KR100940718B1 - A method for manufacturing grain-oriented electrical steel sheet without hot band annealing - Google Patents

A method for manufacturing grain-oriented electrical steel sheet without hot band annealing Download PDF

Info

Publication number
KR100940718B1
KR100940718B1 KR1020020083823A KR20020083823A KR100940718B1 KR 100940718 B1 KR100940718 B1 KR 100940718B1 KR 1020020083823 A KR1020020083823 A KR 1020020083823A KR 20020083823 A KR20020083823 A KR 20020083823A KR 100940718 B1 KR100940718 B1 KR 100940718B1
Authority
KR
South Korea
Prior art keywords
annealing
hot
oriented electrical
electrical steel
steel sheet
Prior art date
Application number
KR1020020083823A
Other languages
Korean (ko)
Other versions
KR20040057215A (en
Inventor
홍병득
김재관
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020083823A priority Critical patent/KR100940718B1/en
Publication of KR20040057215A publication Critical patent/KR20040057215A/en
Application granted granted Critical
Publication of KR100940718B1 publication Critical patent/KR100940718B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

본 발명은 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용되는 방향성 전기강판에 관한 것으로서, 그 목적은 열간압연 후 권취구간까지의 냉각속도를 조절함과 아울러 Al과 N의 중량% 곱을 제어하므로써 열연판 소둔 없이도 방향성 전기강판을 제조하는 방법을 제공하는데 있다.
The present invention relates to a grain-oriented electrical steel sheet used as iron core materials such as transformers, electric motors, generators and other electronic devices, the purpose of which is to control the cooling rate from the hot rolling to the winding section and to multiply the weight percent product of Al and N. The present invention provides a method of manufacturing a grain-oriented electrical steel sheet by controlling the hot rolled sheet without annealing.

상기한 목적을 달성하기 위한 본 발명은 중량%로, Si: 2.9~3.4%, C: 0.01~0.06%, P: 0.015~0.035%, S: 0.001~0.010%, Mn: 0.008~0.12%, Al: 0.01~0.05%, N: 0.002~0.01%, 나머지 Fe및 기타 불가피한 불순물로 조성되며, 상기 Al과 N의 중량% 곱이 0.0002~0.0004를 만족하는 강을 1100~1200℃에서 재가열하여 열간압연한 후, 1~100℃/초의 냉각속도로 권취구간까지 냉각한 다음 권취한 후, 냉간압연한 다음 850~910℃에서 탈탄 및 질화소둔을 동시 또는 분리처리한 후, 최종 소둔하는 것을 포함하여 이루어지는 열연판 소둔 생략에 의한 방향성 전기강판의 제조방법에 관한 것을 기술적 요지로 한다.The present invention for achieving the above object by weight, Si: 2.9 ~ 3.4%, C: 0.01 ~ 0.06%, P: 0.015 ~ 0.035%, S: 0.001 ~ 0.010%, Mn: 0.008 ~ 0.12%, Al : 0.01 ~ 0.05%, N: 0.002 ~ 0.01%, remaining Fe and other unavoidable impurities, and after reheating the steel at 1100 ~ 1200 ℃ that hot weight product of Al and N satisfy 0.0002 ~ 0.0004 , Hot-rolled sheet comprising cooling to the winding section at a cooling rate of 1 ~ 100 ℃ / sec, followed by cold rolling, followed by cold or rolling at the same time or separate treatment of decarburization and nitride annealing at 850 ~ 910 ℃, the final annealing Technical aspects are directed to a method for producing a grain-oriented electrical steel sheet by omitting annealing.

고온소둔, 열연판 소둔, 예비소둔, 방향성 전기강판, 2차재결정High temperature annealing, hot rolled sheet annealing, pre-annealed, oriented electrical steel sheet, secondary recrystallization

Description

열연판 소둔 생략에 의한 방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING GRAIN-ORIENTED ELECTRICAL STEEL SHEET WITHOUT HOT BAND ANNEALING} Method for manufacturing oriented electrical steel sheet by omitting hot-rolled sheet annealing {A METHOD FOR MANUFACTURING GRAIN-ORIENTED ELECTRICAL STEEL SHEET WITHOUT HOT BAND ANNEALING}             

도 1은 Al중량%와 N중량%의 곱과 열간압연 후 권취구간까지의 냉각속도에 따른 자속밀도를 나타내는 그래프
1 is a graph showing the magnetic flux density according to the product of Al% by weight and N% by weight and the cooling rate until the winding section after hot rolling.

본 발명은 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용되는 방향성 전기강판에 관한 것으로서, 보다 상세하게는 열간압연 후 냉각속도 및 Al과 N의 중량% 곱을 제어하여 열연판 소둔을 생략할 수 있는 방향성 전기강판의 제조방법에 관한 것이다.
The present invention relates to a grain-oriented electrical steel sheet used as iron core materials for transformers, electric motors, generators, and other electronic devices, and more particularly, to control the cooling rate after the hot rolling and the weight percent product of Al and N to omit the hot rolled sheet annealing. It relates to a method for producing a grain-oriented electrical steel sheet.

방향성 전기강판이란 결정립의 방위가 (110)[001]방향으로 배향된 집합조직을 갖는 전기강판으로서, 압연방향으로 매우 우수한 자기적 특성을 갖기 때문에 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용된다. A grain-oriented electrical steel sheet is an electrical steel sheet having an aggregate structure in which the grain orientation is oriented in the (110) [001] direction. Since it has very excellent magnetic properties in the rolling direction, iron core materials such as transformers, motors, generators, and other electronic devices are used. Used as                         

일반적으로, 방향성 전기강판에 요구되는 특성으로는 자속밀도와 철손 등이 있다. 상기 자속밀도는 클수록 우수한 것으로, 자장의 강도가 1000Amp/m에서 측정되는 B10의 값이 사용된다. 또한, 철손은 작을수록 우수한 것으로, 주파수 50Hz 및 자기장 1.7 T(테슬라)에서의 kg당 손실(Watt)로 나타낸다.In general, the properties required for grain-oriented electrical steel sheet include magnetic flux density and iron loss. The greater the magnetic flux density is, the better, the value of B10 measured at 1000 Amp / m is used. In addition, the smaller the iron loss is, the better it is expressed as loss per kg (Watt) at a frequency of 50 Hz and a magnetic field of 1.7 T (Tesla).

방향성 전기강판을 제조하는 방법은 고온슬라브 가열에 의한 제조방법과 저온슬라브 가열에 의한 제조방법으로 구분할 수 있다. 상기 고온슬라브 가열에 의한 제조방법에서의 열연판 소둔은 고온으로 가열함에 의해 {110}<001> 고스집합조직을 강화하고, 냉각과정에서 급냉에 의해AlN 석출물을 미세하게 분산 석출시켜 탈탄소둔을 겸한 1차재결정에서 결정립의 성장을 억제하여 2차재결정의 구동력을 증가시키며, 급냉에 의해 미세한 탄화물과 질화물을 형성시켜 고스집합조직을 강화하는 세가지의 야금학적인 의미가 있다. 이중 가장 중요한 것은 AlN의 미세석출이다.The method for manufacturing a grain-oriented electrical steel sheet can be classified into a manufacturing method by high temperature slab heating and a manufacturing method by low temperature slab heating. The hot-rolled sheet annealing in the manufacturing method by the high temperature slab heating to strengthen the {110} <001> goth aggregate structure by heating to a high temperature, and finely dispersed precipitated AlN precipitate by quenching in the cooling process to serve as decarbon annealing There are three metallurgical meanings to suppress the growth of grains in the primary recrystallization to increase the driving force of the secondary recrystallization and to form fine carbides and nitrides by quenching to strengthen the goth aggregate structure. The most important of these is the microprecipitation of AlN.

그러나, 저온슬라브 가열에 의한 제조방법에서는 열연판 소둔 후 질화를 통해 AlN을 형성시키므로 열연판 소둔시 AlN을 미세석출 시킬 필요가 없다.
However, in the manufacturing method by low temperature slab heating, since AlN is formed through nitriding after hot-rolled sheet annealing, it is not necessary to finely deposit AlN during hot-rolled sheet annealing.

방향성 전기강판은 N.P.Goss에 의해 냉간압연법에 의한 방향성 전기강판의 제조법이 발명된 이래로 연구를 통하여 많은 진보가 있었다. 방향성 전기강판에 대한 연구의 역사는 철손저감 노력의 역사라 해도 과언이 아니다. 상기 연구들의 주요한 개선내용은 제품의 두께를 얇게 하고, 성분에 첨가원소를 다양하게 첨가하고, 제품에 레이저를 조사하여 자구를 미세하게 하는 것 등이 있다. 이러한 모든 방법들은 제조원가를 상승시키고, 제조방법을 복잡하게 하는 것들이다. 그러나, 최근에 자성 을 개선하는 연구가 한계에 도달하면서, 제조원가의 절감을 위한 연구들이 많이 진행되고 있다.Since the invention of the method for producing the oriented electrical steel sheet by cold rolling by N.P.Goss, there have been many advances through the research. It is no exaggeration to say that the history of research on oriented electrical steel is the history of efforts to reduce iron loss. Major improvements in the studies include thinning the product, adding various elements to the components, and minimizing magnetic domains by irradiating the laser with the product. All these methods raise manufacturing costs and complicate the manufacturing process. However, as research on improving magnetic properties has recently reached its limit, many researches for reducing manufacturing costs have been conducted.

방향성 전기강판의 제조원가를 절감하기 위한 종래기술로는 대한민국 특허 출원번호 1996-63078, 1996-71517, 1997-53791, 1997-37247 호 등이 있다. 상기 종래기술들은 슬라브 저온가열을 특징으로 하는 방향성 전기강판의 제조방법에 관한 것이다. 기존의 고온슬라브 가열방식은 재료의 회수율이 낮고 제조원가가 비싼 반면, 저온 슬라브 가열을 특징으로 하는 상기 종래기술들은 재료의 회수율이 좋고 후 공정에서도 재료의 손실이 매우 적을 뿐만 아니라 고온의 열간압연을 필요로 하지 않아 제조원가를 획기적으로 절감할 수 있다. 그러나, 상기 고온 슬라브 가열과 저온 슬라브 가열은 모두 통상적으로 열연후 조직의 불균일화를 해소하고 석출물을 미세하게 석출 분산시킬 목적으로 열연판 소둔(예비소둔이라고도 함)을 반드시 실시하여야 한다. 그러나, 상기 열연판 소둔은 공정중 다량의 열에너지를 소비할 뿐만 아니라 방향성 전기강판을 위한 공장을 신증설할 경우 반드시 열연판 소둔로를 건설해야 하므로 막대한 투자비가 소요되는 문제점이 있다.Conventional techniques for reducing the manufacturing cost of oriented electrical steel sheet include Korean Patent Application No. 1996-63078, 1996-71517, 1997-53791, 1997-37247. The prior art relates to a method for producing a grain-oriented electrical steel sheet characterized in low temperature heating slab. Conventional hot slab heating method has low material recovery rate and high manufacturing cost, while the above-mentioned conventional technologies, which are characterized by low temperature slab heating, have good recovery rate of the material and very low loss of material even in the post process, and also require high temperature hot rolling. The cost of manufacturing can be drastically reduced. However, both the hot slab heating and the low temperature slab heating generally must perform hot-rolled sheet annealing (also referred to as pre-annealing) for the purpose of eliminating unevenness of the tissue after hot rolling and finely depositing and dispersing precipitates. However, the hot rolled sheet annealing not only consumes a large amount of thermal energy during the process but also requires a huge investment cost because a hot rolled sheet annealing furnace must be constructed when a new plant for oriented electrical steel sheet is newly added.

상기 열연판 소둔에 따른 비용 상승 문제를 해결하기 위한 열연판 소둔을 생략하는 방향성 전기강판의 제조방법에 대한 종래기술로는 대한민국 특허 공고번호 1994-0008934호가 있다. 상기 종래기술은 열간압연후 600℃ 이하에서 권취하여 열연판 소둔을 생략할 수 있다고 주장하고 있다. 하지만, 저온 권취하게 되면 판의 기계적 강도가 증가하여 냉간압연 생산성이 좋지 않게 되는 문제점이 있다.Korean Patent Publication No. 1994-0008934 is a conventional technique for manufacturing a grain-oriented electrical steel sheet to omit the hot-rolled sheet annealing to solve the cost increase problem caused by the hot-rolled sheet annealing. The prior art claims that the hot rolled sheet annealing can be omitted by winding at 600 ° C. or lower after hot rolling. However, when the low temperature winding, there is a problem that the mechanical strength of the plate is increased and the cold rolling productivity is not good.

또한, 열연판 소둔을 생략할 수 있는 다른 종래기술로는 대한민국 특허 등록번호0139247호가 있다. 상기 종래기술에서는 조질 열간압연의 압하율과 Al과 N의 양에 따른 열간압연온도의 조절 등을 통하여 열연판 소둔을 생략하는 제조방법을 제시하고 있다. 그러나, 상기 종래기술은 제조방법이 매우 까다로울 뿐만 아니라, 슬라브의 성분에 따라서 제조방법을 계속해서 바꾸어야 하므로 실제 공정에 적용시 생산성이 저하되는 문제점이 있다.In addition, another prior art that can omit the hot rolled sheet annealing is the Republic of Korea Patent Registration No. 0139247. The prior art proposes a manufacturing method of eliminating the hot rolled sheet annealing by adjusting the hot rolling temperature according to the reduction ratio of the tempered hot rolling and the amount of Al and N. However, the prior art has a problem that the manufacturing method is not only very demanding, but also because the production method must be continuously changed according to the components of the slab, the productivity is reduced when applied to the actual process.

또한, 열연판 소둔을 생략할 수 있는 또 다른 종래기술로는 일본특허 제 2878501호가 있다. 상기 종래기술은 Al, N의 양을 Al(%)-27/14N(%)>0.0100 으로 관리하여 열연판 소둔을 생략하고 있으나, 상기 종래기술은 AlN석출물을 제대로 제어하기가 어려운 문제점이 있다.
In addition, Japanese Patent No. 2878501 is another prior art which can omit the hot rolled sheet annealing. The prior art omits the hot rolled sheet annealing by managing the amount of Al and N to Al (%)-27 / 14N (%)> 0.0100, but the prior art has a problem that it is difficult to properly control AlN precipitates.

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, 열간압연 후 권취구간까지의 냉각속도를 조절함과 아울러 Al과 N의 중량% 곱을 제어하므로써 열연판 소둔 없이도 방향성 전기강판을 제조하는 방법을 제공하는데, 그 목적이 있다.
The present invention is to solve the above problems of the prior art, by controlling the cooling rate from the hot rolling to the winding section after hot rolling, and by controlling the weight percent product of Al and N by producing a grain-oriented electrical steel sheet without annealing To provide, the purpose is.

상기한 목적을 달성하기 위한 본 발명은 중량%로, Si: 2.9~3.4%, C: 0.01~0.06%, P: 0.015~0.035%, S: 0.001~0.010%, Mn: 0.008~0.12%, Al: 0.01~0.05%, N: 0.002~0.01%, 나머지 Fe및 기타 불가피한 불순물로 조성되며, 상기 Al과 N의 중량% 곱이 0.0002~0.0004를 만족하는 강을 1100~1200℃에서 재가열하여 열간압연한 후, 1~100℃/초의 냉각속도로 권취구간까지 냉각한 다음 권취한 후, 냉간압연한 다음 850~910℃에서 탈탄 및 질화소둔을 동시 또는 분리처리한 후, 최종 소둔하는 것을 포함하여 이루어진다.
The present invention for achieving the above object by weight, Si: 2.9 ~ 3.4%, C: 0.01 ~ 0.06%, P: 0.015 ~ 0.035%, S: 0.001 ~ 0.010%, Mn: 0.008 ~ 0.12%, Al : 0.01 ~ 0.05%, N: 0.002 ~ 0.01%, remaining Fe and other unavoidable impurities, and after reheating the steel at 1100 ~ 1200 ℃ that hot weight product of Al and N satisfy 0.0002 ~ 0.0004 After cooling to the winding section at a cooling rate of 1 ~ 100 ℃ / sec, then wound, cold rolling, and then at the same time or separated treatment of decarburization and nitride annealing at 850 ~ 910 ℃, and finally annealing.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

열연판 소둔을 생략하게 되면 2차재결정이 불안정해져 자성이 악화된다. 그러므로, 열연판 소둔을 생략할 때에는 2차재결정을 안정화 시킬 필요가 있다. 열연판 소둔 생략에 의해 자성이 나빠지게 되는 이유는 1차재결정립 크기가 미세해지고 집합조직의 발달이 2차재결정에 불리하게 형성되기 때문이다. 고온슬라브 가열에 의한 방향성 전기강판의 제조방법에서는 석출물에 의한 1차재결정립 성장억제력이 강하므로 1차재결정립의 크기가 작을수록 2차재결정에 유리하다. 그러나, 본 발명과 같은 저온슬라브 가열방법은 질소를 열간압연 후에 강판에 주입하는 방법을 택하기 때문에 1차재결정립의 입성장 억제력이 약하다. 통상적으로, 1차재결정 지름이 20~30㎛ 정도일때 자성에 가장 좋은 것으로 알려져 있다. 그런데, 열연판 소둔을 생략하면 1차재결정립이 5~10㎛ 정도 작아지게 된다. 1차재결정립의 크기가 작아지면 2차재결정 온도가 낮아져 고스 집합조직의 2차재결정 성장이 방해를 받는다. 또한, 열연판 소둔을 생략하면 {110}<001> 강도가 감소하여 2차재결정의 핵은 줄어들고 <001>축이 압연방향으로부터 벗어난 결정립이 2차재결정 되어 결과적으로 자성이 좋지 않게 된다.If the hot-rolled sheet annealing is omitted, the secondary recrystallization becomes unstable and the magnetism deteriorates. Therefore, when omitting the hot rolled sheet annealing, it is necessary to stabilize the secondary recrystallization. The reason why the magnetization becomes worse due to the omission of the hot-rolled sheet annealing is that the size of the primary recrystallized grain becomes fine and the development of the aggregate structure is disadvantageous to the secondary recrystallization. In the method of manufacturing a grain-oriented electrical steel sheet by high temperature slab heating, since the primary recrystallization grain growth inhibitory strength by the precipitate is strong, the smaller the size of the primary recrystallized grain is advantageous for the secondary recrystallization. However, the low-temperature slab heating method of the present invention has a weak grain growth suppression force of the primary recrystallized grain because the method of injecting nitrogen into the steel sheet after hot rolling. Generally, when the primary recrystallization diameter is about 20 ~ 30㎛ is known to be the best for the magnetic. By the way, if the hot-rolled sheet annealing is omitted, the primary recrystallized grain becomes small by about 5 to 10 µm. As the size of the primary recrystallized grains decreases, the secondary recrystallization temperature is lowered, which hinders the secondary recrystallization of the goth texture. In addition, if the hot-rolled sheet annealing is omitted, the strength of {110} <001> decreases, the nucleus of the secondary recrystallization decreases, and the grains deviated from the rolling direction of the <001> axis are secondary recrystallized, resulting in poor magnetic properties.

본 발명자들은 열연판 소둔 생략으로 인하여 일어나는 상기 현상들을 열간압연 종 료후 냉각속도를 조절하여 AlN석출물의 미세화 및 불균일화를 방지할 수 있음을 발견하였다.
The present inventors have found that the above-mentioned phenomena caused by hot-rolled sheet annealing can be prevented from miniaturization and non-uniformization of AlN precipitates by controlling the cooling rate after the end of hot rolling.

이하, 본 발명의 성분 제한 이유부터 살펴본다.Hereinafter, look at from the reasons for limiting the components of the present invention.

Si: 2.9~3.4중량%Si: 2.9-3.4 wt%

상기 Si는 비저항치를 증가시켜 철손을 낮추는 역할을 하는 원소로서, 2.9중량% 미만 첨가되면 철손특성이 나빠지고, 3.9중량%를 초과하여 첨가되면 강이 취약해져 냉간압연성이 매우 나빠지므로, 그 함량을 2.9~3.4중량%로 제한하는 것이 바람직하다.
The Si is an element that serves to lower the iron loss by increasing the specific resistance value, when less than 2.9% by weight of the iron loss properties are worse, when added in excess of 3.9% by weight of the steel is weak and cold rolling property is very bad, its content Is preferably limited to 2.9 to 3.4% by weight.

C: 0.01~0.06중량%C: 0.01 ~ 0.06% by weight

상기 C는 AlN석출물의 미세 고용 분산, 압연조직 형성, 냉간압연시 가공에너지 부여 등의 역할을 하는 원소로서, 0.01중량% 미만 첨가되면 최종제품의 중심부분에 미세결정립이 형성되어 자기적 특성이 나빠지고, 0.06중량%를 초과하여 첨가되면 1차재결정립이 미세해져 집합조직이 자성에 불리하게 형성되므로, 그 함량을 0.01~0.06중량%로 제한하는 것이 바람직하다.The C is an element that plays a role of fine solid dispersion of AlN precipitates, forming a rolled structure, and providing processing energy during cold rolling, and when less than 0.01% by weight is added, fine grains are formed in the central part of the final product to exhibit magnetic properties. It is preferable to limit the content to 0.01 to 0.06% by weight, since the primary recrystallized grains become fine when the amount thereof is added in excess of 0.06% by weight, and the texture is adversely formed on the magnetic body.

본 발명에서는 C의 함량을 통상의 제조방법보다 낮은 0.01~0.06중량%로 관리하고 있는데, 이는 1차재결정립의 미세화를 막고 집합조직을 개선하는데 도움이 된다. 즉, 탄소의 함량이 낮으면 열간압연시 오스테나이트-페라이트 상변태가 일어나는 부위가 줄어들어 1차재결정 소둔 후 결정립 크기가 증가하여 자기특성에 보다 유리 하다.
In the present invention, the content of C is controlled to 0.01 to 0.06% by weight, which is lower than that of the conventional manufacturing method, which helps to prevent the refining of primary recrystallized grains and to improve the texture of the aggregates. That is, if the carbon content is low, the site where austenite-ferrite phase transformation occurs during hot rolling is reduced, and the grain size increases after primary recrystallization annealing, which is more advantageous for magnetic properties.

P: 0.015~0.035중량%P: 0.015 to 0.035 wt%

상기 P는 1차재결정의 입성장을 억제하는데 기여하는 원소로서, P의 함량이 0.015중량% 미만이면 상기 입성장 억제 효과가 없고, 0.035중량%를 초과하면 취성이 증가하여 압연성이 저하되므로, 그 함량을 0.015~0.035중량%로 제한하는 것이 바람직하다.
P is an element contributing to suppressing grain growth of the primary recrystallization. If the content of P is less than 0.015% by weight, the grain growth inhibiting effect is not provided. It is preferable to limit the content to 0.015 to 0.035% by weight.

S: 0.001~0.010중량%S: 0.001-0.010 wt%

상기 S는 0.001중량% 미만으로 관리하려면 제강 비용이 증가되고, 0.010중량%를 초과하면 MnS 석출물이 형성되어 1차재결정립이 미세해져 2차재결정의 발달에 불리하므로, 그 함량을 0.001~0.010중량%로 제한하는 것이 바람직하다.
If the S is managed to less than 0.001% by weight, the steelmaking cost is increased, and when it exceeds 0.010% by weight, MnS precipitates are formed and the primary recrystallized grain becomes fine, which is detrimental to the development of the secondary recrystallized, and the content is 0.001 to 0.010% by weight. It is desirable to limit to%.

Mn: 0.008~0.12중량%Mn: 0.008 to 0.12 wt%

상기 Mn은 재가열시 석출물의 고용온도를 낮추며 열간압연시 소재 양 끝부분에 생성되는 크랙을 방지하는 역할을 하는 원소로서, 0.008중량% 미만 첨가되면 상기 크랙방지 효과를 얻을 수 없고, 0.12중량%를 초과하여 첨가되면 Mn산화물을 형성하여 철손을 열화시킬 뿐만 아니라 오스테나이트양이 증가하여 1차재결정립의 크기를 감소시키므로, 그 함량을 0.008~0.12중량%로 제한하는 것이 바람직하다.
The Mn is an element that lowers the solid solution temperature of the precipitate during reheating and prevents cracks formed at both ends of the material during hot rolling. When Mn is added less than 0.008% by weight, the crack preventing effect is not obtained, and 0.12% by weight If it is added in excess, it forms Mn oxide, which not only deteriorates iron loss but also increases the amount of austenite, thereby reducing the size of the primary recrystallized grains. Therefore, the content is preferably limited to 0.008 to 0.12% by weight.

Al: 0.01~0.05중량%Al: 0.01 ~ 0.05% by weight

상기 Al은 N과 함께 AlN 석출물을 형성하여 입성장억제력을 확보하는 원소로서, 0.01중량% 미만 첨가되면 AlN의 석출량 부족으로 입성장억제력이 떨어져 2차재결정이 일어나지 않으며, 0.05중량%를 초과하면 AlN의 입자가 조대해져 2차재결정이 일어나지 않으므로, 그 함량을 0.01~0.05중량%로 제한하는 것이 바람직하다.
Al is an element which forms AlN precipitates with N to secure grain growth inhibitory power. When Al is less than 0.01% by weight, Al decreases grain growth inhibitory power due to insufficient precipitation of AlN and does not cause secondary recrystallization. Since AlN particles are coarsened and secondary recrystallization does not occur, it is preferable to limit the content to 0.01 to 0.05% by weight.

N: 0.002~0.01중량%N: 0.002-0.01 wt%

상기 N는 Al과 함께 AlN 석출물을 형성하는 원소로서, 0.002중량% 미만 첨가되면 2차재결정이 일어나지 않으며, 0.01중량%를 초과하면 압연성이 떨어지고 AlN이 조대해져 자성이 열화되므로, 그 함량을 0.002~0.01중량%로 제한하는 것이 바람직하다.
N is an element which forms AlN precipitate with Al, and if less than 0.002% by weight of secondary recrystallization does not occur, and if it exceeds 0.01% by weight, the rolling property is inferior and AlN is coarse to deteriorate the magnetism. It is preferable to limit to 0.01% by weight.

본 발명에서 권취구간까지의 냉각속도에 의한 자기특성 개선효과는 Al과 N의 양에 따라 다르게 나타나며, Al과 N의 양을 적절하게 제어하면 냉각속도를 느리게 하는 효과가 있다.In the present invention, the effect of improving the magnetic properties by the cooling rate up to the winding section is different depending on the amount of Al and N, and if the amount of Al and N is properly controlled, there is an effect of slowing down the cooling rate.

따라서, 본 발명에서는 상기 Al과 N을 AlN 석출물로 형성시켜 입성장억제력을 확보하며, 이를 위해서 두 원소의 중량%의 곱을 관리하여 자기특성을 향상시키고 있다. (Al중량%) X (N중량%)의 값이 0.0002 미만이면 미세한 AlN이 석출되고, 0.0004를 초과하면 냉간압연 후 탈탄과 질화소둔에서 형성되는 AlN석출물이 너무 조대해져 2차재결정의 발달이 어려우므로, 상기 Al과 N의 중량% 곱은 0.0002~0.0004로 제한하는 것이 바람직하다.
Therefore, in the present invention, the Al and N are formed of AlN precipitates to secure grain growth suppression force, and for this purpose, the magnetic properties are improved by managing the product of the weight percents of the two elements. If the value of (Al wt%) X (N wt%) is less than 0.0002, fine AlN is precipitated, and if it exceeds 0.0004, AlN precipitate formed from decarburization and nitridation after cold rolling becomes too coarse, making it difficult to develop secondary recrystallization. Therefore, the weight percent product of Al and N is preferably limited to 0.0002 ~ 0.0004.

상기 조성 이외의 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.
The remainder other than the above composition is composed of Fe and other unavoidable impurities.

상기와 같이 조성되는 강을 1100~1200℃로 재가열한 다음, 열간압연한다. 상기 재가열온도가 1100℃ 미만이면 열간압연 종료온도가 900℃ 이하로 되어 열간압연하는데 어려움이 있고, 1200℃를 초과하면 열간압연 중에 AlN가 미세석출되어 자성에 좋지 않으므로, 상기 재가열온도는 1100~1200℃로 제한하는 것이 바람직하다.The steel formed as described above is reheated to 1100 ~ 1200 ° C. and then hot rolled. If the reheating temperature is less than 1100 ℃ hot rolling end temperature is less than 900 ℃ is difficult to hot rolling, if it exceeds 1200 ℃ AlN fine precipitate during hot rolling is not good for magnetic, the reheating temperature is 1100 ~ 1200 It is preferable to limit to ℃.

상기 열간압연 후, 권취구간까지 1~100℃/초의 냉각속도로 냉각한 다음, 권취한다. 통상적으로, 열간압연은 850~1000℃에서 종료되고 권취구간까지 물을 뿌려 급냉을 한다. 그러나, 열연판 소둔공정을 생략하기 위해서는 열간압연후 통상의 권취온도인 500~700℃까지 온도구간의 냉각속도를 적절하게 제어하는 것이 중요하다. 그 이유는 상기 권취구간까지의 냉각속도가 열간압연판의 미세조직과 AlN석출물의 크기 및 분산에 영향을 미치기 때문이다. 상기 권취구간까지의 냉각속도를 적절하게 제어하면 표면층의 {110}<001> 고스집합조직의 강도를 강화시키고 석출물의 미세분산을 방지하여 열연판 및 1차재결정의 미세조직을 균일하게 하여 열연판 소둔을 생략하더라도 1차재결정립 크기를 적정 크기인 지름 20~30㎛로 제어할 수 있다. 상기 냉각속도가 1℃/초 미만이면 생산성이 저하되고,100℃/초를 초과하면 AlN이 미세 균일하게 석출하여 1차재결정립의 크기가 작아 2차재결정 온도가 낮아지고 자성이 악화되므로, 상기 냉각속도는 1~100℃/초로 제한하는 것이 바람직하다.After the hot rolling, it is cooled at a cooling rate of 1 ~ 100 ℃ / second to the winding section, and then wound. Typically, hot rolling is terminated at 850 ~ 1000 ℃ and quenched by spraying water to the winding section. However, in order to omit the hot-rolled sheet annealing process, it is important to appropriately control the cooling rate of the temperature section to 500-700 ° C, which is the usual winding temperature after hot rolling. This is because the cooling rate up to the winding section affects the microstructure of the hot rolled plate and the size and dispersion of AlN precipitates. Appropriate control of the cooling rate to the winding section enhances the strength of the {110} <001> goth aggregate structure of the surface layer and prevents microdispersion of precipitates, thereby making the hot rolled sheet and the primary recrystallized microstructure uniform. Even if the annealing is omitted, the primary recrystallized grain size can be controlled to an appropriate size of 20 to 30 μm in diameter. If the cooling rate is less than 1 ℃ / second productivity is lowered, if it exceeds 100 ℃ / second AlN is precipitated fine uniformly, the size of the primary recrystallized grains is small, the secondary recrystallization temperature is lowered, the magnetic deterioration, Cooling rate is preferably limited to 1 ~ 100 ℃ / second.

상기 권취 후, 냉간압연한 다음, 850~910℃에서 탈탄 및 질화소둔을 동시 또는 분 리하여 처리한다. 상기 탈탄 및 질화소둔은 암모니아가스가 포함된 수소 및 질소의 습윤분위기하에서 소둔분리제의 양에 따라 850~910℃의 범위내에서 실시하는 것이 바람직하다. 탈탄 및 질화소둔온도가 850℃ 미만이거나 910℃를 초과하면 적절한 1차재결정 집합조직의 형성이 이루어지지 않아 자기특성에 좋지 않다. 본 발명에서는 상기와 같이 통상의 탈탄 및 질화소둔온도보다 30~50℃ 높은 850~910℃로 제한하고 있는데, 이는 1차재결정립의 미세화를 방지하여 자기특성을 향상시키는데 효과적이기 때문이다.After the winding, it is cold rolled, and then treated at the same time or separately by decarburization and annealing at 850 to 910 ° C. The decarburization and annealing are preferably carried out in the range of 850 to 910 ° C. according to the amount of annealing separator in a humid atmosphere of hydrogen and nitrogen containing ammonia gas. If the decarburization and annealing temperature is lower than 850 ° C or higher than 910 ° C, no appropriate primary recrystallized texture is formed, which is not good for magnetic properties. In the present invention, it is limited to 850 ~ 910 ℃ 30 ~ 50 ℃ higher than the normal decarburization and nitride annealing temperature as described above, because it is effective to improve the magnetic properties by preventing the miniaturization of primary recrystallized grains.

상기 탈탄 및 질화소둔 후, 소둔분리제를 도포한다. 통상적으로, 소둔분리제는 MgO를 주성분으로 하는 것을 사용한다. 상기 소둔분리제를 도포할 때 슬러리 상태로 하여 코타롤로 도포하는 것이 바람직하다.After the decarburization and annealing, annealing separator is applied. Usually, the annealing separator uses what has MgO as a main component. When applying the annealing separator, it is preferable that the slurry is applied in the form of a cobalol.

상기 소둔분리제 도포 후, 통상의 방법으로 고온소둔한다. 상기 통상적인 고온소둔은 전 구간을 25% 이하의 질소함유 수소분위기로 하고, 700~1200℃ 구간의 승온율을 15℃/시간 이상으로 유지하여 승온한 다음, 1190~1210℃로 20시간 이상 균열하는 방식으로 행한다.After application of the annealing separator, high temperature annealing is carried out in a conventional manner. The conventional high temperature annealing is carried out with a nitrogen-containing hydrogen atmosphere of 25% or less in all sections, the temperature rising rate of the 700 ~ 1200 ℃ section maintained at 15 ℃ / hour or more, and then cracked for more than 20 hours at 1190 ~ 1210 ℃ Do it in a way.

상기 마무리 고온소둔 후, 코팅제를 도포한다. 상기 코팅제로는 통상적으로 인산염, 콜로이달실리카 및 무수크롬산 등으로 구성된 코팅제가 사용된다.
After the finishing high temperature annealing, a coating agent is applied. As the coating agent, a coating agent usually composed of phosphate, colloidal silica, and chromic anhydride is used.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

중량%로, Si: 3.12%, C: 0.042%, P: 0.015%, S: 0.005%, Mn: 0.01% 를 포함하여 조 성되는 슬라브를 1180℃로 재가열한 후, 2.3mm두께로 열간압연하였다. 상기 열간압연은 930℃에서 종료하고 권취온도는 600℃로 하였다. 이때, Al과 N의 중량% 곱 및 열간압연 종료 후 권취온도 까지의 냉각속도를 도 1과 같이 다양하게 설정하여 실험하였다. 열연판소둔을 생략하고 열연판을 산세 및 냉간압연하여 최종두께인 0.30mm두께로 하였다. 탈탄 및 질화소둔은 880℃에서 3분간 암모니아가 포함된 수소 질소의 습윤분위기에서 탈탄과 질화를 동시에 하는 소둔처리를 하였다. MgO를 코팅한 후 시간당 15℃의 속도로 1200℃까지 가열하는 고온소둔을 실시하였다. 이 때, Al과 N의 중량% 곱 및 열간압연 종료 후 권취온도 까지의 냉각속도에 따른 자속밀도는 도 1과 같다.By weight, the slab comprising Si: 3.12%, C: 0.042%, P: 0.015%, S: 0.005%, and Mn: 0.01% was reheated to 1180 DEG C and hot rolled to 2.3 mm thickness. . The hot rolling was finished at 930 ° C and the winding temperature was set at 600 ° C. At this time, the experiment was performed by variously setting the cooling rate from the weight percent product of Al and N and to the winding temperature after the end of hot rolling. The hot rolled sheet annealing was omitted, and the hot rolled sheet was pickled and cold rolled to a final thickness of 0.30 mm. Decarburization and nitride annealing were subjected to annealing which simultaneously carried out decarburization and nitriding in a humid atmosphere of hydrogen nitrogen containing ammonia at 880 ° C. for 3 minutes. After coating with MgO, a high temperature annealing was performed at a rate of 15 ° C. per hour to 1200 ° C. At this time, the magnetic flux density according to the cooling rate from the weight percent product of Al and N and the end of the hot rolling to the coiling temperature is shown in FIG. 1.

도 1에서 알 수 있듯이, Al과 N의 중량% 곱을 0.0002~0.0004의 범위로 하고, 열간압연 종료 후 코일을 권취할 때까지의 냉각속도를 100℃/초 이하로 유지시켜야 AlN의 미세석출을 방지할 수 있어서 자성에 유리하다.
As can be seen in Figure 1, the weight percent product of Al and N in the range of 0.0002 ~ 0.0004, and the cooling rate until the coil is wound up after the end of hot rolling to maintain the temperature below 100 ℃ / seconds to prevent the microprecipitation of AlN It can be advantageous to magnetism.

상술한 바와 같이, 본 발명은 방향성 전기강판의 열연판 소둔공정을 생략하여 생산원가를 크게 낮출 수 있고, 열연판 소둔을 생략하더라도 공정의 복잡한 제어없이 안정적인 자기적 특성을 확보할 수 있는 효과가 있다.As described above, the present invention can significantly reduce the production cost by omitting the hot rolled sheet annealing process of the grain-oriented electrical steel sheet, and even if the hot rolled sheet annealing is omitted, it is possible to secure stable magnetic properties without complicated control of the process. .

Claims (1)

중량%로, Si: 2.9~3.4%, C: 0.01~0.06%, P: 0.015~0.035%, S: 0.001~0.010%, Mn: 0.008~0.12%, Al: 0.01~0.05%, N: 0.002~0.01%, 나머지 Fe및 기타 불가피한 불순물로 조성되며, 상기 Al과 N의 중량% 곱이 0.0002~0.0004를 만족하는 강을 1100~1200℃에서 재가열하여 열간압연한 후, 1~100℃/초의 냉각속도로 권취구간까지 냉각한 다음 권취한 후, 냉간압연한 다음 850~910℃에서 탈탄 및 질화소둔을 동시 또는 분리처리한 후, 최종적으로 25%이하의 질소함유 수소분위기에서 700~1200℃ 구간의 승온율을 15℃/시간 이상으로 유지하여 승온한 다음, 1190~1210℃로 20시간 이상 균열하는 방식으로 소둔하는 것을 포함하여 이루어지는 열연판 소둔 생략에 의한 방향성 전기강판의 제조방법.By weight%, Si: 2.9 to 3.4%, C: 0.01 to 0.06%, P: 0.015 to 0.035%, S: 0.001 to 0.010%, Mn: 0.008 to 0.12%, Al: 0.01 to 0.05%, N: 0.002 to 0.01%, the remaining Fe and other unavoidable impurities, and re-heated at 1100 ~ 1200 ℃ hot-rolled steel, the weight percent product of Al and N satisfying 0.0002 ~ 0.0004, at a cooling rate of 1 ~ 100 ℃ / second After cooling up to the winding section, winding up, cold rolling, and simultaneously or separating the decarburization and nitridation annealing at 850 ~ 910 ℃, and finally raising the temperature of 700 ~ 1200 ℃ in a nitrogen atmosphere of 25% or less. The method of manufacturing a grain-oriented electrical steel sheet by omitting the hot-rolled sheet annealing comprising maintaining the temperature at 15 ℃ / hour or more, and then annealing by cracking at 1190 to 1210 ℃ 20 hours or more.
KR1020020083823A 2002-12-26 2002-12-26 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing KR100940718B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020083823A KR100940718B1 (en) 2002-12-26 2002-12-26 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020083823A KR100940718B1 (en) 2002-12-26 2002-12-26 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing

Publications (2)

Publication Number Publication Date
KR20040057215A KR20040057215A (en) 2004-07-02
KR100940718B1 true KR100940718B1 (en) 2010-02-08

Family

ID=37349814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020083823A KR100940718B1 (en) 2002-12-26 2002-12-26 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing

Country Status (1)

Country Link
KR (1) KR100940718B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725908A1 (en) * 2012-11-26 2020-10-21 Baoshan Iron & Steel Co., Ltd. Oriented silicon steel and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701195B1 (en) * 2005-12-21 2007-03-29 주식회사 포스코 A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100841771B1 (en) * 2006-12-28 2008-06-27 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR101262516B1 (en) 2010-11-10 2013-05-08 주식회사 포스코 Wire rod, steel wire having superior magnetic property and method for manufacturing thereof
WO2018097006A1 (en) 2016-11-25 2018-05-31 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362133A (en) * 1991-06-10 1992-12-15 Nippon Steel Corp Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH05295442A (en) * 1992-04-23 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and having high magnetic flux density
KR20010060653A (en) * 1999-12-27 2001-07-07 이구택 A method for manufacturing grain oriented electrical steel sheet with high permeability
KR20020045214A (en) * 2000-12-08 2002-06-19 이구택 A method for manufacturing high permeability grain oriented electrical steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362133A (en) * 1991-06-10 1992-12-15 Nippon Steel Corp Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH05295442A (en) * 1992-04-23 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and having high magnetic flux density
KR20010060653A (en) * 1999-12-27 2001-07-07 이구택 A method for manufacturing grain oriented electrical steel sheet with high permeability
KR20020045214A (en) * 2000-12-08 2002-06-19 이구택 A method for manufacturing high permeability grain oriented electrical steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725908A1 (en) * 2012-11-26 2020-10-21 Baoshan Iron & Steel Co., Ltd. Oriented silicon steel and manufacturing method thereof

Also Published As

Publication number Publication date
KR20040057215A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
EP3859019A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
KR100940718B1 (en) A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
KR101051744B1 (en) Oriented electrical steel with excellent magnetic properties and manufacturing method thereof
KR100321044B1 (en) Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density
KR101130724B1 (en) A method for grain-oriented electrical steel sheet with uniform magnetic properties
KR101059212B1 (en) Oriented electrical steel sheet with excellent magnetic properties omitted from annealing hot rolled sheet and its manufacturing method
KR100276341B1 (en) The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating
KR100544637B1 (en) A method for grain-oriented electrical steel sheet with good magnetic properties
KR101110250B1 (en) Method for grain-oriented electrical steel sheet with a short hot band annealing time
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
KR100360101B1 (en) A method for manufacturing grain oriented electrical steel sheets having superior glass film
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100701195B1 (en) A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
KR100276283B1 (en) The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR100237158B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
KR100345705B1 (en) A method of manufacturing grain oriented electrical steels having stable magnetic properties
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR100360096B1 (en) The method of manufacturing grain oriented silicon steel by low heating
KR100345697B1 (en) A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures
KR970007161B1 (en) Making method of oriented electrical steel sheet having low iron loss
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130123

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 9