KR100395100B1 - Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment - Google Patents

Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment Download PDF

Info

Publication number
KR100395100B1
KR100395100B1 KR10-1998-0022526A KR19980022526A KR100395100B1 KR 100395100 B1 KR100395100 B1 KR 100395100B1 KR 19980022526 A KR19980022526 A KR 19980022526A KR 100395100 B1 KR100395100 B1 KR 100395100B1
Authority
KR
South Korea
Prior art keywords
less
annealing
oriented electrical
steel sheet
electrical steel
Prior art date
Application number
KR10-1998-0022526A
Other languages
Korean (ko)
Other versions
KR20000001997A (en
Inventor
배병근
장삼규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0022526A priority Critical patent/KR100395100B1/en
Publication of KR20000001997A publication Critical patent/KR20000001997A/en
Application granted granted Critical
Publication of KR100395100B1 publication Critical patent/KR100395100B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 각종 모터, 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것이며; 그 목적은 수요가 열처리후 자성이 우수한 무방향성 전기강판의 제조방법을 제공함에 있다.The present invention relates to a method for manufacturing non-oriented electrical steel sheet used as iron cores of electrical equipment such as various motors and transformers; The purpose is to provide a method for producing non-oriented electrical steel sheet having excellent magnetic properties after heat treatment.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.02%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.007%이하, Sn:0.03-0.3%, Ni:0.05-0.6%, Cu:0.05-0.5%, 또는 상기 Sol.Al이 0.05%이하이고, B:0.0005-0.0050%로 첨가되고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 슬라브를 1100-1300℃로 재가열하여 열간압연하고 800℃이하의 온도로 권취한 다음, 산세하고, 이어 70%이상의 압하율로 냉간압연한 후, 5℃/sec이상의 속도로 가열하여 600-800℃의 온도범위에서 30초-5분동안 소둔한 다음, 수요가가공후 700-850℃의 온도범위에서 응력제거소둔하는 것을 포함하여 이루어지는 수요가 열처리후 자성이 우수한 무방향성 전기강판의 제조방법에 관한 것을 그 기술적요지로 한다.The present invention for achieving the above object, in weight%, C: 0.02% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% N: 0.007% or less, Sn: 0.03-0.3%, Ni: 0.05-0.6%, Cu: 0.05-0.5%, or the above Sol.Al is 0.05% or less, B: 0.0005-0.0050% and the rest The slab composed of Fe and other inevitably contained impurities is reheated to 1100-1300 ° C., hot rolled, wound up to a temperature of 800 ° C. or lower, then pickled, followed by cold rolling at a reduction rate of 70% or more, and then 5 ° C. Magnetic demand after heat treatment, including heating at a rate of more than / sec, annealing for 30 seconds-5 minutes in the temperature range of 600-800 ℃, and then stress relief annealing in the temperature range of 700-850 ℃ after processing demand The technical gist of this excellent non-oriented electrical steel sheet is described.

Description

수요가 열처리 후 자성이 우수한 무방향성 전기강판의 제조방법Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties after heat treatment

본 발명은 각종 모터, 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 수요가 열처리후 자성이 우수한 무방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing non-oriented electrical steel sheet used as iron cores of electric machines such as various motors and transformers, and more particularly, to a method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties after heat treatment.

모터와 변압기 등의 전기기기에서 철손으로 사용되는 무방향성 전기강판은 자기적특성중 특히 철손이 낮고 자속밀도가 높은 것이 요구된다. 철손은 무방향성 전기강판 무게(kg)당 전기적 손실(watt)로 나타내어 w/kg으로 표시하고 있으며, 이것은 에너지손실을 의미한다. 자속밀도는 어떠한 자기장에서의 자속이 발생되는 정도를 나타내며, 전기기기의 힘과 효율의 정도를 나타낸다. 일반적으로 자속밀도와 투자율이 높으면서도 철손이 낮은 소재가 바람직하다.Non-oriented electrical steel sheets used for iron loss in electric equipment such as motors and transformers are required to have low magnetic loss and high magnetic flux density among magnetic properties. Iron loss is expressed in watts per kilogram (weight) of non-oriented electrical steel sheet, which is expressed as w / kg, which means energy loss. Magnetic flux density refers to the extent to which magnetic flux is generated in any magnetic field, and indicates the strength and efficiency of an electric device. Generally, materials having high magnetic flux density and permeability but low iron loss are preferable.

한편, 무방향성 전기강판은 세미프로세스재와 풀리프로세스재로 구분하여 제조하고 있다. 세미프로세스재는 냉간압연판을 소둔후 경압연하고 수요가로 출하하는 제품이며, 풀리프로세스재는 냉간압연판을 소둔후 수요가로 출하하는 제품이다. 이러한 세미프로세스제품은 제품제조시 경압연을 추가로 실시하여야 하는 단점이 있다.On the other hand, non-oriented electrical steel sheet is manufactured by dividing the semi-process material and pulley process material. Semi-process materials are products that are cold rolled after annealing the cold rolled sheet and shipped at demand, and pulley process materials are products that are shipped at the demand price after annealing the cold rolled sheet. Such a semi-process product has a disadvantage in that light rolling must be additionally performed during manufacturing of the product.

