JPH04362133A - Production of thick grain-oriented silicon steel plate excellent in magnetic property - Google Patents

Production of thick grain-oriented silicon steel plate excellent in magnetic property

Info

Publication number
JPH04362133A
JPH04362133A JP3138064A JP13806491A JPH04362133A JP H04362133 A JPH04362133 A JP H04362133A JP 3138064 A JP3138064 A JP 3138064A JP 13806491 A JP13806491 A JP 13806491A JP H04362133 A JPH04362133 A JP H04362133A
Authority
JP
Japan
Prior art keywords
hot
rolling
annealing
hot rolling
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3138064A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
吉冨 康成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3138064A priority Critical patent/JPH04362133A/en
Publication of JPH04362133A publication Critical patent/JPH04362133A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the magnetic properties of a thick grain-oriented silicon steel plate used for iron core for electrical equipment. CONSTITUTION:A slab having a composition consisting of C, Si, acid soluble Al, N, <=0.014% (S+0.405Se), 0.05-0.8% Mn, and the balance Fe with inevitable impurities is heated up to <1280 deg.C and hot-rolled. Subsequently, the resulting hot rolled plate is subjected, without hot rolled plate annealing, to cold rolling at 60-79% reduction of area into a plate of 0.4-1.0mm thickness. Then, the thick grain-oriented silicon steel plate is produced by the known method. At this time, hot rolling finishing temp. is regulated to 600-850 deg.C and cumulative reduction of area in the final three passes in hot rolling is regulated to >=30% and further the average grain size of the primary recrystallized grains after the completion of decarburizing annealing is regulated to 18-30mum, and, in the course between the completion of hot rolling and the initiation of secondary recrystallization in final finish annealing nitriding treatment is applied to the steel plate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性に優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing unidirectional electrical steel sheets having excellent magnetic properties and used as cores of transformers and the like.

【0002】0002

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。また、
鉄損特性を表す数値としては、周波数50Hzで1.7
テスラー(T)まで磁化したときの1kg当りの鉄損W
17/50 を使用している。磁束密度は、鉄損特性の
最大支配因子であり、一般的にいって磁束密度が高いほ
ど鉄損特性が良好になる。なお、一般的に磁束密度を高
くすると二次再結晶粒が大きくなり、鉄損特性が不良と
なる場合がある。これに対しては、磁区制御により、二
次再結晶粒の粒径に拘らず、鉄損特性を改善することが
できる。
BACKGROUND OF THE INVENTION Unidirectional electrical steel sheets are mainly used as core materials for transformers and other electrical equipment, and are required to have excellent magnetic properties such as excitation properties and iron loss properties. As a numerical value representing the excitation characteristic, the strength of the magnetic field is 800A.
A magnetic flux density B8 at /m is usually used. Also,
The numerical value representing iron loss characteristics is 1.7 at a frequency of 50Hz.
Iron loss W per 1 kg when magnetized to Tesler (T)
I am using 17/50. Magnetic flux density is the most dominant factor in iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, secondary recrystallized grains become larger, which may result in poor iron loss characteristics. On the other hand, by magnetic domain control, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110},圧延
方向に<001>軸をもったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である<001>を圧延方向に
高度に揃えることが必要である。このような高磁束密度
一方向性電磁鋼板の製造技術として代表的なものに田口
悟等による特公昭40−15644号公報及び今中拓一
等による特公昭51−13469号公報記載の方法があ
る。前者においてはMnS及びAlNを後者ではMnS
,MnSe,Sb等を主なインヒビターとして用いてい
る。従って現在の技術においてはこれらインヒビターと
して機能する析出物の大きさ、形態及び分散状態を適正
制御することが不可欠である。MnSに関して言えば、
現在の工程では熱延前のスラブ加熱時にMnSを一旦完
全固溶させた後、熱延時に析出する方法がとられている
。二次再結晶に必要な量のMnSを完全固溶するために
は1400℃程度の温度が必要である。これは普通鋼の
スラブ加熱温度に比べて200℃以上も高く、この高温
スラブ加熱処理には以下に述べるような不利な点がある
[0003] This unidirectional electrical steel sheet is produced by causing secondary recrystallization in the final finish annealing process and developing a so-called Goss structure with a {110} axis on the steel sheet surface and a <001> axis in the rolling direction. Manufactured. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the axis of easy magnetization, in the rolling direction. Typical manufacturing techniques for such high magnetic flux density unidirectional electrical steel sheets include the methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi et al. and Japanese Patent Publication No. 13469 No. 1987 by Takuichi Imanaka et al. . MnS and AlN in the former, MnS in the latter
, MnSe, Sb, etc. are used as main inhibitors. Therefore, in current technology, it is essential to properly control the size, morphology, and dispersion state of these precipitates that function as inhibitors. As for MnS,
In the current process, MnS is once completely dissolved in solid solution during slab heating before hot rolling, and then precipitated during hot rolling. A temperature of about 1400° C. is required to completely dissolve the amount of MnS required for secondary recrystallization. This is more than 200° C. higher than the slab heating temperature of ordinary steel, and this high temperature slab heating treatment has the following disadvantages.

【0004】1)方向性電磁鋼専用の高温スラブ加熱炉
が必要である。 2)加熱炉のエネルギー原単位が高い。 3)溶融スケール量が増大し、いわゆるノロかき出し等
にみられるように操業上の悪影響が大きい。 このような問題点を回避するためにはスラブ加熱温度を
普通鋼並みに下げればよいわけであるが、このことは同
時にインヒビターとして有効なMnSの量を少なくする
か、あるいは全く用いないことを意味し、必然的に二次
再結晶の不安定化をもたらす。このため低温スラブ加熱
化を実現するためには、何らかの形でMnS以外の析出
物などによりインヒビターを強化し、仕上焼鈍時の正常
粒成長の抑制を充分にする必要がある。このようなイン
ヒビターとしては、硫化物の他、窒化物、酸化物及び粒
界析出元素等が考えられ、公知の技術として例えば次の
ようなものがあげられる。
1) A high-temperature slab heating furnace exclusively for grain-oriented electrical steel is required. 2) The energy consumption rate of the heating furnace is high. 3) The amount of molten scale increases, which has a large negative impact on operations as seen in so-called slag scraping. In order to avoid such problems, the slab heating temperature can be lowered to the same level as for ordinary steel, but this also means that the amount of MnS, which is effective as an inhibitor, must be reduced or not used at all. This inevitably leads to destabilization of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some way with precipitates other than MnS to sufficiently suppress normal grain growth during final annealing. As such inhibitors, in addition to sulfides, nitrides, oxides, grain boundary precipitated elements, etc. can be considered, and examples of known techniques include the following.

