KR100345706B1 - Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof - Google Patents

Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof Download PDF

Info

Publication number
KR100345706B1
KR100345706B1 KR1019970065507A KR19970065507A KR100345706B1 KR 100345706 B1 KR100345706 B1 KR 100345706B1 KR 1019970065507 A KR1019970065507 A KR 1019970065507A KR 19970065507 A KR19970065507 A KR 19970065507A KR 100345706 B1 KR100345706 B1 KR 100345706B1
Authority
KR
South Korea
Prior art keywords
less
annealing
oriented electrical
steel sheet
temperature
Prior art date
Application number
KR1019970065507A
Other languages
Korean (ko)
Other versions
KR19980063732A (en
Inventor
장삼규
배병근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of KR19980063732A publication Critical patent/KR19980063732A/en
Application granted granted Critical
Publication of KR100345706B1 publication Critical patent/KR100345706B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method for manufacturing non-oriented electrical steel sheets having superior magnetic properties is provided. CONSTITUTION: The method includes the steps of reheating a steel slab comprising 0.02 wt.% or less of C, 1.0 wt.% or less of Si, 0.5 wt.% or less of Mn, 0.15 wt.% or less of P, 0.02 wt.% or less of S, 0.005 wt.% or less of Sol-Al, 0.006 wt.% or less of N, Sn 0.03 to 0.30 wt.%, B 0.0004 to 0.0030 wt.%, a balance of Fe and incidental impurities at 1100 to 1250°C, wherein B/N is 0.1 to 0.5; hot rolling the steel slab; coiling the hot rolled steel sheet at less than 750 deg.C, followed by pickling and cold rolling; annealing the cold rolled steel sheet at 700 to 1050°C; and stress relief annealing.

Description

자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법{Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof}Non oriented electrical steel sheet having superior magnetic properties and manufacturing process

본 발명은 중소형의 모터 및 소형 변압기와 같은 전기기기의 철심등으로 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로써, 보다 상세하게는 철손이 낮고 자속밀도와 투자율이 높은 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used for iron cores of electrical equipment such as small and medium-sized motors and small transformers, and a method for manufacturing the same. More specifically, the non-oriented electrical steel sheet with low iron loss, high magnetic flux density and permeability; It relates to a manufacturing method.

일반적으로 무방향성 전기강판은 전기에너지를 회전에너지로 바꾸어 동력을 발생시키는 모터 또는 입력전압을 감압 또는 승압시키는 변압기등에 사용되고 있으며, 발전량의 대부분은 상기와 같은 용도로 소모되고 있는 실정이다.In general, non-oriented electrical steel sheet is used in a motor for generating power by converting electrical energy into rotational energy or a transformer for reducing or boosting an input voltage, and most of the power generation is consumed for the above purposes.

따라서, 무방향성 전기강판의 자기적특성은 에너지 손실과 직결되는 것으로서, 에너지 절약이라는 측면에서 중요하며, 특히, 자기적 특성중에서 철손, 자속밀도 및 투자율이 중요하다. 상기 강판의 자기적 특성은 주어진 자속밀도에서 철손 또는/및 투자율을 비교하므로서 비교될 수 있다.Therefore, the magnetic properties of non-oriented electrical steel sheet are directly related to energy loss, and are important in terms of energy saving. In particular, iron loss, magnetic flux density, and permeability among magnetic properties are important. Magnetic properties of the steel sheet can be compared by comparing iron loss and / or permeability at a given magnetic flux density.

한편, 무방향성 전기강판은 Si의 함량에 의해 분류되기도 하는데, 이에 따르면 Si의 함량이 1.0%이하인소재와 1.0%이상인 소재로 구분할 수 있으며,Si의 함량이 높으면 비저항이 증가되어 철손이 낮아 질 수 있으나, 자속밀도와 투자율이 낮아지게 된다.On the other hand, non-oriented electrical steel sheet is also classified by the content of Si, according to this, can be classified into the material with the Si content of less than 1.0% and the material with more than 1.0%, high Si content can increase the specific resistance can be low iron loss However, the magnetic flux density and permeability will be lowered.

자기적 특성중 철손은 에너지손실을 의미하며,이력손실과 와류손실로 구분 할 수 있다. 와류손실은 소재의 성분과 두께등에 의하여 결정되고, 그리고 이력손실은 주로 불순물 원소 및 그 제조방법에 의해 결정되는 데. 철손중에서 이력손실이 차지하는 비율이 많으므로 제조방법제어에 의해 이력손실을 낮출 필요가 있다.Iron loss among magnetic characteristics means energy loss and can be classified into history loss and eddy current loss. Vortex losses are determined by the composition and thickness of the material, and hysteresis losses are mainly determined by the impurity element and its manufacturing method. Since the hysteresis loss accounts for a large percentage of iron losses, it is necessary to reduce the hysteresis loss by controlling the manufacturing method.

이력손실을 낮추고 투자율을 증가시키는 방법으로는 불순물원소인 S,N 및 O등을 줄이는 방법이 알려져 있는데, 이 방법은 가능한한 이들 원소들을 적게 함유되도록 하기위하여 제강공정에서 많은 시간과 재조비용을 부과하고 있다.As a method of reducing hysteresis loss and increasing permeability, it is known to reduce impurities such as S, N and O. This method imposes a lot of time and manufacturing cost in the steel making process in order to contain as few of these elements as possible. Doing.

특히, Si의 함량이 1.0%이하인 경우에는 N 의 영향을 줄일 필요가 있으며, 또한, 결정립을 크게 성장시키고 자성에 유리한 집합조진인 {200}<hkl>과 {110}< wxy>을 잘발달시킴으로서 자기적특성를 향상시킬 수 있다.In particular, when the content of Si is less than 1.0%, it is necessary to reduce the influence of N. Furthermore, by growing the grains and developing the aggregation coarse {200} <hkl> and {110} <wxy> which are favorable for magnetism, Magnetic properties can be improved.

일본공개특허 소 63-33518호에는 Mn을 1.0-1.5%함유시켜 자기적특성을 향상시키는 방법이 제시되어 있는데, 이 방법은 압연성이 떨어지며 Al첨가등으로 제조원가가 증가되는 문제점이 있다.Japanese Laid-Open Patent Publication No. 63-33518 discloses a method of improving magnetic properties by containing 1.0% to 1.5% of Mn. This method has a problem in that rollability is reduced and manufacturing cost increases due to addition of Al.