대한민국 특허출원 제18626호(1991.10.22)는 열연판을 소둔하는 풀리프로세스 제조방법과 또한 2-15%의 경압연을 실시하는 세미프로세스 제조방법으로 제조하는 방법을 제공하고 있다. 이들 제조방법은 열연판을 소둔하여야 하는 단점이 있으며, 또한 경압연을 실시하여야 세미프로세스제품의 특성을 확보할 수 있는 단점이 있다.Korean Patent Application No. 18626 (1991.10.22) provides a method for producing a pulley process for annealing a hot rolled sheet and a method for producing a semi-process for performing light rolling of 2-15%. These manufacturing methods have the disadvantage of annealing the hot rolled plate, and also has the disadvantage of securing the characteristics of the semi-processed product should be subjected to light rolling.

본 발명은 열연판소둔과 경압연을 하지 않아도 수요가 열처리후 철손이 낮으면서도 자속밀도와 투자율이 높은 무방향성 전기강판을 제공하는데 그 목적이 있다.An object of the present invention is to provide a non-oriented electrical steel sheet having a high magnetic flux density and high permeability while having low iron loss after heat treatment even without hot rolling annealing and light rolling.

상기 목적을 달성하기 위한 본 발명의 제조방법은, 중량%로, C:0.02%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.007%이하, Sn:0.03-0.3%, Ni:0.05-0.7%, Cu:0.03-0.5%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 슬라브를 1100-1300℃로 재가열하여 열간압연하고 800℃이하의 온도로 권취한 다음, 산세하고, 이어 70%이상의 압하율로 냉간압연한 후, 5℃/sec이상의 속도로 가열하여 600-800℃의 온도범위에서 30초-5분동안 소둔한 다음, 수요가가공후 700-850℃의 온도범위에서 응력제거소둔하는 것을 포함하여 구성된다.The production method of the present invention for achieving the above object, in weight%, C: 0.02% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al : Slab composed of less than 0.005%, less than N: 0.007%, less than Sn: 0.03-0.3%, less than Ni: 0.05-0.7%, less than Cu: 0.03-0.5%, remaining Fe and other unavoidable impurities. Reheated, hot rolled, wound up to a temperature below 800 ° C, pickled, cold rolled to 70% or more, and then heated at a rate of 5 ° C / sec or more for 30 seconds at a temperature range of 600-800 ° C. Annealing for -5 minutes, followed by stress relief annealing in the temperature range of 700-850 ° C after demand processing.

또한, 본 발명의 제조방법은, 중량%로, C:0.02%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.05%이하, N:0.007%이하, Sn:0.03-0.3%, Ni:0.05-0.7%, Cu:0.03-0.5%, B:0.0005-0.0050%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 슬라브를 1100-1300℃로 재가열하여 열간압연하고 800℃이하의 온도로 권취한 다음, 산세하고, 이어 70%이상의 압하율로 냉간압연한 후, 5℃/sec이상의 속도로 가열하여 600-800℃의 온도범위에서 30초-5분동안 소둔한 다음, 수요가가공후 700-850℃의 온도범위에서 응력제거소둔하는 것을 포함하여 구성된다.In addition, the manufacturing method of this invention is C: 0.02% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.05% or less by weight% Slabs composed of N: 0.007% or less, Sn: 0.03-0.3%, Ni: 0.05-0.7%, Cu: 0.03-0.5%, B: 0.0005-0.0050%, remaining Fe and other unavoidable impurities Reheat to -1300 ℃, hot rolled, wound up to temperature below 800 ℃, pickled, then cold rolled to 70% or more reduction rate, and then heated at a rate of 5 ℃ / sec or higher to 600-800 ℃ Annealing for 30 seconds to 5 minutes, followed by stress relief annealing in the temperature range of 700-850 ° C. after the demand processing.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 열연판소둔 및 경압연을 하지 않으면서도 수요가 열처리후 자성이 우수한 무방향성 전기강판을 제조하기 위하여 연구한 결과, 본 발명의 목적을 달성하기 위해서는 기존에 가공변형이 된 냉간압연판을 고온소둔하여 잔류응력을 제거하여 자성을 확보하는 것과는 달리, 비교적 낮은 온도에서 소둔하여 적정한 잔류응력을 잔류시킨 상태에서 수요가 열처리하는 것임을 밝혀내고 강슬라브와 그 제조조건을 적절히 선정한 것이다.The present inventors have studied to produce a non-oriented electrical steel sheet having excellent magnetic properties after heat treatment without hot-rolled sheet annealing and light rolling, in order to achieve the object of the present invention, the cold-rolled sheet that has been conventionally strained Unlike high temperature annealing to remove residual stress to secure magnetism, the steel slab and its manufacturing conditions were selected appropriately by annealing at a relatively low temperature to find that the demand was heat-treated.

즉, 본 발명은 통상의 무방향성 전기강판에 Sn, Ni, Cu 또는 B을 첨가한 강 슬라브를 열간압연하고, 강압하율로 냉간압연한 후 비교적 저온에서 소둔하여 잔류응력을 잔류시킨 상태에서 수요가 가공후 응력제거소둔시 자성에 유리한 집합조직이 발달하여 자성이 향상되도록 하는 것이다.That is, the present invention is hot-rolled steel slab to which Sn, Ni, Cu or B is added to a conventional non-oriented electrical steel sheet, cold-rolled at a drop-down rate and then annealed at a relatively low temperature to maintain the residual stress in the state When stress relief annealing after processing, it is to improve the magnetism by the development of an advantageous texture for magnetism.

이를 위해 우선, 강슬라브중 C는 전기기기의 철심으로 사용중 자기시효를 일으켜서 자기적 특성을 저하시키므로 슬라브에서는 0.02%이하로 하며, 최종제품에서는 0.003%이하로 한다.To this end, first of all, the steel slab C is the iron core of the electric equipment, which causes magnetic aging during use, which deteriorates the magnetic properties. Therefore, the slab should be 0.02% or less in the slab and 0.003% or less in the final product.

