
リバースミルにて2回目の冷間圧延を施した。ここで2
回目の冷間圧延は、ミル入口に設けた誘導加熱装置によ
り鋼板温度を250 ℃とした上で、圧下率を種々に変化し
た圧延を行い、その後ストリップクーラントにより室温
まで冷却してから0.27mmの最終板厚に仕上げた。さらに
湿水素中にて820 ℃で3分間の脱炭焼鈍を施してから、
MgO を主成分とする焼鈍分離剤を塗布後に最終仕上焼鈍
を行った。得られた製品の磁気特性について調べた結果
を図2に示すように、圧下率30%以下での温間圧延を経
た鋼板で良好な磁気特性が得られた。
Next, an experiment on the rolling reduction of the warm rolling was carried out by C:
0.040%, Si: 3.35%, Mn: 0.07%, Se: 0.015%, S
b: 0.022%, Cu: 0.08%, S: 0.008% Continuous cast slab consisting of balance iron and unavoidable impurities was heated at 1430 ° C for 15 minutes to form a hot rolled sheet with a thickness of 2.7 mm, then at 1000 ° C for 30 minutes.
After the hot-rolled sheet of s was annealed, it was cold-rolled for the first time to a thickness of 0.78 mm, annealed for 60 s at 1050 ° C., and then cold-rolled for the second time by a reverse mill with a roll diameter of 120 mm. 2 here
For the second cold rolling, after the steel plate temperature was set to 250 ° C by the induction heating device installed at the mill inlet, rolling with various reduction ratios was performed, and then it was cooled to room temperature by strip coolant and then 0.27 mm Finished to the final plate thickness. After decarburization annealing in wet hydrogen at 820 ° C for 3 minutes,
After the annealing separator containing MgO as a main component was applied, final finish annealing was performed. As a result of examining the magnetic properties of the obtained product, as shown in FIG. 2, good magnetic properties were obtained with the steel sheet that had been subjected to warm rolling at a rolling reduction of 30% or less.

【0016】[0016]

【作用】この発明の出発材となる鋼スラブは、C:0.02
〜0.10%、Si:2.5 〜4.5 %、Mn:0.05〜0.15%、Sb:
0.01〜0.04%を含み、さらにSe:0.01〜0.04%及びS:
0.01〜0.04%を含有する成分組成、またこの成分組成
に、sol.Al:0.01〜0.06%及びN:0.003 〜0.015 %を
含有する成分組成が適合する。以下に各成分の含有量の
限定理由を説明する。 C:0.02〜0.10% Cは、熱延時にγ変態を利用するために0.02%以上は必
要であるが、0.10%を越すと後工程の脱炭焼鈍が困難と
なる。 Si:2.5 〜4.5 % Siは、2.5 %より少ない場合は電気抵抗が低く鉄損特性
の向上が望めず、一方4.5 %を越すと冷間圧延が著しく
困難となる。 Mn:0.05〜0.15%、Se及び/又はS:0.01〜0.04% MnとSe及びSは、MnSe, MnS を形成するために必要な成
分であり、Mnの適量は0.03〜0.15%、Se及び/又はSは
0.01%より少ないとMnSe, MnS の量が不足し、0.04%を
越すと均一微細なサイズに分散析出させることが困難と
なる。 Sb:0.01〜0.04% Sbはインヒビターの補強のほか、温間圧延を行う場合に
鋼板の酸化抑制に寄与し、0.01%に満たないと効果に乏
しく、一方0.04%をこえると脱炭性が著しく阻害され
る。 sol.Al:0.01〜0.06%、N:0.003 〜0.015 % Al及びNはAlN を形成するにはそれぞれ0.01%及び0.00
3 %は必要であり、一方0.06%及び0.015 %をこえると
焼鈍後に、ブリスターと呼ばれるふくれ欠陥が生じやす
いので好ましくない。
The steel slab as the starting material of the present invention has a C: 0.02
~ 0.10%, Si: 2.5-4.5%, Mn: 0.05-0.15%, Sb:
0.01-0.04%, further Se: 0.01-0.04% and S:
A component composition containing 0.01 to 0.04% and a component composition containing sol.Al: 0.01 to 0.06% and N: 0.003 to 0.015% are suitable. The reasons for limiting the content of each component will be described below. C: 0.02 to 0.10% C requires 0.02% or more in order to utilize the γ transformation during hot rolling, but if it exceeds 0.10%, decarburization annealing in the subsequent step becomes difficult. Si: 2.5-4.5% If Si is less than 2.5%, the electric resistance is low and improvement in iron loss characteristics cannot be expected, while if it exceeds 4.5%, cold rolling becomes extremely difficult. Mn: 0.05 to 0.15%, Se and / or S: 0.01 to 0.04% Mn and Se and S are components necessary to form MnSe and MnS, and a suitable amount of Mn is 0.03 to 0.15%, Se and / or Or S is
If it is less than 0.01%, the amount of MnSe and MnS will be insufficient, and if it exceeds 0.04%, it will be difficult to disperse and precipitate it in a uniform fine size. Sb: 0.01 to 0.04% Sb contributes not only to the reinforcement of the inhibitor but also to the oxidation inhibition of the steel sheet during warm rolling. If it is less than 0.01%, the effect is poor, while if it exceeds 0.04%, the decarburizing property is remarkable. Be hindered. sol.Al: 0.01 to 0.06%, N: 0.003 to 0.015% Al and N are 0.01% and 0.00, respectively, to form AlN.
3% is necessary, while if it exceeds 0.06% and 0.015%, blistering defects called blister are likely to occur after annealing, which is not preferable.