【0005】特公昭54−24685号公報では、As
,Bi,Sn,Sb等の粒界偏析元素を鋼中に含有する
ことによりスラブ加熱温度を1050〜1350℃の範
囲にする方法が開示されている。特開昭52−2411
6号公報では、Alの他、Zr,Ti,B,Nb,Ta
,V,Cr,Mo等の窒化物生成元素を含有することに
よりスラブ加熱温度を1100〜1260℃の範囲にす
る方法が開示されている。また、特開昭57−1583
22号公報では、Mn含有量を下げ、Mn/Sの比率を
2.5以下にすることにより低温スラブ加熱化を行い、
さらにCuの添加により二次再結晶を安定化する技術が
開示されている。一方、これらインヒビターの補強と組
み合わせて金属組織の側から改良を加えた技術も開示さ
れている。すなわち、特開昭57−89433号公報で
は、Mnに加え、S,Se,Sb,Bi,Pb,Sn,
B等の元素を加え、これにスラブの柱状晶率と二次冷延
圧下率を組み合わせることにより、1100〜1250
℃の低温スラブ加熱化を実現している。さらに特開昭5
9−190324号公報では、SあるいはSeに加え、
Al及びBと窒素を主体としてインヒビターを構成し、
これに冷延後の一次再結晶焼鈍時にパルス焼鈍を施すこ
とにより、二次再結晶を安定化する技術が公開されてい
る。このように方向性電磁鋼板製造における低温スラブ
加熱化実現のためには、これまでに多大な努力が続けら
れてきている。
[0005] In Japanese Patent Publication No. 54-24685, As
, Bi, Sn, Sb, and other grain boundary segregation elements are included in the steel to increase the slab heating temperature to a range of 1050 to 1350°C. Japanese Patent Publication No. 52-2411
In Publication No. 6, in addition to Al, Zr, Ti, B, Nb, Ta
, V, Cr, Mo, and other nitride-forming elements have been disclosed to increase the slab heating temperature to a range of 1100 to 1260°C. Also, JP-A-57-1583
In Publication No. 22, low-temperature slab heating is performed by lowering the Mn content and making the Mn/S ratio 2.5 or less,
Furthermore, a technique for stabilizing secondary recrystallization by adding Cu is disclosed. On the other hand, techniques have also been disclosed in which improvements are made from the metal structure side in combination with reinforcement of these inhibitors. That is, in JP-A-57-89433, in addition to Mn, S, Se, Sb, Bi, Pb, Sn,
By adding elements such as B and combining this with the columnar crystallinity of the slab and the secondary cold rolling reduction,
We have achieved low-temperature slab heating of ℃. Furthermore, JP-A-5
In Publication No. 9-190324, in addition to S or Se,
The inhibitor is composed mainly of Al, B and nitrogen,
A technique has been disclosed that stabilizes secondary recrystallization by performing pulse annealing during primary recrystallization annealing after cold rolling. As described above, great efforts have been made to realize low-temperature slab heating in the production of grain-oriented electrical steel sheets.

【0006】さて、先に特開昭59−56522号公報
において、Mnを0.08〜0.45%、Sを0.00
7%以下にすることにより低温スラブ加熱化を可能にす
る技術が開示され、この方法により高温スラブ加熱時の
スラブ結晶粒粗大化に起因する製品の線状二次再結晶不
良発生の問題が解消された。
[0006] Previously, in Japanese Patent Application Laid-Open No. 59-56522, Mn was 0.08 to 0.45% and S was 0.00%.
A technology has been disclosed that enables low-temperature slab heating by heating the slab to 7% or less, and this method solves the problem of linear secondary recrystallization defects in products caused by coarsening of slab crystal grains during high-temperature slab heating. It was done.

【0007】[0007]

【発明が解決しようとする課題】ところで、近年タービ
ン発電機用鉄心材料等の用途に、現用の高級無方向性電
磁鋼板にかわって、方向性電磁鋼板を用いたいというニ
ーズが高まってきた。上記用途に関していえば、他の無
方向性電磁鋼板の用途と比較して、一方向の磁気特性が
重要とされるため、方向性電磁鋼板を用いたいというニ
ーズが高まってきたわけである。一方、方向性電磁鋼板
の熱延後の製造の主工程は、熱延板焼鈍−冷延−脱炭焼
鈍−仕上焼鈍となっており、無方向性電磁鋼板の熱延後
の主工程である冷延−焼鈍と比較して、複雑となってい
る。そのため、製造コストからして、方向性電磁鋼板の
方が無方向性電磁鋼板よりかなり高いものとなる。
[Problems to be Solved by the Invention] In recent years, there has been an increasing need to use grain-oriented electrical steel sheets in place of the currently used high-grade non-oriented electrical steel sheets for applications such as core materials for turbine generators. Regarding the above-mentioned uses, compared to other uses of non-oriented electromagnetic steel sheets, magnetic properties in one direction are considered to be more important, so the need for using grain-oriented electromagnetic steel sheets has increased. On the other hand, the main manufacturing process of grain-oriented electrical steel sheets after hot rolling is hot-rolled sheet annealing - cold rolling - decarburization annealing - finishing annealing, which is the main process after hot rolling of non-oriented electrical steel sheets. It is more complicated than cold rolling-annealing. Therefore, in terms of manufacturing cost, grain-oriented electrical steel sheets are considerably more expensive than non-oriented electrical steel sheets.

【0008】更には、通常の酸洗ラインや、タンデム冷
延ラインでは、通板できる板厚に制限があり、厚い板厚
の冷延素材を通板すると破断が生じる可能性がある。そ
こで、0.5mm厚等の厚手材を1回冷延で製造しよう
とすると、冷延素材の板厚に上限があるため、冷延率を
低くとる必要が生じる。また、方向性電磁鋼板の製造に
おいては通常熱延後組織の不均一化、析出処理等を目的
として熱延板焼鈍が行われている。例えばAlNを主イ
ンヒビターとする製造方法においては、特公昭46−2
3820号公報に示すように熱延板焼鈍においてAlN
の析出処理を行ってインヒビターを制御する方法がとら
れている。
Furthermore, in a normal pickling line or a tandem cold rolling line, there is a limit to the thickness that can be passed through the sheet, and if a thick cold rolled material is passed through the sheet, breakage may occur. Therefore, if a thick material with a thickness of 0.5 mm or the like is to be manufactured by cold rolling once, there is an upper limit to the thickness of the cold-rolled material, so it is necessary to reduce the cold-rolling rate. Furthermore, in the production of grain-oriented electrical steel sheets, hot-rolled sheets are usually annealed for the purpose of making the structure non-uniform, precipitation treatment, etc. after hot rolling. For example, in the production method using AlN as the main inhibitor,
As shown in Publication No. 3820, AlN
A method has been adopted to control the inhibitor by performing a precipitation treatment.

【0009】近年多量のエネルギー消費をするこのよう
な方向性電磁鋼板の製造工程に対する見直しが進められ
、工程,エネルギーの簡省略化の要請が強まってきた。 このような要請に応えるべく、AlNを主インヒビター
とする製造方法において、熱延板焼鈍でのAlNの析出
処理を、熱延後の高温巻取で代替する方法(特公昭59
−45730号公報)が提案された。確かに、この方法
によって熱延板焼鈍を省略しても、磁気特性をある程度
確保することはできるが、5〜20トンのコイル状で巻
取られる通常の方法においては、冷却過程でコイル内で
の場所的な熱履歴の差が生じ、必然的にAlNの析出が
不均一となり、最終的な磁気特性はコイル内の場所によ
って変動し、歩留が低下する結果となる。
In recent years, the manufacturing process of grain-oriented electrical steel sheets, which consumes a large amount of energy, has been reviewed, and there has been a growing demand for simplification of the process and energy. In order to meet these demands, in a manufacturing method using AlN as the main inhibitor, a method was developed in which the AlN precipitation treatment during hot-rolled sheet annealing was replaced by high-temperature coiling after hot rolling (Japanese Patent Publication No. 59
-45730) was proposed. It is true that magnetic properties can be maintained to some extent even if hot-rolled sheet annealing is omitted using this method, but in the normal method of winding into a 5-20 ton coil, A difference in thermal history occurs depending on the location, inevitably resulting in non-uniform precipitation of AlN, and the final magnetic properties vary depending on the location within the coil, resulting in a decrease in yield.