상기 Si는 비저항을 증가시켜 철손중 와전류손실을 낮추는 원소이지만, 냉간압하율을 70%이상 실시하는 본 발명에서는 압연성을 고려하여 1.5%이하로 제한한다.The Si is an element that increases the specific resistance and lowers the eddy current loss during iron loss, but in the present invention which performs the cold reduction rate of 70% or more, it is limited to 1.5% or less in consideration of rolling property.

상기 Mn은 철손개선에 유효한 원소이나 과도하게 첨가되면 냉간압연이 곤란할 수 있어 1.5%이하로 제한한다.The Mn is an element effective for improving the iron loss, but when added excessively, cold rolling may be difficult, so it is limited to 1.5% or less.

상기 P은 비저항을 증가시키지만 냉간압연성을 고려하여 최대 0.15%까지 첨가할 수 있다.The P increases the specific resistance but may be added up to 0.15% in consideration of cold rolling.

상기 S은 미세한 석출물인 MnS를 형성하여 결정립성장을 억제함으로 가능한한 낮게 관리하는 것이 유리하며, 본 발명에서는 최대 0.02%이하로 함유되는 것이 바람직하다.The S is advantageously managed as low as possible by forming MnS, which is a fine precipitate, to suppress grain growth, and in the present invention, it is preferably contained at most 0.02% or less.

상기 Al은 비저항을 증가시켜 와전류손실을 낮추는 역할을 하는 반면, AlN의 미세한 석출물을 형성하여 결정립의 성장을 억제시키는 역할을 하므로 가능하면 첨가하지 않는 것이 바람직하지만, 제강작업시 탈산용으로 불가피하게 첨가해야하는 측면을 고려하여 0.005%이하로 한다. 본 발명에 있어 B을 첨가하는 경우는 B이 질소와 쉽게 결합하여 조대한 석출물인 BN을 형성시켜서 N의 영향을 줄이기 때문에 AlN석출물형성의 우려가 줄어드므로 Al의 함량을 최대 0.05%까지 첨가한다.While Al plays a role of lowering eddy current loss by increasing specific resistance, it forms a fine precipitate of AlN and plays a role of suppressing grain growth, so it is not preferably added if possible, but is inevitably added for deoxidation during steelmaking. Considering the side to be taken, it should be less than 0.005%. In the present invention, when B is added, B is easily combined with nitrogen to form coarse precipitate, BN, thereby reducing the influence of N, thereby reducing the risk of AlN precipitate formation. Therefore, the Al content is added up to 0.05%. .

상기 N은 미세하고 긴 AlN 석출물을 형성함으로 가능한한 억제하며, 본 발명에서는 0.007%이하로 첨가한다.N is suppressed as much as possible by forming fine and long AlN precipitates, and in the present invention, it is added at 0.007% or less.

상기 Sn은 결정립계에 편석하여 N의 확산을 억제하고, 자성에 불리한 (222)면의 집합조직을 억제시키는 역할을 한다. 이러한 역할을 위해 0.03%이상 첨가하는 것이 필요하나, 0.30%를 넘으면 냉간압연성이 나빠지므로 본 발명에서는 Sn의 함량을 0.03-0.30%로 첨가한다.The Sn segregates at grain boundaries to suppress diffusion of N and to suppress the texture of the (222) plane which is disadvantageous to magnetism. It is necessary to add more than 0.03% for this role, but if more than 0.30% cold rolling is worse, in the present invention, the content of Sn is added as 0.03-0.30%.

상기 Ni은 집합조직을 향상시키는 원소로서, 최소 0.05%이상 첨가되어야 그 효과가 있으나 냉간압연성에 영향을 미치는 Mn이 최대 1.5%첨가하는 것을 고려하여 냉간압연성 확보측면에서 Ni의 함량을 0.7%이하로 첨가한다.Ni is an element that improves texture, and at least 0.05% has an effect thereof, but considering that Mn affecting cold rolling is added at most 1.5%, Ni content is less than 0.7% in terms of securing cold rolling property. Is added.

상기 Cu는 내식성을 향상시키며 집합조직을 발달시키는 원소로서, 이를 위해 0.03%이상 첨가하나, 그 함량이 0.5%를 넘으면 열연판의 판형상이 나빠지므로 Cu의 함량은 0.03-0.5%로 하는 것이 바람직하다.The Cu is an element that improves the corrosion resistance and develops the texture. For this purpose, more than 0.03% of Cu is added. However, when the content exceeds 0.5%, the plate shape of the hot rolled sheet is deteriorated. Therefore, the Cu content is preferably 0.03-0.5%. .

상기 B은 미세한 석출물인 AlN의 형성을 억제하고 조대한 석출물인 BN을 형성함으로서 결정립성장을 용이하게 함으로서 첨가한다. 첨가량이 과도하면 오히려 석출물들이 많아지며, 또한, 첨가량이 너무 적어도 그 효과가 적으므로 B의 함량은 0.0005-0.0050%의 범위로 한다.B is added by inhibiting formation of fine precipitates AlN and facilitating grain growth by forming coarse precipitates BN. If the amount is excessively high, more precipitates are added, and the amount of B is at least 0.0005-0.0050% because the amount is too small.

이하, 상기 강슬라브의 제조조건에 대하여 설명한다.Hereinafter, the manufacturing conditions of the steel slab will be described.