【0017】なお上記成分の他にも、Cu, Sn, Cr, Ni及
びMo等公知の元素を1種あるいは複合で含むことは問題
ない。これらの元素の添加量の許容最高値は、Cu, Sn,
Cr,Niは0.3 %、Moは0.10%である。すなわちCu, Sn, C
r, Ni等については、0.3 %を越すと磁気特性が劣化す
るだけでなく、酸洗性、脱炭性が悪くなり好ましくな
い。またMoについても0.05%を越すと著しく脱炭性を阻
害するため好ましくない。
In addition to the above-mentioned components, there is no problem in containing known elements such as Cu, Sn, Cr, Ni and Mo in one kind or in combination. The maximum allowable amount of these elements added is Cu, Sn,
Cr and Ni are 0.3% and Mo is 0.10%. Ie Cu, Sn, C
When r, Ni and the like exceed 0.3%, not only the magnetic properties are deteriorated but also the pickling property and the decarburizing property are deteriorated, which is not preferable. Also, when Mo exceeds 0.05%, decarburizing property is significantly impaired, which is not preferable.

【0018】上記成分組成になる溶鋼は、常法に従う製
鋼及び鋳造工程にてスラブとなし、1350℃以上の高温で
インヒビター成分の溶体化処理を施したのち、熱間圧延
により熱延板とする。
The molten steel having the above component composition is formed into a slab in the steel making and casting process according to a conventional method, and is subjected to solution treatment of the inhibitor component at a high temperature of 1350 ° C. or higher, and then hot rolled to obtain a hot rolled sheet. .

【0019】次いで熱延板焼鈍後に1回又は中間焼鈍を
挟む2回以上の冷間圧延を行うが、それぞれ圧下率は40
〜90%が必要で、圧下率がこの範囲を外れると良好な2
次再結晶組織が得られない。さらに最終冷延は、50〜15
0 mmの小径ロールを用いた複数パスにて、全圧下率の30
%までの前段は150 〜350 ℃の温度域で行い、残りの後
段は150 ℃未満の温度域で行うことが肝要である。ここ
で温間圧延は150 ℃未満であると{110}<001>
方位粒の形成が困難であり、一方350℃をこえると回復
が起こって温間圧延による効果が減少する。さらに最終
冷延の前段、すなわち全圧下率の30%までを温間圧延に
することで低鉄損化をはかれるが、全圧下率が30%をこ
えたパスを温間圧延とすると、板形状の悪化をまねく等
の操業上の問題が発生するばかりか、集合組織のバラン
スが損なわれる。また最終冷延の後段を150 ℃以上の温
度域で行うと、2次再結晶粒の成長に有利な{110}
<001>方位粒の減少が著しく、前段の温間圧延の効
果を十分に発揮できない。なおロール径は、50mmより小
さいと圧延速度を増すことが困難になり、一方150 mmを
こえると{110}<001>方位粒の保存が困難にな
る。
Next, after the hot-rolled sheet is annealed, it is cold rolled once or twice or more with intervening annealing, and the rolling reduction is 40.
~ 90% is required, and if the rolling reduction is out of this range, it is good.
Secondary recrystallized structure cannot be obtained. Furthermore, the final cold rolling is 50 to 15
With multiple passes using 0 mm small diameter rolls, the total rolling reduction is 30
It is important that the first stage up to 100% be performed in the temperature range of 150 to 350 ° C, and the remaining second stage be performed in the temperature range of less than 150 ° C. Here, if the warm rolling is less than 150 ° C, {110} <001>
It is difficult to form oriented grains, while if the temperature exceeds 350 ° C, recovery occurs and the effect of warm rolling decreases. Furthermore, the iron loss can be reduced by warm rolling up to 30% of the total rolling reduction before the final cold rolling, but if the pass with the total rolling reduction of more than 30% is warm rolling, the strip shape In addition to the occurrence of operational problems such as deterioration of the quality, the balance of the texture is impaired. In addition, if the latter stage of final cold rolling is performed in a temperature range of 150 ° C or higher, it is advantageous for the growth of secondary recrystallized grains {110}.
The reduction of <001> oriented grains is remarkable, and the effect of the warm rolling in the preceding stage cannot be sufficiently exhibited. If the roll diameter is smaller than 50 mm, it becomes difficult to increase the rolling speed, while if it exceeds 150 mm, it becomes difficult to store {110} <001> oriented grains.