또한, 유럽특허 공개 0084980에는 Sn과 B을 첨가하고, B/N의 비가 0.5-1.5가 되게 B과 N를 관리하는 방법이 제시되어 있다. 그러나, 이 방법은 B/N의 비가 높아 B의 첨가량이 많아 질 뿐만아니라 Al을 첨가해야 한다.In addition, European Patent Publication 0084980 discloses a method for managing B and N by adding Sn and B, so that the ratio of B / N is 0.5-1.5. However, this method has a high B / N ratio, so that the amount of B added is large, and Al must be added.

한편, 이력손실을 낮추고 투자율을 증가시키기 위하여 제조공정의 개선에도많은 노력이 경주되어 왔는데, 그 예로는 열간압연 후 열연판소둔을 행하고 그리고 냉연판 소둔후, 경압연(skin pass)하는 방법등을 들 수 있다.On the other hand, many efforts have been made to improve the manufacturing process in order to reduce hysteresis loss and increase the permeability. For example, hot roll annealing after hot rolling, and cold pass annealing (skin pass), etc. Can be mentioned.

그러나 상기한 제조방법의 경우에는 공정이 추가되며, 수요가가 반드시 응력소둔을 해야하는 문제점및 경압연후의 판형상이 나빠지는 문제점이 있다.However, in the case of the above-described manufacturing method, the process is added, there is a problem that the demand must be subjected to stress annealing, and the plate shape after light rolling is bad.

이에, 본 발명자들은 상기한 종래기술들의 문제점들을 해결하기 위하여 다각도로 연구한 결과, 불가피하게 함유되는 N 보다는 임의로 조정이 가능한 B의 양을 보다 적극적으로 관리하고, 탈산용으로서의 Al만을 첨가하므로서 AlN이나 기타 자성에 유해한 B석출물의 석출이 억제되어 자기적특성이 향상됨을 확인하였으며, 이에 근거하여 본 발명을 제안하게 된것이다.Accordingly, the present inventors have studied in various angles to solve the problems of the prior art, and as a result, AlN or AlN or Al by adding only Al for deoxidation, is managed more actively than the N contained inevitably. It was confirmed that the precipitation of B precipitates harmful to other magnetism is suppressed and the magnetic properties are improved, and the present invention is proposed based on this.

본 발명은 철손이 낮고 자속밀도및 투자율이 높은 무방향성 전기강판및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.An object of the present invention is to provide a non-oriented electrical steel sheet having a low iron loss, high magnetic flux density, and high permeability, and a method of manufacturing the same.

본 발명의 다른 목적은 B 와 N의 비를 적절히 제어하므로서,B와 N의 석출물을 제어하여 투자율이 우수한 무방향성 전기강판및 그 제조방법을 제공하는데, 있다.Another object of the present invention is to provide a non-oriented electrical steel sheet having excellent permeability by controlling the precipitates of B and N while controlling the ratio of B and N appropriately, and a method of manufacturing the same.

따라서 본 발명은, 중량%로, C:0.02%이하, Si:1.0%이하, Mn:0.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.006%이하, Sn:0.03-0.30%, B:0.0004-0.003%, 잔부 Fe 및 불가피한 불순물을 포함하고, B/N의 비가 0.1~0.5를 만족하는 자기적 특성이 우수한 무방향성 전기강판에 관한 것이다.Therefore, in the present invention, by weight%, C: 0.02% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% or less, N: 0.006 The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, including% or less, Sn: 0.03-0.30%, B: 0.0004-0.003%, balance Fe and unavoidable impurities, and satisfying a B / N ratio of 0.1 to 0.5.

또한 본 발명은, 중량%로, C:0.02%이하, Si:1.0%이하, Mn:0.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.006%이하, Sn:0.03-0.30%, B:0.0004- 0.003%, 잔부 Fe 및 불가피한 불순물을 포함하고, B/N의 비가 0.1~0.5를 만족하는 강슬라브를 재가열하여 열간압연한 후, 750℃이하의 온도로 권취한 다음, 열연판을 소둔하거나 또는 열연판소둔 없이 산세하고, 이어 냉간압연한 후, 냉연판을 700-1050℃의 온도에서 소둔하여 자기적 특성이 우수한 무방향성 전기강판을 제조하는 방법에 관한 것이다.In the present invention, by weight%, C: 0.02% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% or less, N: 0.006 % Or less, Sn: 0.03-0.30%, B: 0.0004-0.003%, balance Fe and unavoidable impurities, after reheating and hot rolling a steel slab with a B / N ratio of 0.1 to 0.5 After winding to a temperature of, the hot rolled sheet is annealed or pickled without hot rolled sheet annealing, and then cold rolled, the cold rolled sheet is annealed at a temperature of 700-1050 ℃ to produce a non-oriented electrical steel sheet having excellent magnetic properties It is about a method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 Si함량이 1.0%이하인 성분의 강에 대해 N의 함량을 가능한 감소시켜 자기적 특성을 향상시키는 방법을 제공하고져 한다.The present invention is to provide a method of improving the magnetic properties by reducing the content of N as much as possible with respect to the steel of the component having a Si content of 1.0% or less.

N는 일반적으로 최종제품에서 미세하고 선상의 석출물인 AlN으로 석출하여 결정립성장을 억제함으로서 자성을 열화시킨다.N generally deteriorates the magnetism by inhibiting grain growth by precipitating as AlN, a fine and linear precipitate in the final product.

N의 영향을 최소화하기 위하여 결정입계의 편석원소인 Sn을 첨가하고 또한 N와 결합력이 큰 B를 첨가함으로서 제강단계에서의 N과 압연및 소둔단계에서의 N 를 강에서 효과적으로 억제함으로서 자성을 향상시킬 수 있다.In order to minimize the influence of N, the addition of Sn, the segregation element of the grain boundary, and the addition of B, which has a high bonding force, can enhance the magnetism by effectively suppressing N in steelmaking and N in rolling and annealing. Can be.

Si함량이 1.0%이하인 성분의 강에서 N는 미세하며 주로 선상의 AlN으로 석출함으로서 결정립성장을 억제하고 있다.In steels with a Si content of 1.0% or less, N is fine and precipitation of grains is mainly suppressed by linear AlN to suppress grain growth.

따라서 N 와 Al은 가능한 억제해야한다.Therefore, N and Al should be suppressed as much as possible.