【0010】そこで本発明者らは、従来ほとんど注目さ
れていなかった仕上熱延最終パス後の再結晶現象に着目
し、この現象を利用して80%以上の強圧下1回冷延に
よる製造法において、熱延板焼鈍を省略する方法(特願
平1−85540号公報,特願平1−85541号公報
)を提示した。これらの技術は、仕上熱延最終3パスの
強圧下及び熱延終了後の高温での保持により熱延板を微
細再結晶組織としたことに特徴があり、これらの技術に
より、1280℃未満の温度でのスラブ加熱と、熱延板
焼鈍の省略の両立が可能となった。
Therefore, the present inventors focused on the recrystallization phenomenon after the final pass of finish hot rolling, which had received little attention in the past, and utilized this phenomenon to develop a manufacturing method using one cold rolling with a strong reduction of 80% or more. proposed a method of omitting hot-rolled sheet annealing (Japanese Patent Application No. 1-85540, Japanese Patent Application No. 1-85541). These technologies are characterized by creating a fine recrystallized structure in the hot-rolled sheet through strong reduction during the final three passes of finish hot rolling and holding at a high temperature after the completion of hot rolling. It has become possible to both heat the slab at a high temperature and omit hot-rolled sheet annealing.

【0011】一方向性電磁鋼板の熱延に関しては、高温
スラブ加熱(例えば1300℃以上)時のスラブ結晶粒
の粗大成長に起因する二次再結晶不良(圧延方向に連な
った線状細粒発生)を防止するために、熱延時の960
〜1190℃での温度で1パス当り30%以上の圧下率
で再結晶化高圧下圧延を施し、粗大結晶粒を分断する方
法が提案されている(特公昭60−37172号公報)
。確かにこの方法によって線状細粒発生が減少するが、
熱延板焼鈍を施す製造プロセスを前提としている。
Regarding hot rolling of unidirectional electrical steel sheets, secondary recrystallization failure (generation of linear fine grains connected in the rolling direction) due to coarse growth of slab crystal grains during high-temperature slab heating (for example, 1300° C. or higher) ) to prevent 960° during hot rolling.
A method has been proposed in which coarse crystal grains are divided by performing recrystallization high reduction rolling at a temperature of ~1190°C and a reduction rate of 30% or more per pass (Japanese Patent Publication No. 37172/1983).
. Although this method certainly reduces the generation of linear fine particles,
The manufacturing process is based on hot-rolled sheet annealing.

【0012】またMnS,MnSe,Sbをインヒビタ
ーとする製造方法において、熱延時の950〜1200
℃の温度で圧下率10%以上で連続して熱延し、引き続
き3℃/sec以上の冷却速度で冷却することによって
MnS,MnSeを均一微細に析出させ、磁気特性を向
上させる方法が提案されている(特開昭51−2071
6号公報)。また熱延を低温で行い、再結晶の進行を抑
制し、剪断変形で形成される{110}<001>方位
粒が、引き続く再結晶で減少するのを防止することによ
って磁気特性を向上させる方法が提案されている(特公
昭59−32526号公報、特公昭59−35415号
公報)。これらの方法においても、熱延板焼鈍なしの1
回冷延法での製造は検討さえされていない。また超低炭
素を含有する珪素鋼スラブの熱延において、熱延板で歪
を蓄積させる低温大圧下熱延を行い、引き続く熱延板焼
鈍での再結晶により超低炭素材特有の粗大結晶粒を分断
する方法が提案されている(特公昭59−34212号
公報)。しかしこの方法においても、熱延板焼鈍なしの
1回冷延法での製造は検討さえされていない。
[0012] In addition, in a manufacturing method using MnS, MnSe, Sb as an inhibitor,
A method has been proposed in which MnS and MnSe are uniformly and finely precipitated by continuous hot rolling at a temperature of 10°C at a reduction rate of 10% or more and subsequent cooling at a cooling rate of 3°C/sec or more to improve magnetic properties. (Japanese Unexamined Patent Publication No. 51-2071
Publication No. 6). Another method is to perform hot rolling at a low temperature, suppress the progress of recrystallization, and prevent {110}<001> oriented grains formed by shear deformation from being reduced by subsequent recrystallization, thereby improving magnetic properties. has been proposed (Japanese Patent Publication No. 59-32526, Japanese Patent Publication No. 59-35415). In these methods as well, 1 without annealing the hot rolled sheet.
Production by the re-cold rolling method has not even been considered. In addition, when hot-rolling silicon steel slabs containing ultra-low carbon, we conduct low-temperature, large-reduction hot rolling that accumulates strain in the hot-rolled plate, and then recrystallize in the subsequent hot-rolled plate annealing to create the coarse crystal grains characteristic of ultra-low carbon materials. A method has been proposed (Japanese Patent Publication No. 59-34212). However, even in this method, production by a one-time cold rolling method without hot-rolled sheet annealing has not even been considered.

【0013】従って、本発明者らが先に示した低温スラ
ブ加熱と熱延板焼鈍の省略を両立させた技術(特願平1
−85540号公報,特願平1−85541号公報)の
意義は大きいことがわかる。
[0013] Therefore, the present inventors have developed a technique (patent application No.
85540, Japanese Patent Application No. 1-85541) are of great significance.

【0014】[0014]

【課題を解決するための手段】本発明に従い、重量でC
:0.021〜0.075%,Si:2.5〜4.5%
,酸可溶性Al:0.010〜0.060%,N:0.
0030〜0.0130%,S+0.405Se:0.
014%以下,Mn:0.05〜0.8%を含有し、残
部がFe及び不可避的不純物からなるスラブを1280
℃未満の温度で加熱し、熱延し、熱延板焼鈍をすること
なく、引き続き圧下率60〜79%の冷延を行い、次い
で脱炭焼鈍、最終仕上焼鈍を施して0.4〜1.0mm
厚の厚手一方向性電磁鋼板を製造する方法において、熱
延終了温度を600〜850℃とし、熱延の最終3パス
の累積圧下率を30%以上とし、脱炭焼鈍完了後、最終
仕上焼鈍開始までの間での一次再結晶粒の平均粒径を1
8〜30μmとし、熱延後最終仕上焼鈍の二次再結晶開
始までの間に鋼板に窒化処理を施すことにより、磁気特
性の優れた厚い板厚の一方向性電磁鋼板が安定して得ら
れる。
Means for Solving the Problems According to the present invention, C by weight
:0.021~0.075%, Si:2.5~4.5%
, acid-soluble Al: 0.010-0.060%, N: 0.
0030-0.0130%, S+0.405Se:0.
0.014% or less, Mn: 0.05 to 0.8%, and the balance consists of Fe and inevitable impurities.
Heating at a temperature below ℃, hot rolling, followed by cold rolling at a rolling reduction of 60 to 79% without hot-rolled sheet annealing, followed by decarburization annealing and final finish annealing to 0.4 to 1 .0mm
In a method for manufacturing thick unidirectional electrical steel sheets, the hot rolling end temperature is 600 to 850°C, the cumulative reduction rate in the final three passes of hot rolling is 30% or more, and after completion of decarburization annealing, final finish annealing is performed. The average grain size of primary recrystallized grains until the start is 1
By applying nitriding treatment to the steel sheet after hot rolling and before the start of secondary recrystallization during final finish annealing, a thick unidirectional electrical steel sheet with excellent magnetic properties can be stably obtained. .

【0015】[0015]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
或いは造塊法で鋳造し、必要に応じて分塊工程を挟んで
スラブとし、引き続き熱間圧延して熱延板とし、次いで
熱延板焼鈍を施すことなく圧下率60〜79%の冷延、
脱炭焼鈍、最終仕上焼鈍を順次行うことによって製造さ
れる。
[Operation] The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by conventional steel-making methods is cast by continuous casting or ingot making, followed by a blooming process as necessary to form a slab, followed by hot rolling into a hot-rolled plate, and then hot rolling. Cold rolling with a rolling reduction of 60 to 79% without plate annealing,
Manufactured by sequentially performing decarburization annealing and final finish annealing.

【0016】本発明者らは、冷延素材の板厚制限のため
、圧下率を低める必要が生じ、80%未満の圧下率で磁
気特性を良好ならしめる方策を広範にわたって検討した
。その結果、熱延終了温度を600〜850℃と低めに
し、熱延最終3パスの累積圧下率を30%以上にするこ
とが良好な磁気特性を得るのに有効であるという新知見
を得た。
[0016] The inventors of the present invention found it necessary to lower the rolling reduction due to limitations on the thickness of the cold-rolled material, and extensively studied ways to improve the magnetic properties with a rolling reduction of less than 80%. As a result, new findings were obtained that lowering the hot rolling end temperature to 600 to 850°C and increasing the cumulative reduction rate of 30% or more in the final three passes of hot rolling are effective in obtaining good magnetic properties. .

【0017】以下、実験結果を基に詳細に説明する。図
1は熱延最終3パスの累積圧下率と熱延終了温度が製品
の磁束密度に与える影響を表したグラフである。ここで
は、C:0.042重量%,Si:3.11重量%,酸
可溶性Al:0.031重量%,N:0.0069重量
%,S:0.007重量%,Mn:0.14重量%を含
有し、残部Fe及び不可避的不純物からなる40mm厚
のスラブを1150℃に加熱し、6パスで2.0mm厚
の熱延板とした。この時パススケジュールを種々の条件
で行った。また、熱延開始温度は、700〜1100℃
とした。この時熱延終了温度は、575〜1041℃で
あった。熱延後1秒空冷後550℃まで水冷し、550
℃に1時間保持後、炉冷する巻取りシミュレーションを
施した。しかる後、この熱延板を酸洗し、次いで圧下率
75%で冷延し、0.50mm厚の冷延板とした。
A detailed explanation will be given below based on experimental results. FIG. 1 is a graph showing the influence of the cumulative reduction rate of the final three passes of hot rolling and the end temperature of hot rolling on the magnetic flux density of the product. Here, C: 0.042% by weight, Si: 3.11% by weight, acid-soluble Al: 0.031% by weight, N: 0.0069% by weight, S: 0.007% by weight, Mn: 0.14 A 40 mm thick slab containing Fe and unavoidable impurities was heated to 1150° C. for 6 passes to form a 2.0 mm thick hot rolled plate. At this time, pass schedules were conducted under various conditions. In addition, the hot rolling start temperature is 700 to 1100°C.
And so. At this time, the hot rolling end temperature was 575 to 1041°C. After hot rolling, air cooling for 1 second, water cooling to 550°C,
A winding simulation was performed in which the sample was held at ℃ for 1 hour and then cooled in a furnace. Thereafter, this hot-rolled sheet was pickled and then cold-rolled at a rolling reduction of 75% to obtain a cold-rolled sheet with a thickness of 0.50 mm.

【0018】次いで840℃に400秒保持し、860
℃×20秒保持する脱炭焼鈍を施した。しかる後、75
0℃に30秒保持する熱処理中、雰囲気ガス中にNH3
 ガスを混入させ、鋼板に窒素吸収を生ぜしめた。この
時鋼板のN量は0.0192〜0.0211重量%であ
った。この鋼板の板厚全厚での一次再結晶粒の平均粒径
を光学顕微鏡と画像解析機を用いて測定したところ22
〜25μmであった。次いで、この窒化処理後の板にM
gOを主成分とする焼鈍分離剤を塗布し、最終仕上焼鈍
を行った。
Next, the temperature was maintained at 840°C for 400 seconds, and the temperature was heated to 860°C.
Decarburization annealing was performed by holding at ℃ for 20 seconds. After that, 75
During the heat treatment held at 0°C for 30 seconds, NH3 was added to the atmospheric gas.
Gas was mixed in to cause nitrogen absorption in the steel plate. At this time, the amount of N in the steel plate was 0.0192 to 0.0211% by weight. The average grain size of primary recrystallized grains throughout the thickness of this steel plate was measured using an optical microscope and an image analyzer.22
It was ~25 μm. Next, M was applied to this nitrided plate.
An annealing separator containing gO as a main component was applied, and final annealing was performed.

【0019】図1から明らかなように、熱延最終3パス
の累積圧下率30%以上でかつ熱延終了温度850℃以
下でB8≧1.88(T)なる良好な磁束密度が得られ
ている。図1に示した如き関係が成立する理由について
は必ずしも明らかではないが、本発明者らは次のように
推察している。従来から、冷延率は冷延再結晶集合組織
の支配因子として知られており、特に二次再結晶方位に
対する支配因子として{110}<001>,{111
}<112>方位粒の存在量が重要である。再結晶集合
組織中のこの{110}<001>方位粒は、60〜7
0%の圧下率の時最大となり、70%超の圧下率範囲で
は圧下率が高まるにつれ、減少していく。一方、再結晶
集合組織中の{111}<112>方位粒は、約90%
までの圧下率範囲で、圧下率が高まるにつれ、増加する
傾向がある。他方、熱延においては、圧延における結晶
回転と、圧延中の動的回復,パス間での静的回復及び静
的又は準動的再結晶が生じる。熱延での再結晶において
は、核発生−成長型の再結晶を生じた場合には、集合組
織変化が生じる。熱延の再結晶の観点では温度が重要で
あり、温度を低めると回復、再結晶が生じにくくなり、
金属組織も集合組織も冷延したものに近づく。本発明の
様に、熱延終了温度を850℃以下とし、熱延最終3パ
スの累積圧下率を30%以上とすることにより、熱延板
の金属組織と集合組織をあたかも圧下率で1〜30%程
度冷延したかの如きものにすることに成功したことによ
って、磁束密度を最高とする最適冷延率を60〜79%
程度まで低めることに成功したものと考えられる。
As is clear from FIG. 1, a good magnetic flux density of B8≧1.88 (T) can be obtained when the cumulative reduction rate of the final three passes of hot rolling is 30% or more and the hot rolling end temperature is 850° C. or less. There is. The reason why the relationship shown in FIG. 1 is established is not necessarily clear, but the inventors of the present invention speculate as follows. It has been known that the cold rolling ratio is a controlling factor for the cold rolling recrystallization texture, and in particular, the controlling factor for the secondary recrystallization orientation is {110}<001>, {111}.
}<112> oriented grain abundance is important. This {110}<001> oriented grain in the recrystallized texture is 60-7
It reaches a maximum at a rolling reduction of 0%, and decreases as the rolling reduction increases in a range of over 70%. On the other hand, {111}<112> oriented grains in the recrystallized texture account for approximately 90%
It tends to increase as the rolling reduction increases within the range of rolling reduction. On the other hand, in hot rolling, crystal rotation during rolling, dynamic recovery during rolling, static recovery between passes, and static or quasi-dynamic recrystallization occur. In recrystallization in hot rolling, if nucleation-growth type recrystallization occurs, a texture change occurs. Temperature is important from the viewpoint of recrystallization in hot rolling, and lowering the temperature makes recovery and recrystallization less likely to occur.
The metallographic structure and texture are close to those of cold-rolled steel. As in the present invention, by setting the hot rolling end temperature to 850°C or lower and setting the cumulative reduction rate of the final three passes of hot rolling to 30% or more, the metallographic structure and texture of the hot rolled sheet are changed as if the reduction rate was 1 to 1. By successfully creating a product that looks as if it had been cold-rolled by about 30%, the optimum cold-rolling rate for maximizing magnetic flux density has been increased to 60-79%.
It is considered that they succeeded in reducing the amount to a certain degree.

【0020】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.021重量%(
以下単に%と略述)未満になると二次再結晶が不安定に
なり、かつ二次再結晶した場合でもB8 >1.80(
T)が得がたいので0.021%以上とした。一方、C
が多くなり過ぎると脱炭焼鈍時間が長くなり経済的でな
いので0.075%以下とした。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reasons for limitations regarding the components of the slab and the slab heating temperature will be explained in detail. C is 0.021% by weight (
If B8 is less than 1.80 (hereinafter simply abbreviated as %), secondary recrystallization becomes unstable, and even if secondary recrystallization is performed, B8 > 1.80 (
Since T) is difficult to obtain, the content was set at 0.021% or more. On the other hand, C
If it increases too much, the decarburization annealing time becomes long and is not economical, so it is set to 0.075% or less.

【0021】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。また2.5%未満
では素材の固有抵抗が低すぎ、トランス鉄心材料として
必要な低鉄損が得られないので2.5%以上とした。望
ましくは3.2%以上である。Alは二次再結晶の安定
化に必要なAlNもしくは(Al,Si)nitrid
esを確保するため、酸可溶性Alとして0.010%
以上が必要である。酸可溶性Alが0.060%を超え
ると熱延板のAlNが不適切となり二次再結晶が不安定
になるので0.060%以下とした。
[0021] If Si exceeds 4.5%, cracking during cold rolling becomes significant, so it is set to 4.5% or less. Moreover, if it is less than 2.5%, the specific resistance of the material will be too low and the low core loss required for a transformer core material cannot be obtained, so it is set at 2.5% or more. It is preferably 3.2% or more. Al is AlN or (Al,Si)nitrid, which is necessary for stabilizing secondary recrystallization.
To ensure es, 0.010% as acid-soluble Al
The above is necessary. If acid-soluble Al exceeds 0.060%, the AlN of the hot rolled sheet becomes inappropriate and secondary recrystallization becomes unstable, so it was set to 0.060% or less.

【0022】Nについては通常の製鋼作業では0.00
30%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0030%以上とし、一方、0.01
30%を越えるとブリスターと呼ばれる“鋼板表面のふ
くれ”が発生するので0.0130%以下とした。Mn
S,MnSeが鋼中に存在しても、製造工程の条件を適
性に選ぶことによって磁気特性を良好にすることが可能
である。しかしながらSやSeが高いと線状細粒と呼ば
れる二次再結晶不良部が発生する傾向があり、この二次
再結晶不良部の発生を予防するためには(S+0.40
5Se)≦0.014%であることが望ましい。Sある
いはSeが上記値を超える場合には製造条件をいかに変
更しても二次再結晶不良部が発生する確率が高くなり好
ましくない。また最終仕上焼鈍で純化するのに要する時
間が長くなりすぎて好ましくなく、この様な観点からS
あるいはSeを不必要に増すことは意味がない。
[0022]N is 0.00 in normal steelmaking work.
Since it is difficult and economically unfavorable to reduce the content to less than 30%, it is set to 0.0030% or more, while 0.01%
If it exceeds 30%, "blistering" on the surface of the steel plate will occur, so it was set to 0.0130% or less. Mn
Even if S and MnSe are present in steel, it is possible to improve the magnetic properties by appropriately selecting the manufacturing process conditions. However, when S and Se are high, secondary recrystallization defects called linear fine grains tend to occur, and in order to prevent the occurrence of secondary recrystallization defects, (S + 0.4
5Se)≦0.014%. If S or Se exceeds the above value, the probability that secondary recrystallization defects will occur increases, which is undesirable, no matter how the manufacturing conditions are changed. Also, the time required for purification in final finish annealing is undesirable, and from this point of view, S
Alternatively, there is no point in increasing Se unnecessarily.

【0023】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、就中、ストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を越えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。この他
、インヒビター構成元素として知られているSn,Sb
,Cr,Cu,Ni,B,Ti等を微量に含有すること
はさしつかえない。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, especially the side edges of the strip, becomes wavy, resulting in a problem of lowering the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product decreases, which is undesirable, so the upper limit of the Mn content was set to 0.8%. In addition, Sn and Sb, which are known as inhibitor constituent elements,
, Cr, Cu, Ni, B, Ti, etc. may be contained in trace amounts.

【0024】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定した
。好ましくは1200℃以下である。引き続く熱延工程
は、通常100〜400mm厚のスラブを加熱した後、
いづれも複数回のパスで行う粗熱延と仕上熱延より成る
。粗熱延の方法については特に限定するものではなく通
常の方法で行われる。本発明の特徴は粗熱延に引き続く
仕上熱延にある。仕上熱延は通常4〜10パスの高速連
続圧延で行われる。通常仕上熱延の圧下配分は前段が圧
下率が高く後段に行くほど圧下率を下げて形状を良好な
ものとしている。圧延速度は通常100〜3000m/
minとなっており、パス間の時間は0.01〜100
秒となっている。本発明で限定しているのは、熱延終了
温度と熱延最終3パスの累積圧下率だけであり、その他
の条件は特に限定するものではないが、粗熱延、仕上熱
延の前段で強圧下を行うことも、幾分なりとも再結晶を
生ぜしめ、組織を改善することになり好ましい。
[0024] The slab heating temperature was limited to less than 1280°C for the purpose of reducing costs by making it comparable to ordinary steel. Preferably it is 1200°C or less. In the subsequent hot rolling process, after heating the slab, which is usually 100 to 400 mm thick,
Both consist of rough hot rolling and finishing hot rolling performed in multiple passes. The rough hot rolling method is not particularly limited and may be carried out by a conventional method. The feature of the present invention is the finish hot rolling that follows the rough hot rolling. Finish hot rolling is usually performed by high-speed continuous rolling of 4 to 10 passes. Normally, the rolling reduction in finishing hot rolling is such that the rolling reduction is high in the first stage and the rolling reduction is lower towards the latter stage to obtain a good shape. The rolling speed is usually 100-3000m/
The time between passes is 0.01 to 100.
seconds. What is limited in the present invention is only the hot rolling end temperature and the cumulative reduction rate of the final three passes of hot rolling, and other conditions are not particularly limited. It is also preferable to perform the process under strong pressure because it causes some recrystallization and improves the structure.

【0025】次いで上記熱延条件の限定理由について述
べる。熱延終了温度を600〜850℃とした。850
℃を越えると、再結晶が生じやすくなり、図1に示した
ように、本発明の如き低冷延率の場合、磁束密度が低下
し、好ましくない。一方、600℃未満では、圧延が困
難になり好ましくない。
Next, the reasons for limiting the above hot rolling conditions will be described. The hot rolling end temperature was 600 to 850°C. 850
If it exceeds .degree. C., recrystallization tends to occur, and as shown in FIG. 1, in the case of a low cold rolling rate as in the present invention, the magnetic flux density decreases, which is not preferable. On the other hand, if it is less than 600°C, rolling becomes difficult, which is not preferable.

【0026】一方、仕上熱延最終3パスでの累積圧下率
を30%以上とした。この値未満では、金属組織,集合
組織に対して冷延したかの如き効果が十分でなく、図1
に示した如く、本発明のような低圧下率冷延の場合製品
の磁束密度が低下し、好ましくない。なお、最終3パス
の累積圧下率の上限については特に限定するものではな
いが工業的には99.9%以上の累積圧下を加えること
は困難である。
On the other hand, the cumulative reduction rate in the final three passes of finish hot rolling was set to 30% or more. If the value is less than this, the effect of cold rolling on the metallographic structure and texture will not be sufficient, and as shown in FIG.
As shown in the figure, in the case of low reduction cold rolling as in the present invention, the magnetic flux density of the product decreases, which is not preferable. Although the upper limit of the cumulative reduction rate of the final three passes is not particularly limited, it is industrially difficult to apply a cumulative reduction of 99.9% or more.

【0027】熱延の最終パス後、通常0.1〜100秒
程度空冷された後、水冷され、300〜700℃の温度
で巻取られ、徐冷される。この冷却プロセスについては
特に限定されるものではないが、熱延後5秒以下で急冷
することは、再結晶を抑制する上で好ましい。この熱延
板に、熱延板焼鈍をすることなく、引き続き圧下率60
〜79%の冷延を行い、0.4〜1.0mmの冷延板と
する。
[0027] After the final pass of hot rolling, it is cooled in air for usually about 0.1 to 100 seconds, then cooled in water, wound up at a temperature of 300 to 700°C, and slowly cooled. Although this cooling process is not particularly limited, it is preferable to perform rapid cooling within 5 seconds after hot rolling in order to suppress recrystallization. This hot-rolled sheet was then subjected to a rolling reduction of 60 without being annealed.
~79% cold rolling is performed to obtain a cold rolled sheet with a thickness of 0.4 to 1.0 mm.

【0028】冷延板の板厚を0.4〜1.0mmと規定
したのは、厚手一方向性電磁鋼板を得る本発明の目的の
ためである。また、1.0mm超では、脱炭焼鈍に時間
がかかりすぎて好ましくない。この圧下率を60〜79
%と規定したのは、冷延素材として厚すぎるものは、酸
洗ラインや、冷延ラインの通板時破断を生じやすいので
必然的に冷延率を低める必要があるためである。この上
限値は、冷延素材の板厚制限からきており、一方、下限
値は磁束密度を高位に保つ必要から規定した。
The reason why the thickness of the cold-rolled sheet is defined as 0.4 to 1.0 mm is for the purpose of the present invention to obtain a thick unidirectional electrical steel sheet. Moreover, if it exceeds 1.0 mm, decarburization annealing takes too much time, which is not preferable. This reduction rate is 60 to 79
% because if the cold-rolled material is too thick, it is likely to break during pickling or passing through the cold-rolling line, so it is necessary to reduce the cold-rolling rate. This upper limit value comes from the plate thickness limitation of the cold-rolled material, while the lower limit value was determined from the need to maintain the magnetic flux density at a high level.

【0029】この冷延の方式については特に限定するも
のではない。タンデム方式,リバース方式どちらでもよ
い。パス回数についても特に限定するものではないが、
不必要に100回以上もパス回数をとることは意味がな
い。かかる冷延後の鋼板に通常の方法で脱炭焼鈍、焼鈍
分離剤塗布、最終仕上焼鈍が施されて最終製品となる。 ここで脱炭焼鈍完了後、最終仕上焼鈍開始までの間の一
次再結晶粒の平均粒径を18〜30μmとしたのは、こ
の値の範囲でB8 (T)≧1.88なる良好な磁束密
度が安定して得られるからである。
[0029] This cold rolling method is not particularly limited. Either tandem method or reverse method is acceptable. There is no particular limitation on the number of passes, but
There is no point in taking over 100 passes unnecessarily. The cold-rolled steel sheet is subjected to decarburization annealing, application of an annealing separator, and final finish annealing in a conventional manner to obtain a final product. The reason why the average grain size of the primary recrystallized grains after the completion of decarburization annealing and before the start of final annealing is set to 18 to 30 μm is because within this value range, a good magnetic flux of B8 (T)≧1.88 is achieved. This is because the density can be stably obtained.

【0030】そして、熱延後、最終仕上焼鈍の二次再結
晶開始までの間に鋼板に窒化処理を施すと規定したのは
、本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後、引き続き焼鈍雰囲気にNH3 
ガスを混入させ窒化する方法、プラズマを用いる方法、
焼鈍分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に
窒化物が分解してできた窒素を鋼板に吸収させる方法、
最終仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を
窒化する方法等いずれの方法でもよい。窒化量について
は特に限定するものではないが、1ppm以上は必要で
ある。
[0030]The reason why the steel sheet is nitrided after hot rolling and before the start of secondary recrystallization during final finish annealing is that in a process based on low-temperature slab heating such as the present invention, secondary recrystallization is required. This is because the inhibitor strength required for recrystallization tends to be insufficient. The nitriding method is not particularly limited, and after decarburization annealing, NH3 is added to the annealing atmosphere.
A method of nitriding by mixing gas, a method of using plasma,
A method of adding nitrides to the annealing separator and allowing the steel sheet to absorb the nitrogen produced by decomposition of the nitrides during temperature rise during final annealing.
Any method may be used, such as increasing the N2 partial pressure in the final annealing atmosphere and nitriding the steel plate. Although the amount of nitriding is not particularly limited, it is required to be 1 ppm or more.

【0031】[0031]

【実施例】以下実施例を説明する。 実施例1 C:0.038重量%、Si:3.08重量%、Mn:
0.15重量%、S:0.006重量%、酸可溶性Al
:0.028重量%、N:0.0065重量%を含有し
、残部Fe及び不可避的不純物からなる40mm厚のス
ラブを1150℃の温度で加熱した後、■1000℃、
■900℃、■800℃で熱延を開始し、40→23→
14→9→6→3.5→2(mm)なるパススケジュー
ルで熱延して2.0mmの熱延板とした。この時熱延終
了温度は■の場合912℃、■の場合825℃、■の場
合741℃であり、この場合、最終3パスの累積圧下率
は78%であった。熱延後1秒空冷後、550℃まで水
冷し、550℃に1時間保持後炉冷する巻取りシミュレ
ーションを施した。しかる後、この熱延板を酸洗し、次
いで圧下率75%で冷延し、0.50mm厚の冷延板と
した。
[Example] An example will be explained below. Example 1 C: 0.038% by weight, Si: 3.08% by weight, Mn:
0.15% by weight, S: 0.006% by weight, acid-soluble Al
After heating a 40 mm thick slab containing: 0.028% by weight, N: 0.0065% by weight, and the balance consisting of Fe and unavoidable impurities at a temperature of 1150°C, ■ 1000°C,
■Start hot rolling at 900℃, ■800℃, 40→23→
It was hot rolled with a pass schedule of 14 → 9 → 6 → 3.5 → 2 (mm) to obtain a 2.0 mm hot rolled sheet. At this time, the hot rolling end temperature was 912° C. in the case of (1), 825° C. in the case of (2), and 741° C. in the case of (2), and in this case, the cumulative reduction rate of the final three passes was 78%. After hot rolling, a coiling simulation was performed in which the product was air cooled for 1 second, then water cooled to 550°C, held at 550°C for 1 hour, and then cooled in a furnace. Thereafter, this hot-rolled sheet was pickled and then cold-rolled at a rolling reduction of 75% to obtain a cold-rolled sheet with a thickness of 0.50 mm.

【0032】次いで840℃に300秒保持し、860
℃に20秒保持する脱炭焼鈍を施した。しかる後、75
0℃に30秒保持する熱処理中、雰囲気ガス中にNH3
 ガスを混入させ、鋼板に窒素吸収を生ぜしめた。この
時鋼板のN量は、0.0197〜0.0214重量%で
あった。また、この鋼板の板厚全厚での一次再結晶粒の
平均粒径を光学顕微鏡と画像解析機を用いて測定したと
ころ、23〜25μmであった。次いでこの窒化処理後
の鋼板にMgOを主成分とする焼鈍分離剤を塗布し、公
知の方法で最終仕上焼鈍を行った。
Next, the temperature was maintained at 840°C for 300 seconds, and then heated to 860°C.
Decarburization annealing was performed by holding at ℃ for 20 seconds. After that, 75
During the heat treatment held at 0°C for 30 seconds, NH3 was added to the atmospheric gas.
Gas was mixed in to cause nitrogen absorption in the steel plate. At this time, the amount of N in the steel plate was 0.0197 to 0.0214% by weight. Further, the average grain size of primary recrystallized grains in the entire thickness of this steel plate was measured using an optical microscope and an image analyzer, and was found to be 23 to 25 μm. Next, an annealing separator containing MgO as a main component was applied to the nitrided steel sheet, and final finish annealing was performed using a known method.

【0033】実験条件と製品の磁気特性を表1に示す。Table 1 shows the experimental conditions and magnetic properties of the product.

【0034】[0034]

【表1】[Table 1]

【0035】実施例2 C:0.051重量%、Si:3.23重量%、Mn:
0.14重量%、S:0.007重量%、酸可溶性Al
:0.031重量%、N:0.0065重量%を含有し
、残部Fe及び不可避的不純物からなる40mm厚のス
ラブを1100℃の温度で加熱した後、6パスで熱延し
て2.3mmの熱延板とした。この時圧下配分を40→
20→10→5→4→3→2.3(mm)とした。この
時熱延開始温度を■1000℃,■850℃とした。 この場合、熱延終了温度は■の場合894℃であり、■
の場合791℃であり、最終3パスの累積圧下率は54
%であった。熱延後1秒空冷後、450℃まで水冷し、
450℃に1時間保持後炉冷する巻取りシミュレーショ
ンを施した。しかる後この熱延板を酸洗し、次いで圧下
率78%で同一方向に冷延し、0.50mm厚の冷延板
とした。
Example 2 C: 0.051% by weight, Si: 3.23% by weight, Mn:
0.14% by weight, S: 0.007% by weight, acid-soluble Al
A 40 mm thick slab containing: 0.031 wt% N, 0.0065 wt% N, and the remainder Fe and unavoidable impurities was heated at a temperature of 1100°C, and then hot rolled in 6 passes to a thickness of 2.3 mm. It was made into a hot rolled sheet. At this time, the reduction distribution is 40 →
20 → 10 → 5 → 4 → 3 → 2.3 (mm). At this time, the hot rolling start temperature was set to (1) 1000°C and (2) 850°C. In this case, the hot rolling end temperature is 894°C in case of ■;
In the case of
%Met. After hot rolling, air cooling for 1 second, then water cooling to 450°C,
A winding simulation was performed in which the sample was held at 450° C. for 1 hour and then cooled in a furnace. Thereafter, this hot-rolled sheet was pickled and then cold-rolled in the same direction at a rolling reduction of 78% to obtain a cold-rolled sheet with a thickness of 0.50 mm.

【0036】次いで、830℃に300秒保持し、85
0℃に20秒保持する脱炭焼鈍を施した。しかる後、7
50℃に30秒保持する熱処理中、雰囲気ガス中にNH
3 ガスを混入させ、鋼板に窒素吸収を生ぜしめた。こ
の時鋼板のN量は、0.0208〜0.0219重量%
であった。また、この鋼板の板厚全厚での一次再結晶粒
の平均粒径を光学顕微鏡と画像解析機を用いて測定した
ところ、22〜24μmであった。次いで、この窒化処
理後の鋼板にMgOを主成分とする焼鈍分離剤を塗布し
、公知の方法で最終仕上焼鈍を行った。
[0036] Next, hold at 830°C for 300 seconds, and
Decarburization annealing was performed by holding at 0°C for 20 seconds. After that, 7
During the heat treatment held at 50°C for 30 seconds, NH was added to the atmospheric gas.
3 Gas was mixed in to cause nitrogen absorption in the steel plate. At this time, the amount of N in the steel plate is 0.0208 to 0.0219% by weight.
Met. Further, the average grain size of primary recrystallized grains in the entire thickness of this steel plate was measured using an optical microscope and an image analyzer, and was found to be 22 to 24 μm. Next, an annealing separator containing MgO as a main component was applied to the nitrided steel plate, and final finish annealing was performed using a known method.

【0037】実験条件と製品の磁気特性を表2に示す。Table 2 shows the experimental conditions and magnetic properties of the product.

【0038】[0038]

【表2】[Table 2]

【0039】実施例3 C:0.033重量%、Si:3.15重量%、Mn:
0.15重量%、S:0.006重量%、酸可溶性Al
:0.029重量%、N:0.0071重量%を含有し
、残部Fe及び不可避的不純物からなる30mm厚のス
ラブを1150℃の温度で加熱した後、熱延を行い、2
.3mmの熱延板とした。この場合、圧下配分を30→
20→13→8→5→3.0→2.3(mm)とした。 熱延開始温度を■1100℃,■900℃とした。 この時熱延終了温度は■の場合935℃であり、■の場
合837℃であった。そして、最終3パスの累積圧下率
は71%であった。熱延後1秒空冷後500℃まで水冷
し、500℃に1時間保持後炉冷する巻取りシミュレー
ションを施した。しかる後、この熱延板を酸洗し、次い
で圧下率78%で冷延し、0.50mm厚の冷延板とし
た。この時、1.8mm,1.2mm,0.8mm厚の
時に、100℃×5分(均熱)の時効処理を施した。次
いで835℃に400秒保持する脱炭焼鈍を施した。し
かる後、750℃に30秒保持する熱処理中、雰囲気ガ
ス中にNH3 ガスを混入させ、鋼板に窒素吸収を生ぜ
しめた。この時鋼板のN量は、0.0198〜0.02
15重量%であった。また、この鋼板の板厚全厚での一
次再結晶粒の平均粒径を光学顕微鏡と画像解析機を用い
て測定したところ、21〜23μmであった。次いで、
この窒化処理後の鋼板にMgOを主成分とする焼鈍分離
剤を塗布し、公知の方法で最終仕上焼鈍を行った。
Example 3 C: 0.033% by weight, Si: 3.15% by weight, Mn:
0.15% by weight, S: 0.006% by weight, acid-soluble Al
After heating a 30 mm thick slab containing Fe: 0.029% by weight, N: 0.0071% by weight, and the balance consisting of Fe and unavoidable impurities at a temperature of 1150°C, hot rolling was performed.
.. It was made into a 3 mm hot rolled sheet. In this case, the reduction distribution is 30 →
20 → 13 → 8 → 5 → 3.0 → 2.3 (mm). The hot rolling start temperature was set to (1) 1100°C and (2) 900°C. At this time, the hot rolling end temperature was 935°C in the case of (1) and 837°C in the case of (2). The cumulative rolling reduction rate of the final three passes was 71%. After hot rolling, a winding simulation was performed in which the material was air cooled for 1 second, water cooled to 500° C., held at 500° C. for 1 hour, and then cooled in a furnace. Thereafter, this hot-rolled sheet was pickled and then cold-rolled at a rolling reduction of 78% to obtain a cold-rolled sheet with a thickness of 0.50 mm. At this time, when the thicknesses were 1.8 mm, 1.2 mm, and 0.8 mm, aging treatment was performed at 100° C. for 5 minutes (soaking). Next, decarburization annealing was performed by holding the temperature at 835° C. for 400 seconds. Thereafter, during heat treatment at 750°C for 30 seconds, NH3 gas was mixed into the atmospheric gas to cause nitrogen absorption in the steel plate. At this time, the amount of N in the steel plate is 0.0198 to 0.02
It was 15% by weight. Further, the average grain size of primary recrystallized grains in the entire thickness of this steel plate was measured using an optical microscope and an image analyzer, and was found to be 21 to 23 μm. Then,
An annealing separator containing MgO as a main component was applied to the steel plate after the nitriding treatment, and final annealing was performed using a known method.

【0040】実験条件と製品の磁気特性を表3に示す。Table 3 shows the experimental conditions and magnetic properties of the product.

【0041】[0041]

【表3】[Table 3]

【0042】実施例4 C:0.035重量%,Si:3.13重量%,Mn:
0.15重量%,S:0.007重量%,酸可溶性Al
:0.031重量%,N:0.0065重量%,Sn:
0.07重量%を含有し、残部Fe及び不可避的不純物
からなる40mm厚のスラブを1150℃の温度で加熱
した後、熱延を行い、2.3mmの熱延板とした。 圧下配分40→18→8→4→3→2.5→2.3(m
m)とした。熱延開始温度を■1050℃、■700℃
とした。この時熱延終了温度は■の場合891℃、■の
場合635℃であり、この場合、最終3パスの累積圧下
率は43%であった。熱延後1秒空冷後、550℃まで
水冷し、550℃に1時間保持後炉冷する巻取りシミュ
レーションを施した。しかる後、この熱延板を酸洗し、
次いで、圧下率74%で冷延し、0.60mm厚の冷延
板とした。次いで、840℃に350秒保持し、しかる
後、860℃に20秒保持する脱炭焼鈍を施した。しか
る後、750℃に30秒保持する熱処理中、雰囲気ガス
中にNH3 ガスを混入し、鋼板に窒素吸収を生ぜしめ
た。この時鋼板のN量は、0.0184〜0.0203
重量%であった。また、この鋼板の板厚全厚での一次再
結晶粒の平均粒径を光学顕微鏡と画像解析機を用いて測
定したところ、23〜25μmであった。次いで、この
窒化処理後の鋼板にMgOを主成分とする焼鈍分離剤を
塗布し、公知の方法で最終仕上焼鈍を行った。
Example 4 C: 0.035% by weight, Si: 3.13% by weight, Mn:
0.15% by weight, S: 0.007% by weight, acid-soluble Al
: 0.031% by weight, N: 0.0065% by weight, Sn:
A 40 mm thick slab containing 0.07% by weight and the remainder Fe and unavoidable impurities was heated at a temperature of 1150° C. and then hot rolled to obtain a 2.3 mm hot rolled sheet. Reduction distribution 40 → 18 → 8 → 4 → 3 → 2.5 → 2.3 (m
m). Hot rolling start temperature: ■1050℃, ■700℃
And so. At this time, the hot rolling end temperature was 891°C in the case of (1) and 635°C in the case of (2), and in this case, the cumulative reduction rate of the final three passes was 43%. After hot rolling, a coiling simulation was performed in which the product was air cooled for 1 second, then water cooled to 550°C, held at 550°C for 1 hour, and then cooled in a furnace. After that, this hot rolled sheet is pickled,
Next, it was cold-rolled at a rolling reduction of 74% to obtain a cold-rolled sheet with a thickness of 0.60 mm. Next, decarburization annealing was performed by holding at 840°C for 350 seconds and then at 860°C for 20 seconds. Thereafter, during heat treatment held at 750° C. for 30 seconds, NH3 gas was mixed into the atmospheric gas to cause nitrogen absorption in the steel plate. At this time, the amount of N in the steel plate is 0.0184 to 0.0203
% by weight. Further, the average grain size of primary recrystallized grains in the entire thickness of this steel plate was measured using an optical microscope and an image analyzer, and was found to be 23 to 25 μm. Next, an annealing separator containing MgO as a main component was applied to the nitrided steel plate, and final finish annealing was performed using a known method.

【0043】実験条件と製品の磁気特性を表4に示す。Table 4 shows the experimental conditions and magnetic properties of the product.

【0044】[0044]

【表4】[Table 4]

【0045】[0045]

【発明の効果】以上説明したように、本発明において、
熱延終了温度、熱延の最終3パスの累積圧下率、脱炭焼
鈍完了後、最終仕上焼鈍開始までの間での一次再結晶粒
の平均粒径を制御し、鋼板に窒化処理を施すことにより
、熱延板焼鈍を省略して、低冷延率で良好な磁気特性を
有する厚い板厚の一方向性電磁鋼板を得ることができる
ので、その工業的効果は極めて大である。
[Effects of the Invention] As explained above, in the present invention,
To perform nitriding treatment on a steel sheet by controlling the end temperature of hot rolling, the cumulative reduction rate of the final three passes of hot rolling, and the average grain size of primary recrystallized grains between the completion of decarburization annealing and the start of final finish annealing. Accordingly, it is possible to omit hot-rolled sheet annealing and obtain a thick unidirectional electrical steel sheet having good magnetic properties at a low cold rolling rate, so the industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】熱延最終3パスの累積圧下率と熱延終了温度が
製品の磁束密度に与える影響を表したグラフである。
FIG. 1 is a graph showing the influence of the cumulative reduction rate of the final three passes of hot rolling and the end temperature of hot rolling on the magnetic flux density of the product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量でC:0.021〜0.075%
,Si:2.5〜4.5%,酸可溶性Al:0.010
〜0.060%,N:0.0030〜0.0130%,
S+0.405Se:0.014%以下,Mn:0.0
5〜0.8%を含有し、残部がFe及び不可避的不純物
からなるスラブを1280℃未満の温度で加熱し、熱延
し、熱延板焼鈍をすることなく、引き続き圧下率60〜
79%の冷延を行い、次いで脱炭焼鈍、最終仕上焼鈍を
施して0.4〜1.0mm厚の厚手一方向性電磁鋼板を
製造する方法において、熱延終了温度を600〜850
℃とし、熱延の最終3パスの累積圧下率を30%以上と
し、脱炭焼鈍完了後、最終仕上焼鈍開始までの間での一
次再結晶粒の平均粒径を18〜30μmとし、熱延後最
終仕上焼鈍の二次再結晶開始までの間に鋼板に窒化処理
を施すことを特徴とする磁気特性の優れた厚い板厚の一
方向性電磁鋼板の製造方法。
[Claim 1] C: 0.021-0.075% by weight
, Si: 2.5-4.5%, Acid-soluble Al: 0.010
~0.060%, N:0.0030~0.0130%,
S+0.405Se: 0.014% or less, Mn: 0.0
A slab containing 5 to 0.8% and the remainder consisting of Fe and unavoidable impurities is heated at a temperature below 1280°C, hot rolled, and subsequently reduced to a rolling reduction of 60 to 60% without hot-rolled plate annealing.
In a method of manufacturing a thick unidirectional electrical steel sheet with a thickness of 0.4 to 1.0 mm by performing 79% cold rolling, followed by decarburization annealing and final finish annealing, the hot rolling end temperature is set at 600 to 850 mm.
℃, the cumulative reduction rate of the final three passes of hot rolling is 30% or more, and the average grain size of primary recrystallized grains from the completion of decarburization annealing to the start of final finish annealing is 18 to 30 μm. A method for producing a thick unidirectional electrical steel sheet with excellent magnetic properties, characterized by subjecting the steel sheet to nitriding treatment before the start of secondary recrystallization after final finish annealing.
JP3138064A 1991-06-10 1991-06-10 Production of thick grain-oriented silicon steel plate excellent in magnetic property Withdrawn JPH04362133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138064A JPH04362133A (en) 1991-06-10 1991-06-10 Production of thick grain-oriented silicon steel plate excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138064A JPH04362133A (en) 1991-06-10 1991-06-10 Production of thick grain-oriented silicon steel plate excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH04362133A true JPH04362133A (en) 1992-12-15

Family

ID=15213136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138064A Withdrawn JPH04362133A (en) 1991-06-10 1991-06-10 Production of thick grain-oriented silicon steel plate excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH04362133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940718B1 (en) * 2002-12-26 2010-02-08 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
JP2015004091A (en) * 2013-06-19 2015-01-08 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet and cold rolling sheet for grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940718B1 (en) * 2002-12-26 2010-02-08 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
JP2015004091A (en) * 2013-06-19 2015-01-08 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet and cold rolling sheet for grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3390109B2 (en) Low iron loss high magnetic flux density
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH02274812A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JPH04323A (en) Production of grain-oriented silicon steel sheet having large sheet thickness and excellent in magnetic property
JPS6250528B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903