KR100957931B1 - Method for manufacturing non-oriented electrical sheets with low core loss - Google Patents

Method for manufacturing non-oriented electrical sheets with low core loss Download PDF

Info

Publication number
KR100957931B1
KR100957931B1 KR1020020082360A KR20020082360A KR100957931B1 KR 100957931 B1 KR100957931 B1 KR 100957931B1 KR 1020020082360 A KR1020020082360 A KR 1020020082360A KR 20020082360 A KR20020082360 A KR 20020082360A KR 100957931 B1 KR100957931 B1 KR 100957931B1
Authority
KR
South Korea
Prior art keywords
less
annealing
iron loss
oriented electrical
steel sheet
Prior art date
Application number
KR1020020082360A
Other languages
Korean (ko)
Other versions
KR20040055906A (en
Inventor
배병근
이원걸
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020082360A priority Critical patent/KR100957931B1/en
Publication of KR20040055906A publication Critical patent/KR20040055906A/en
Application granted granted Critical
Publication of KR100957931B1 publication Critical patent/KR100957931B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

본 발명은 중소형의 모터 및 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a non-oriented electrical steel sheet used as an iron core of electrical equipment such as small and medium motors and transformers.

이 제조방법은 중량%로, C: 0.006% 이하, Si: 1.5% 이하, Mn: 0.75% 이하, P: 0.15% 이하, S: 0.02% 이하, Cu: 0.01% 이하, Al: 0.10~0.30%, N: 0.003% 이하, B: 0.0003~0.005%, 나머지 Fe 및 기타 불순물로 조성되는 슬라브를 1100~1250℃로 재가열한 다음 열간압연하고, 600~750℃에서 권취한 다음 75~85%의 압하율로 냉간압연한 후, 700~950℃에서 2분 이하 소둔하는 것을 포함하여 이루어진다.This manufacturing method is% by weight, C: 0.006% or less, Si: 1.5% or less, Mn: 0.75% or less, P: 0.15% or less, S: 0.02% or less, Cu: 0.01% or less, Al: 0.10 to 0.30% , N: 0.003% or less, B: 0.0003 ~ 0.005%, the slab composed of the remaining Fe and other impurities is reheated to 1100-1250 ° C, hot rolled, wound at 600-750 ° C, and then reduced to 75-85% After cold rolling at a rate, it comprises annealing at 700 to 950 ° C. for 2 minutes or less.

이 제조방법은 B를 첨가하여 AlN의 석출을 방지하고 권취온도, 냉간압하율 및 소둔조건을 최적화함으로써 철손이 낮은 무방향성 전기강판을 제공하는 효과가 있다.This manufacturing method has the effect of providing non-oriented electrical steel sheet having low iron loss by adding B to prevent precipitation of AlN and to optimize winding temperature, cold reduction rate and annealing conditions.

철손, 무방향성, 전기강판, BN 석출물Iron loss, non-oriented, electrical steel sheet, BN precipitate

Description

철손이 낮은 무방향성 전기강판의 제조방법{Method for manufacturing non-oriented electrical sheets with low core loss}Method for manufacturing non-oriented electrical sheets with low core loss

본 발명은 중소형의 모터 및 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 B를 첨가하여 AlN의 석출을 방지하고 권취온도, 냉간압하율 및 소둔조건을 최적화한 철손이 낮은 무방향성 전기강판의 제조방법에 관한 것이다.
The present invention relates to a method for manufacturing a non-oriented electrical steel sheet used as an iron core of electrical equipment such as small and medium-sized motors and transformers, more specifically to the addition of B to prevent the precipitation of AlN, winding temperature, cold rolling rate and annealing The present invention relates to a method for manufacturing a non-oriented electrical steel sheet having low iron loss under optimized conditions.

각종 모터, 소형 변압기 및 자기실드(Magnetic shield)와 같은 전기제품에서 철심으로 사용되는 무방향성 전기강판은 낮은 철손이 요구된다. 상기 철손은 전기강판 소재의 중량당 전기에너지 손실 정도를 나타내는 것으로서, W/kg의 단위로 표시한다. 상기 철손을 낮추기 위한 방법으로는 Si의 함량을 증가시키는 것이 있다. 하지만, Si의 함량을 증가시키면 철손을 낮출 수는 있으나, 제조원가가 상승하는 문제점이 있다. 따라서, 철손과 제조원가를 모두 낮출 수 있는 방법이 요구되고 있는 실정이다. Non-oriented electrical steel sheets used as iron cores in electric appliances such as motors, small transformers, and magnetic shields require low iron loss. The iron loss indicates the degree of electrical energy loss per weight of the electrical steel sheet material, expressed in units of W / kg. The method for reducing the iron loss is to increase the content of Si. However, increasing the content of Si can lower the iron loss, there is a problem that the manufacturing cost increases. Therefore, there is a demand for a method for reducing both iron loss and manufacturing cost.                         

무방향성 전기강판은 조직중에서 결정립을 크게 성장시킴으로서 철손을 낮출 수 있다. 결정립의 성장을 억제하는 원소중에서 대표적인 원소가 N이다. 상기 N는 강중의 Al과 결합하여 미세하고 긴 AlN을 형성하여 결정립의 성장을 억제한다. 따라서, Al을 전혀 첨가하지 않거나 Al을 다량 첨가하기도 하나, 이 경우 탈산이 충분하지 못하거나 제조비용이 상승하는 문제점이 있다.Non-oriented electrical steel can lower the iron loss by growing grains in the tissue. Among the elements that suppress the growth of grains, a representative element is N. N combines with Al in the steel to form fine and long AlN to inhibit grain growth. Therefore, even though Al is not added at all or a large amount of Al is added, in this case, there is a problem in that deoxidation is not sufficient or manufacturing cost is increased.

무방향성 전기강판의 철손을 낮추는 것에 관한 종래기술로는 일본 공개특허공보 소62-284016호가 있다. 상기 종래기술은 Al을 첨가하여 비저항을 증가시킴으로써, 철손을 낮추는 것에 관한 것이나, 냉간압연을 낮게하여 열연판에서 압연두께를 작게 함으로써 판형상 불량이 발생될 수 있는 문제점이 있다.Japanese Patent Laid-Open No. 62-284016 is a related art related to reducing iron loss of non-oriented electrical steel sheet. The prior art relates to lowering iron loss by increasing specific resistance by adding Al, but there is a problem that plate-like defects may be generated by lowering cold rolling to reduce rolling thickness in a hot rolled sheet.

또 다른 종래기술로는 일본 공개특허공보 소63-47322호가 있다. 상기 종래기술은 자성을 향상시키기 위하여 냉연판을 소둔후 2~15%로 경압연을 실시하는 것이나, 경압연 실시에 따른 제조공정이 길어지는 문제점이 있다.Another prior art is Japanese Patent Laid-Open No. 63-47322. The prior art is to perform light rolling at 2 to 15% after annealing the cold rolled plate to improve magnetic properties, but there is a problem in that the manufacturing process according to the light rolling is lengthened.

또 다른 종래기술로는 대한민국 특허 출원번호97-65507호가 있다. 상기 종래기술은 Sol.Al의 함량이 낮아서 충분한 탈산이 어려워짐으로써 산화물의 발생이 많아질 수 있는 문제점이 있다.
Another prior art is Korean Patent Application No. 97-65507. The prior art has a problem that the generation of oxides may increase due to the low content of Sol.Al becomes difficult to deoxidize sufficiently.

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, B를 첨가하여 AlN의 석출을 방지하고 권취온도, 냉간압하율 및 소둔조건을 최적화한 철손이 낮은 무방향성 전기강판의 제조방법을 제공하는데, 그 목적이 있다.
The present invention is to solve the above problems of the prior art, to prevent the precipitation of AlN by adding B, to provide a method for producing a non-oriented electrical steel sheet with low iron loss optimized the winding temperature, cold rolling rate and annealing conditions , Its purpose is.

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.006% 이하, Si: 1.5% 이하, Mn: 0.75% 이하, P: 0.15% 이하, S: 0.02% 이하, Cu: 0.01% 이하, Al: 0.10~0.30%, N: 0.003% 이하, B: 0.0003~0.005%, 나머지 Fe 및 기타 불순물로 조성되는 슬라브를 1100~1250℃로 재가열한 다음 열간압연하고, 600~750℃에서 권취한 다음 75~85%의 압하율로 냉간압연한 후, 700~950℃에서 2분 이하 소둔하는 것을 포함하여 이루어진다.The present invention for achieving the above object by weight, C: 0.006% or less, Si: 1.5% or less, Mn: 0.75% or less, P: 0.15% or less, S: 0.02% or less, Cu: 0.01% or less, Al: 0.10 to 0.30%, N: 0.003% or less, B: 0.0003 to 0.005%, the slab composed of the remaining Fe and other impurities is reheated to 1100 to 1250 ° C, hot rolled, and wound up at 600 to 750 ° C. Cold rolling at a reduction ratio of 75 to 85%, followed by annealing at 700 to 950 ° C. for 2 minutes or less.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

무방향성 전기강판은 Si을 첨가하여 비저항을 증가시킴으로써 철손을 낮추며, 그외에 불순물의 양을 적정하게 제어함으로써 이력손실을 줄여 전체 철손을 낮출 수 있다. 상기 Si를 첨가하는 방법은 제조비용의 상승을 초래하므로, 동일한 Si함량에서 철손을 가능한 낮추는 것이 필요하다. 따라서, 불순물의 양을 제어함으로써, 이력손실을 낮추는 것이 중요하다. 무방향성 전기강판의 불순물로는 미세하게 석출되는 AlN, MnS 및 기타산화물 등이 있다. 그러나, 상기 MnS는 성분이 주어지면 동일한 제조조건에서는 고정된다. 따라서, AlN의 석출을 가능한 줄이는 방법이 바람직하다. 상기 AlN은 Al을 첨가하지 않으면 발생되지 않으나, 강을 정련하는 과정에서 산소의 영향을 줄이기 위하여 0.005%이하의 Al을 첨가하고 있기 때문에 Al의 첨가는 불가피하다. 그리고, Al은 비저항을 증가시키기 때문에 상기 함량보다 더 많이 첨가되고 있다. 따라서, N과 반응이 강한 B를 첨가함으로써, AlN을 석출시키는 대신 BN을 석출시키게 된다. 본 발명에서 N은 AlN 로 단독 석출은 적고, 대부분이 BN석출물로 석출되며, 또한 강중에 함유된 Cu가 석출되는 Cu2S등 여러 석출물이 혼합하여 나타나는 조대한 석출물로 석출되어 최종제품에서 결정립이 크게 성장됨으로써 자성이 향상 되어진다. 상기와 같은 강을 제조하는 공정에 있어서는, 권취온도, 냉간압하율 및 소둔조건이 중요하다. 상기와 같은 강을 제조하는 공정에서 석출물이 과도하게 커지면 냉간압연시 파괴되어 오히려 미세하게 될 수 있으므로, 제조조건을 본 발명에 따라 실시하는 것이 필수적이다.
The non-oriented electrical steel sheet can lower the iron loss by increasing the specific resistance by adding Si, and by reducing the hysteresis loss by appropriately controlling the amount of impurities, it is possible to lower the total iron loss. Since the method of adding Si causes an increase in manufacturing cost, it is necessary to lower the iron loss as much as possible in the same Si content. Therefore, it is important to lower the hysteresis loss by controlling the amount of impurities. Impurities of the non-oriented electrical steel sheet include finely precipitated AlN, MnS and other oxides. However, the MnS is fixed under the same manufacturing conditions given a component. Therefore, a method of reducing the precipitation of AlN as possible is desirable. AlN does not occur unless Al is added, but Al is added in an amount of 0.005% or less in order to reduce the influence of oxygen in the steel refining process. And Al is added more than the said content because it increases specific resistance. Therefore, by adding B having a strong reaction with N, BN is precipitated instead of AlN. In the present invention, N is AlN, the small amount of precipitation alone, and most of them are precipitated as BN precipitates, and also precipitated as coarse precipitates obtained by mixing various precipitates such as Cu 2 S in which Cu contained in the steel is precipitated. By growing greatly, the magnetism is improved. In the process of manufacturing the steel as described above, the coiling temperature, cold reduction rate and annealing conditions are important. If the precipitate is excessively large in the process of manufacturing the steel as described above may be destroyed during cold rolling, rather fine, it is essential to carry out the manufacturing conditions according to the present invention.

이하, 본 발명의 성분제한 이유부터 살펴본다.Hereinafter, the present invention will be described from the reasons for limiting the ingredients.

C: 0.006중량% 이하C: 0.006 wt% or less

상기 C는 그 함량이 낮을수록 자성이 향상되며, 0.006중량%를 초과하여 첨가되면 자기시효를 일으켜서 사용중 자기적 특성을 저하시키므로, 그 함량을 0.006중량% 이하로 제한하는 것이 바람직하다.
The lower the content of C improves the magnetism, and if it is added in excess of 0.006% by weight causes magnetic aging to reduce the magnetic properties during use, it is preferable to limit the content to 0.006% by weight or less.

Si: 1.5중량% 이하Si: 1.5 wt% or less

상기 Si는 비저항을 증가시켜서 철손을 낮추는 성분으로, 1.5중량%를 초과하여 첨가되면 제조비용의 상승을 초래하므로, 그 함량을 1.5중량% 이하로 제한하는 것이 바람직하다.
The Si is a component that lowers the iron loss by increasing the specific resistance, and when added in excess of 1.5% by weight causes an increase in manufacturing cost, it is preferable to limit the content to 1.5% by weight or less.

Mn: 0.75중량% 이하Mn: 0.75 wt% or less

상기 Mn은 집합조직을 향상시키는데 유효한 성분으로, 0.75중량%를 초과하여 첨가되면 첨가하여도 그 효과가 떨어지므로, 그 함량을 0.75중량% 이하로 제한하는 것이 바람직하다.
The Mn is an effective ingredient for improving the texture, and when added in excess of 0.75% by weight, the effect is reduced even if it is added, and the content thereof is preferably limited to 0.75% by weight or less.

P: 0.15중량% 이하P: 0.15 wt% or less

상기 P는 자성에 유리한 집합조직을 형성하는 성분으로, 0.15중량%를 초과하여 첨가되면 냉간압연성을 저하시키므로, 그 함량을 0.15중량% 이하로 제한하는 것이 바람직하다.
The P is a component that forms an advantageous texture for magnetic, and when added in excess of 0.15% by weight, cold rolling property is lowered, it is preferable to limit the content to 0.15% by weight or less.

S: 0.02중량% 이하S: 0.02 wt% or less

상기 S는 미세한 석출물인 MnS를 형성하여 결정립 성장을 억제하는 유해한 성분으로, 가능한 낮게 관리하는 것이 유리하다. 상기 S의 함량이 0.02중량%를 초과하면 결정립 성장을 억제하므로, 그 함량을 0.02중량% 이하로 제한하는 것이 바람직하다.
S is a harmful component that forms fine precipitates, MnS, thereby suppressing grain growth, and is advantageously managed as low as possible. When the content of S exceeds 0.02% by weight, grain growth is suppressed, so the content is preferably limited to 0.02% by weight or less.

Cu: 0.01중량% 이하Cu: 0.01 wt% or less

상기 Cu는 미세한 석출물인 CuS를 형성하여 결정립 성장을 억제하는 유해한 성분으로, 가능한 낮게 관리하는 것이 유리하다. 상기 Cu의 함량이 0.01중량%를 초과하면 결정립 성장을 억제하므로, 그 함량을 0.01중량% 이하로 제한하는 것이 바람직하다.The Cu is a harmful component that forms CuS, which is a fine precipitate, to suppress grain growth, and is advantageously managed as low as possible. When the content of Cu exceeds 0.01% by weight, grain growth is suppressed, so the content is preferably limited to 0.01% by weight or less.

Al: 0.10~0.30중량%Al: 0.10 to 0.30 wt%

상기Al은 비저항을 증가시켜 와류손실을 낮추며, B첨가강에서 B가 N과 쉽게 결합하도록 도와주는 역할을 하는 성분으로, 0.10중량% 미만 첨가되면 AlN의 미세한 석출물이 과도할 수 있고, 0.30중량%를 초과하여 첨가되면 B를 첨가하지 않아도 AlN의 영향이 적어지므로, 그 함량을 0.10~0.30중량%로 제한하는 것이 바람직하다.The Al decreases the eddy current loss by increasing the specific resistance, and serves to help B easily bond with N in the B-added steel, when less than 0.10% by weight of AlN may be excessively precipitated, 0.30% by weight If it is added in excess of AlN is less affected even without adding B, it is preferable to limit the content to 0.10 to 0.30% by weight.

N: 0.003중량% 이하N: 0.003 wt% or less

상기 N는 미세하고 긴 AlN석출물을 형성하는 성분으로 가능한 낮게 관리하는 것이 바람직하며, 본 발명에서는 0.003중량% 이하로 제한하는 것이 바람직하다.
The N is preferably controlled as low as possible to form fine and long AlN precipitates, and in the present invention, it is preferably limited to 0.003% by weight or less.

B: 0.0003~0.005중량%B: 0.0003 to 0.005 wt%

상기 B은 소재내부에서 N와 결합하여 미세한 AlN 대신 조대한 석출물인 BN을 형성시킴으로서 결정립 성장에 유효한 성분이다. 상기 B의 함량이 0.0003중량% 미만이면 B첨가의 영향이 적어서 과도한 AlN이 발생될 수 있고, 0.005중량%를 초과하면 첨가량에 비해서 그 효과가 적으므로, 그 함량을 0.0003~0.005중량%로 제한하는 것이 바람직하다.
The B is an effective component for grain growth by combining with N in the material to form coarse precipitate BN instead of fine AlN. When the content of B is less than 0.0003% by weight, excessive AlN may be generated due to the small influence of B addition, and when the content of B is more than 0.005% by weight, the effect is less than the amount of addition, which limits the content to 0.0003 to 0.005% by weight. It is preferable.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.
In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

상기와 같이 조성되는 강 슬라브를 1100~1250℃로 재가열한 다음 열간압연한다. 상기 재가열 온도가 1100℃ 미만이면 슬라브 내의 원소들이 충분히 균질화 되지 않아 열간압연시 부하가 크고, 1250℃ 이상이면 열량손실이 과도하므로, 상기 재가열 온도는 1100~1250℃로 제한하는 것이 바람직하다.The steel slab formed as described above is reheated to 1100 ~ 1250 ° C. and then hot rolled. If the reheating temperature is less than 1100 ° C., the elements in the slab are not sufficiently homogenized, so the load during hot rolling is large, and if the reheating temperature is 1250 ° C. or more, the calorie loss is excessive.

상기 열간압연된 열연판을 600~750℃에서 권취한 다음 75~85%의 압하율로 냉간압연한다. 상기 권취온도는 공기중에서 권취하여도 N가 강중에 들어가 AlN으로 석출될 염려가 적은 온도로서, 상기 권취온도가 600℃ 미만이면 과도한 AlN이 형성될 수 있고, 750℃를 초과하면 공기중 산소가 강판중의 Al 등과 결합하여 산화물을 만들 수 있으므로, 상기 권취온도는 600~750℃로 제한하는 것이 바람직하다. 또한, 상기 냉간압하율이 75% 미만이면 강중에 미세한 공기구멍 등이 잔존하여 최종 소둔후 자성의 저하를 가져올 수 있고, 85%를 초과하면 과도하게 큰 석출물이 부서지므로, 상기 냉간압하율은 75~85%로 제한하는 것이 바람직하다.The hot rolled hot rolled sheet is wound at 600 to 750 ° C. and then cold rolled at a reduction ratio of 75 to 85%. The coiling temperature is a temperature at which N is less likely to enter the steel and precipitate into AlN even when the coiling is wound in air. Excess AlN may be formed when the coiling temperature is less than 600 ° C. Since the oxide can be made by combining with Al and the like, the winding temperature is preferably limited to 600 ~ 750 ℃. In addition, when the cold reduction rate is less than 75%, fine air holes, etc., remain in the steel, resulting in deterioration of magnetic properties after final annealing. When the cold reduction rate exceeds 85%, excessively large precipitates are broken, so the cold reduction rate is 75%. It is desirable to limit it to -85%.

상기 냉연판을 700~950℃에서 2분 이하 동안 질소와 수소의 혼합분위기에서 연속공정으로 냉연판소둔한다. 상기 소둔온도가 700℃ 미만이면 재결정이 불충분하고, 950℃를 초과하면 표면에 산화층이 발생될 수 있으므로, 상기 소둔온도는 700~950℃로 제한하는 것이 바람직하다. 또한, 상기 소둔시간이 2분을 초과하면 미량으로 잔존하는 분위기중 산소와 결합하여 산화층을 만들어 자성이 저하될 수 있으므로, 상기 소둔시간은 2분 이하로 제한하는 것이 바람직하다.The cold rolled sheet is annealed in a continuous process in a mixed atmosphere of nitrogen and hydrogen for 2 minutes at 700 ~ 950 ℃. If the annealing temperature is less than 700 ℃ recrystallization is insufficient, if it exceeds 950 ℃ may be an oxide layer on the surface, the annealing temperature is preferably limited to 700 ~ 950 ℃. In addition, when the annealing time exceeds 2 minutes, since the oxide layer may be formed by combining with oxygen in a small amount of the atmosphere remaining in the atmosphere, the annealing time is preferably limited to 2 minutes or less.

상기 소둔된 강판은 이후 무기질 혹은 유무기복합 코팅처리를 실시하는 것이 가능 하다.The annealed steel sheet can then be subjected to inorganic or organic-inorganic composite coating treatment.

또한, 상기 소둔된 강판은 원하는 형태로 가공 후, 응력제거 소둔을 실시하는 것이 가능하며, 응력제거 소둔을 실시하는 경우 철손을 보다 낮출 수 있다. 상기 응력제거 소둔은 질소분위기 또는 비산화성 분위기에서 실시할 수 있다. 냉연판 소둔시 연속소둔으로 짧은 시간에 소둔됨으로써 다소 불충분한 결정립 성장이 있지만, 상기 응력제거 소둔을 통하여 결정립이 성장함으로써 철손이 낮아지게 되며, 가공응력이 제거되어 투자율도 높아진다. 상기 응력제거 소둔시 소둔온도는 750~850℃, 소둔시간은 30분 이상 실시할 수 있으며, 상기 소둔온도가 750℃보다 낮으면 시간이 과도하게 길어지며, 850℃ 보다 높으면 절연피막에 손상이 생길 가능성이 있다. 또한, 상기 소둔시간이 30분 미만이면 상기 응력제거 소둔이 충분히 행해질 수 없다.
In addition, the annealed steel sheet can be subjected to stress relief annealing after processing to a desired shape, it can lower the iron loss when performing the stress relief annealing. The stress relief annealing may be performed in a nitrogen atmosphere or a non-oxidizing atmosphere. There is somewhat insufficient grain growth by annealing in a short time by continuous annealing during cold annealing, but the iron loss is lowered by growing the grain through the stress relief annealing, the stress is removed and the permeability is also high. When the annealing temperature is annealing temperature is 750 ~ 850 ℃, annealing time can be carried out for more than 30 minutes, if the annealing temperature is lower than 750 ℃ time is excessively long, if higher than 850 ℃ damage to the insulating film There is a possibility. In addition, if the annealing time is less than 30 minutes, the stress relief annealing may not be sufficiently performed.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1]Example 1

하기 표 1과 같이 조성되는 강슬라브를 1150℃로 재가열하고, 하기 표 2의 냉간압하율로 냉간압연될 수 있도록 열간압연하고, 공기중에서 권취한 다음 산세한 후, 하기 표 2의 냉간압하율로 냉간압연하여 0.50mm 두께로 강판을 제조하였다. 상기 냉간압연판의 소둔은 수소 20%와 질소 80%의 혼합분위기에서 하기 표 2의 소둔조건으로 실시하였다. 상기와 같이 제조된 강판의 철손 및 결정립 크기를 측정하였으며, 그 결과는 하기 표 2와 같다.
The steel slab formed as shown in Table 1 was reheated to 1150 ° C., hot rolled to be cold rolled at the cold rolling rate of Table 2, wound up in air, and then pickled, followed by the cold rolling rate of Table 2 below. Cold rolling was carried out to prepare a steel sheet to a thickness of 0.50mm. Annealing of the cold rolled plate was performed under the annealing conditions of Table 2 in a mixed atmosphere of 20% hydrogen and 80% nitrogen. Iron loss and grain size of the steel sheet manufactured as described above were measured, and the results are shown in Table 2 below.


Figure 112002042439648-pat00002
Figure 112002042439648-pat00002

상기 표 2에서 알 수 있듯이, 본 발명의 성분 범위를 만족하는 발명강(A~C)을 이용하여 본 발명의 제조조건으로 제조한 발명재(1~6)은 본 발명의 범위를 벗어나는 비 교재(1~7)에 비하여 철손이 적고, 결정립 크기가 큰 것을 알 수 있다.
As can be seen in Table 2, the invention materials (1 to 6) prepared by the production conditions of the present invention using the invention steel (A ~ C) satisfying the component range of the present invention is a comparative material outside the scope of the present invention Compared with (1-7), the iron loss is small and the grain size is large.

[실시예2]Example 2

상기 실시예1의 발명재(1~2, 3)을 절단한 다음 응력제거 소둔한 후, 자성을 측정하였다. 그 결과 발명재(1)을 응력제거 소둔한 발명재(7)은 철손이 3.62W/kg, 발명재(2)를 응력제거 소둔한 발명재(8)은 철손이 3.50W/kg, 발명재(3)을 응력제거 소둔한 발명재(9)는 철손이 3.52W/kg으로 나타났다. 따라서, 냉연판 소둔 후, 응력제거 소둔을 행하면 보다 낮은 철손을 얻을 수 있음을 알 수 있다.
After cutting the invention materials (1 to 2, 3) of Example 1 and then stress relief annealing, the magnetic properties were measured. As a result, the invention material (7) which stress-annealed the invention material (1) had an iron loss of 3.62 W / kg, and the invention material (8) which stress-annealed the invention material (2) had an iron loss of 3.50 W / kg, an invention material. The invention material (9) which stress-annealed (3) showed the iron loss of 3.52 W / kg. Therefore, it can be seen that a lower iron loss can be obtained by performing stress relief annealing after cold rolling annealing.

[실시예3]Example 3

중량%로, C: 0.002%, Si: 0.82%, Mn: 0.25%, P: 0.015%, S: 0.0023%, Al: 0.16%, N: 0.0015%, Cu: 0.008%, B: 0.0010%, 나머지 Fe 및 기타 불순물로 조성되는 슬라브를 진공용해하고 1150℃로 재가열한 다음 2.1mm로 열간압연하고, 680℃에서 권취하고, 산세후 0.35mm와 0.50mm의 두께로 냉간압연하였다. 상기 냉연판을 930℃에서 수소20%와 질소 80%의 분위기에서 60초간 소둔하였다. 상기 0.35mm의 두께를 갖는 발명재(10)은 철손(W15/50)이 3.1W/kg, 결정립 크기가 80㎛이었다. 또한, 0.50mm의 두께를 갖는 발명재(11)은 철손(W15/50)이 3.75W/kg, 결정립 크기가 85㎛이었다.
By weight, C: 0.002%, Si: 0.82%, Mn: 0.25%, P: 0.015%, S: 0.0023%, Al: 0.16%, N: 0.0015%, Cu: 0.008%, B: 0.0010%, rest Slabs composed of Fe and other impurities were vacuum melted, reheated to 1150 ° C., hot rolled to 2.1 mm, wound at 680 ° C., and cold rolled to a thickness of 0.35 mm and 0.50 mm after pickling. The cold rolled sheet was annealed at 930 ° C. for 60 seconds in an atmosphere of 20% hydrogen and 80% nitrogen. The invention material 10 having a thickness of 0.35mm was 3.1W / kg iron loss (W 15/50 ), the grain size was 80㎛. In addition, the inventive material 11 having a thickness of 0.50 mm had an iron loss (W 15/50 ) of 3.75 W / kg and a grain size of 85 μm.

상술한 바와 같이, 본 발명은 B를 첨가하여 AlN의 석출을 방지하고 권취온도, 냉간압하율 및 소둔조건을 최적화함으로써 철손이 낮은 무방향성 전기강판을 제공하는 효과가 있다. As described above, the present invention has the effect of providing a non-oriented electrical steel sheet having a low iron loss by adding B to prevent the precipitation of AlN and optimize the winding temperature, cold reduction rate and annealing conditions.

Claims (2)

중량%로, C: 0.006% 이하, Si: 1.5% 이하, Mn: 0.75% 이하, P: 0.15% 이하, S: 0.02% 이하, Cu: 0.01% 이하, Al: 0.10~0.30%, N: 0.003% 이하, B: 0.0003~0.005%, 나머지 Fe 및 기타 불순물로 조성되는 슬라브를 1100~1250℃로 재가열한 다음 열간압연하고, 600~750℃에서 권취한 다음 75~85%의 압하율로 냉간압연한 후, 700~950℃에서 2분 이하 소둔하는 것을 포함하여 이루어지는 철손이 낮은 무방향성 전기강판의 제조방법.By weight%, C: 0.006% or less, Si: 1.5% or less, Mn: 0.75% or less, P: 0.15% or less, S: 0.02% or less, Cu: 0.01% or less, Al: 0.10 to 0.30%, N: 0.003 % Or less, B: 0.0003 ~ 0.005%, slab composed of the remaining Fe and other impurities are reheated to 1100 ~ 1250 ℃, then hot rolled, wound at 600 ~ 750 ℃ and cold rolled at 75 ~ 85% Then, a low iron loss non-oriented electrical steel sheet comprising annealing at 700 ~ 950 ℃ 2 minutes or less. 제1항에 있어서, 상기 소둔 후 응력제거 소둔을 추가로 행하는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판의 제조방법.The method of manufacturing a non-oriented electrical steel sheet having low iron loss according to claim 1, wherein the stress relief annealing is further performed after the annealing.
KR1020020082360A 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical sheets with low core loss KR100957931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020082360A KR100957931B1 (en) 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical sheets with low core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020082360A KR100957931B1 (en) 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical sheets with low core loss

Publications (2)

Publication Number Publication Date
KR20040055906A KR20040055906A (en) 2004-06-30
KR100957931B1 true KR100957931B1 (en) 2010-05-13

Family

ID=37348341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020082360A KR100957931B1 (en) 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical sheets with low core loss

Country Status (1)

Country Link
KR (1) KR100957931B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957939B1 (en) * 2002-12-24 2010-05-13 주식회사 포스코 Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same
KR101033389B1 (en) * 2011-01-04 2011-05-09 현대하이스코 주식회사 Steel sheet for flux cord wire and it's manufacturing method
KR102515028B1 (en) * 2021-02-10 2023-03-27 엘지전자 주식회사 Method for manufactruing non-oriented electrical steel sheet and non-oriented electrical steel sheet prepared by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279859A (en) * 1993-03-29 1994-10-04 Nkk Corp Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
KR20000001997A (en) * 1998-06-16 2000-01-15 이구택 Process for preparing non-oriented electrical steel sheet having excellent magnetic properties after annealing
KR20000043790A (en) * 1998-12-29 2000-07-15 이구택 Method for producing non-oriented electric strip with low iron loss
KR20010028570A (en) * 1999-09-22 2001-04-06 이구택 A non-oriented steel sheet with excellent magnetic property and a method for producing it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279859A (en) * 1993-03-29 1994-10-04 Nkk Corp Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
KR20000001997A (en) * 1998-06-16 2000-01-15 이구택 Process for preparing non-oriented electrical steel sheet having excellent magnetic properties after annealing
KR20000043790A (en) * 1998-12-29 2000-07-15 이구택 Method for producing non-oriented electric strip with low iron loss
KR20010028570A (en) * 1999-09-22 2001-04-06 이구택 A non-oriented steel sheet with excellent magnetic property and a method for producing it

Also Published As

Publication number Publication date
KR20040055906A (en) 2004-06-30

Similar Documents

Publication Publication Date Title
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100957931B1 (en) Method for manufacturing non-oriented electrical sheets with low core loss
KR100957939B1 (en) Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same
KR101665950B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101059215B1 (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100340503B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR20160021164A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101141278B1 (en) method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties
KR102515028B1 (en) Method for manufactruing non-oriented electrical steel sheet and non-oriented electrical steel sheet prepared by the same
KR930011407B1 (en) Method and product of manufacturing silicon steel sheet having improved magnetic flux density
KR20150062250A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR20150062245A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR101067478B1 (en) Non-oriented electrical sheets with improved magnetic properties and method for manufacturing the same
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR101665951B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190508

Year of fee payment: 10