【0020】[0020]

【実施例】実施例1 表3に示す組成になる溶鋼を連続鋳造によりスラブと
し、1430℃で15分の高温再加熱後、板厚2.0mm の熱延板
とし、1000℃で30sの熱延板焼鈍後に1回目の冷間圧延
を行って0.62mm厚の冷延板としてから、1100℃で60sの
中間焼鈍を施した。その後ロール径が80mm及び350 mmの
ミルでそれぞれ0.45mm厚までの圧延を250℃の温度域で
行い、次いで室温での冷間圧延を行って0.23mmの最終板
厚に仕上げた。次いで湿水素雰囲気で820℃で2分間
の脱炭焼鈍を施した後MgO を主成分とした焼鈍分離剤を
塗布してから、N2 雰囲気にて850℃で2次再結晶焼
鈍、そして仕上焼鈍を施した。かくして得られた製品の
磁気特性について調べた結果を表4に示すように、この
発明の適用により、良好な磁気特性が得られた。
Example 1 A molten steel having the composition shown in Table 3 was continuously cast into a slab, which was reheated at 1430 ° C. for 15 minutes at a high temperature and then a hot-rolled sheet with a thickness of 2.0 mm was obtained. After the sheet annealing, the first cold rolling was performed to obtain a cold-rolled sheet having a thickness of 0.62 mm, and then intermediate annealing was performed at 1100 ° C. for 60 seconds. After that, rolling was performed to a thickness of 0.45 mm in a mill having roll diameters of 80 mm and 350 mm, respectively, in a temperature range of 250 ° C., and then cold rolling was performed at room temperature to finish to a final plate thickness of 0.23 mm. Next, decarburization annealing was performed at 820 ° C. for 2 minutes in a wet hydrogen atmosphere, and then an annealing separator containing MgO as a main component was applied, followed by secondary recrystallization annealing at 850 ° C. in N 2 atmosphere, and finish annealing. Was applied. As a result of examining the magnetic properties of the product thus obtained, as shown in Table 4, by applying the present invention, good magnetic properties were obtained.

【0021】 [0021]

【0022】 [0022]