상기와 같이 조성되는 강 슬라브는 제강에서 용강으로 제조된 후 연속주조공정에서 슬라브로 제조된 것으로, 이 강 슬라브는 열간압연전 가열로에 장입되어 1100-1300℃의 온도범위로 가열하는 것이 바람직하다. 그 이유는 슬라브 재가열온도가 1100℃이상이 되어야 열간압연이 용이하나 1300℃를 넘으면 AlN, MnS 등의 자성에 해로운 석출물이 재용해되어 열간압연후 미세한 석출물이 과도하게 발생되기 때문이다.The steel slabs formed as described above are made of slabs in a continuous casting process after being made of molten steel in steelmaking, and the steel slabs are charged into a heating furnace before hot rolling and heated to a temperature range of 1100-1300 ° C. . The reason is that hot rolling is easy when the slab reheating temperature is 1100 ° C. or higher, but when it exceeds 1300 ° C., precipitates harmful to magnetism, such as AlN and MnS, are re-dissolved and minute precipitates are excessively generated after hot rolling.

상기와 같이 재가열하여 통상의 방법으로 열간압연하는데, 이때의 마무리압연 온도는 열연판의 산화층이 과다하게 발생하지 않도록 적절히 선정하고 있으며, 열간압연조건의 일례를 들면 마무리압연 온도는 800-950℃로 하는 것이다.Reheating as described above and hot rolling in a conventional manner, the finish rolling temperature at this time is appropriately selected so that the oxide layer of the hot rolled sheet is not excessively generated, for example, the finish rolling temperature is 800-950 ℃ It is.

상기와 같이 열간압연하여 얻어진 열연판의 권취는 800℃이하의 온도에서 행하여 페라이트상의 안정된 상을 얻는다. 이때의 권취온도는 열연판에 산화층이 과도하게 발생되지 않도록 800℃이하의 온도에서 행한다. 권취후 냉각은 공기중에서 코일상태로 냉각할 수 있으며, 보다 바람직하게는 로냉하는 것이다.Winding of the hot rolled sheet obtained by hot rolling as mentioned above is performed at the temperature of 800 degrees C or less, and obtains the stable phase of a ferrite phase. The coiling temperature at this time is performed at a temperature of 800 ° C. or lower so that an oxide layer is not excessively generated on the hot rolled sheet. Cooling after winding can be cooled in a coil state in air, and more preferably furnace cooling.

상기와 같이 권취냉각된 열연판은 열연판소둔을 행하지 않고 산세후 냉간압연한다. 냉간압연은 적어도 70%이상의 압하율로 압연하여 냉연판을 얻은 다음 최종소둔한다.The hot rolled sheet wound and wound as described above is cold rolled after pickling without performing hot rolled sheet annealing. Cold rolling is rolled to a rolling reduction rate of at least 70% to obtain a cold rolled sheet, followed by final annealing.

이때의 최종소둔은 5℃/sec이상의 속도로 600-800℃의 온도범위로 가열하여 30초-5분동안 연속소둔하는 것이 바람직하다. 그 이유는 가열속도가 5℃/sec이상 되면 재료내에 자성에 유리한 집합조직인 (200)면이 많이 발생되며, 이러한 소재를 수요가가 응력제거소둔하면 (200)면이 발생된 재료로 입성장되어 자성이 향상될 수 있다. 또한, 최종소둔온도가 600℃ 보다 낮으면 재료내에 압연조직이 과도하게 잔류하여 수요가가 가공시 가공이 어려운 단점이 있으며, 최종소둔온도가 800℃ 보다 높으면 재료내의 잔류응력이 없어져서 수요가가 응력제거소둔시 재료의 자기적특성의 향상정도가 작은 단점이 있다.The final annealing at this time is preferably heated to a temperature range of 600-800 ℃ at a rate of 5 ℃ / sec or more and continuously annealing for 30 seconds-5 minutes. The reason for this is that when the heating rate is 5 ° C / sec or more, the (200) plane, which is an advantageous structure for magnetism, is generated in the material, and when such a material is stress-annealed, the (200) plane is grown into the generated material. Magnetism can be improved. In addition, if the final annealing temperature is lower than 600 ℃, there is a disadvantage that excessive rolling structure remains in the material, so that the demand is difficult to process during processing. If the final annealing temperature is higher than 800 ℃, the residual stress in the material is lost, so the demand is stressed. There is a disadvantage that the degree of improvement of the magnetic properties of the material during removal annealing is small.

상기와 같이 연속소둔한 소둔판은 절연피막처리후 수요가로 출하된다. 절연피막은 유기질, 무기질 및 유무기복합피막으로 처리할 수도 있으며, 기타 절연이 가능한 피막제를 입힐 수도 있다.The annealing plate continuously annealed as described above is shipped at the demand price after the insulation coating treatment. The insulating coating may be treated with organic, inorganic and organic / inorganic composite coatings, or may be coated with other insulating coatings.

수요가는 원하는 제품으로 타발후 700-850℃의 온도에서 30분이상 비산화성 분위기로 응력제거소둔을 실시하는데, 그 이유는 700℃미만의 온도에서 응력제거소둔하면 재료내 잔류응력이 발생될 수도 있으며, 850℃보다 높은 온도에서 응력제거소둔하면 절연피막이 손상될 수 있기 때문이다.The demanded product is stressed annealing in a non-oxidizing atmosphere for more than 30 minutes at a temperature of 700-850 ℃ after punching out, because stress stress annealing at temperatures below 700 ℃ may cause residual stress in the material This is because stress relief annealing at temperatures higher than 850 ° C. may damage the insulating film.

본 발명에서는 열연판을 냉간압연하고 최종소둔시 냉연판의 가열속도를 조절하고 소둔온도를 낮춤으로서 열연판소둔을 하지 않아도 수요가가 가공후의 응력제거 소둔시 자성에 유리한 집합조직의 발달로 자성이 향상될 수 있는 것이다.In the present invention, the hot rolled sheet is cold rolled, the heating rate of the cold rolled sheet is reduced during final annealing, and the annealing temperature is lowered. It can be improved.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

아래 표 1과 같은 성분을 갖는 강슬라브를 제조하고, 이 강슬라브를 1200℃의 온도에서 가열하고 860℃의 마무리압연 온도조건으로 열간압연하고, 720℃의 온도에서 권취후 공기중에서 냉각하였다.Steel slabs having the components shown in Table 1 below were prepared. The steel slabs were heated at a temperature of 1200 ° C., hot rolled to a finish rolling temperature condition of 860 ° C., and cooled in air after winding at a temperature of 720 ° C.

냉각권취된 열연판은 산세후 아래 표2와 같이 냉간압연하고 최종소둔하였다. 최종소둔분위기는 수소 20%와 질소 80%의 분위기였다. 소둔판은 유무기복합의 절연피막을 입힌후 절단후 750℃의 온도에서 2시간 비산화성분위기로 수요가 응력제거소둔을 실시한 다음, 자기적특성 및 (200)면강도를 조사하고 그 결과를 표 2에 나타내었다. 이때, 면강도는 호르타(Horta)식에 의한 집합조직강도로 그 정도를 나타내었다.After the pickling, the hot rolled sheet was cold rolled and annealed as shown in Table 2 below. The final annealing atmosphere was atmosphere of 20% hydrogen and 80% nitrogen. After the annealing plate is coated with an organic-inorganic composite coating, the stress is annealed by non-oxidizing component crisis for 2 hours at the temperature of 750 ℃, and then the magnetic properties and (200) surface strength are investigated and the results are shown. 2 is shown. At this time, the surface strength is represented by the aggregate structure strength according to Horta equation.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS AlAl NN SnSn NiNi CuCu BB 발명강Invention steel aa 0.0040.004 0.510.51 1.231.23 0.0130.013 0.0040.004 0.0010.001 0.00210.0021 0.120.12 0.240.24 0.150.15 -- bb 0.0030.003 0.520.52 1.241.24 0.0190.019 0.0030.003 0.0030.003 0.00250.0025 0.080.08 0.220.22 0.300.30 -- cc 0.0030.003 0.550.55 1.241.24 0.0110.011 0.0040.004 0.0310.031 0.00320.0032 0.130.13 0.150.15 0.310.31 0.00250.0025 비교강Comparative steel aa 0.0040.004 0.560.56 1.221.22 0.0110.011 0.0050.005 0.0910.091 0.00270.0027 0.120.12 0.250.25 0.170.17 -- bb 0.0040.004 0.530.53 1.231.23 0.0180.018 0.0030.003 0.1510.151 0.00300.0030 0.120.12 0.160.16 0.300.30 0.00240.0024

시료번호Sample Number 최종소둔조건Final Annealing Condition 철손(W15/50) W/kg Iron loss (W 15/50 ) W / kg 자속밀도 (B50)Magnetic flux density (B 50 ) 투자율 (μ1.5)Permeability (μ 1.5 ) (200)면강도(200) cotton strength 강종Steel grade 소둔온도(℃)Annealing Temperature (℃) 가열속도(℃/sec)Heating rate (℃ / sec) 소둔시간(분)Annealing time (minutes) 비교재1Comparative Material 1 700700 33 22 3.823.82 1.721.72 31003100 0.220.22 발명강aInventive Steel a 발명재1Invention 1 700700 66 22 3.573.57 1.771.77 48504850 0.450.45 발명강aInventive Steel a 발명재2Invention 2 650650 1010 22 3.503.50 1.781.78 52005200 0.510.51 발명강aInventive Steel a 비교재2Comparative Material 2 550550 1010 22 3.903.90 1.731.73 28302830 0.250.25 발명강aInventive Steel a 비교재3Comparative Material 3 850850 1010 22 3.793.79 1.721.72 27602760 0.310.31 발명강aInventive Steel a 발명재3Invention 3 650650 1515 1One 3.623.62 1.761.76 45604560 0.450.45 발명강bInventive Steel b 발명재4Invention 4 750750 1515 1One 3.403.40 1.781.78 51205120 0.570.57 발명강cInvention steel c 비교재4Comparative Material 4 700700 1010 22 3.913.91 1.721.72 25002500 0.310.31 비교강aComparative Steel a 비교재5Comparative Material 5 800800 1010 22 3.803.80 1.711.71 24302430 0.270.27 비교강aComparative Steel a 비교재6Comparative Material 6 700700 1010 22 4.154.15 1.701.70 22502250 0.240.24 비교강bComparative Steel b 철손(W15/50): 50Hz에서 1.5Tesla로 자화했을 때 발생되는 손실자속밀도 (B50):5000A/m로 자화했을 때 유도되는 자속밀도투자율(μ1.5):1.5Tesla의 자속밀도로 자장을 유기하였을 때의 투자율 Iron loss (W 15/50 ): Loss magnetic flux density when magnetized to 1.5 Tesla at 50 Hz (B 50 ): Magnetic flux density permeability induced when magnetized to 5000 A / m (μ 1.5 ): Magnetic field magnetic flux density of 1.5 Tesla Permeability when abandoning

