KR100276341B1 - The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating - Google Patents

The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating Download PDF

Info

Publication number
KR100276341B1
KR100276341B1 KR1019960071517A KR19960071517A KR100276341B1 KR 100276341 B1 KR100276341 B1 KR 100276341B1 KR 1019960071517 A KR1019960071517 A KR 1019960071517A KR 19960071517 A KR19960071517 A KR 19960071517A KR 100276341 B1 KR100276341 B1 KR 100276341B1
Authority
KR
South Korea
Prior art keywords
slab
steel sheet
manufacturing
flux density
oriented electrical
Prior art date
Application number
KR1019960071517A
Other languages
Korean (ko)
Other versions
KR19980052510A (en
Inventor
홍병득
우종수
한찬희
이청산
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019960071517A priority Critical patent/KR100276341B1/en
Publication of KR19980052510A publication Critical patent/KR19980052510A/en
Application granted granted Critical
Publication of KR100276341B1 publication Critical patent/KR100276341B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Abstract

PURPOSE: A method for manufacturing oriented electrical steel sheets having high magnetic induction is provided to improve productivity of slab manufacturing by controlling temperature condition. CONSTITUTION: The oriented electrical steel sheet is manufactured by heating silicon steel slab comprising C 0.025-0.08wt.%, Si 2.5-4.5wt.%, Sol-Al 0.020-0.040wt.%, N 0.0150wt.%, Mn 0.01-0.25wt.%, S 0.013-0.022, B 0.0005-0.010wt.%, a balance of Fe, and inevitable impurities in the temperature range of 1100 to 1320deg.C; hot rolling; preliminary annealing the hot rolled slab; cold rolling the slab to target thickness; decarburizing annealing; nitriding it under ammonia atmosphere in the temperature range of 600 to 800deg.C; and then high temperature annealing and coating. In the method, the amount of nitrogen solidified into the slab is 200-800ppm, and Mn/S ranges 4 to 12.

Description

슬라브 저은가열에 의한 고자속밀도 방향성 전기강판의 제조방법Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low silver heating

본 발명은 변압기, 정지기기, 회전기기 등의 철심재료로 쓰이는 고자속밀도 방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 통상의 슬라브 고온가열에 의한 생산성 저하를 개선한, 슬라브 저온가열에 의한 고자속밀도 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high magnetic flux density oriented electrical steel sheet used as iron core materials for transformers, stop machines, rotary machines, and the like, and more specifically, to slab low temperature heating, which improves productivity decrease due to high temperature slab heating. It relates to a method of manufacturing a high magnetic flux density oriented electrical steel sheet.

방향성 전기강판은 규소가 약 3%정도 첨가되고, 열간압연과 냉간압연 및 열처리에 의하여, 압연면에는 {110}면이, 압연방향으로는 철의 자화용이 방향인 <001>축이 배향된 재결정집합조직(고스조직이라고도 함)을 가지고 있는 연자성재료로서, 우수한 자기특성을 이용하여 주로 변압기나 발전기의 철심으로 사용된다.About 3% silicon is added to the grain-oriented electrical steel sheet, and hot rolled, cold rolled, and heat-treated are recrystallized with the {110} plane on the rolled surface and the <001> axis on the rolling direction for magnetization of iron in the rolling direction. It is a soft magnetic material with an aggregate structure (also called a goth structure). It is mainly used as an iron core of a transformer or a generator by using excellent magnetic properties.

이러한 방향성 전기강판에 요구되는 특성은 높은 자속밀도와 낮은 철손이다. 상기 자속밀도는 <001>축이 압연방향으로 배열되어 있는 정도에 따라 결정되는 것으로서, 자속밀도가 높으면 철심재료를 적게 사용하더라도 같은 성능을 발휘할 수 있으므로 전기기기를 소형화할 수 있다.The properties required for such oriented electrical steel sheets are high magnetic flux density and low iron loss. The magnetic flux density is determined according to the extent that the <001> axes are arranged in the rolling direction. If the magnetic flux density is high, the same performance can be achieved even if fewer iron core materials are used, so that the electric apparatus can be miniaturized.

또한, 철손이란 철심재료에 의한 전기기기의 에너지 손실인데, 일반적으로 자속밀도가 높을수록 철손은 낮아지며 제품의 두께, 재료내의 불순물의 함량, 비저항, 결정립 크기 등에 의해 좌우되는 것으로서, 철손값이 작아지면 전기기기의 에너지 효율이 높아진다.In addition, the iron loss is the energy loss of the electrical equipment by the iron core material, in general, the higher the magnetic flux density, the lower the iron loss, and depends on the thickness of the product, the content of impurities in the material, the specific resistance, the grain size, etc. The energy efficiency of the electric equipment becomes high.

따라서, 전기기기의 소형화 및 에너지 절약자원에서 자속밀도가 높고, 철손이 낮은 방향성 전기강판의 필요성이 커지고 있다.Therefore, there is a growing need for oriented electrical steel sheets having high magnetic flux density and low iron loss in miniaturization of electrical equipment and energy saving resources.

한편, 방향성 전기강판은 제조방법과 성질에 따라 고자속밀도 방향성 전기강판과 일반 방향성 전기강판으로 나누어지는데 각각의 가격과 용도가 틀린다.On the other hand, oriented electrical steel sheet is divided into high magnetic flux density oriented electrical steel sheet and general oriented electrical steel sheet according to the manufacturing method and properties, each price and use is different.

상기 방향성 전기강판은 열간압연 및 냉간압연을 거쳐 최종두께로 한후, 1차 재결 정소둔을 한 다음에, {110}<001> 1차재결정럽을 선택적으로 성장시키는 고온소둔을 함으로서, 즉 2차 재결정시킴으로서 방향성 전기강판을 제조할 수 있다. 이때, 고온소둔전에 MnS나 AlN과 같은 석출물을 강내에 미세하고 군일하게 분산시켜 2차 재결정 개시전에 1차재결정립이 조대하게 성장하는 것을 억제하고, {110}<001> 만을 선택적으로 성장시키는 것이 매우 중요하다.The grain-oriented electrical steel sheet is subjected to hot rolling and cold rolling to a final thickness, followed by primary recrystallization annealing, followed by high temperature annealing to selectively grow {110} <001> primary recrystallization rup, ie, secondary By recrystallization, a grain-oriented electrical steel sheet can be produced. At this time, the precipitates such as MnS and AlN are finely and uniformly dispersed in the steel before the high temperature annealing to suppress the coarse growth of the primary recrystallized grains before the start of the second recrystallization, and to selectively grow only {110} <001>. very important.

이와 같이 방향성 전기강판의 제조에 있어서 가장 중요한 기술은 2차재결정이 개시되기 전까지 1차재결정립의 성장을 억제하는 것에 관한 것이다. 이때, 억제제로는 MnS나 AlN 같은 화합물이 주로 이용되고, Sb, Sn과 같은 편석형 원소들이 보조적으로 이용된다.As such, the most important technique in the production of grain-oriented electrical steel sheet is to suppress the growth of primary recrystallized grains before the secondary recrystallization is initiated. In this case, as the inhibitor, compounds such as MnS and AlN are mainly used, and segregation elements such as Sb and Sn are used as auxiliary.

1933년 미국의 N.P. Goss가 MnS를 억제제로 사용하는 수단을 개발한 이래 여러가지 화합물이 시도되었지만, 현재 세계적으로 쓰이는 것은 MnS단독 혹은 MnS + AlN 계이다. 억제제가 갖추어야 될 필수적인 성질은 2차 재결정이 개시되는 온도전까지는 1차 재결정립의 성장을 억제하여 2차재결정립이 크게 성장할 수 있는 환경을 만들어 주어야하고, 2차 재결정이 개시된 후에는 조대하게 성장하거나 고용 소멸되어 2차 재결정에 방해를 주지 말아야 한다. 그러기 위해서는 억제제가 미세하고 균일하게 분산되어 있어야 하며, 종래에는 열간압연과정에서 슬라브를 1400℃전후로 고온 가열하여 MnS 나 AlN을 완전히 고용시킨 후 열간압연과정에서 미세하게 석출시키는 방법을 사용하여 왔다.N.P. in 1933 Various compounds have been tried since Goss developed a means of using MnS as an inhibitor, but the current worldwide use is MnS alone or MnS + AlN system. The essential property of the inhibitor should be to suppress the growth of the primary recrystallization grains until the temperature at which the secondary recrystallization begins, to create an environment where the secondary recrystallization grains can grow greatly, and to grow coarsely after the secondary recrystallization is initiated. It should not be deterred or terminated by employment and interfere with the secondary re-decision. To this end, the inhibitor must be finely and uniformly dispersed, and conventionally, a method of heating the slab at a high temperature around 1400 ° C. in the hot rolling process to completely dissolve MnS or AlN and then finely depositing it in the hot rolling process.

또한, 편석형 원소를 이용한 종래의 대표적인 방법인 일본특허공보 소 51-13469는 Sb, Se와 같은 고가이면서 독성이 있는 원소를 사용하여 제조비가 높고, 생산시 안전과 공해의 문제점을 안고 있다.In addition, Japanese Patent Publication No. 51-13469, which is a conventional representative method using segregation elements, has high manufacturing costs using expensive and toxic elements such as Sb and Se, and has problems of safety and pollution during production.

또한 일본특허공보 소 40-15644로 대표되는, 소위, Hi-B법에 의한 방법은 AlN와 MnS를 열간압연시 미세 석출시켜 이러한 효과를 얻는다. 그러나, 이 방법은 양호한 자성을 얻기 위한 제조조건의 범위가 매우 좁고 제조방법이 매우 까다로워서 안정한 자성을 확보하기가 어렵다.In addition, the so-called Hi-B method, represented by Japanese Patent Publication No. 40-15644, obtains this effect by finely depositing AlN and MnS during hot rolling. However, this method has a very narrow range of manufacturing conditions for obtaining good magnetism and a very difficult manufacturing method, making it difficult to secure stable magnetism.

특히, 위의 두 방법은 석출물을 완전히 고용시키기 위해 제강 및 연주를 거쳐나온 슬라브를 1350℃이상의 온도에서 4시간이상 가열하여야 하는 문제점이 있다. 고온의 슬라브 가열은 에너지 소모가 많고, 고온으로 슬라브를 가열하게 되면 표면에 융점이 낮은 규소산화물이 흘러내려 재료의 손실이 많고, 이 규소산화물이 가열로의 내화물을 침식시키므로 정기적으로 생산을 중지하고 내화물을 교체해야 하므로 비용이 많이 든다.In particular, the above two methods have a problem in that the slab from steelmaking and playing to heat the slab from the steelmaking and playing in order to completely solidify the precipitate to be heated for 4 hours or more. High temperature slab heating consumes a lot of energy, and when slab is heated to high temperature, silicon oxide with low melting point flows out of the surface, causing a lot of material loss, and the silicon oxide erodes the refractory of the heating furnace. It is expensive because the refractory needs to be replaced.

이러한 문제점으로 인하여 슬라브를 저온으로 가열하고자 하는 연구가 최근에 많이 이루어졌으며, 그 대표적인 방범으로 일본공개특허 소59-56522, 일본공개특허 소 62-40315 등을 들 수 있다. 상기 방법은 통상의 억제제로 쓰는 AlN 와 MnS 대신에 AlN만을 이용하며, 1차 재결정후 질소를 주입하는 질화처리에 의해 열간압연단계에서 석출물을 미세하게 제어하는 통상의 방법에 비해, 질화처리에 의해 고온소둔전에 미세한 AlN을 균일하게 분산시켜 2차 재결정을 일으키는 것이 특징이다. 따라서, 열간압연시 MnS 나 AlN을 제어하지 않으므로 슬라브의 고온가열이 필요 없다.Due to this problem, a lot of researches have recently been conducted to heat the slab at a low temperature, and examples thereof include Japanese Patent Application Laid-Open No. 59-56522, Japanese Patent Application Laid-Open No. 62-40315, and the like. The method uses only AlN in place of AlN and MnS, which are used as conventional inhibitors. It is characterized by uniformly dispersing fine AlN before high temperature annealing to cause secondary recrystallization. Therefore, MnS or AlN is not controlled during hot rolling, and thus high temperature heating of the slab is not necessary.

이러한 방법은 종래의 고온으로 슬라브를 가열하는 기술에 비해 1280℃이하의 저온재가열이 가능한 혁신적인 방법이다. 그러나, 이 기술은 AlN 만을 1차 재결정립성장억제제로 이용하고 있으므로 종래의 방법에 비해 제조비용을 절약하는 이점이 있으나 2차 재결정이 개시되기 전에 1차 재결정을 역제하는 수단으로서 AlN만을 사용해야 하므로 2차 재결정의 안정성을 해치는 원인이 되어 자성이 종래기술에 비해 동등이하의 수준이어서 만족스럽지 못하다.This method is an innovative method capable of reheating the lower temperature of 1280 ℃ or less compared to the conventional technology for heating the slab to a high temperature. However, this technique uses AlN alone as the primary recrystallization growth inhibitor, which has the advantage of saving manufacturing cost compared to the conventional method, but only AlN should be used as a means of countering the primary recrystallization before the second recrystallization starts. It is not satisfactory because the magnetism is less than or equal to that of the prior art, which causes the stability of the recrystallization.

더욱 구체적으로 설명하면, 상기 종래 방법은 통상의 억제제로 쓰는 AlN와 MnS 대신에 AlN만을 이용하기 때문에 2차 재결정전까지 1차 재결정립의 성장을 억제하는 억제력이 약하여 2차 재결정립의 방향성 즉, 압연방향으로의 <001>축의 배향성이 정밀하지 못하고 편차가 많이 있어서 자성을 해치게 되어 자기특성이 열악해지는 문제가 있다.More specifically, since the conventional method uses only AlN instead of AlN and MnS, which are used as conventional inhibitors, the inhibitory power for inhibiting growth of primary recrystallized grains until the second recrystallization is weak, thus the direction of the secondary recrystallized grains, that is, rolling There is a problem in that the orientation of the <001> axis in the direction is not precise and there are many deviations, which deteriorates the magnetic properties and deteriorates the magnetic characteristics.

이때, MnS를 1차 재결정립 성장억제제로 쓰지 않은 이유는 MnS를 완전히 고용시키기 위해서는 1400℃전후의 높은 가열온도가 필요하기 때문이다.In this case, the reason why MnS is not used as a primary recrystallization growth inhibitor is that high heating temperature around 1400 ° C. is required to completely solidify MnS.

따라서, 종래의 슬라브 저온가열기술에서는 S함량을 무게비로 0.007%이하로 관리한다.Therefore, in the conventional slab low temperature heating technology, the S content is managed to 0.007% or less by weight ratio.

또한, 상기 슬라브 저온가열 프로세스에서는, 열간압연과정에서 MnS나 AlN의 미세석출이 자성에 오히려 해로우므로, 슬라브 가열을 1200℃이하로 하여 석출물을 조대화 시킨다. 따라서, 통상에 비해 열간압연온도가 일반 탄소강보다 낮아 열간압연기의 부하가 많이 걸리고 탄소강과의 혼합생산시 생산 스케줄을 관리하기가 어려워 생산성의 저하되는 문제가 있다.In addition, in the slab low temperature heating process, fine precipitation of MnS or AlN is rather harmful to magnetism in the hot rolling process, so that the precipitate is coarsened by heating the slab to 1200 ° C or less. Therefore, the hot rolling temperature is lower than that of ordinary carbon steel compared to the general one, so that the load of the hot rolling mill is large, and it is difficult to manage the production schedule during the mixed production with the carbon steel, resulting in a decrease in productivity.

이에, 본 발명은 상기 종래문제를 해결하기 위해 안출묀 것으로써, MnS와 AlN 석출물을 1차 재결정립의 성장억제제로 이용하여 우수한 자성을 안정적으로 얻고, 통상의 고온슬라브 가열대신 1250℃이하의 저온슬라브 가열로 생산성이 혁신적으로 향상될 수 았는 고자속밀도 방향성 전기강판의 제조방법을 제공하고자 하는데 그 목적이 있다.Therefore, the present invention was made to solve the above-mentioned conventional problem, by using MnS and AlN precipitate as a growth inhibitor of the primary recrystallization to obtain excellent magnetic stability, low temperature below 1250 ℃ instead of ordinary high temperature slab heating The purpose of the present invention is to provide a method for manufacturing high magnetic flux density oriented electrical steel sheet, which has been improved in slab heating productivity.

상기 목적을 달성하기 위한 본 발명은 고자속밀도 방향성 전기강판의 제조방법에 있어서, C: 0.025 ∼ 0.08%, Si: 2.5 - 4.5%, Sol-Al: 0.020 ∼ O.040%, N: 0.0150%이하, Mn : 0.01∼0.25%, S: 0.013∼ 0.022%, B: 0.0005∼O.010%, Mn/S 의 비가 4∼12를 만족하고, 잔부 Fe와 기타 불가피하게 첨가되는 불순물로 이루어지는 규소강 슬라브를 1100 ∼ 1320℃의 온도에서 가열하고 열간압연한 후, 상기 열간압연판을 예비소둔을 거쳐 최종제품의 두께로 1회 냉간압연한 다음, 상기 냉간압연판을 1차 재결정을 겸한 탈탄소둔을 한후, 600 ∼ 800℃의 온도에서 암모니아가 포함된 분위기로 단시간 질화처리한 다음, 고온소둔 및 절연코팅하여 이루어지는 슬라브 저온가열에 의한 고자속밀도 방향성 전기강판의 제조방법에 관한 것이다.The present invention for achieving the above object is a method of manufacturing a high magnetic flux density oriented electrical steel sheet, C: 0.025-0.08%, Si: 2.5-4.5%, Sol-Al: 0.020-0.040%, N: 0.0150% Hereinafter, silicon steel composed of Mn: 0.01 to 0.25%, S: 0.013 to 0.022%, B: 0.0005 to 0.010%, Mn / S ratio 4 to 12, and remainder Fe and other unavoidable impurities. After heating the slab at a temperature of 1100-1320 ° C. and hot rolling, the hot rolled plate is pre-annealed and cold rolled once to the thickness of the final product, and then the cold rolled plate is subjected to decarbonization annealing as primary recrystallization. Then, the present invention relates to a method for producing a high magnetic flux density oriented electrical steel sheet by low temperature heating of slab formed by nitriding for a short time in an atmosphere containing ammonia at a temperature of 600 to 800 ° C., followed by high temperature annealing and insulation coating.

이하, 본발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 규소강 성분중 Mn, S의 함량을 낮추어 저온재가열이 가능하도록 하고, 또한 저은슬라브 가열 및 저은 열간압연에서 MnS를 강내에 분포시킨 다음, 열연공정이후에 질화처리에 의해 AlN을 분포하도록 하여 2차 재결정을 안정화하는데, 그 특징이 있다.The present invention is to reduce the content of Mn, S in the silicon steel components to enable low-temperature reheating, and also to distribute the AlN in the steel by low-silver slab heating and low-heat hot rolling, and then to distribute the AlN by nitriding treatment after the hot rolling process To stabilize the secondary recrystallization.

이를 위해 우선, 상기 C는 그 함량이 0.025%이하이면 열간압연에서 상변태가 충분히 일어나지 않고, 또한 슬라브의 주상정조직이 열간압연으로 파괴가 되지 않아 집합조직의 발달에 좋지 않으며, 그 함량이 0.08% 이상이면 탈탄이 제대로 일어나지 않아 자기시효가 일어나 자성에 해로우므로 0.025-0.08%의 범위로 첨가하는 것이 바람직 하다.To this end, the content of C is not good enough for phase transformation in hot rolling when the content is less than 0.025%, and the columnar normal tissue of the slab is not destroyed by hot rolling, which is not good for the development of aggregates, and its content is 0.08% If it is above, since decarburization does not occur properly and magnetic aging occurs and it is harmful to a magnetic, it is preferable to add in 0.025-0.08%.

상기 Si는 그 함량이 2.5%이하이면 비저항이 낮아 철손이 높고, 4.5%이상이면 냉간압연성이 나쁘므로 2.5- 4.5%의 범위로 첨가하는 것이 바람직하다.When the content of Si is 2.5% or less, the resistivity is low, so that the iron loss is high. If the content of Si is 4.5% or more, the cold rolling property is bad, it is preferably added in the range of 2.5-4.5%.

상기 Sol-A1은 그 함량이 0.020%이하이면 AlN에 의한 억제력이 약하고, 0.040%이상이면 AlN이 2차 재결정전에 조대해지기 쉬우므로 0.020- 0.040%의 범위로 첨가하는 것이 바람직하다.When the content of Sol-A1 is 0.020% or less, the inhibitory power by AlN is weak, and when it is 0.040% or more, AlN is easily coarse before the second recrystallization, so it is preferably added in the range of 0.020-0.040%.

상기 N는 그 함량이 0.015%이상이면 냉간압연시 취성이 강해져서 깨지기 쉬우므로 0.015%이하로 제한하는 것이 좋다.When the content is more than 0.015%, the brittleness during cold rolling becomes strong and fragile, so it is preferable to limit it to 0.015% or less.

상기 Mn은 그 함량이 0.01%이하이면 MnS와 결합하지 않은 유리 S에 의해 취성이 생기기 쉽고, 그 함량이 0.25% 이상이면 MnS가 조대해지기 쉬우므로 0.01- 0.25%의 범위로 첨가하는 것이 바람직하다.When the content of Mn is 0.01% or less, brittleness is easily caused by glass S not bonded to MnS, and when the content is 0.25% or more, MnS tends to be coarse, so it is preferable to add Mn in the range of 0.01-0.25%. .

상기 S은 그 함량이 0.013% 이하이면 MnS에 의한 1차 재결정립성장 억제력이 작고 그 함량이 0.022%이상이면 슬라브 저온가열에 의한 제조가 어려우므로 0.013-0.022%의 범위로 첨가하는 것이 바람직하다.When the content of S is 0.013% or less, the primary recrystallization growth inhibition by MnS is small, and when the content is 0.022% or more, it is difficult to prepare by slab low temperature heating, so it is preferably added in the range of 0.013-0.022%.

상기 B는 BN 석출물을 형성시켜 1차 재결정성장억제력을 보충하는 유효한 원소이므로 첨가하는데, 그 함량이 0.0005%이하이면 B의 첨가효과가 없고, B가 0.010%이상이면 자성이 나빠지고, 취성이 있어 압연이 어려우므로 0.0005- 0.010%의 범위로 첨가하는 것이 바람직하다.Since B is an effective element that forms BN precipitates to supplement primary recrystallization growth inhibition, it is added. If the content is less than 0.0005%, there is no effect of adding B, and if B is more than 0.010%, the magnetic properties are poor and brittle. Since rolling is difficult, it is preferable to add in 0.0005 to 0.010% of range.

상기 Mn/S 비는 통상의 고온슬라브 가열에서 MnS를 이용하는 것과는 다른 개념이므로 그 비율이 중요하다. 왜냐하면 고온슬라브 가열보다는 S의 양이 적게 첨가되므로 Mn의 양이 많으면 MnS 석출물이 조대해져 MnS에 의한 1차 재결정립의 성장억제력이 약화된다. Mn양이 적으면 MnS로 결합하지 못한 저융점 물질인 S가 결정립계에 편석하여 크랙의 발생을 조장한다. 바람직한 Mn/S의 비는 4 -12이다.Since the Mn / S ratio is a different concept from using MnS in normal high temperature slab heating, the ratio is important. Because the amount of S is added less than the high temperature slab heating, if the amount of Mn is large, the precipitate of MnS is coarsened and the growth inhibitory power of the primary recrystallized grain by MnS is weakened. When the amount of Mn is small, S, which is a low melting point material that cannot be bonded with MnS, is segregated at grain boundaries to promote the occurrence of cracks. Preferred ratio of Mn / S is 4-12.

상기와 같이 조성되는 규소강 슬라브는 1100 - 1320℃의 온도범위로 저온재가열하는 것이 바람직한데, 그 이유는 슬라브 가열온도가 1100℃이하이면 열간압연 종료온도를 900℃이상으로 할 수가 없어서 자성이 나빠지고, 슬라브 가열온도가 1320℃이상이면 고온슬라브 가열에 의해 생산성이 악화되기 때문이다.The low temperature reheating of the silicon steel slab prepared as described above is preferable in the temperature range of 1100-1320 ° C. The reason is that when the slab heating temperature is 1100 ° C or lower, the hot rolling end temperature cannot be set to 900 ° C or higher. It is because productivity will worsen by high temperature slab heating if a slab heating temperature is 1320 degreeC or more.

상기와 같이 연주슬라브를 저은 재가열한 후 열간압연을 하는데, 이때 열간압연은 조압연 및 사상압연으로 구성되며, 가열로 추출후 즉시 실시하면 된다. MnS의 미세석출을 감안하면 열간압연 종료온도는 900℃이상이 바람직하다.As described above, the slabs are reheated and hot-rolled. The hot-rolling is composed of rough rolling and filamentous rolling. In consideration of the fine precipitation of MnS, the hot rolling end temperature is preferably 900 ° C. or higher.

상기와 같이 열간압연한후, 상기 열간압연판은 예비소둔후 1회냉간압연에 의해 최종제품두께로 한후, 자기시효가 일어나지 않는 탄소량 30ppm 이하로 탈탄한다.After hot rolling as described above, the hot rolled plate is preliminarily annealed to a final product thickness by cold rolling once, and decarburized to 30 ppm or less of carbon having no self aging.

상기 탈탄판은 암모니아가 함유된 분위기에서 질화처리하는데, 상기 질화처리후의 보다 바람직한 질소량은 200 - 800ppm이다. 200 ppm 이하이면 질화에 의한 AlN의 형성이 다소 부족하고, 800 ppm 이상이면 2차재결정 개시전에 AlN가 조대해지기 쉽다.The decarburized plate is subjected to nitriding in an atmosphere containing ammonia, and the more preferable nitrogen content after the nitriding treatment is 200-800 ppm. If it is 200 ppm or less, AlN formation by nitriding is somewhat insufficient, and if it is 800 ppm or more, AlN tends to coarsen before starting secondary recrystallization.

상기 질화처리가 끝난 후에 MgO 코텅을 하고 수소와 질소의 혼합분위기에서 2차 재결정을 일으키는 고온소둔을 실시하고 절연코팅을 하여 최종 제품화한다.After completion of the nitriding treatment, MgO co-toning is carried out and subjected to high temperature annealing to cause secondary recrystallization in a mixed atmosphere of hydrogen and nitrogen, followed by insulation coating to produce a final product.

상기 질화처리는 600-800℃에서 행하는 것이 바람직한데, 그 이유는 600℃이하인 경우에는 온도가 너무 낮아 질화처리가 곤란하고, 800℃이상에서는 질화가 과도하게 일어나 강판중의 질소함량이 너무 높아질 우려가 있기 때문이다.The nitriding treatment is preferably performed at 600-800 ° C., because the temperature is too low at 600 ° C. or lower, so that nitriding is difficult, and the nitriding is excessive at 800 ° C. or higher, so that the nitrogen content in the steel sheet is too high. Because there is.

한편, 상기 고온소둔은 750-950℃에서 행하는 것이 바람직한데, 그 이유는 750℃이하인 겅우에는 탈탄반응이 활발히 일어나지 않아서 강판중의 잔류탄소량이 너무 많아 자기 시효현상을 일으킬 우려가 있고, 950℃이상인 경우에는 강판표면에 FeO를 주성분으로하는 두꺼운 산화막이 형성되어 절연코팅의 박리가 일어날 우려가 있기 때문이다.On the other hand, the high temperature annealing is preferably carried out at 750-950 ℃, because the decarburization reaction does not occur actively at 750 ℃ or less, the amount of carbon remaining in the steel sheet is too high, there is a fear of self aging phenomenon, 950 ℃ This is because a thick oxide film containing FeO as a main component may be formed on the surface of the steel sheet, resulting in peeling of the insulating coating.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

C: 0.045%, Si: 3.01%, Sol-Al: 0.028%, N: 0.009%, B: 0.0030%를 기본으로 하고, 하기 표1에서와 같이 Mn과 S양을 변화시킨 슬라브를 1290℃에서 4시간 가열후 열간 압연하여 2.3mm 두께의 열연판으로 만들었다. 상기 열연판을 예비소둔후 1회냉간 압연에 의해 0.30mm로 한 다음, 830℃에서 수소와 질소가 혼합된 습윤분위기에서 3분간 탈탄소둔한 다음 700℃에서 3분간 암모니아가 수소와 질소가 혼합된 분위기에서 질화처리하였다. 상기 질화처리후 Mg0 코팅한 다음 수소와 질소가 혼합된 분위기에서 고온 소둔한 다음 절연코팅처리한후, 자기적 특성을 측정하고, 그 결과를 하기표1에 나타내었다.Based on C: 0.045%, Si: 3.01%, Sol-Al: 0.028%, N: 0.009%, and B: 0.0030%, the slabs of which Mn and S were changed as shown in Table 1 were changed at 4 at 1290 ° C. After the heating time was hot rolled to make a hot rolled sheet of 2.3mm thickness. After pre-annealing the hot rolled sheet to 0.30mm by cold rolling once, decarbonized annealing for 3 minutes in a wet atmosphere mixed with hydrogen and nitrogen at 830 ℃ and then mixed with hydrogen and nitrogen ammonia at 700 ℃ for 3 minutes Nitriding was performed in the atmosphere. After the nitriding treatment, the Mg0 coating was followed by high temperature annealing in a mixed atmosphere of hydrogen and nitrogen, followed by insulation coating. Then, the magnetic properties were measured, and the results are shown in Table 1 below.

이때, 자기적 성질의 측정의 세기가 1000Amp/m일 때, 자속밀도의 값 BD(Tesla)와 B10 이 1.7 test이고, 주파수가 50Hz일 때의 철손 W17/50(W/kg)으로 나타냈다. 자속밀도 값은 높을수록 전기기기의 효율이 좋고, 철손은 작올수록 철심에 의한 에너지손실이 작다.At this time, when the intensity of the measurement of the magnetic properties is 1000Amp / m, the magnetic flux density values BD (Tesla) and B10 is 1.7 test, the iron loss when the frequency is 50Hz W17 / 50 (W / kg). The higher the magnetic flux density value, the better the efficiency of the electric equipment, and the smaller the iron loss, the smaller the energy loss by the iron core.

[표 1]TABLE 1

상기 표1 에서 알 수 있는 바와 같이 Mn: 0.01 - 0.25%, S: 0.013 - 0.022%, Mn/S의 비가 4 -12인 조건인 발명강에 자성이 우수한 것을 알 수 있었다.As can be seen from Table 1, Mn: 0.01-0.25%, S: 0.013-0.022%, Mn / S was found to have excellent magnetic properties in the condition of the condition of 4-12.

[실시예 2]Example 2

C: 0.040%, Si: 3.25%, Sol-Al: 0.026%, N: 0.008%, S: 0.014%, Mn: 0.12%를 기본으로 하고 표2에서와 같이 Boron 양을 변화시킨 슬라브를 1300℃에서 4시간 가열후 열간압연하여 2.3mm 두께의 열연판으로 만들었다. 열연판을 예비소둔후 1회 냉간압연에 의해 0.30mm로 한 다음, 830℃에서 수소와 질소가 혼합된 습윤분위기에서 3분간 탈탄소둔한 다음 700℃에서 3분간 암모니아가 수소와 질소가 혼합된 분위기에서 질화처리하였다. 질화처리후 Mg0 코팅한 다음 수소와 질소가 혼합된 분위기에서 고온소둔한 다음 절연코팅처리하였다.Slabs varying in Boron amount based on C: 0.040%, Si: 3.25%, Sol-Al: 0.026%, N: 0.008%, S: 0.014%, Mn: 0.12%, and are shown in Table 2. After 4 hours of heating, hot rolling was carried out to form a hot rolled sheet having a thickness of 2.3 mm. After pre-annealing the hot rolled sheet to 0.30mm by cold rolling, and then decarbonized for 3 minutes in a wet atmosphere mixed with hydrogen and nitrogen at 830 ℃, and then mixed with hydrogen and nitrogen for 3 minutes at 700 ℃. Nitrided at After nitriding, Mg0 was coated, followed by high temperature annealing in a mixed atmosphere of hydrogen and nitrogen, followed by insulation coating.

[표 2]TABLE 2

상기 표2에서 알 수 있는 바와 같이, Boron 양이 5 - 10Oppm 범위의 발명강의 자성이 우수하였다.As can be seen in Table 2, the Boron amount was excellent in the magnetic properties of the invention steel in the range of 5-10ppm.

[실시예 3]Example 3

C: 0.046%, Si: 3.15%, Sol-Al : 0.027%, N: 0.009%, B: 0.0040, Mn: O.12, S: 0.013%의 슬라브를 4시간 동안 여러 가지의 가열온도조건에서 유지시켰다. 슬라브가열이 끝난후, 열간압연하여 2.3mm 두께의 열연판으로 만들었다. 열연판을 예비소둔후 1회냉간압연에 의해 0.30mm로 한 다음, 830℃에서 수소와 질소가 혼합된 습윤분위기에서 3분간 탈탄소둔한 다음 700℃에서 3분간 암모니아가 수소와 질소가 혼합된 분위기에서 질화처리하였다. 질화처리후 Mg0 코팅한 다음 수소와 질소가 혼합된 분위기에서 고온소둔한 다음 졀연코팅처리하였다.Slab of C: 0.046%, Si: 3.15%, Sol-Al: 0.027%, N: 0.009%, B: 0.0040, Mn: O.12, S: 0.013% for 4 hours at various heating temperature conditions I was. After the slab heating was finished, hot rolling was made into a hot rolled sheet having a thickness of 2.3 mm. After pre-annealing the hot rolled sheet to make 0.30mm by cold rolling, and then decarbonized for 3 minutes in a wet atmosphere mixed with hydrogen and nitrogen at 830 ℃, and then mixed with hydrogen and nitrogen for 3 minutes at 700 ℃. Nitrided at After nitriding, Mg0 was coated, followed by high temperature annealing in a mixed atmosphere of hydrogen and nitrogen, followed by quench coating.

[표 3]TABLE 3

상기 표3에서 알 수 있는 바와 같이, 슬라브 가열온도가 1150 - 1300℃ 범위의 발명강이 자성이 우수하였고, 제조가 용이하였다.As can be seen in Table 3, the invention steel in the slab heating temperature range of 1150-1300 ℃ was excellent in magnetism, it was easy to manufacture.

상술한 바와 같이, 본 발명은 AlN 과 MnS석출물을 동시에 이용하는 슬라브 저온가열기술에 의하여, 종래의 고온 슬라브 가열에 의한 고자속밀도 방향성 전기강판의 제조방법에 비하여, 슬라브 저온 가열에 의하여 실수율 및 생산성 향상의 잇점이 있으며, 종래의 슬라브 저온가열에 의한 고자속밀도 방향성 전기강판의 제조방법에 비하여 자성과 생산성이 우수한 고자속밀도 방향성 전기강판의 제조방법을 가능하게 하였으며, 본 발명에 의한 새로운 제조방법에 의하여 생산된 고자속밀도 방향성전기강판은 변압기 등의 전기기기제조분야에 적용될 수 있는 유용한 효과가 있다.As described above, the present invention is improved by the slab low temperature heating technology using AlN and MnS precipitate at the same time, compared to the conventional method of manufacturing high magnetic flux density oriented electrical steel sheet by high temperature slab heating, thereby improving the realization rate and productivity. In addition, the present invention enables a method of manufacturing a high magnetic flux density oriented electrical steel sheet having excellent magnetic properties and productivity compared to a method of manufacturing a high magnetic flux density oriented electrical steel sheet by conventional slab low temperature heating. The high magnetic flux density oriented electrical steel sheet produced by the present invention has a useful effect that can be applied to the field of electrical equipment manufacturing such as transformer.

Claims (2)

고자속밀도 방향성 전기강판의 제조방법에 있어서, C:0.025 ∼ 0.08%, Si:2.5 - 4.5%, Sol-Al: 0.020 ∼ 0.040%, N: 0.0150%이하, Mn : 0.01∼0.25%, S: 0.013∼0.022%, B: 0.0005∼0.010%, Mn/S 의 비가 4∼12를 만족하고, 잔부 Fe와 기타 불가피하게 첨가되는 불순물로 이루어지는 규소강 슬라브를 1100 ∼ 1320℃의 온도에서 가열하고 열간압연한 후, 상기 열간압연판을 예비소둔을 거쳐 최종제품의 두께로 1회 냉간압연한 다음, 상기 냉간압연판을 1차 재결정을 겸한 탈탄소둔을 한후, 600 ∼ 800℃의 온도에서 암모니아가 포함된 분위기로 단시간 질화처리한 다음, 고온소둔 및 절연코팅하여 이루어지는 것을 특징으로 하는 슬라브 저온가열에 의한 고자속밀도 방향성 전기강판의 제조방법In the method for producing a high magnetic flux density oriented electrical steel sheet, C: 0.025 to 0.08%, Si: 2.5 to 4.5%, Sol-Al: 0.020 to 0.040%, N: 0.0150% or less, Mn: 0.01 to 0.25%, S: 0.013 to 0.022%, B: 0.0005 to 0.010%, Mn / S ratio of 4 to 12, the silicon steel slab consisting of the remaining Fe and other unavoidable impurities are heated at a temperature of 1100 ~ 1320 ℃ and hot rolled Thereafter, the hot rolled sheet is pre-annealed and cold rolled once to the thickness of the final product, and the cold rolled sheet is subjected to decarbonization annealing as primary recrystallization, and then ammonia is contained at a temperature of 600 to 800 ° C. A method of manufacturing a high magnetic flux density oriented electrical steel sheet by slab low temperature heating, which is made by nitriding in an atmosphere for a short time and then performing high temperature annealing and insulation coating. 제1항에 있어서, 상기 질화처리는 질소량이 200 - 800 ppm 이 되도록 행함을 특징으로 하는 방법The method according to claim 1, wherein the nitriding is performed so that the amount of nitrogen is 200-800 ppm.
KR1019960071517A 1996-12-24 1996-12-24 The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating KR100276341B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071517A KR100276341B1 (en) 1996-12-24 1996-12-24 The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071517A KR100276341B1 (en) 1996-12-24 1996-12-24 The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating

Publications (2)

Publication Number Publication Date
KR19980052510A KR19980052510A (en) 1998-09-25
KR100276341B1 true KR100276341B1 (en) 2000-12-15

Family

ID=19490715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071517A KR100276341B1 (en) 1996-12-24 1996-12-24 The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating

Country Status (1)

Country Link
KR (1) KR100276341B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544616B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419642B1 (en) * 1999-04-29 2004-02-25 주식회사 포스코 method for manufacturing high magnetic flux density grain-oriented electrical steels
KR100587123B1 (en) * 1999-12-30 2006-06-07 주식회사 휴비스 High shrinkable polyester yarn and preparation thereof
KR100544418B1 (en) * 2000-11-28 2006-01-24 주식회사 포스코 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414941A (en) * 1990-05-09 1992-01-20 Nippon Telegr & Teleph Corp <Ntt> Replacement method of communication cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414941A (en) * 1990-05-09 1992-01-20 Nippon Telegr & Teleph Corp <Ntt> Replacement method of communication cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544616B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property

Also Published As

Publication number Publication date
KR19980052510A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100276341B1 (en) The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating
JP2006503189A5 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
KR20000001997A (en) Process for preparing non-oriented electrical steel sheet having excellent magnetic properties after annealing
KR20190078160A (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR100940718B1 (en) A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
KR100345697B1 (en) A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures
KR20100063283A (en) The grain-oriented electrical steel sheets with high magnetic property and manufacturing method thereof
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
KR920008690B1 (en) Making method for electric steel plates
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR100276307B1 (en) The manufacturing method of oriented electric steelsheet with thick plate
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
KR20030053139A (en) Method for manufacturing non-oriented electrical steel sheet with low iron loss
KR100276283B1 (en) The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR101110250B1 (en) Method for grain-oriented electrical steel sheet with a short hot band annealing time
KR100345705B1 (en) A method of manufacturing grain oriented electrical steels having stable magnetic properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 16

EXPY Expiration of term