상기 B은 소재내부에서 N와 결합하여 미세한 AlN대신 조대한 보론석출물인 BN을 형성시켜 결정립성장에 보다 유리하게 작용하는 원소이다.B is an element that binds to N in the material and forms BN, which is coarse boron precipitate instead of fine AlN, which acts more advantageously for grain growth.

그러나 상기 B이 과다 하게 첨가되는 경우에는 B2O3및 FeB 으로 석출하여 강중의 불순물이 늘어나는 결과를 초래하게 되므로, BN과 결합하는 량이외의 B은 가능한 한 첨가하지않는 것이 가장 중요하다.However, when the amount of B is excessively added, precipitation of B 2 O 3 and FeB results in an increase in impurities in the steel. Therefore, it is most important not to add B other than the amount of binding with BN as much as possible.

이에,본 발명자들은 불가피하게 함유되는 N의 량보다는 임의로 조정가능한 B의량을 보다 적게 첨가하는 방법을 조사하였으며, B/N의 비가 0.5보다 낮고, 0.1보다 높은 범위에서 투자율이 가장 높은 것을 발견하였다.Accordingly, the inventors have investigated the method of adding an amount of B which is arbitrarily adjustable rather than the amount of N inevitably contained, and found that the permeability is the highest in the range of B / N ratio lower than 0.5 and higher than 0.1.

또한, 1.0%이하의 Si을 함유하는 강에서는 Al원소가 가능한한 첨가하지 않는 것이, 0.005~0.015%까지 첨가한 강에 비하여 오히려 유리한 것으로 조사되었다. 상세하게 설명하면, 선상의 석출물로 석출되는 상기 AlN은 결정입성장을 억제시켜 자성특성을 저하시키므로 이러한 AlN을 석출시키지 않는 방법으로 Al량을 가능한 적게 첨가하거나 Al량을 0.15%이상 첨가하여 AlN석출물을 크고 원형으로 형성함이 바람직하나, Al이 고가인점을 고려하면 가능한한 첨가하지 않는 것이 유리한 것이다In addition, in the steel containing 1.0% or less of Si, it was found that the Al element was not added as much as possible compared to the steel added up to 0.005% to 0.015%. In detail, the AlN precipitated as linear precipitates suppresses grain growth and lowers magnetic properties. Thus, AlN is added as little as possible or Al5 is added in an amount of 0.15% or more in a manner that does not precipitate AlN. It is preferable to form a large and round shape, but considering that Al is expensive, it is advantageous not to add as much as possible.

따라서 본 발명에서는 Al을 제강에서 탈산용으로 불가피하게 첨가되는 것 이외에는 첨가하지 않는다.Therefore, in the present invention, Al is not added except inevitably added for deoxidation in steelmaking.

즉, 본 발명에서는 용해가능한 Al 인 Soluble Al(Sol.Al)의 함량을 0.005%이하로 제한하며, 바람직하게는 Al의 함량을 0.005%이하로 제한하는 것이다.That is, in the present invention, the content of Soluble Al (Sol.Al), which is soluble Al, is limited to 0.005% or less, and preferably, the content of Al is limited to 0.005% or less.

이하, 본 발명의 강 조성및 그 한정이유에 대하여 설명한다.Hereinafter, the steel composition of the present invention and the reason for limitation thereof will be described.

상기 C는 자기시효를 일으켜서 사용중의 자기적 특성을 저하시키므로 그 함량은 0.02%이하로 제한하며, 바람직하게는 슬라브에서는 0.02%이하로 하고, 최종제품에서는 0.003%이하로 제어하는 것이다.Since C causes magnetic aging to lower magnetic properties during use, its content is limited to 0.02% or less, preferably 0.02% or less in slabs, and 0.003% or less in final products.

상기 C를 0.003%이하로 낮추기 위하여 최종소둔시 탈탄을 할 수도 있다.In order to lower the C to 0.003% or less, decarburization may be performed during final annealing.

상기 Si는 비저항을 증가시켜 철손을 낮추는 원소이지만, 투자율향상측면을 고려하여 1.0%이하로 제한하는 것이 바람직하다.Si is an element that lowers iron loss by increasing specific resistance, but is preferably limited to 1.0% or less in consideration of improving permeability.

상기 Mn은 철손개선에 유효한 원소이지만 0.5%를 넘으면 오히려 철손을 열화시키고 자속밀도도 저하시키므로 0.5%이하로 제한하는 것이 바람직하다.Mn is an effective element for improving iron loss, but if it exceeds 0.5%, the iron loss is deteriorated and the magnetic flux density is also lowered, so it is preferable to limit it to 0.5% or less.

상기 P은 자성에 유리한 집합조직을 형성하는 원소이지만, 0.15%를 넘으면 냉간압연성이 나빠지므로 0.15%이하로 제한하는 것이 바람직하다..P is an element that forms an advantageous texture for magnetic properties, but if it exceeds 0.15%, cold rolling is deteriorated, so it is preferable to limit it to 0.15% or less.

상기 S은 미세한 석출물인 MnS를 형성하여 결정립성장을 억제함으로 가능한한 낮게 관리하는 것이 유리하며, 본 발명에서는 최대 0.02%까지 관리한다.The S is advantageously managed as low as possible by forming a fine precipitate MnS to suppress grain growth, in the present invention is managed up to 0.02%.

상기 Al은 미세한 선상의 AlN석출물을 형성하여 결정립성장을 억제하게되므로 본 발명에 있어서는 제강단계에서 탈산용으로만 Al이 첨가되며, 가능한 한 강중에 함유되지않도록 하는것이 바람직하며,강중에 최대 0.005%까지 함유될 수 있다.Since Al suppresses grain growth by forming fine linear AlN precipitates, in the present invention, Al is added only for deoxidation in the steelmaking step, and it is preferable not to be contained in steel as much as possible, at most 0.005% in steel. May contain up to.

또한, 본 발명에 있어 상기 Al의 함량은 Sol.Al형태로 0.005%이하로 제한될 수 있다.In addition, in the present invention, the content of Al may be limited to 0.005% or less in the form of Sol.Al.

여기서, Sol.Al은 총 알루미늄중 AlN, Al2O3등의 Al화합물을 뺀 원자상태의 Al으로서, 용해가능한 Al(soluble Al)을 의미한다.Here, Sol.Al is Al in atomic state without Al compounds such as AlN and Al 2 O 3 in total aluminum, and means soluble Al (soluble Al).