상기 표 1 및 표 2에 나타난 바와 같이, 발명재(1-4)가 비교재(1-6)에 비해 자기적특성이 우수함을 알 수 있었다. 구체적으로 설명하면, 비교재(1)은 최종소둔시 가열속도가 너무 느려서 (200)면의 집합조직 발달이 미흡하여 자성이 저조하였다. 비교재(2)는 최종소둔온도가 낮고, 비교재(3)은 최종소둔온도가 너무 높았기 때문에 자성이 저조하였다. 비교재(4)와 (5)의 경우는 제조조건에 있어 본 발명의 조건을 만족하고 있으나, 강성분중 Al의 함량이 본 발명의 범위 보다 높아서 자성이 저조하였다. 비교재(6)의 경우도 Al의 함량이 본 발명의 조건보다 높아서 자성저하의 원인으로 나타났다.As shown in Table 1 and Table 2, it was found that the inventive material (1-4) is superior in magnetic properties than the comparative material (1-6). In detail, the comparative material 1 had a low heating rate at the time of final annealing due to insufficient development of the aggregate structure of the (200) plane and low magnetic properties. The comparative material 2 had a low final annealing temperature, and the comparative material 3 had a low magnetization because the final annealing temperature was too high. In the case of the comparative materials (4) and (5), the conditions of the present invention were satisfied in the manufacturing conditions, but the Al content in the steel component was higher than the range of the present invention, resulting in low magnetic properties. In the case of the comparative material (6), the Al content was higher than the conditions of the present invention, which appeared to be the cause of the magnetic degradation.

[실시예 2]Example 2

중량%로 C:0.0025%, Si:0.75%, Mn:0.96%, P:0.065%, S:0.003%, Al:0.0007%, N:0.0007%, Sn:0.12%, Ni:0.25%, Cu:0.25%이고, 나머지 Fe 및 기타 불순물로 조성되는 슬라브를 1150℃로 가열한 후 2.3mm의 두께로 열간압연하고, 800℃의 온도에서 권취한 후 밀페된 소둔로에서 로냉하였다. 로냉된 열연판은 산세후 0.5㎜의 두께로 냉간압연하였다. 냉연판은 15℃/sec의 속도로 승온하여 수소 20%와 질소 80%의 분위기에서 소둔온도 700℃로 2분간 최종소둔하였다. 최종소둔후 연속하여 유무기혼합의 절연피막을 입힌후 절단하고, 1차 자기적특성을 조사하고 그 결과를 아래 표 3에 나타내었다. 그리고, 상기와 같이 절단한 시편을 750℃의 온도에서 1.5시간동안 질소 100%의 분위기로 응력제거소둔한 후 2차 자기적특성을 조사하고 그 결과 또한 표 3에 나타내었다.By weight C: 0.0025%, Si: 0.75%, Mn: 0.96%, P: 0.065%, S: 0.003%, Al: 0.0007%, N: 0.0007%, Sn: 0.12%, Ni: 0.25%, Cu: The slab, which is 0.25% and composed of the remaining Fe and other impurities, was heated to 1150 ° C., hot rolled to a thickness of 2.3 mm, wound up at a temperature of 800 ° C., and then cooled in a sealed annealing furnace. The furnace-cooled hot rolled sheet was cold rolled to a thickness of 0.5 mm after pickling. The cold rolled plate was heated at a rate of 15 ° C./sec and finally annealed at an annealing temperature of 700 ° C. for 2 minutes in an atmosphere of 20% hydrogen and 80% nitrogen. After the final annealing, the organic and inorganic mixed insulation coating was continuously applied and then cut. The primary magnetic properties were investigated and the results are shown in Table 3 below. Then, the specimen cut as described above was stress-annealed in an atmosphere of 100% nitrogen for 1.5 hours at a temperature of 750 ℃ and the secondary magnetic properties were investigated and the results are also shown in Table 3.

구분division 철손(W15/50) W/kg Iron loss (W 15/50 ) W / kg 자속밀도 (B50)Magnetic flux density (B 50 ) 투자율 (μ1.5)Permeability (μ 1.5 ) (200)면강도(200) cotton strength 결정립크기(㎛)Crystal grain size (㎛) 1차 자기적특성(응력제거소둔전)Primary magnetic properties (before stress relief annealing) 5.105.10 1.761.76 19901990 -- -- 2차 자기적특성(응력제거소둔후)Second magnetic property (after stress relief annealing) 3.353.35 1.771.77 42004200 0.580.58 120120

상기 표3에 나타난 바와 같이, 응력제거소둔후의 철손은 응력제거소둔전의 철손대비 34% 개선되었다.As shown in Table 3, the iron loss after the stress relief annealing was improved by 34% compared to the iron loss before the stress relief annealing.

[실시예 3]Example 3

중량%로 C:0.003%, Si:0.82%, Mn:0.25%, P:0.015%, S:0.004%, Al:0.015%, N:0.0024%, Sn:0.13%, Ni:0.25%, Cu:0.21% 및 B:0.0015%이고, 나머지 Fe와 기타 불순물로 조성되는 슬라브를 아래 표4에 제시된 조건으로 가열하고 2.1mm의 두께로 열간압연하고, 권취하고, 산세하고, 0.5mm의 두께로 냉간압연하였다. 냉연판은 17℃/sec의 속도로 승온하여 수소30%, 질소70%의 건조한 분위기에서 680℃의 온도에서 1분간 소둔하였다. 상기와 같이 소둔후 연속하여 유뮤기혼합의 절연피막을 입힌후 절단하고 표 3과 같이 환원분위기에서 응력제거소둔후 자기적특성을 조사하고 그 결과를 표3에 나타내었다.C: 0.003%, Si: 0.82%, Mn: 0.25%, P: 0.015%, S: 0.004%, Al: 0.015%, N: 0.0024%, Sn: 0.13%, Ni: 0.25%, Cu: Slab composed of 0.21% and B: 0.0015% and consisting of the remaining Fe and other impurities is heated under the conditions shown in Table 4 below, hot rolled to 2.1 mm thick, wound, pickled and cold rolled to 0.5 mm thick. It was. The cold rolled sheet was heated at a rate of 17 ° C./sec and annealed for 1 minute at a temperature of 680 ° C. in a dry atmosphere of 30% hydrogen and 70% nitrogen. After annealing as described above, the insulation film of the eumugi mixture was continuously coated and then cut, and the magnetic properties were investigated after stress relief annealing in a reducing atmosphere as shown in Table 3 and the results are shown in Table 3 below.

시료번호Sample Number 슬라브 재가열온도(℃)Slab reheating temperature (℃) 열연판 권취온도(℃/sec)Hot Rolled Sheet Winding Temperature (℃ / sec) 응력제거소둔온도(℃)Stress Relieving Annealing Temperature (℃) 철손(W15/50) W/kg Iron loss (W 15/50 ) W / kg 자속밀도 (B50)Magnetic flux density (B 50 ) 투자율 (μ1.5)Permeability (μ 1.5 ) (200)면강도(200) cotton strength 강종Steel grade 발명재5Invention 5 11501150 720720 800800 3.423.42 1.761.76 42404240 0.430.43 발명강aInventive Steel a 발명재6Invention 6 12501250 720720 800800 3.393.39 1.761.76 45104510 0.490.49 발명강aInventive Steel a 비교재7Comparative Material7 13501350 720720 800800 3.73.7 1.731.73 26502650 0.270.27 발명강aInventive Steel a 발명재7Invention 7 12001200 600600 700700 3.523.52 1.771.77 45304530 0.490.49 발명강bInventive Steel b 발명재8Invention Material 8 12001200 600600 750750 3.413.41 1.781.78 50505050 0.610.61 발명강cInvention steel c 철손(W15/50): 50Hz에서 1.5Tesla로 자화했을 때 발생되는 손실자속밀도 (B50):5000A/m로 자화했을 때 유도되는 자속밀도투자율(μ1.5):1.5Tesla의 자속밀도로 자장을 유기하였을 때의 투자율 Iron loss (W 15/50 ): Loss magnetic flux density when magnetized to 1.5 Tesla at 50 Hz (B 50 ): Magnetic flux density permeability induced when magnetized to 5000 A / m (μ 1.5 ): Magnetic field magnetic flux density of 1.5 Tesla Permeability when abandoning

상기 표4에 나타난 바와 같이, 비교재(7)는 강 성분이 본 발명의 조건을 만족하고 있으나, 슬라브 재가열온도가 과다하게 높아 미세하게 석출되는 MnS가 슬라브에 재용해되고, 열간압연시 다시 미세하게 재석출되므로서 집합조직이 나빠지며 자성이 저조하게 되었다. 이에 반해, 본 발명의 제조조건을 만족하는 발명재(5-8)의 경우 자기적특성이 우수하였다.As shown in Table 4, the comparative material (7), but the steel component satisfies the conditions of the present invention, the slab reheating temperature is excessively high so that finely precipitated MnS is re-dissolved in the slab, fine again during hot rolling As a result of the reprecipitation, the assembly became worse and the magnetism was weak. On the contrary, in the case of the invention material 5-8 satisfying the manufacturing conditions of the present invention, the magnetic properties were excellent.

상술한 바와 같이, 본 발명은 출하시 대비 수요가 열처리후 철손이 30%이상 감소하고, 자속밀도 및 투자율이 우수한 무방향성 전기강판을 제공할 수 있는 효과가 있다. 또한, 본 발명에 의하면 자기적특성을 확보하기 위해 행하는 열연판소둔 및 경압연을 거치지 않고도 우수한 자기적특성을 확보할 수 있어 제조공정이 단축되는 효과가 있는 것이다.As described above, the present invention has an effect of providing a non-oriented electrical steel sheet excellent in magnetic flux density and magnetic permeability is reduced by 30% or more after heat treatment, the demand compared to the time of shipment. In addition, according to the present invention, it is possible to secure excellent magnetic properties without undergoing hot rolling annealing and light rolling performed to ensure magnetic properties, thereby reducing the manufacturing process.

Claims (2)

무방향성 전기강판의 제조방법에 있어서,In the manufacturing method of the non-oriented electrical steel sheet, 중량%로, C:0.02%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.005%이하, N:0.007%이하, Sn:0.03-0.3%, Ni:0.05-0.7%, Cu:0.03-0.5%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 슬라브를 1100-1300℃로 재가열하여 열간압연하고 800℃이하의 온도로 권취한 다음, 산세하고, 이어 70%이상의 압하율로 냉간압연한 후, 5℃/sec이상의 속도로 가열하여 600-800℃의 온도범위에서 30초-5분동안 소둔한 다음, 수요가가공후 700-850℃의 온도범위에서 응력제거소둔하는 것을 포함하여 이루어짐을 특징으로 하는 수요가 열처리후 자성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.02% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.005% or less, N: 0.007% or less, Sn: Slab composed of 0.03-0.3%, Ni: 0.05-0.7%, Cu: 0.03-0.5%, remaining Fe and other unavoidable impurities is reheated to 1100-1300 ° C, hot rolled and wound up to a temperature below 800 ° C. Pickling, followed by cold rolling at a reduction ratio of 70% or more, heating at a rate of 5 ° C / sec or more, annealing for 30 seconds-5 minutes in the temperature range of 600-800 ° C, and then processing 700 after demand processing Method for producing a non-oriented electrical steel sheet having excellent magnetic properties after heat treatment characterized in that it comprises a stress relief annealing in the temperature range of -850 ℃. 무방향성 전기강판의 제조방법에 있어서,In the manufacturing method of the non-oriented electrical steel sheet, 중량%로, C:0.02%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Sol.Al:0.05%이하, N:0.007%이하, Sn:0.03-0.3%, Ni:0.05-0.7%, Cu:0.03-0.5%, B:0.0005-0.0050%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 슬라브를 1100-1300℃로 재가열하여 열간압연하고 800℃이하의 온도로 권취한 다음, 산세하고, 이어 70%이상의 압하율로 냉간압연한 후, 5℃/sec이상의 속도로 가열하여 600-800℃의 온도범위에서 30초-5분동안 소둔한 다음, 수요가가공후 700-850℃의 온도범위에서 응력제거소둔하는 것을 포함하여 이루어짐을 특징으로 하는 수요가 열처리후 자성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.02% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Sol.Al: 0.05% or less, N: 0.007% or less, Sn: 0.03-0.3%, Ni: 0.05-0.7%, Cu: 0.03-0.5%, B: 0.0005-0.0050%, and re-heat the slab composed of the remaining Fe and other unavoidable impurities to 1100-1300 ℃ Winding at a temperature below 800 ° C, pickling, followed by cold rolling at a reduction rate of 70% or more, heating at a rate of 5 ° C / sec or more, annealing for 30 seconds-5 minutes in the temperature range of 600-800 ° C. Next, a method for producing a non-oriented electrical steel sheet having excellent magnetic properties after the heat treatment, characterized in that the demand is made, including the stress relief annealing in the temperature range of 700-850 ℃ after processing.
KR10-1998-0022526A 1998-06-16 1998-06-16 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment KR100395100B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0022526A KR100395100B1 (en) 1998-06-16 1998-06-16 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0022526A KR100395100B1 (en) 1998-06-16 1998-06-16 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment

Publications (2)

Publication Number Publication Date
KR20000001997A KR20000001997A (en) 2000-01-15
KR100395100B1 true KR100395100B1 (en) 2003-10-17

Family

ID=19539632

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0022526A KR100395100B1 (en) 1998-06-16 1998-06-16 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment

Country Status (1)

Country Link
KR (1) KR100395100B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530069B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100544738B1 (en) * 2001-12-20 2006-01-24 주식회사 포스코 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
KR101223113B1 (en) 2010-12-27 2013-01-17 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466176B1 (en) * 2000-12-27 2005-01-13 주식회사 포스코 Method for Manufacturing non-oriented electrical steel sheet having low core loss
KR100957931B1 (en) * 2002-12-23 2010-05-13 주식회사 포스코 Method for manufacturing non-oriented electrical sheets with low core loss
KR100940714B1 (en) * 2002-12-23 2010-02-08 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR100940719B1 (en) * 2002-12-23 2010-02-08 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
CN104520458B (en) 2012-08-08 2017-04-12 杰富意钢铁株式会社 High-strength electromagnetic steel sheet and method for producing same
KR101949621B1 (en) * 2014-08-21 2019-02-18 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476422A (en) * 1977-11-30 1979-06-19 Nippon Steel Corp Manufacture of non-oriented electrical sheet with superior magnetism by self annealing of hot rolled sheet
JPS60258414A (en) * 1984-06-05 1985-12-20 Kobe Steel Ltd Production of non-oriented electrical iron sheet having high magnetic flux density
KR940009346A (en) * 1992-10-09 1994-05-20 정명식 Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR19980017729A (en) * 1996-08-31 1998-06-05 김종진 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476422A (en) * 1977-11-30 1979-06-19 Nippon Steel Corp Manufacture of non-oriented electrical sheet with superior magnetism by self annealing of hot rolled sheet
JPS60258414A (en) * 1984-06-05 1985-12-20 Kobe Steel Ltd Production of non-oriented electrical iron sheet having high magnetic flux density
KR940009346A (en) * 1992-10-09 1994-05-20 정명식 Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR19980017729A (en) * 1996-08-31 1998-06-05 김종진 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530069B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100544738B1 (en) * 2001-12-20 2006-01-24 주식회사 포스코 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
KR101223113B1 (en) 2010-12-27 2013-01-17 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof

Also Published As

Publication number Publication date
KR20000001997A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
US20240102123A1 (en) Method for manufacturing non-oriented electrical steel sheet, and non-oriented electrical steel sheet manufactured thereby
KR100479991B1 (en) A method for producing non-oriented silicon steel with low core loss
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR101059215B1 (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100340503B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR0119557B1 (en) Method of manufcturing non-oriented electro magnetic steel sheet
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100466176B1 (en) Method for Manufacturing non-oriented electrical steel sheet having low core loss
KR20020016025A (en) A method for manufacturing non-grain oriented electric steel sheet with superior magnetic property

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120703

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130719

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140805

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160804

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee