JPH0832929B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Info

Publication number
JPH0832929B2
JPH0832929B2 JP1001778A JP177889A JPH0832929B2 JP H0832929 B2 JPH0832929 B2 JP H0832929B2 JP 1001778 A JP1001778 A JP 1001778A JP 177889 A JP177889 A JP 177889A JP H0832929 B2 JPH0832929 B2 JP H0832929B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
electrical steel
diameter
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1001778A
Other languages
Japanese (ja)
Other versions
JPH02182866A (en
Inventor
延幸 ▲高▼橋
康成 ▲吉▼富
正 中山
義行 牛神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1001778A priority Critical patent/JPH0832929B2/en
Priority to DE1990630771 priority patent/DE69030771T2/en
Priority to EP90100231A priority patent/EP0378131B1/en
Publication of JPH02182866A publication Critical patent/JPH02182866A/en
Publication of JPH0832929B2 publication Critical patent/JPH0832929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、トランス等の鉄心として使用される一方向
性電磁鋼板の製造方法に関する。
The present invention relates to a method for producing a grain-oriented electrical steel sheet used as an iron core of a transformer or the like.

〔従来の技術〕 一方向性電磁鋼板は、主にトランスその他の電磁機器
の鉄心材料として使用されており、励磁特性,鉄損特性
等の磁気特性に優れていることが要求される。励磁特性
を表す数値としては、磁場の強さ800A/mにおける磁束密
度B8が通常使用される。また、鉄損得性を表す数値とし
ては、周波数50Hzで1.7テスラー(T)まで磁化したと
きの1kg当りの鉄損W17/50を使用している。磁束密度
は、鉄損特性の最大支配因子であり、一般的にいって磁
束密度が高いほど鉄損特性が良好になる。なお、一般的
に磁束密度を高くすると二次再結晶粒が大きくなり、鉄
損特性が不良となる場合がある。これに対しては、磁区
制御により、二次再結晶粒の粒径に拘らず、鉄損特性を
改善することができる。
[Prior Art] Unidirectional electrical steel sheets are mainly used as core materials for transformers and other electromagnetic equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. A magnetic flux density B 8 at a magnetic field strength of 800 A / m is usually used as a numerical value indicating the excitation characteristic. Moreover, as a numerical value showing iron loss profitability, iron loss W17 / 50 per 1 kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is used. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

この一方向性電磁鋼板は、最終仕上げ焼鈍工程で二次
再結晶を起こさせ、鋼板面に{110},圧延方向に<001
>軸をもったいわゆるゴス組織を発達させることにより
製造されている。良好な磁気特性を得るためには、磁化
容易軸である<001>を圧延方向に高度に揃えることが
必要である。二次再結晶粒の方向性は、MnS,AlN等をイ
ンヒビターとして利用し、最終強圧下圧延を施す方法に
よって大幅に改善され、それに伴って鉄損特性も著しく
向上する。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finish annealing process, resulting in {110} on the steel sheet surface and <001 in the rolling direction.
> Manufactured by developing a so-called Goth texture with axis. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy axis of magnetization, in the rolling direction. The directionality of the secondary recrystallized grains is significantly improved by the method of using MnS, AlN, etc. as inhibitors and performing the final strong reduction rolling, and accordingly the iron loss characteristics are also significantly improved.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、一方向性電磁鋼板の製造においては各工程
の種々の要因が磁気特性に影響を与えるため、各工程の
条件に対して極めて厳しい基準を設けている。そのた
め、多大な労力が工程管理に費やされる。それにも拘ら
ず、原因不明の二次再結晶不良,磁気特性不良等が発生
することも少なくない。
By the way, in the production of the grain-oriented electrical steel sheet, various factors in each process influence the magnetic characteristics, and therefore extremely strict standards are set for the conditions in each process. Therefore, a great deal of labor is spent on process control. Nevertheless, it is not uncommon for secondary recrystallization defects, magnetic property defects, etc. of unknown cause to occur.

この対策として、製品の二次再結晶不良発生,磁気特
性を途中段階で予測できれば、製造条件,材質,表面性
状等に由来する問題を解消して、二次再結晶が良好で磁
気特性が向上する条件下での製造が可能となる。しか
し、これまでのところ、種々の試みにも拘らず、二次再
結晶不良発生,磁気特性を予測することは困難であっ
た。
As a countermeasure against this, if the occurrence of secondary recrystallization defects and magnetic properties of the product can be predicted at an intermediate stage, problems due to manufacturing conditions, materials, surface properties, etc. can be solved, and secondary recrystallization is good and magnetic properties are improved. It is possible to manufacture under the conditions. However, so far, it has been difficult to predict the occurrence of secondary recrystallization failure and magnetic properties, despite various attempts.

そこで、本発明は、脱炭焼鈍後で、最終仕上げ焼鈍前
の板材がもつ結晶組織が二次再結晶不良発生,磁気特性
に大きな影響を与えるという新たな知見をもとにして、
この結晶組織を特定することにより、優れた磁気特性を
もつ一方向性電磁鋼板を得ることを目的とする。
Therefore, the present invention is based on a new finding that the crystal structure of the plate material before the final finish annealing after decarburization annealing has a large influence on the occurrence of secondary recrystallization defects and magnetic properties.
By specifying this crystal structure, it is an object to obtain a grain-oriented electrical steel sheet having excellent magnetic properties.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の一方向性電磁鋼板の製造方法は、その目的を
達成するために、一方向性電磁鋼板用の鋼片を、1300℃
以下の温度に加熱した後熱延し、最終冷延圧下率80%以
上の1回ないし中間焼鈍を挟む2回以上の冷間圧延を施
し、更に脱炭焼鈍を行って一次再結晶粒径の平均直径
を15μm以上50μm以下、直径の変動係数σを0.6以
下とし、脱炭焼鈍完了後仕上げ焼鈍の二次再結晶開始ま
でに、浸窒又は浸硫によりAlN又はMnSなるインヒビター
の強化を行い、仕上げ焼鈍をすることを特徴とする。
The method for producing a unidirectional electrical steel sheet according to the present invention, in order to achieve the object, a slab for unidirectional electrical steel sheet, 1300 ° C
After heating to the following temperature, hot rolling is performed, and final cold rolling reduction of 80% or more is performed once or two or more times of cold rolling with intermediate annealing sandwiched, and further decarburization annealing is performed to determine the primary recrystallized grain size. The average diameter is 15 μm or more and 50 μm or less, the variation coefficient σ * of the diameter is 0.6 or less, and the inhibitor such as AlN or MnS is strengthened by nitrification or sulfurization before the secondary recrystallization of the final annealing after the completion of decarburization annealing. It is characterized by performing finish annealing.

更に、この特徴に加えて、圧下率80%以下の最終強圧
下圧延を施すことによって、一層磁気特性の優れた一方
向性電磁鋼板が得られる。
Further, in addition to this feature, a final strong reduction rolling with a reduction rate of 80% or less can be performed to obtain a grain-oriented electrical steel sheet having more excellent magnetic properties.

〔作用〕[Action]

本発明が対象としている一方向性電磁鋼板は、従来用
いられている製鋼法で得られた溶鋼を連続鋳造法或いは
造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブ
とし、引き続き熱間圧延して熱延板とし、この熱延板を
必要に応じて焼鈍した後、1回の冷延又は中間焼鈍を挟
んだ2回以上の冷延によって最終ゲージの冷延板とし、
この冷延板を脱炭焼鈍する。
The unidirectional electrical steel sheet that is the subject of the present invention is a molten steel obtained by a conventional steelmaking method, is cast by a continuous casting method or an ingot making method, and is a slab by sandwiching the agglomeration step, if necessary. Successively hot rolled into a hot rolled sheet, annealed this hot rolled sheet as needed, and then cold rolled one time or two or more times with intermediate annealing sandwiched between them to obtain a final gauge cold rolled sheet,
This cold rolled sheet is decarburized and annealed.

本発明者等は、この脱炭焼鈍後の結晶組織に着目し、
脱炭焼鈍後の鋼板(以下、これを脱炭焼鈍板という)の
結晶組織と製品の磁気特性(磁束密度)との関係を種々
の観点から広範囲にわたって研究したところ、両者の間
に極めて密接な関係があることを発見した。以下、実験
結果を基に詳細に説明する。
The present inventors focused their attention on the crystal structure after decarburization annealing,
The relationship between the crystal structure of the decarburized and annealed steel sheet (hereinafter referred to as the decarburized and annealed sheet) and the magnetic property (magnetic flux density) of the product was extensively studied from various viewpoints, and it was found that the relationship between the two was extremely close. I've found a relationship. The details will be described below based on the experimental results.

第1図及び第2図は、光学顕微鏡で観察した脱炭焼鈍
板の結晶組織(断面全厚)を画像解析することによって
求めた一次再結晶粒の平均直径(円相当)及び直径の
変動係数σが製品の磁束密度B8に与える影響を表した
グラフであるまた、第3図は、平均直径,直径の変動
係数σが異なった脱炭焼鈍板の結晶組織(断面全厚)
の例である。
1 and 2 are the average diameter (corresponding to a circle) of primary recrystallized grains and the coefficient of variation of diameter obtained by image analysis of the crystal structure (total cross-section thickness) of the decarburized annealed plate observed with an optical microscope. FIG. 3 is a graph showing the effect of σ * on the magnetic flux density B 8 of the product. Further, FIG. 3 shows the crystal structure (total cross-section thickness) of decarburized annealed sheets having different average diameters and coefficient of variation σ * of diameters.
Is an example of.

ここでは、C0.020〜0.090重量%,Si3.2〜3.3重量%,
酸可溶性Al0.010〜0.045重量%,N0.0030〜0.0100重量
%,S0.0030〜0.0300重量%,Mn0.070〜0.500重量%を含
有するスラブを1150〜1400℃に加熱し、2.3mm厚の熱延
板に熱延し、900〜1200℃の温度で熱延板焼鈍を行い、
約88%の最終強圧下圧延を行って最終板厚0.285mmの冷
延板とし、830〜1000℃の温度で脱炭約鈍を行い、引き
続いてMgOを主成分とする焼鈍分離剤を塗布して最終仕
上げ焼鈍を行った。
Here, C0.020 ~ 0.090wt%, Si3.2 ~ 3.3wt%,
Slab containing acid-soluble Al 0.010-0.045% by weight, N0.0030-0.0100% by weight, S0.0030-0.0300% by weight, Mn0.070-0.500% by weight is heated to 1150-1400 ° C and has a thickness of 2.3 mm. Hot-rolled the hot-rolled sheet, annealing the hot-rolled sheet at a temperature of 900 ~ 1200 ℃,
Final cold reduction of about 88% was performed to make a cold-rolled sheet with a final thickness of 0.285 mm, decarburization was performed at a temperature of 830 to 1000 ° C, and subsequently an annealing separator containing MgO as the main component was applied. Final finish annealing was performed.

第1図及び第2図から明らかなように、平均直径≧
15μmで且つ直径の変動係数σ≦0.6の範囲で、B8
1.88Tの高い磁束密度が得られている。また、第1図及
び第2図は、脱炭焼鈍板の平均直径及び直径の変動係
数σを適正範囲にすることによって、二次再結晶及び
磁気特性を良好とすることが可能であることを示してい
る。
As is clear from FIGS. 1 and 2, the average diameter ≧
B 8 ≧ 15 μm and diameter variation coefficient σ * ≦ 0.6
A high magnetic flux density of 1.88T is obtained. In addition, FIGS. 1 and 2 show that secondary recrystallization and magnetic properties can be improved by setting the average diameter of the decarburized annealed sheet and the coefficient of variation σ * of the diameter within an appropriate range. Is shown.

脱炭焼鈍板の平均直径及び直径の変動係数σと製
品の二次再結晶不良発生,磁束密度B8との間に第1図及
び第2図に示した関係が成立する理由については、必ず
しも明らかではないが、本発明者等は次のように推察し
ている。
The reason why the relationship shown in FIGS. 1 and 2 is established between the average diameter of the decarburized annealed sheet and the coefficient of variation σ * of the diameter, the occurrence of secondary recrystallization failure of the product, and the magnetic flux density B 8 is as follows. Although not always clear, the present inventors speculate as follows.

二次再結晶の方位を含めて二次再結晶現象に影響する
因子としては、一次再結晶の結晶組織(平均直径,粒径
分布),集合組織,インヒビター強度等がある。一次再
結晶完了後、粒成長に伴って集合組織,粒径分布に変化
が生じるので、平均直径は間接的に集合組織,粒径分布
をも表している。また、脱炭焼鈍板の平均直径そのもの
は、粒界面積の総和(単位面積当り)に逆比例する量で
あり、これらの粒界エネルギーが二次再結晶粒の粒成長
の駆動力となる。したがって、平均直径は、二次再結晶
現象に影響をすると考えられる集合組織,粒径分布,流
会面積の総和を同時に記述するパラメータと考えるおと
ができる。
Factors that influence the secondary recrystallization phenomenon, including the orientation of secondary recrystallization, include the crystal structure (average diameter, particle size distribution) of primary recrystallization, texture, inhibitor strength, and the like. After the completion of primary recrystallization, the texture and grain size distribution change with grain growth, so the average diameter also indirectly represents the texture and grain size distribution. Further, the average diameter of the decarburized annealed plate itself is an amount inversely proportional to the total grain boundary area (per unit area), and these grain boundary energies serve as the driving force for grain growth of the secondary recrystallized grains. Therefore, the average diameter can be considered as a parameter that simultaneously describes the texture, the grain size distribution, and the sum total of the flow area, which are considered to influence the secondary recrystallization phenomenon.

ところで、集合組織は、二次再結晶する方位粒({11
0}<001>方位粒等),二次再結晶粒を粒成長させ易い
方位粒({111}<112>方位粒等),それ以外の方位粒
の量的割合を表し、粒径分布は、二次再結晶粒の核化,
粒成長の不均一性に影響を与え、粒界面積の総和は、二
次再結晶粒の核化,粒成長の容易さに影響する。したが
って、集合組織,粒径分布,粒界面積の総和を同時に記
述するパラメータである平均直径は、二次再結晶方位
と強い相関があると推察される。
By the way, the texture is oriented grains ({11
(0} <001> oriented grains, etc.), oriented grains in which secondary recrystallized grains are likely to grow ({111} <112> oriented grains, etc.) and other oriented grains. , Nucleation of secondary recrystallized grains,
It affects the non-uniformity of grain growth, and the total grain boundary area affects the nucleation of secondary recrystallized grains and the ease of grain growth. Therefore, it is estimated that the average diameter, which is a parameter that simultaneously describes the texture, the grain size distribution, and the total grain boundary area, has a strong correlation with the secondary recrystallization orientation.

他方、直径の変動係数σは、粒径の不均一性を表
し、直径の変動係数σが高まると二次再結晶粒の格
化,粒成長が難しくなり、二次再結晶不良が発生するも
のと推察される。
On the other hand, the coefficient of variation sigma * The diameter represents the non-uniformity of particle size, variation coefficient sigma * increases when the secondary recrystallized grains of Kakuka diameter, the grain growth is difficult, the secondary recrystallization defect occurred It is presumed to do.

このように、直径の変動係数σは二次再結晶の不良
発生と密接な関係にあり、脱炭焼鈍板の平均直径は二
次再結晶が良好な場合の磁束密度と密接な関係にある。
そこで、これらパラメータを所定範囲に制御することに
よって、高い磁束密度B8をもつ製品を歩留り良く製造す
ることが可能となる。
Thus, the variation coefficient σ * of diameter is closely related to the occurrence of defects in secondary recrystallization, and the average diameter of the decarburized annealed plate is closely related to the magnetic flux density when secondary recrystallization is good. .
Therefore, by controlling these parameters within a predetermined range, it becomes possible to manufacture a product having a high magnetic flux density B 8 with high yield.

次いで、本発明の各要件について説明する。 Next, each requirement of the present invention will be described.

本発明で使用されるスラプの成分は,特に限定される
ものではないが、磁気特性を安定させる上で,0.025〜0.
100重量%のC及び2.5〜4.5重量%のSiを含有している
ことが好ましい。また、インヒビター構成元素として、
必要に応じてAl,N,Mn,S,Se,Sb,B,Cu,Bi,Nb,Cr,Sn,Ti等
を添加することもできる。
The sap component used in the present invention is not particularly limited, but in order to stabilize the magnetic properties, it is 0.025 to 0.
It preferably contains 100% by weight C and 2.5-4.5% by weight Si. Also, as an inhibitor constituent element,
If necessary, Al, N, Mn, S, Se, Sb, B, Cu, Bi, Nb, Cr, Sn, Ti and the like can be added.

このスラブの加熱温度は、コストの面から1300℃以下
とすることが好ましい。
The heating temperature of this slab is preferably 1300 ° C. or lower in terms of cost.

加熱されたスラブは、引き続き熱間圧延されて熱延板
となる。この熱延板は、必要に応じて焼鈍される。次い
で、1回の冷延又は中間焼鈍を挟んだ2回以上の冷延に
よって、最終ゲージの冷延板とする。このとき、最終冷
間圧延の圧下率は、80%以上とすることが、磁束密度B8
を高める上で必要である。圧下率を上記範囲とすること
によって、脱炭焼鈍板において尖鋭な{110}<001>方
位粒と、これに蚕食され易い対応方位粒({111}<112
>方位粒等)を適正量得ることができる。
The heated slab is subsequently hot rolled into a hot rolled sheet. This hot rolled sheet is annealed if necessary. Then, one cold rolling or two or more cold rollings sandwiching intermediate annealing is performed to obtain a final gauge cold rolled sheet. In this case, reduction of the final cold rolling, be 80% or more, a magnetic flux density B 8
It is necessary to increase By setting the rolling reduction within the above range, the sharpened {110} <001> oriented grains in the decarburized annealed sheet and the corresponding oriented grains ({111} <112) which are easily eroded by this
It is possible to obtain an appropriate amount of (> orientation grains, etc.).

最終冷延された冷延板は、脱炭焼鈍された後、MgOを
主成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍され
る。この最終仕上げ焼鈍前の状態は通常脱炭焼鈍板の状
態における一次再結晶粒の平均直径を15μm以上と
し、直径の変動係数σを0.6以下としている。
The final cold-rolled cold-rolled sheet is decarburized and annealed, and then an annealing separation agent containing MgO as a main component is applied thereto, and finally final annealed. Before the final finish annealing, the average diameter of the primary recrystallized grains in the state of the decarburized annealed plate is usually 15 μm or more, and the variation coefficient σ * of the diameter is 0.6 or less.

このような状態に結晶組織を制御する方法は、特に限
定されるものではない。たとえば、冷間圧延の圧下率,
冷間圧延前の粒径等により一次再結晶核の数を調整する
方法、インヒビター構成元素の成分範囲,スラブ加熱温
度,熱延巻取り温度,熱延板焼鈍温度等によって弾立焼
鈍時のインヒビターの強度を調整し、脱炭焼鈍時の粒成
長を制御する方法、脱炭焼鈍温度を調整し、粒成長を制
御する方法等を採取することができる。或いは、脱炭焼
鈍と最終仕上げ焼鈍との間で焼鈍を追加的に行うことに
より、結晶組織を調整することも可能である。
The method for controlling the crystal structure in such a state is not particularly limited. For example, cold rolling reduction,
Method of adjusting the number of primary recrystallization nuclei by grain size before cold rolling, composition range of inhibitor constituent elements, slab heating temperature, hot rolling temperature, hot rolled sheet annealing temperature, etc. The method of controlling the grain growth at the time of decarburization annealing by adjusting the strength of No. 1 and the method of controlling the grain growth by adjusting the decarburizing annealing temperature can be collected. Alternatively, the crystal structure can be adjusted by additionally performing annealing between the decarburization annealing and the final finish annealing.

焼鈍分離剤,最終仕上げ焼鈍等については、脱炭焼鈍
板の適正な結晶組織が仕上げ焼鈍の昇温中の粒成長で不
適当な結晶組織にならないように、仕上げ焼鈍の昇温中
にインヒビター強度が高くなるような処置[たとえば浸
窒(AlN形成),浸硫(MnS形成)等]を行うことは、安
定製造の上から必要である。また、比較的低温(〜800
℃)の脱炭焼鈍で所期の結晶組織を得るためには、脱炭
焼鈍時のインヒビター強度を低めなければならないが、
このインヒビター強度が二次再結晶を安定して行わせる
上で不足のときには、仕上げ焼鈍における上記インヒビ
ター強化の処置が必要となる。インヒビター強化法の一
例としては、Alを含有する鋼において仕上げ焼鈍雰囲気
ガスの窒素分圧を高めに設定する方法が知られている。
Regarding the annealing separator, final finish annealing, etc., the inhibitor strength during the final annealing is increased so that the proper crystal structure of the decarburized annealed sheet does not become an inappropriate crystal structure due to the grain growth during the temperature increase of the final annealing. It is necessary from the viewpoint of stable production to carry out treatments such as nitrification (formation of AlN), sulfurization (formation of MnS), etc. that raises the value. Also, relatively low temperature (~ 800
In order to obtain the desired crystal structure by decarburization annealing at (° C), the inhibitor strength during decarburization annealing must be reduced,
When the inhibitor strength is insufficient for stable secondary recrystallization, the inhibitor strengthening treatment in finish annealing is required. As an example of the inhibitor strengthening method, a method is known in which the nitrogen partial pressure of the finish annealing atmosphere gas is set to be high in the steel containing Al.

平均直径≧15μm,直径の変動係数σ≦0.6と規定
したのは、第1図及び第2図から明らかなようにこの範
囲に平均直径,直径の変動係数σがあるとき、1.88
T以上の良好な磁束密度B8をもつ製品が得られるためで
ある。なお、平均直径の上限に関しては、通常成分,
工程条件の下で得られる平均直径の上限は50μmはあ
る。平均直径を50μm以上にすると、成分の高純度
化,焼鈍温度上昇等によるコストアップが生じて好まし
くない。他方直径の変動係数σについては、0まで許
容される。
The average diameter ≧ 15 μm and the coefficient of variation of diameter σ * ≦ 0.6 are defined as 1.88 when the average diameter and the coefficient of variation of diameter σ * are in this range, as is clear from FIGS. 1 and 2.
This is because a product having a good magnetic flux density B 8 of T or more can be obtained. Regarding the upper limit of the average diameter,
The upper limit of the average diameter obtained under the process conditions is 50 μm. When the average diameter is 50 μm or more, the cost is increased due to the high purity of the components and the increase of the annealing temperature, which is not preferable. On the other hand, the variation coefficient σ * of the diameter is allowed up to 0.

このように最終仕上げ焼鈍前の一次再結晶粒の状態を
規定したのは、脱炭焼鈍板の結晶組織が不適切なもので
あっても、脱炭焼鈍後で最終仕上げ焼鈍前に追加的に熱
処理を行って、一次再結晶粒の状態を平均直径≧15μ
m,直径の変動係数σ≦0.6の範囲に調整すれば、良好
な磁気特性が得られるからである。
In this way, the state of the primary recrystallized grains before final finish annealing is defined by the fact that even if the crystal structure of the decarburized annealed plate is inappropriate, after the decarburization annealing, before the final finish annealing, After heat treatment, change the state of primary recrystallized grains to an average diameter ≧ 15μ
This is because good magnetic characteristics can be obtained by adjusting the variation coefficient σ * of the m and diameter to be in the range of ≦ 0.6.

〔実施例〕〔Example〕

以下、実施例を説明する。 Examples will be described below.

−実施例1− C0.054重量%,Si3.25重量%,Mn0.15重量%,S0.005重
量%,酸可溶性Al0.027重量%,N0.0078重量%を含有す
るスラブを、1150℃の温度に加熱した後、熱延して2.3m
mの熱延板とした。この熱延板を、1150℃及び950℃の温
度で熱延板焼鈍した後、圧下率焼88%で最終板厚まで冷
延して0.285mmの冷延板とし、810℃で150秒保持し、次
いで830℃,890℃及び950℃に各々20秒保持する脱炭焼鈍
を施した。得られた脱炭焼鈍板に、MgOを主成分とする
焼鈍分離剤を塗布し、N225%,H275%の雰囲気ガス中で1
0℃/時の速度で1200℃まで昇温し、引き続きH2100%の
雰囲気ガス中で1200℃で20時間保持する最終仕上げ焼鈍
を行った。
-Example 1-A slab containing C0.054 wt%, Si3.25 wt%, Mn0.15 wt%, S0.005 wt%, acid-soluble Al0.027 wt%, N0.0078 wt%, 1150 ° C 2.3m after hot rolling after heating to the temperature of
It was a hot rolled sheet of m. This hot-rolled sheet is annealed at temperatures of 1150 ° C and 950 ° C, then cold-rolled to a final thickness of 88% with a reduction rate of 88% to obtain a cold-rolled sheet of 0.285 mm, and held at 810 ° C for 150 seconds. Then, decarburization annealing was performed at 830 ° C, 890 ° C and 950 ° C for 20 seconds each. The obtained decarburized annealed plate is coated with an annealing separating agent containing MgO as a main component, and it is applied in an atmosphere gas of N225% and H275% to 1
A final finish annealing was carried out by raising the temperature to 1200 ° C. at a rate of 0 ° C./hour and then maintaining the temperature at 1200 ° C. for 20 hours in an atmosphere gas of H 2 100%.

脱炭焼鈍後、画像解析機を用いて、脱炭焼鈍板(断面
全厚)の平均直径と、直径の変動係数σを測定し
た。第1表は、このときの画像解析結果及び製品の磁気
特性を示している。
After decarburization annealing, the average diameter of the decarburized annealed plate (total cross-section thickness) and the variation coefficient σ * of the diameter were measured using an image analyzer. Table 1 shows the image analysis results and the magnetic properties of the products at this time.

−実施例2− C0.058重量%,Si3.28重量%,Mn0.14重量%,S0.007重
量%,酸可溶性Al0.025重量%,N0.0075重量%を含有す
るスラブを、1150℃の温度に加熱した後、熱延して2.3m
mの熱延板とした。この熱延板に、1150℃に30秒保持
し、引き続き900℃で30秒保持する熱延板焼鈍を施し
た。次いで、圧下率約88%で最終板厚まで冷延して0.28
5mmの冷延板とし、850℃で150秒保持する脱炭焼鈍を行
った。
Example 2 A slab containing C0.058% by weight, Si3.28% by weight, Mn0.14% by weight, S0.007% by weight, acid-soluble Al0.025% by weight, N0.0075% by weight at 1150 ° C. 2.3m after hot rolling after heating to the temperature of
It was a hot rolled sheet of m. The hot rolled sheet was annealed at 1150 ° C. for 30 seconds and then at 900 ° C. for 30 seconds. Next, cold rolling to a final thickness of 0.28
A 5 mm cold-rolled sheet was decarburized and annealed at 850 ° C for 150 seconds.

得られた脱炭焼鈍板に、MgOを主成分とする焼鈍分離
剤を塗布して、N225%,H275%の雰囲気ガス中で10℃/
時の速度で1200℃まで昇温して、引き続きH2100%の雰
囲気ガス中で1200℃で20時間保持する最終仕上げ焼鈍を
行った。
The obtained decarburized annealed plate is coated with an annealing separator containing MgO as a main component, and the temperature is kept at 10 ° C / 25 ° C in an atmosphere gas of N 2 25% and H 2 75%.
The final finishing annealing was carried out by raising the temperature to 1200 ° C at an hourly rate and then maintaining the temperature at 1200 ° C for 20 hours in an atmosphere gas containing 100% H2.

脱炭焼鈍後、画像解析機を用いて、脱炭焼鈍板(断面
全厚)の平均直径と直径の変動係数σを測定した。
第2表は、このときの処理条件,画像解析結果及び製品
の磁気特性を示す。
After decarburization annealing, the average diameter of the decarburized annealed plate (total cross-section thickness) and the variation coefficient σ * of the diameter were measured using an image analyzer.
Table 2 shows the processing conditions, the image analysis results, and the magnetic properties of the product at this time.

−実施例3− 実施例2のスラブ加熱温度1250℃の条件で得られた脱
炭焼鈍板に、950℃×30秒の熱処理を施した後、MgOを主
成分とする焼鈍分離剤を塗布して、実施例2の条件で最
終仕上げ焼鈍を行った。
-Example 3-The decarburized annealed plate obtained under the conditions of the slab heating temperature of 1250 ° C of Example 2 is heat-treated at 950 ° C for 30 seconds, and then an annealing separator containing MgO as a main component is applied. Then, final finish annealing was performed under the conditions of Example 2.

第3表は、この追加的な熱処理を行った後の鋼板(断
面全厚)の平均直径及び直径の変動係数σを、製品
の磁束密度B8等と共に表したものである。
Table 3 shows the average diameter and the variation coefficient σ * of the diameter of the steel sheet (total cross-section thickness) after the additional heat treatment, together with the magnetic flux density B 8 of the product.

−実施例4− C:0.056重量%,Si:3.27重量%,Mn:0.14重量%,S:0.00
6重量%,酸可溶性Al:0.027重量%,N:0.0078重量%を含
有するスラブを、1150℃の温度に加熱した後、熱延して
2.0mmの熱延板とした。この熱延板を1120℃に30秒保持
し、引き続き900℃に30秒保持する熱延板焼鈍をした
後、圧下率89%で最終板厚まで冷延して0.220mmの冷延
板とし、830℃で90秒保持し、次いで890℃及び920℃に
それぞれ20秒保持する脱炭焼鈍を施した。得られた脱炭
焼鈍板に、MgOを主成分とする焼鈍分離剤を塗布し、N22
5%,H2275%の雰囲気ガス中で880℃まで昇温し、880℃
から1200℃までN275%,H225%の雰囲気ガス中で昇温
し、引き続きH2100%の雰囲気ガス中で1200℃で20時間
保持する最終仕上げ焼鈍を行った。このとき、1200℃ま
での昇温速度を10℃/時,25℃/時とした。
-Example 4-C: 0.056 wt%, Si: 3.27 wt%, Mn: 0.14 wt%, S: 0.00
A slab containing 6% by weight, acid-soluble Al: 0.027% by weight, N: 0.0078% by weight was heated to a temperature of 1150 ° C and then hot rolled.
A 2.0 mm hot rolled sheet was used. This hot rolled sheet is held at 1120 ° C for 30 seconds, and subsequently hot rolled sheet is annealed at 900 ° C for 30 seconds, and then cold rolled to a final sheet thickness of 0.220 mm at a rolling reduction of 89%, Decarburization annealing was carried out by holding at 830 ° C for 90 seconds and then at 890 ° C and 920 ° C for 20 seconds respectively. The decarburized and annealed sheet thus obtained was coated with an annealing separator containing MgO as a main component, and N 2 2
Raise the temperature to 880 ° C in the atmosphere gas of 5%, H 22 75%, and 880 ° C
To 1200 ° C in the atmosphere gas of N 2 75% and H 2 25%, and then the final finish annealing was carried out in the atmosphere gas of H 2 100% at 1200 ° C for 20 hours. At this time, the rate of temperature increase up to 1200 ° C was set to 10 ° C / hour and 25 ° C / hour.

脱炭焼鈍後、画像解析機を用いて脱炭焼鈍板(断面全
厚)の平均直径と、直径の変動係数σを測定した。
第4表は、このときの処理条件,画像解析結果及び磁気
特性を示している。
After the decarburization annealing, the average diameter of the decarburized annealed plate (total cross-section thickness) and the variation coefficient σ * of the diameter were measured using an image analyzer.
Table 4 shows the processing conditions, image analysis results, and magnetic characteristics at this time.

−実施例5− 実施例4の条件で得られた脱炭焼鈍板に、MgOを主成
分とする焼鈍分離剤を塗布し、N225%,H275%の雰囲気
ガス中、及びN250%,H250%の雰囲気ガス中で15℃/時
の速度で1200℃まで昇温し、引き続きH2100%の雰囲気
ガス中で1200℃で20時間保持する最終仕上げ焼鈍を行っ
た。
- the decarburization annealed sheet obtained under the conditions of Example 5 Example 4, MgO and coated with an annealing separator mainly comprised of, N 2 25%, H 2 in 75% of the atmosphere gas, and N 2 A final finish annealing was carried out by raising the temperature to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of 50% and H 2 50%, and then maintaining the temperature at 1200 ° C. for 20 hours in an atmosphere gas of H 2 100%.

脱炭焼鈍後、画像解析機を用い脱炭焼鈍板(断面全
厚)の平均直径と、直径の変動係数σを測定した。
第5表は、このときの処理条件,画像解析結果及び製品
の磁気特性を示している。
After decarburization annealing, the average diameter of the decarburized annealed plate (total cross-section thickness) and the variation coefficient σ * of the diameter were measured using an image analyzer.
Table 5 shows the processing conditions, the image analysis results, and the magnetic characteristics of the product at this time.

〔発明の効果〕 以上説明したように、本発明においては、一方向性電
磁鋼板用の鋼片を、1300℃以下の温度に加熱した後熱延
し、最終冷延圧下率80%以上の1回ないし中間焼鈍を挟
む2回以上の冷間圧延を施し、更に脱炭焼鈍、浸窒又は
浸硫によるAlN又はMnSなるインヒビター強化、及び仕上
げ焼鈍を行う一方向性電磁鋼板の製造方法において、脱
炭焼鈍後、最終仕上げ焼鈍前の一次再結晶粒の平均直径
と、直径の変動係数σを制御することにより、優れ
た磁気特性をもつ一方向性電磁鋼板を安定して製造する
ことが可能となる。また、平均直径及び直径の変動係
数σは、製品の磁束密度を予測するパラメータとして
も使用することができ、後続する工程、たとえば最終仕
上げ焼鈍の条件を調整することによって、製品の磁束密
度を目標値に収めることも可能となる。
[Effects of the Invention] As described above, in the present invention, a steel piece for a grain-oriented electrical steel sheet is heated to a temperature of 1300 ° C or lower and then hot rolled to obtain a final cold rolling reduction of 1% or more. In the method for producing a unidirectional electrical steel sheet, which is subjected to two or more cold rollings sandwiching intermediate or intermediate annealing, and further subjected to decarburizing annealing, strengthening the inhibitor of AlN or MnS by nitriding or sulfurization, and finishing annealing. By controlling the average diameter of primary recrystallized grains before charcoal annealing and before final finishing annealing and the variation coefficient σ * of the diameter, it is possible to stably manufacture unidirectional electrical steel sheets with excellent magnetic properties. Becomes Further, the average diameter and the coefficient of variation σ * of the diameter can also be used as a parameter for predicting the magnetic flux density of the product, and the magnetic flux density of the product can be determined by adjusting the conditions of the subsequent steps such as final finishing annealing. It is possible to set it within the target value.

【図面の簡単な説明】[Brief description of drawings]

第1図は脱炭焼鈍板の平均直径が製品の磁束密度B8
与える影響を表したグラフであり、第2図は直径の変動
係数σが製品の磁束密度B8に与える影響を表したグラ
フであり、第3図は平均直径及び直径の変動係数σ
が異なる脱炭焼鈍板の結晶構造の例を示す顕微鏡写真で
ある。
Fig. 1 is a graph showing the effect of the average diameter of the decarburized annealed plate on the magnetic flux density B 8 of the product, and Fig. 2 is the graph showing the effect of the variation coefficient σ * of the diameter on the magnetic flux density B 8 of the product. FIG. 3 is a graph showing the average diameter and the variation coefficient σ * of the diameter .
3 is a micrograph showing an example of a crystal structure of a decarburized annealed plate having different values.

フロントページの続き (72)発明者 牛神 義行 福岡県北九州市八幡東区枝光1丁目1番1 号 新日本製鐵株式會社第三技術研究所内 (56)参考文献 特開 昭62−290824(JP,A) 特開 昭52−6329(JP,A)Front page continued (72) Inventor Yoshiyuki Ushigami 1-1-1, Emitsu, Hachimanto-ku, Kitakyushu, Fukuoka Prefecture, Nippon Steel & Co., Ltd. Third Technical Research Institute (56) Reference Japanese Patent Laid-Open No. 62-290824 (JP) , A) JP-A-52-6329 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一方向性電磁鋼板用の鋼片を、1300℃以下
の温度に加熱した後熱延し、最終冷延圧下率80%以上の
1回ないし中間焼鈍を挟む2回以上の冷間圧延を施し、
更に脱炭焼鈍を行って一次再結晶粒径の平均直径を15
μm以上50μm以下、直径の変動係数σを0.6以下と
し、脱炭焼鈍完了後仕上げ焼鈍の二次再結晶開始まで
に、浸窒又は浸硫によりAlN又はMnSなるインヒビターの
強化を行い、仕上げ焼鈍をすることを特徴とする磁気特
性の優れた一方向性電磁鋼板の製造方法。
1. A slab for unidirectional electrical steel sheet is heated to a temperature of 1300 ° C. or lower and then hot-rolled, and cold rolling is performed once at a final cold rolling reduction of 80% or more or at least twice between intermediate annealings. Cold rolling,
Further, decarburization annealing was performed to reduce the average diameter of the primary recrystallized grains to 15
μm or more and 50 μm or less, diameter variation coefficient σ * is 0.6 or less, and after completion of decarburization annealing and before the secondary recrystallization of finish annealing, strengthening the inhibitor such as AlN or MnS by nitriding or sulfurization, and finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises:
JP1001778A 1989-01-07 1989-01-07 Method for producing unidirectional electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0832929B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1001778A JPH0832929B2 (en) 1989-01-07 1989-01-07 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
DE1990630771 DE69030771T2 (en) 1989-01-07 1990-01-05 Process for producing a grain-oriented electrical steel strip
EP90100231A EP0378131B1 (en) 1989-01-07 1990-01-05 A method of manufacturing a grain-oriented electrical steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001778A JPH0832929B2 (en) 1989-01-07 1989-01-07 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH02182866A JPH02182866A (en) 1990-07-17
JPH0832929B2 true JPH0832929B2 (en) 1996-03-29

Family

ID=11511036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001778A Expired - Lifetime JPH0832929B2 (en) 1989-01-07 1989-01-07 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0832929B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136137A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
WO2007136127A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
WO2021054408A1 (en) 2019-09-18 2021-03-25 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JP2620438B2 (en) * 1991-10-28 1997-06-11 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH07268469A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Sheet material for grain oriented silicon steel sheet with high magnetic flux density
US5665178A (en) * 1995-02-13 1997-09-09 Kawasaki Steel Corporation Method of manufacturing grain-oriented silicon steel sheet having excellent magnetic characteristics
JPH08225842A (en) * 1995-02-15 1996-09-03 Nippon Steel Corp Production of grain-oriented silicon steel sheet
DE69923102T3 (en) * 1998-03-30 2015-10-15 Nippon Steel & Sumitomo Metal Corporation Process for producing a grain-oriented electrical steel sheet having excellent magnetic properties
EP1162280B1 (en) 2000-06-05 2013-08-07 Nippon Steel & Sumitomo Metal Corporation Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
EP2107130B1 (en) 2000-08-08 2013-10-09 Nippon Steel & Sumitomo Metal Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
WO2006132095A1 (en) 2005-06-10 2006-12-14 Nippon Steel Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
US8303730B2 (en) 2008-09-10 2012-11-06 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526329A (en) * 1975-07-04 1977-01-18 Nippon Steel Corp Production process of grain oriented electrical steel sheet
JPS62290824A (en) * 1986-06-09 1987-12-17 Kawasaki Steel Corp Production of grain oriented silicon steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136137A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
WO2007136127A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
EP3018221A1 (en) 2006-05-24 2016-05-11 Nippon Steel & Sumitomo Metal Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
WO2021054408A1 (en) 2019-09-18 2021-03-25 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH02182866A (en) 1990-07-17

Similar Documents

Publication Publication Date Title
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0753885B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
EP0378131B1 (en) A method of manufacturing a grain-oriented electrical steel strip
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH0567683B2 (en)
US5545263A (en) Process for production of grain oriented electrical steel sheet having superior magnetic properties
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JP2659655B2 (en) Thick grain-oriented electrical steel sheet with excellent magnetic properties
EP0392535B1 (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
US6858095B2 (en) Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
JPH0794689B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH07268469A (en) Sheet material for grain oriented silicon steel sheet with high magnetic flux density
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production
JP4075088B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13