【0023】実施例2 C:0.078 %、Si:3.30%、Mn:0.07%、Se:0.019
%、Sb:0.022 %、Cu:0.08%、sol.Al:0.026 %、
N:0.0085%を含み残部鉄及び不可避不純物からなる連
鋳スラブを1420℃で25分間加熱後、熱間圧延して板厚2.
4mm の熱延板とし、その後熱延板に1100℃で60sの熱延
板焼鈍を施してから室温まで急冷し、引き続きロール径
100mm のリバースミルにて冷間圧延を施した。冷間圧延
は、ミル入口に設けた誘導加熱装置により鋼板温度を30
0 ℃として1.8 mm厚まで圧延し、その後ストリップクー
ラントにより室温まで冷却してから0.30mmの最終板厚に
仕上げた。また比較として、温間圧延を省略して0.30mm
の最終板厚に仕上げる冷間圧延も行った。さらに湿水素
中にて850℃で4分間の脱炭焼鈍を施した後MgO を主
成分とした焼鈍分離剤を塗布してから、N2 :25%,
2 :75%の雰囲気にて2次再結晶焼鈍、仕上焼鈍を
施した。かくして得られた製品の磁気特性について調べ
たところ、 適合例:B8 =1.94T,W17/50 =0.98 W/kg 比較例:B8 =1.86T,W17/50 =1.25 W/kg であった。
Example 2 C: 0.078%, Si: 3.30%, Mn: 0.07%, Se: 0.019
%, Sb: 0.022%, Cu: 0.08%, sol.Al: 0.026%,
N: A continuous cast slab containing 0.0085% and the balance of iron and unavoidable impurities was heated at 1420 ° C for 25 minutes and then hot rolled to obtain a sheet thickness of 2.
4mm hot rolled sheet, then hot rolled sheet annealed at 1100 ℃ for 60s, then rapidly cooled to room temperature, then roll diameter
Cold rolling was performed with a 100 mm reverse mill. Cold rolling uses a induction heating device installed at the mill entrance to reduce the steel plate temperature to 30
It was rolled at 0 ° C to a thickness of 1.8 mm, then cooled to room temperature with a strip coolant, and finished to a final thickness of 0.30 mm. For comparison, warm rolling is omitted and 0.30 mm
Was also cold-rolled to the final sheet thickness. Further MgO was subjected to decarburization annealing for four minutes at 850 ° C. after applying the annealing separator consisting mainly at wet hydrogen, N 2: 25%,
Secondary recrystallization annealing and finish annealing were performed in an atmosphere of H 2 : 75%. The magnetic properties of the product thus obtained were examined, and it was found that the conformity example: B 8 = 1.94 T, W 17/50 = 0.98 W / kg, and the comparative example: B 8 = 1.86 T, W 17/50 = 1.25 W / kg. there were.

【0024】実施例3 表5に示す組成になる溶鋼を連続鋳造によりスラブと
し、1430℃で15分間の高温再加熱後、板厚2.7mm の熱延
板とし、1000℃で30sの熱延板焼鈍後に1回目の冷間圧
延を行って1.50mm厚の冷延板としてから、1100℃で60s
の中間焼鈍を施した。その後ロール径が80mm及び350 mm
のミルでそれぞれ1.10mm厚までの圧延を300 ℃の温度域
で行い、次いで室温での冷間圧延を行って0.23mmの最終
板厚に仕上げた。次いで湿水素雰囲気で850℃で2分
間の脱炭焼鈍を施した後MgO を主成分とした焼鈍分離剤
を塗布してから、N2 :25%,H2 :75%雰囲気に
て2次再結晶焼鈍、仕上焼鈍を施した。かくして得られ
た製品の磁気特性について調べた結果を表6に示すよう
に、この発明の適用により、良好な磁気特性が得られ
た。
Example 3 Molten steel having the composition shown in Table 5 was continuously cast into a slab, which was reheated at 1430 ° C. for 15 minutes at a high temperature and then a hot rolled sheet having a thickness of 2.7 mm and a hot rolled sheet at 1000 ° C. for 30 s. After annealing, the first cold rolling to make 1.50mm thick cold rolled sheet, then 60 seconds at 1100 ℃
Was subjected to intermediate annealing. Then the roll diameter is 80 mm and 350 mm
Each mill was rolled to a thickness of 1.10 mm in the temperature range of 300 ° C, and then cold-rolled at room temperature to a final plate thickness of 0.23 mm. Then, decarburization annealing was performed at 850 ° C. for 2 minutes in a wet hydrogen atmosphere, and then an annealing separating agent containing MgO as a main component was applied, followed by secondary re-annealing in an N 2 : 25%, H 2 : 75% atmosphere. Crystal annealing and finish annealing were performed. As a result of examining the magnetic properties of the product thus obtained, as shown in Table 6, by applying the present invention, good magnetic properties were obtained.

【0025】 [0025]

【0026】 [0026]

【0027】[0027]

【発明の効果】この発明によれば、2次再結晶に有利な
集合組織を得るための温間圧延に最適の条件を与えるこ
とができ、よって優れた磁気特性の方向性けい素鋼板を
提供し得る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide optimum conditions for warm rolling for obtaining a texture advantageous for secondary recrystallization, and thus to provide a grain-oriented silicon steel sheet having excellent magnetic properties. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気特性に及ぼす圧延温度の影響を示すグラフ
である。
FIG. 1 is a graph showing the effect of rolling temperature on magnetic properties.

【図2】磁気特性に及ぼす圧延圧下率の影響を示すグラ
フである。
FIG. 2 is a graph showing the effect of rolling reduction on magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 文彦 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 小原 隆史 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fumihiko Takeuchi             1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.             Corporate Technology Research Division (72) Inventor Takashi Ohara             1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.             Corporate Technology Research Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.02〜0.10wt%、Si:2.5 〜4.5 wt
%、Mn:0.05〜0.15wt%及びSb:0.01〜0.04wt%を含
み、さらにSe:0.01〜0.04wt%及びS:0.01〜0.04wt%
のいずれか少なくとも1種を含有する組成になる鋼スラ
ブを熱間圧延し、少なくとも最終冷間圧延前に900 〜11
50℃の温度域での連続焼鈍後に急速冷却し次いで圧下
率:40〜90%の範囲の圧延を行う、1回又は2回以上の
冷間圧延を施し、引続き脱炭焼鈍ついで最終仕上げ焼鈍
を施す一連の工程によって方向性けい素鋼板を製造する
に当たり、該最終冷間圧延は、50〜150 mm径の小径ロー
ルを用いた複数パスにて、全圧下率の30%までの前段は
150 〜350 ℃の温度域で行い、残りの後段は150℃未満
の温度域で行うことを特徴とする磁気特性の優れた方向
性けい素鋼板の製造方法。
1. C: 0.02-0.10 wt%, Si: 2.5-4.5 wt
%, Mn: 0.05 to 0.15 wt% and Sb: 0.01 to 0.04 wt%, further Se: 0.01 to 0.04 wt% and S: 0.01 to 0.04 wt%
Steel slab having a composition containing at least one of the above is hot-rolled and at least 900 to 11 before the final cold rolling.
After continuous annealing in the temperature range of 50 ° C, rapid cooling followed by rolling in the rolling reduction range of 40 to 90%, one or more cold rolling, followed by decarburization annealing and final finishing annealing. In producing a grain-oriented silicon steel sheet by a series of steps to be performed, the final cold rolling is performed in multiple passes using a small diameter roll having a diameter of 50 to 150 mm, and the former stage up to 30% of the total rolling reduction is
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, which is performed in a temperature range of 150 to 350 ° C, and the rest of the subsequent steps are performed in a temperature range of less than 150 ° C.
【請求項2】 鋼スラブは、さらにsol.Al:0.01〜0.06
wt%及びN:0.003〜0.015 wt%を含有する組成になる
請求項1に記載の方法。
2. The steel slab further comprises sol.Al: 0.01-0.06.
The method according to claim 1, which has a composition containing wt% and N: 0.003 to 0.015 wt%.
JP21323491A 1991-07-31 1991-07-31 Production of grain-oriented silicon steel sheet excellent in magnetic property Pending JPH0533056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21323491A JPH0533056A (en) 1991-07-31 1991-07-31 Production of grain-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21323491A JPH0533056A (en) 1991-07-31 1991-07-31 Production of grain-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH0533056A true JPH0533056A (en) 1993-02-09

Family

ID=16635752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21323491A Pending JPH0533056A (en) 1991-07-31 1991-07-31 Production of grain-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH0533056A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268469A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Sheet material for grain oriented silicon steel sheet with high magnetic flux density
EP0723026A1 (en) * 1993-07-22 1996-07-24 Kawasaki Steel Corporation Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
US8236110B2 (en) 2007-04-24 2012-08-07 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet
CN116460139A (en) * 2023-03-23 2023-07-21 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723026A1 (en) * 1993-07-22 1996-07-24 Kawasaki Steel Corporation Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
JPH07268469A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Sheet material for grain oriented silicon steel sheet with high magnetic flux density
US8236110B2 (en) 2007-04-24 2012-08-07 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet
CN116460139A (en) * 2023-03-23 2023-07-21 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof
CN116460139B (en) * 2023-03-23 2024-01-02 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof

Similar Documents

Publication Publication Date Title
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3160281B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPH09157745A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
US5667598A (en) Production method for grain oriented silicion steel sheet having excellent magnetic characteristics
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH0533056A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH04301035A (en) Production of grain-oriented silicon steel sheet having magnetic property uniform in longitudinal direction
WO2022163723A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing electromagnetic steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP3885240B2 (en) Method for producing unidirectional silicon steel sheet
JP2574583B2 (en) Method for manufacturing oriented silicon steel sheet with good iron loss
JPH0257125B2 (en)
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP3451652B2 (en) Method for producing unidirectional silicon steel sheet