상기 N은 미세하고 긴 AlN 석출물을 형성함으로 가능한한 억제하는 것이 필요하며, 본 발명에서는 그 함량을 0.006%이하로 제한한다.The N needs to be suppressed as much as possible by forming fine and long AlN precipitates, and in the present invention, the content is limited to 0.006% or less.

상기 Sn은 결정립계에 편석하여 N의 확산을 억제하고, 자성에 불리한 (222)면의 집합조직을 억제시키는 역할을 하는데, 이를 위해 0.03%이상 첨가하는 것이 필요하나, 0.30%를 넘으면 냉간압연성이 나빠지고 열연판의 형상이 불량해지므로 그 함량은 0.03-0.30%로 제한하는 것이 바람직하다.The Sn segregates at grain boundaries to suppress the diffusion of N and to suppress the texture of the (222) plane, which is disadvantageous to magnetism. To this end, Sn needs to be added at least 0.03%. It is preferable that the content is limited to 0.03-0.30% because it worsens and the shape of the hot rolled sheet becomes poor.

상기 B은 소재내부에서 N와 결합하여 미세한 AlN대신 조대한 보론석출물인 BN을 형성시켜 결정립성장에 보다 유리하게 작용하는 원소로서, 이를 위해 0.0004%이상 첨가하는 것이 필요하나, 그 양이 많아지면 오히려 투자율이 낮아짐으로 최대 0.003%까지 첨가할 수 있다.B is an element that binds to N in the material and forms BN, which is coarse boron precipitate instead of fine AlN, and acts more advantageously for grain growth. To this end, it is necessary to add more than 0.0004%, but when the amount is increased, Lower permeability allows up to 0.003% addition.

본 발명에 있어 AlN대신 조대한 BN석출물을 보다 적절하게 형성시키기 위해서는 B/N의 비를 0.1-0.5로 조절하는 것이 필요하다. 만일 B/N의 비가 0.1미만이면 B의 양이 적어 N가 AlN으로 석출될 가능성이 높아져 결정립성장이 억제될 수 있고, B/N의 비가 0.5를 넘으면 B이 함유량이 상대적으로 많아져 B가 B2O3및 FeB으로 석출하여 강중의 불순물이 늘어나는 결과를 초래할 수 있다.In the present invention, in order to more appropriately form coarse BN precipitates instead of AlN, it is necessary to adjust the ratio of B / N to 0.1-0.5. If the ratio of B / N is less than 0.1, the amount of B is small and N is likely to be precipitated as AlN, and grain growth can be suppressed. If the ratio of B / N exceeds 0.5, the content of B is relatively large and B is B. Precipitation with 2 O 3 and FeB can lead to increased impurities in the steel.

즉,본 발명에 있어서는 B/N의 비를 0.1-0.5로 조절하는 경우에는 BN석출물이 적절히 형성되어 결정립이 보다 조대하게되고, 또한 B2O3및 FeB등의 석출물 형성이 방지되므로서, 강판의 자기적 특성, 특히, 투자율이 현저히 개선될 수 있다. 이하, 본 발명의 제조공정에 대하여 설명한다.That is, in the present invention, when the ratio of B / N is adjusted to 0.1-0.5, the BN precipitates are formed appropriately, the grains are coarsened, and the formation of precipitates such as B 2 O 3 and FeB is prevented. The magnetic properties of, in particular, the permeability can be significantly improved. Hereinafter, the manufacturing process of this invention is demonstrated.

상기와 같이 조성되는 강 슬라브는 가열로에 장입되어 1250℃이하의 온도에서 가열된후, 통상의 방법으로 열간압연된다. 이때, 가열온도가 너무 높으면 슬라브에 석출되어 있던 불순물원소가 재용해하여 미세하게 석출될 수 있으므로 가능한 낮은 온도로 재가열하는 것이 좋다.The steel slab formed as described above is charged to a heating furnace and heated at a temperature of 1250 ° C. or lower, and then hot rolled in a conventional manner. At this time, if the heating temperature is too high, the impurity element precipitated in the slab may be re-dissolved and finely precipitated.

그러나,가열온도가 너무 낮은경우에는 슬라브내 온도분포가 불균일하여 열간압연이 곤란할 수 있다.However, if the heating temperature is too low, hot rolling may be difficult due to uneven temperature distribution in the slab.

따라서, 본 발명에 있어 슬라브 가열온도는 1100-1250℃로 선정하는 것이 바람직하다.Therefore, in the present invention, the slab heating temperature is preferably selected to 1100-1250 ℃.

상기와 같이 열간압연한 다음, 열간압연된 열연판은 권취되는데. 이때, 권취온도는 산세성 향상을 위하여 750℃이하로 선정하는 것이 바람직하다.After hot rolling as above, the hot rolled hot rolled sheet is wound up. At this time, the coiling temperature is preferably selected to 750 ℃ or less to improve pickling properties.

상기와 같이 권취된 열연판은 필요에 따라 소둔할 수도 있다. 열연판을 소둔하는 경우에는 그 소둔온도는 800-1100℃의 온도범위로, 소둔시간은 5분이하로 제한하는 것이 바람직하다.The hot rolled sheet wound as described above may be annealed as necessary. When annealing the hot rolled sheet, the annealing temperature is preferably in the temperature range of 800-1100 ° C., and the annealing time is preferably limited to 5 minutes or less.

이와 같은 열연판소둔은 열연판내의 미세한 석출물을 조대하게 성장시키고, 조직을 균일하게 하여 소재의 전반적인 특성을 향상시키고, 또한 자성에 유리한 집합조직을 형성시키고, 결정립을 크게 성장시키는 역할을 한다.Such hot-rolled sheet annealing grows fine precipitates in the hot-rolled sheet coarsely, improves the overall characteristics of the material by making the structure uniform, and also serves to form a grain structure favorable for magnetism and to greatly increase the grain size.

상기 열연판은 통상의 산세용액에서 산세하고, 이어 냉간압연하여 냉연판을 얻은 다음 최종소둔한다.The hot rolled sheet is pickled in a conventional pickling solution, followed by cold rolling to obtain a cold rolled sheet, and then final annealing.

이때의 최종소둔은 700-1050℃의 온도에서 30초이상 5분이하의 시간동안 연속공정으로 소둔하는 것이 바람직하다. 그 이유는 최종소둔온도가 700℃미만의 경우 재결정이 불충분하며, 1050℃를 넘으면 표면에 산화층이 발생될 수 있기 때문이다. 그리고, 최종소둔시간이 30초미만의 경우 냉연판의 잔류응력이 과도하게 잔류하여 투자율이 낮아질 수 있으며, 5분을 넘는 경우 소둔판의 형상이 불량하여 질 수 있기 때문이다.The final annealing at this time is preferably annealed in a continuous process for a time of 30 seconds or more and 5 minutes or less at a temperature of 700-1050 ℃. This is because recrystallization is insufficient when the final annealing temperature is less than 700 ° C., and an oxide layer may be generated on the surface when the final annealing temperature is lower than 1050 ° C. If the final annealing time is less than 30 seconds, the residual stress of the cold rolled sheet may be excessively low, and the permeability may be lowered. If the final annealing time is more than 5 minutes, the shape of the annealing plate may be poor.

상기와 같이 최종소둔된 냉연판은 절연코팅한 후 수요가로 출하되고, 원하는 형상으로 타발가공된다. 이때, 필요에 따라 타발가공된 소재를 응력제거소둔 할 수 있다. 응력제거소둔은 비산화성분위기에서 700-850℃의 온도로 10분이상 실시하는 것이 바람직하다.After the final annealed cold rolled plate as described above is shipped to the demand price, it is punched into the desired shape. At this time, if necessary, the punched material can be stress-annealed. Stress relieving annealing is preferably performed at a temperature of 700-850 ° C. for at least 10 minutes in a non-oxidizing atmosphere.

이러한 응력제거소둔을 통해 타발가공시 발생된 잔류응력을 제거할 수 있으므로,특히 투자율이 향상된다. 만일 응력제거소둔온도가 700℃미만인 경우에는 소둔시간이 너무 길어지며, 850℃를 넘으면 절연피막에 손상이 갈 수 있다.Through such stress relief annealing, residual stress generated during punching can be removed, so the permeability is particularly improved. If the stress relief annealing temperature is less than 700 ℃, the annealing time is too long, if it exceeds 850 ℃ can damage the insulating film.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

하기 표 1과 같은 성분을 갖는 강슬라브를 하기 표2와 같은 온도조건으로 가열하여 2.0mm의 두께로 열간압연한 후 하기 표2의 온도에서 열연판을 권취한 다음,산세및 냉간압연 한후, 냉연판을 하기 표2의 온도및 시간조건으로 소둔하였다.Steel slabs having the components shown in Table 1 below were heated to the temperature conditions as shown in Table 2 below, and hot rolled to a thickness of 2.0 mm, followed by winding the hot rolled plates at the temperature shown in Table 2, followed by pickling and cold rolling. The plate was annealed under the temperature and time conditions shown in Table 2 below.

이때, 냉연판의 두께는 0.5㎜이였으며,냉연판소둔은 20%의 수소와 80%의 질소의 혼합분위기에서 실시하였다.At this time, the thickness of the cold rolled sheet was 0.5 mm, cold roll annealing was carried out in a mixed atmosphere of 20% hydrogen and 80% nitrogen.

상기와 같이 제조된 무방향성 전기강판에 대해 철손,자속밀도및 투자율을 조사하고 그 결과를 하기 표2에 나타내었다.The iron loss, magnetic flux density and permeability of the non-oriented electrical steel sheet manufactured as described above are shown in Table 2 below.

하기 표2에 있어, 철손은 50Hz에서 1.5Tesla로 자화했을 때 발생되는 철손값을 나타내고, 자속밀도는 5000A/m로 자화했을 때 유도되는 자속밀도를 나타내며,투자율(μ1.5)은 1.5Tesla의 자속밀도로 자장을 유기하였을 때의 투자율을 나타낸다.In Table 2, the iron loss represents the iron loss value generated when magnetizing at 1.5 Tesla at 50 Hz, the magnetic flux density represents the magnetic flux density induced when magnetizing at 5000 A / m, and the magnetic permeability (μ 1.5 ) is the magnetic flux of 1.5 Tesla. Permeability when the magnetic field is induced by density.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP AlAl SS NN SnSn BB B/NB / N 발명강Invention steel aa 0.0050.005 0.550.55 0.340.34 0.040.04 0.0020.002 0.0050.005 0.00350.0035 0.090.09 0.00090.0009 0.250.25 bb 0.0060.006 0.570.57 0.270.27 0.070.07 0.0010.001 0.0050.005 0.00370.0037 0.100.10 0.00100.0010 0.270.27 비교강Comparative steel aa 0.0040.004 0.550.55 1.151.15 0.040.04 0.0050.005 0.0040.004 0.00300.0030 0.110.11 0.00100.0010 0.330.33 bb 0.0060.006 0.560.56 0.350.35 0.070.07 0.0270.027 0.0050.005 0.00200.0020 0.100.10 0.00200.0020 0.740.74

시료번호Sample Number 강종Steel grade 슬라브재가열온도(℃)Slab reheating temperature (℃) 열연판권취온도(℃)Hot Rolled Sheet Winding Temperature (℃) 냉연판소둔Cold Rolled Annealing 철손 (W15/50) W/kg Iron loss (W 15/50 ) W / kg 자속밀도 (B50)Magnetic flux density (B 50 ) 투자율 (μ1.5)Permeability (μ 1.5 ) 온도(℃)Temperature (℃) 시간(sec)Time (sec) 발명재1Invention 1 발명강aInventive Steel a 12001200 700700 950950 9090 3.623.62 1.791.79 42004200 발명재2Invention 2 발명강aInventive Steel a 11501150 600600 10001000 3030 3.503.50 1.791.79 45004500 비교재1Comparative Material 1 발명강aInventive Steel a 12801280 800800 950950 9090 3.903.90 1.761.76 35003500 비교재2Comparative Material 2 발명강aInventive Steel a 12001200 700700 850850 1010 4.124.12 1.751.75 32003200 발명재3Invention 3 발명강bInventive Steel b 12001200 600600 10001000 6060 3.523.52 1.801.80 47004700 비교재3Comparative Material 3 비교강aComparative Steel a 12001200 700700 950950 6060 3.743.74 1.751.75 28002800 비교재4Comparative Material 4 비교강bComparative Steel b 12001200 700700 950950 6060 3.983.98 1.761.76 31003100 비교재5Comparative Material 5 비교강bComparative Steel b 12001200 800800 950950 6060 4.084.08 1.751.75 29002900

상기 표2에 나타난 바와 같이, 본 발명에 부합되는 강 조성및 제조조건으로 제조된 발명재(1-3)는 본 발명의 범위를 벗어나는 강조성및/또는 제조조건으로 제조된 비교재(1-5)에 비하여 철손,자속밀도,및 투자율에 있어 우수함을 알 수 있다.As shown in Table 2 above, the inventive material (1-3) manufactured with the steel composition and manufacturing conditions in accordance with the present invention is a comparative material prepared with emphasis and / or manufacturing conditions outside the scope of the present invention (1--1). Compared to 5), it is excellent in iron loss, magnetic flux density and permeability.

[실시예 2]Example 2

C:0.003%, Si:0.95%, Mn:0.25%, P:0.025%, S:0.003%, Al:0.0005%, N:0.003%, Sn:0.08%, B:0.0009%이고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강슬라브를 하기 표3과같은 온도조건으로 가열하여 열간압한 후, 하기 표3과 같은 온도조건에서 열연판을 권취한 다음,산세하였다.C: 0.003%, Si: 0.95%, Mn: 0.25%, P: 0.025%, S: 0.003%, Al: 0.0005%, N: 0.003%, Sn: 0.08%, B: 0.0009%, and the rest of Fe and others. The steel slab composed of unavoidable impurities was heated to a temperature condition as shown in Table 3, followed by hot pressing. The hot rolled sheet was wound at a temperature condition as shown in Table 3, and then pickled.

상기와 같이 산세된 판은 0.50㎜의 두께로 냉간압연된 다음, 냉간압연판은 결정립성장을 위하여 20%의 수소와 80%의 질소를 함유하는 건조한 분위기에서 1000℃에서 1분동안 소둔되었다.The plate pickled as described above was cold rolled to a thickness of 0.50 mm, and then the cold rolled plate was annealed at 1000 ° C. for 1 minute in a dry atmosphere containing 20% hydrogen and 80% nitrogen for grain growth.

상기와 같이 제조된 강판에 대하여 철손,자속밀도, 투자율및 결정립크기를 조사하고, 그 결과를 하기 표3에 나타내었다.Iron loss, magnetic flux density, magnetic permeability and grain size of the steel sheet manufactured as described above were investigated, and the results are shown in Table 3 below.

시료번호Sample Number 슬라브재가열온도(℃)Slab reheating temperature (℃) 열연판권취온도(℃)Hot Rolled Sheet Winding Temperature (℃) 냉연판소둔Cold Rolled Annealing 철손 (W15/50) W/kg Iron loss (W 15/50 ) W / kg 자속밀도 (B50)Magnetic flux density (B 50 ) 투자율 (μ1.5)Permeability (μ 1.5 ) 결정립크기(㎛)Crystal grain size (㎛) 온도(℃)Temperature (℃) 시간(sec)Time (sec) 발명재4Invention 4 12001200 700700 10001000 6060 3.213.21 1.771.77 41004100 7575 비교재6Comparative Material 6 12801280 800800 10001000 6060 3.713.71 1.741.74 32003200 4545

상기 표3에 나타난 바와 같이, 본 발명에 부합되는 강 조성및 제조조건으로 제조된 발명재(4)는 본 발명의 범위를 벗어나는 강조성및/또는 제조조건으로 제조된 비교재(6)에 비하여 철손,자속밀도,및 투자율에 있어 우수함을 알 수 있다.As shown in Table 3 above, the inventive material (4) manufactured with the steel composition and manufacturing conditions in accordance with the present invention is compared with the comparative material (6) manufactured with emphasis and / or manufacturing conditions outside the scope of the present invention. It is excellent in iron loss, magnetic flux density, and permeability.

또한, 발명재(4)가 비교재(6)에 비하여 결정립이 크게 성장되었음을 알 수 있다.In addition, it can be seen that the grain size of the invention material 4 was significantly increased as compared with that of the comparative material 6.

[실시예 3]Example 3

하기 표4와 같은 성분을 갖는 강슬라브를 1200℃로 가열하여 두께 2.1mm로 열간압연한 후 730℃에서 권취한 후 냉각하였다. 냉각된 열연판은 하기 표 5와 같은 조건으로 열연판소둔하거나 또는 열연판 소둔을 하지 않고, 산세한 후 최종두께 0.50mm가 되도록 냉간압연한 다음, 수소와 질소의 혼합분위기에서 최종소둔하였다. 그리고, 800℃에서 90분간 가열한 후 로냉하는 응력제거소둔을 한 후 투자율과 집합조직을 강도를 측정하고 그 결과를 하기 표 5에 나타내었다.Steel slabs having the components shown in Table 4 below were heated to 1200 ° C., hot rolled to a thickness of 2.1 mm, then wound up at 730 ° C., and cooled. The cooled hot rolled sheet was subjected to hot roll annealing or hot rolled sheet annealing under the conditions as shown in Table 5 below, followed by cold rolling to a final thickness of 0.50 mm after pickling, followed by final annealing in a mixed atmosphere of hydrogen and nitrogen. Then, after heating for 90 minutes at 800 ℃ after the stress relief annealing to quench, the magnetic permeability and texture were measured and the results are shown in Table 5 below.

하기 표5에 있어, 투자율(μ1.5)은 1.5Tesla의 자속밀도로 자장을 유기하였을 때의 투자율을 나타내며, 집합조직강도는 자성에 유리한 집합조직인 {200}면과 {110}면의 집합조직의 강도를 측정하였다.In Table 5 below, the magnetic permeability (μ 1.5 ) indicates the magnetic permeability when the magnetic field is induced at a magnetic flux density of 1.5 Tesla, and the collective strength of the collective structure of the {200} plane and {110} plane, which is advantageous for magnetism, is shown. Intensity was measured.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn AlAl Sol.AlSol.Al PP SS NN SnSn BB B/NB / N 발명강Invention steel cc 0.0030.003 0.250.25 0.210.21 0.00120.0012 0.00070.0007 0.0810.081 0.0030.003 0.00260.0026 0.100.10 0.00080.0008 0.300.30 dd 0.0020.002 0.230.23 0.230.23 0.00160.0016 0.00100.0010 0.0800.080 0.0040.004 0.00350.0035 0.150.15 0.00120.0012 0.340.34 비교강Comparative steel cc 0.0030.003 0.240.24 0.220.22 0.00270.0027 0.00230.0023 0.0820.082 0.0030.003 0.00260.0026 0.120.12 0.00280.0028 1.071.07 dd 0.0040.004 0.210.21 0.240.24 0.00610.0061 0.00550.0055 0.0790.079 0.0040.004 0.00260.0026 0.120.12 0.00320.0032 1.231.23

시료번호Sample Number 강종Steel grade 열연판소둔온도(℃)Hot Rolled Annealing Temperature (℃) 최종소둔Final annealing 수요가응력제거소둔여부Demand stress relief annealing 투자율(μ1.5)Permeability (μ 1.5 ) 집합조직강도(P110+P200)Texture strength (P110 + P200) 온도(℃)Temperature (℃) 시간(sec)Time (sec) 발명재5Invention 5 발명강cInvention steel c 미실시Not carried 850850 6060 실시practice 58605860 3.23.2 발명재6Invention 6 미실시Not carried 800800 9090 미실시Not carried 48504850 2.92.9 비교재7Comparative Material7 미실시Not carried 600600 6060 미실시Not carried 36103610 2.12.1 발명재7Invention 7 발명강dInvention 950950 900900 9090 실시practice 62006200 3.43.4 발명재8Invention Material 8 850850 950950 9090 실시practice 56205620 3.03.0 비교재8Comparative Material 8 비교강cComparative Steel c 850850 950950 9090 실시practice 38403840 2.32.3 비교재9Comparative Material 9 비교가dComparison 850850 950950 9090 실시practice 32503250 1.91.9

상기 표5에 나타난 바와 같이, B/N의 비가 0.5를 넘는 비교강(c-d)로 제조된 비교재(8-9)의 경우 투자율 및 집합조직강도가 낮게나타남을 알 수 있다.As shown in Table 5, in the case of the comparative material (8-9) made of a comparative steel (c-d) of more than 0.5 ratio of B / N it can be seen that the permeability and texture strength is low.

이에 반해, 강성분 및 B/N의 비가 본 발명의 조건을 만족하는 발명강(c-d)으로 제조된 발명재(5-8)의 경우 투자율이 높고, 집합조직강도도 우수함을 알 수 있다. 또한, 발명재중 열연판소둔을 하지 않은 것(발명재(5-6)) 보다 열연판소둔을한 것(발명재(7-8))의 자기적 특성이 더 우수함을 알 수 있다.On the contrary, in the case of the inventive material (5-8) made of the inventive steel (c-d) satisfying the conditions of the present invention, the steel component and the ratio of B / N are high in permeability and excellent in texture strength. In addition, it can be seen that the magnetic properties of the hot-rolled sheet annealing (invention material 7-8) are superior to those of the inventive material without the hot-rolling sheet annealing (invention material 5-6).

또한, 수요가응력제거소둔도 마찬가지였다. 그러나, 본 발명강(c)를 600℃로 최종소둔한 비교재(7)의 경우 투자율 및 집합조직강도가 낮음을 알 수 있다.The same was true of demand stress annealing. However, it can be seen that the magnetic permeability and the texture strength of the comparative material (7) in which the present invention steel (c) was finally annealed at 600 ° C.

[실시예 4]Example 4

C:0.003%, Si:0.62%, Mn:0.32%, P:0.069%, S:0.003%, Al:0.0006%(Sol.Al:0.0003%), N:0.0028%, Sn:0.07%, B:0.0011% 및 B/N이 비가 0.39이고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강슬라브를 1150℃로 가열한후 900℃의 압연마무리 온도조건으로 열간압연하고, 이어 650℃에서 권취한 후 냉각한 다음, 산세한 후 최종두께 0.50mm가 되도록 냉간압연하였다. 상기 냉연판은 수소20%와 질소80%의 분위기에서 1000℃의 온도로 최종소둔하였다. 그리고, 절단가공한 후 790℃에서 90분간 응력제거소둔하고 로냉하였다.C: 0.003%, Si: 0.62%, Mn: 0.32%, P: 0.069%, S: 0.003%, Al: 0.0006% (Sol.Al: 0.0003%), N: 0.0028%, Sn: 0.07%, B: A steel slab composed of 0.0011% and B / N in a ratio of 0.39 and the remaining Fe and other unavoidable impurities were heated to 1150 ° C., and then hot rolled to a rolling finishing temperature of 900 ° C., followed by winding at 650 ° C., followed by cooling. Next, it was pickled and cold rolled to a final thickness of 0.50 mm. The cold rolled sheet was finally annealed at a temperature of 1000 ° C. in an atmosphere of 20% hydrogen and 80% nitrogen. After the cutting process, the annealing was performed at 790 ° C. for 90 minutes under stress relieving annealing.

이와 같이 제조된 소재는 철손(W15/50)이 3.31W/kg이었고, 투자율(μ1.5)이 5670이었다. 또한, 재료의 특성을 시험한 결과, 결정립크기는 70㎛이었고, Horta식에 의한 {200}면과 {110}면의 집합조직강도의 합은 3.9이었다.The material thus prepared had an iron loss (W 15/50 ) of 3.31 W / kg and a permeability (μ 1.5 ) of 5670. As a result of testing the properties of the material, the grain size was 70 µm, and the sum of the texture strengths of the {200} and {110} planes by the Horta equation was 3.9.

상술한 바와 같이, 본 발명은 철손이 낮고 자속밀도및 투자율이 우수한 무방향성 전기강판을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has the effect of providing a non-oriented electrical steel sheet having a low iron loss and excellent magnetic flux density and permeability.

또한, 본 발명은 투자율이 높아 자화가 용이하며, 이에 따라 철심에 사용되는 구리선의 양을 줄일 수 있어 동손의 비율을 줄일 수 있고, 또한, 자기적특성을 확보하기 위해 최종소둔후 행하는 스킨패스 압연을 거치지 않고도 우수한 자기적특성을 확보할 수 있어 제조공정이 단축되는 효과가 있는 것이다.In addition, the present invention is easy to magnetize due to the high permeability, thereby reducing the amount of copper wire used in the iron core can reduce the ratio of copper loss, and also skin pass rolling after the final annealing to secure magnetic properties It is possible to secure excellent magnetic properties without going through the effect that the manufacturing process is shortened.

Claims (6)

중량%로, C:0.02%이하, Si:1.0%이하, Mn:0.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.006%이하, Sn:0.03-0.30%, B:0.0004-0.0030%, 잔부 Fe 및 불가피한 불순물을 포함하고, B/N의 비가 0.1-0.5를 만족하는 자기적 특성이 우수한 무방향성 전기강판.By weight%, C: 0.02% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% or less, N: 0.006% or less, Sn: Non-oriented electrical steel sheet containing 0.03-0.30%, B: 0.0004-0.0030%, balance Fe and unavoidable impurities, and having excellent magnetic properties satisfying a B / N ratio of 0.1-0.5. 중량%로, C:0.02%이하, Si:1.0%이하, Mn:0.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.006%이하, Sn:0.03-0.30%, B:0.0004-0.0030%, 잔부 Fe 및 불가피한 불순물을 포함하고, B/N의 비가 0.1-0.5를 만족하는 강슬라브를 재가열하여 열간압연한 후, 750℃이하의 온도로 권취한 다음, 열연판을 산세하고, 이어 냉간압연한 후, 700-1050℃의 온도에서 소둔하는 자기적 특성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.02% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% or less, N: 0.006% or less, Sn: The steel slab containing 0.03-0.30%, B: 0.0004-0.0030%, balance Fe and unavoidable impurities and satisfying the B / N ratio of 0.1-0.5 was reheated, hot rolled, and wound up to a temperature of 750 ° C or lower. Next, the method of producing a non-oriented electrical steel sheet having excellent magnetic properties after pickling the hot rolled sheet, followed by cold rolling, annealing at a temperature of 700-1050 ℃. 제2항에 있어서, 슬라브의 가열온도가 1100-1250℃인 것을 특징으로 하는 무방향성 전기강판의 제조방법.The method of claim 2, wherein the heating temperature of the slab is 1100-1250 ℃. 제2항에 있어서, 냉연판 소둔후, 가공한 다음, 응력제거소둔함을 특징으로 하는 무방향성 전기강판의 제조방법.The method for manufacturing a non-oriented electrical steel sheet according to claim 2, wherein the cold rolled sheet is annealed and then processed, followed by stress relief annealing. 중량%로, C:0.02%이하, Si:1.0%이하, Mn:0.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.006%이하, Sn:0.03-0.30%, B:0.0004-0.0030%, 잔부 Fe 및 불가피한 불순물을 포함하고, B/N의 비가 0.1-0.5를 만족하는 강슬라브를 재가열하여 열간압연한 후, 750℃이하의 온도로 권취한 다음, 열연판을 소둔한후, 산세하고, 이어 냉간압연한 다음, 700-1050℃의 온도에서 소둔하는 것을 특징으로 하는 자기적 특성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.02% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% or less, N: 0.006% or less, Sn: The steel slab containing 0.03-0.30%, B: 0.0004-0.0030%, balance Fe and unavoidable impurities and satisfying the B / N ratio of 0.1-0.5 was reheated, hot rolled, and wound up to a temperature of 750 ° C or lower. Next, after annealing the hot rolled sheet, pickling, followed by cold rolling, and then annealing at a temperature of 700-1050 ° C excellent non-oriented electrical steel sheet manufacturing method. 제5항에 있어서, 냉연판 소둔후, 가공한 다음, 응력제거소둔함을 특징으로 하는 무방향성 전기강판의 제조방법.The method of manufacturing a non-oriented electrical steel sheet according to claim 5, wherein the cold rolled sheet is annealed, processed, and then stress-annealed.
KR1019970065507A 1996-12-09 1997-12-03 Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof KR100345706B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR96-63055 1996-12-09
KR1019960063055 1996-12-09
KR19960063055 1996-12-09

Publications (2)

Publication Number Publication Date
KR19980063732A KR19980063732A (en) 1998-10-07
KR100345706B1 true KR100345706B1 (en) 2002-09-18

Family

ID=19486558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970065507A KR100345706B1 (en) 1996-12-09 1997-12-03 Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof

Country Status (4)

Country Link
JP (1) JPH10176251A (en)
KR (1) KR100345706B1 (en)
CN (1) CN1131532C (en)
TW (1) TW422885B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530069B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100544738B1 (en) * 2001-12-20 2006-01-24 주식회사 포스코 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398389B1 (en) * 1998-12-22 2003-12-18 주식회사 포스코 A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties
KR100368722B1 (en) * 1998-12-29 2003-03-31 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method
KR100479996B1 (en) * 1999-12-09 2005-03-30 주식회사 포스코 The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
KR20030053769A (en) * 2001-12-24 2003-07-02 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic property
KR100957939B1 (en) * 2002-12-24 2010-05-13 주식회사 포스코 Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same
CN101358318B (en) * 2008-09-05 2011-03-09 首钢总公司 Ingredient design of non-oriented electrical steel with good combination property and preparation method therefor
CN103361544B (en) * 2012-03-26 2015-09-23 宝山钢铁股份有限公司 Non orientating silicon steel and manufacture method thereof
CN103882293B (en) * 2014-04-04 2016-06-29 首钢总公司 Non-oriented electrical steel and production method thereof
CN110640104B (en) * 2018-06-26 2021-11-16 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof
CN112143974B (en) * 2020-09-27 2021-10-22 江苏省沙钢钢铁研究院有限公司 Production method of non-oriented silicon steel and non-oriented silicon steel
CN112680656B (en) * 2020-11-27 2023-04-14 中天钢铁集团有限公司 Boron-containing steel for motor claw pole and low-cost smelting process thereof
US20230392227A1 (en) * 2020-11-27 2023-12-07 Nippon Steel Corporation Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084980A2 (en) * 1982-01-27 1983-08-03 Nippon Steel Corporation Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084980A2 (en) * 1982-01-27 1983-08-03 Nippon Steel Corporation Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530069B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100544738B1 (en) * 2001-12-20 2006-01-24 주식회사 포스코 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing

Also Published As

Publication number Publication date
CN1190241A (en) 1998-08-12
CN1131532C (en) 2003-12-17
KR19980063732A (en) 1998-10-07
JPH10176251A (en) 1998-06-30
TW422885B (en) 2001-02-21

Similar Documents

Publication Publication Date Title
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100340503B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR960006027B1 (en) Process for production of non-oriented electrical steel sheet having excellent magnetic properties
KR930011407B1 (en) Method and product of manufacturing silicon steel sheet having improved magnetic flux density
KR100957939B1 (en) Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR20030053139A (en) Method for manufacturing non-oriented electrical steel sheet with low iron loss
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
KR910003880B1 (en) Making process for electrical sheet
KR19980017729A (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR920004950B1 (en) Making process for the electric steel plate
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR100276279B1 (en) The manufacturing method for fully process non oriented electric steel sheet with excellent low hysterisis
KR20030052139A (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR20040055906A (en) Method for manufacturing non-oriented electrical sheets with low core loss

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140709

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150703

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160705

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee