KR101059215B1 - Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof Download PDF

Info

Publication number
KR101059215B1
KR101059215B1 KR1020030095775A KR20030095775A KR101059215B1 KR 101059215 B1 KR101059215 B1 KR 101059215B1 KR 1020030095775 A KR1020030095775 A KR 1020030095775A KR 20030095775 A KR20030095775 A KR 20030095775A KR 101059215 B1 KR101059215 B1 KR 101059215B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
weight
electrical steel
steel
Prior art date
Application number
KR1020030095775A
Other languages
Korean (ko)
Other versions
KR20050064414A (en
Inventor
배병근
우종수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020030095775A priority Critical patent/KR101059215B1/en
Publication of KR20050064414A publication Critical patent/KR20050064414A/en
Application granted granted Critical
Publication of KR101059215B1 publication Critical patent/KR101059215B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

본 발명은 무방향성 전기강판의 제조에 있어 강판소재 성분의 불순물 원소중 Nb와 P의 함량을 적절하게 제어함으로써 철손을 보다 낮추고 자속밀도를 더욱 향상시킨 자성이 우수한 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties by lowering iron loss and further improving magnetic flux density by appropriately controlling the content of Nb and P in the impurity elements of the steel sheet material in the production of non-oriented electrical steel sheet, and a method of manufacturing the same. It is about.

본 발명은 중량%로, C: 0.005%이하, Si: 3.5%이하, Mn: 1.0% 이하, P: 0.005~0.04%, S: 0.005% 이하, Al: 0.005~1.5%, N: 0.003% 이하, Nb: 0.001% 이하, O: 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판을 제공한다.In the present invention, by weight%, C: 0.005% or less, Si: 3.5% or less, Mn: 1.0% or less, P: 0.005 to 0.04%, S: 0.005% or less, Al: 0.005 to 1.5%, N: 0.003% or less , Nb: 0.001% or less, O: 0.003% or less, to provide a non-magnetic electrical steel sheet excellent magnetic properties, characterized in that it is composed of the remaining Fe and other unavoidable impurities.

본 발명은 또한 상기 조성의 강 슬라브를 1050~1250℃로 재가열한 다음 열간압연하고, 750℃ 이하에서 권취한 다음 열연판소둔 생략 또는 열연판소둔한 후, 산세하고, 냉간압연하고, 800~1070℃의 온도로 3%이상의 수소와 나머지 질소로 이루어지는 혼합가스 및 건조한 분위기에서 최종소둔하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법을 제공한다.The present invention also reheats the steel slab of the composition to 1050 ~ 1250 ℃ and then hot rolled, wound up to 750 ℃ or less hot rolled sheet annealing or hot rolled sheet annealing, pickling, cold rolling, 800 ~ 1070 It provides a non-oriented electrical steel sheet having excellent magnetic properties, characterized in that the final gas in a dry atmosphere and a mixed gas consisting of more than 3% hydrogen and the remaining nitrogen at a temperature of ℃.

Description

자성이 우수한 무방향성 전기강판 및 그 제조방법{Non-oriented electrical metal sheets with improved magnetic property and method for manufacturing the same}Non-oriented electrical metal sheets with improved magnetic property and method for manufacturing the same

도1은 발명의 P를 함유하는 표1의 성분계 강의 철손 대비 P가 높게 함유된 강의 철손 비교 그래프,1 is a graph comparing iron loss of steel containing P higher than that of component steels of Table 1 containing P of the present invention;

도2는 발명의 P를 함유하는 표1의 성분계 강의 자속밀도 대비 P가 높게 함유된 강의 자속밀도 비교 그래프.2 is a magnetic flux density comparison graph of steels containing high P compared to the magnetic flux density of the component steels of Table 1 containing P of the present invention.

본 발명은 모터, 변압기 및 자기실드와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판에 관한 것으로서, 보다 상세하게는 강판소재 성분의 불순물중 Nb와 P의 함량을 적절하게 제어함으로써 철손을 보다 낮추고 자속밀도를 더욱 향상시킨 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used as an iron core of an electric device such as a motor, a transformer and a magnetic shield, and more particularly, by lowering the iron loss by appropriately controlling the content of Nb and P in the impurities of the steel sheet material The present invention relates to a non-oriented electrical steel sheet further improved magnetic flux density and a method of manufacturing the same.

무방향성 전기강판은 전기기기에서 전기적 에너지를 기계적 에너지로 바꾸어 주는데 필요한 중요한 부품 구성재료로서, 에너지 절감을 위해서는 그 자기적 특성 즉 철손을 낮추고 자속밀도를 높이는 것이 필요하다. 철손은 에너지 변환의 과정에 서 열로 변하여 사라지는 에너지를 의미하며, 자속밀도는 동력을 일으키는 힘으로 나타난다. 상기 철손이 낮으면 에너지 손실을 줄일 수 있고, 자속밀도가 높으면 관련 전기기기의 동손을 줄일 수 있어서 소형화가 가능한다.Non-oriented electrical steel sheet is an important component constituent material necessary for converting electrical energy into mechanical energy in electrical equipment. In order to save energy, it is necessary to lower magnetic properties, ie, iron loss and increase magnetic flux density. Iron loss refers to the energy that turns into heat and disappears in the process of energy conversion, and the magnetic flux density is shown as a power generating force. If the iron loss is low, the energy loss can be reduced, and if the magnetic flux density is high, the copper loss of the related electric device can be reduced, so that miniaturization is possible.

철손이 낮고 자속밀도가 높은 소재를 제조하려면 성분중에서 불순물이 적은 청정강으로 제조하는 것이 필요하다.In order to manufacture a material with low iron loss and high magnetic flux density, it is necessary to manufacture with clean steel with few impurities.

무방향성 전기강판 중에서 청정강 제조에 의한 자성특성을 향상시키는 종래 기술로는 일본 특개평 7-305114 호가 있다. 상기 종래기술에서는 Sn, Cu, Ni, Cr 성분이 반드시 첨가되어야 하며, 이들 원소가 첨가되면 불순물이 자성을 나쁘게 하는 것으로 나타나고 있다. 또 다른 종래기술로는 미국특허 제 5,730,810 호가 있는데, 여기에서는 불순물중 Ti, Zr 등에 대하여 제한하고 있으며, REM 원소를 첨가하여 원가를 증가시키는 문제가 있다.Japanese Patent Application Laid-Open No. 7-305114 is a conventional technique for improving magnetic properties of clean steel in non-oriented electrical steel sheet. In the prior art, Sn, Cu, Ni, Cr components must be added, and when these elements are added, it is shown that impurities deteriorate magnetic properties. Another prior art is U.S. Patent No. 5,730,810, which is limited to Ti, Zr, etc. among the impurities, there is a problem of increasing the cost by adding a REM element.

본 발명은 이러한 배경에서 연구된 것으로, 무방향성 전기강판의 제조에 있어 강판소재 성분의 불순물중에서 자기적 특성에 영향을 크게 미치는 원소를 조사하고, 그 함량을 적절하게 제어함으로써 철손을 보다 낮추고 자속밀도를 더욱 향상시킨 무방향성 전기강판 및 그 제조방법을 제공하는데, 그 목적이 있다.The present invention has been studied in this background. In the manufacture of non-oriented electrical steel sheet, by investigating the elements that greatly affect the magnetic properties among the impurities of the steel sheet material, and by controlling the content appropriately to lower the iron loss and magnetic flux density To further improve the non-oriented electrical steel sheet and its manufacturing method, the object is.

상기한 목적을 달성하기 위하여 먼저 본 발명은 무방향성 전기강판 소재 성분중 불순물 원소의 종류별 그 영향을 조사하였는 바, 그 중에서도 Nb 가 자성을 크게 저하시키는 것으로 조사되었다. Nb는 강의 제조시 불순물로 함유되며, 함유되 는 양에 의해서 자기적 특성이 크게 변화되는 것을 관찰하였다. Nb 는 강에서 N 및 C과 결합하여 NbN 및 NbC 의 미세한 질화물 및 탄화물을 형성함으로서 결정립성장을 억제하고 자성에 해로운 (222)면의 집합조직을 조장하는 것으로 조사되었다. 따라서 N와 C의 양을 가능하다면 줄이고, Nb의 양을 줄이는 것이 철손을 낮추고, 자속밀도를 높이는 방법이 될 수 있다. 특히 Nb는 0.001%이하로 함유시킬 경우 자속밀도가 급격히 증가하는 현상을 볼 수 있으며, 철손도 크게 감소되는 것을 볼 수 있다. 또한 Nb는 용강중에서는 O와도 강하게 결합하는 특성을 갖고 있어서 Nb2O5 및 NbO2, Nb2O3 등의 석출물을 만든다. O의 영향을 줄이기 위해서는 Al을 가능하면 많이 첨가하는 것이 바람직하며, 이러한 Al은 N의 미세한 AlN의 형성을 억제하여 N의 영향도 줄여준다. 이 같이 Nb 가 낮게 관리되는 강에 있어서는 P가 0.005~0.04% 함유될 필요가 있다. P의 함량이 0.005% 미만으로 너무 낮으면 Nb 함유량을 더욱 낮게 해야 그 효과가 나타나게 되며, P 가 0.04% 이상으로 첨가되면 결정립계 성장억제로 인하여 결정립미세화가 일어나게 된다.In order to achieve the above object, the present invention first investigated the influence of each impurity element in the non-oriented electrical steel sheet material component, and among them, Nb significantly reduced the magnetic properties. It was observed that Nb is contained as an impurity in the manufacture of steel and its magnetic properties are greatly changed by the amount contained. Nb binds to N and C in the steel to form fine nitrides and carbides of NbN and NbC, inhibiting grain growth and encouraging the growth of (222) planes that are harmful to magnetism. Therefore, if possible, reduce the amount of N and C, and reduce the amount of Nb can be a way to lower the iron loss and increase the magnetic flux density. In particular, when Nb is contained below 0.001%, the magnetic flux density may be rapidly increased, and the iron loss may be greatly reduced. In addition, Nb has a property of strongly binding to O in molten steel to form precipitates such as Nb 2 O 5 , NbO 2 , and Nb 2 O 3 . In order to reduce the influence of O, it is preferable to add Al as much as possible, and such Al suppresses the formation of fine AlN of N, thereby reducing the influence of N. As described above, in steels with a low Nb content, P must be contained in an amount of 0.005 to 0.04%. If the content of P is too low, less than 0.005%, the effect of Nb should be made lower. If P is added more than 0.04%, grain refinement will occur due to grain boundary growth inhibition.

본 발명은 중량%로, C: 0%초과 0.005%이하, Si: 0%초과 3.5%이하, Mn: 0%초과 1.0% 이하, P: 0.005~0.04%, S: 0%초과 0.005% 이하, Al: 0.005~1.5%, N: 0%초과 0.003% 이하, Nb: 0%초과 0.001% 이하, O: 0%초과 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 무방향성 전기강판을 제공한다. 또한 본 발명의 다른 가능한 실시예에 있어서는 중량%로, C: 0%초과 0.005%이하, Si: 0%초과 3.5%이하, Mn: 0%초과 1.0% 이하, P: 0.005~0.04%, S: 0%초과 0.001% 이하, Al: 0.005~1.5%, N: 0%초과 0.003% 이하, Nb: 0%초과 0.001% 이하, O: 0%초과 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 무방향성 전기강판을 제공한다.The present invention is in weight percent, C: greater than 0% and less than 0.005%, Si: greater than 0% and 3.5% or less, Mn: greater than 0% and 1.0% or less, P: 0.005 to 0.04%, S: greater than 0% and 0.005% or less, Al: 0.005 to 1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and less than 0.001%, O: more than 0% and less than 0.003%, non-directional electricity characterized in that it is composed of the remaining Fe and other unavoidable impurities Provide the steel sheet. In another possible embodiment of the present invention, in weight%, C: greater than 0% and 0.005% or less, Si: greater than 0% and 3.5% or less, Mn: greater than 0% and 1.0% or less, P: 0.005 to 0.04%, S: More than 0% and less than 0.001%, Al: 0.005 to 1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and less than 0.001%, O: more than 0% and less than 0.003%, remaining Fe and other inevitable impurities It provides a non-oriented electrical steel sheet, characterized in that.

또한, 본 발명은 상기와 같이 조성되는 슬라브를 1050~1250℃로 재가열한 다음 열간압연하고, 750℃ 이하에서 권취한 다음 열연판소둔 생략 또는 열연판소둔한 후, 산세하고, 냉간압연하고, 800~1070℃의 온도로 3%이상의 수소와 나머지 질소로 이루어지는 혼합가스 및 건조한 분위기에서 최종소둔하는 것을 포함하는 것을 특징으로 하는 무방향성 전기강판 제조방법을 제공한다.In addition, the present invention is reheated to a slab formed as described above to 1050 ~ 1250 ℃ hot rolled, wound at 750 ℃ or less and then hot rolled sheet annealing or hot rolled sheet annealing, pickling, cold rolling, 800 It provides a non-oriented electrical steel sheet production method comprising the final annealing in a dry gas and a mixed gas consisting of more than 3% hydrogen and the remaining nitrogen at a temperature of ~ 1070 ℃.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

먼저, 본 발명 무방향성 전기강판의 제조에 있어 강판소재 구성성분들의 함량제한 이유부터 살펴본다.First, in the manufacture of the non-oriented electrical steel sheet of the present invention, the reason for the content limitation of steel sheet material components will be described.

C: 0.005중량%이하C: 0.005 wt% or less

상기 C는 최종제품에서 자기시효를 일으켜서 사용중 자기적 특성을 저하시키므로, 일반적으로 C의 함량이 낮을수록 자기적 특성에 바람직한 것으로 알려져 있다. 따라서 강을 정련하는 단계에서 그 양을 줄이고, 슬라브에서는 0.005중량%이하로 함유시킴으로써 자성이 향상된다. C를 0.005중량% 이상으로 슬라브에 함유시킬 경우 열연판 혹은 최종소둔전에 탈탄소둔을 하여야 하는데, 그 경우 물을 사용하게 되며, 따라서 표면에 산화층 발생으로 자성이 저하되기 때문에 슬라브에서는 0.005%이하로 한다. 최종제품에서는 가능하다면 0.003중량%이하로 함유시키는 것이 자기시효를 억제할 수 있다. The C is known to be preferable for the magnetic properties because the lower the content of C, since C causes magnetic aging in the final product, thereby lowering the magnetic properties during use. Therefore, the amount is reduced in the refining step of the steel, the magnetic content is improved by containing less than 0.005% by weight in the slab. When C is contained in the slab at more than 0.005% by weight, decarbonization annealing should be performed before hot-rolled sheet or final annealing. In this case, water is used. . In the final product, containing less than 0.003% by weight, if possible, can suppress self-aging.

Si: 3.5중량%이하 Si: 3.5 wt% or less                     

상기 Si는 비저항을 증가시켜서 철손중 와류손실을 낮추는 성분이지만, 3.5중량% 이상 첨가되면 냉간압연이 곤란하여지기 때문에 3.5중량%로 제한하는 것이 바람직하다.The Si is a component that decreases the eddy current loss during iron loss by increasing the specific resistance, but is preferably limited to 3.5% by weight since cold rolling is difficult when 3.5% by weight or more is added.

Mn: 1.0중량% 이하Mn: 1.0 wt% or less

상기 Mn은 비저항을 증가시킬 뿐만 아니라 집합조직을 향상시키는 성분으로, 1.05중량%을 초과하여 첨가되면 자성향상의 효과가 포화되므로, 그 함량을 1.0중량% 이하로 제한하는 것이 바람직하다.The Mn is a component that not only increases specific resistance but also improves texture, and when added in excess of 1.05% by weight, the magnetic enhancement effect is saturated, so that the content thereof is preferably limited to 1.0% by weight or less.

P: 0.005~0.04중량%,P: 0.005-0.04 weight%,

상기 P는 비저항을 증가시키며, 결정립계에 편석하며, 집합조직을 발달시키는 원소로서 그 효과를 보려면 적어도 0.005중량% 이상으로 첨가되어야 하며, 너무 많이 첨가되면 냉간압연이 곤란하여지고, 편석이 증가하여 자성이 저하되므로, 그 함량을 0.04중량% 이하로 제한하는 것이 바람직하다. 특히 P가 0.005%이하로 함유될 경우 Nb가 더욱 낮아야 그 효과가 나타나므로 P는 적어도 0.005%이상 첨가한다. P increases resistivity, segregates at grain boundaries, and needs to be added at least 0.005% by weight to see the effect as an element that develops texture. If too much is added, cold rolling becomes difficult, and segregation increases, and magnetic Since this is lowered, it is preferable to limit the content to 0.04% by weight or less. In particular, when P is contained in an amount of 0.005% or less, the effect is only shown when Nb is lowered, so P is added at least 0.005%.

S: 0.005중량% 이하S: 0.005 wt% or less

상기 S는 미세한 석출물인 MnS를 형성하여 자기특성을 열화시키므로 가급적 그 함량을 낮게 관리하는 것이 유리하며, 0.005중량%를 초과하여 함유되면 자성특성이 매우 열화되므로, 그 함량을 0.005중량% 이하로 제한한다. 또한 S는 낮을 수록 철손이 감소하기 때문에 그 함량을 0.001중량%이하로 하는 것이 바람직하다.The S forms a fine precipitate, MnS, which deteriorates the magnetic properties, so it is advantageous to manage the content as low as possible, and when the content exceeds 0.005% by weight, the magnetic properties are very deteriorated, so the content is limited to 0.005% by weight or less. do. In addition, the lower the S, the iron loss is reduced, so the content is preferably less than 0.001% by weight.

Al: 0.005~1.5중량%Al: 0.005-1.5 wt%

상기 Al은 비저항을 증가시켜 와류손실을 낮추는데 유효한 성분으로, 0.005 중량% 미만 첨가되면 그 첨가효과가 없으며, 1.5중량%를 초과하여 첨가되면 첨가량에 비해 자성향상의 정도가 떨어지며, 냉간압연성도 떨어지므로, 그 함량을 0.005~1.5중량%로 제한하는 것이 바람직하다. 또한 Al을 0.2%이상 1.5%이하로 첨가시 그 효과는 더욱 커지며, O의 영향이 크게 감소되고, 미세하게 석출되는 AlN를 조대한 AlN의석출물로 형성시키게 된다.The Al is an effective component for reducing the eddy current loss by increasing the specific resistance, and when added less than 0.005% by weight has no effect of the addition, the addition of more than 1.5% by weight is lower in the degree of magnetic improvement compared to the added amount, cold rolling property is also lowered It is preferable to limit the content to 0.005 to 1.5% by weight. In addition, when Al is added in an amount of 0.2% or more and 1.5% or less, the effect is further increased, the effect of O is greatly reduced, and finely precipitated AlN is formed as coarse AlN precipitate.

N: 0.003중량% 이하N: 0.003 wt% or less

상기 N은 미세하고 긴 AlN석출물을 형성시키며, Nb와 결합하여 NbN 의 미세한 석출물을 만들기 때문에 가급적 적게 함유토록 하는 바, 본 발명에서는 0.003중량% 이하로 제한하는 것이 바람직하다.The N forms a fine and long AlN precipitates, so as to contain as little as possible because it combines with Nb to form a fine precipitate of NbN, it is preferable to limit to 0.003% by weight or less.

Nb: 0.001중량% 이하Nb: 0.001 wt% or less

상기 Nb는 미세한 NbN석출물을 형성시켜서 결정립의 성장을 억제하고, 자성에 불리한 (222)면의 집합조직을 발달시키기 때문에 억제하며, Nb와 결합하여 NbN의 미세한 석출물을 만들게 된다. 또한 Nb는 C와 결합하여 미세한 탄화물을 만들기 때문에 슬라브에서 C는 가능한 감소시키는 것이 필요하다. 이 같은 Nb는 그 첨가량의 영향이 아주 크므로 0.001%이하로 함유되도록 하는 바, 0.001%이상 첨가되면 철손이 크게 증가되며, 자속밀도는 급격히 낮아지기 때문이다. 이 같은 Nb는 P가 적어도0.005% 이상 함유되어야 그 효과가 크며, P가 너무 많아도 결정립성장이 어려워 자성이 저하되는 것으로 조사되었다. The Nb inhibits the growth of grains by forming fine NbN precipitates and inhibits the growth of aggregates on the (222) plane, which is detrimental to magnetism, and combines with Nb to form fine precipitates of NbN. It is also necessary to reduce C in the slab as much as possible because Nb combines with C to produce fine carbides. Since Nb is very much influenced by the amount of addition, it is to be contained less than 0.001%, because when added more than 0.001% iron loss is greatly increased, the magnetic flux density is sharply lowered. Nb contains at least 0.005% or more of P, so that the effect is large, and even if P is too large, grain growth is difficult and magnetism is deteriorated.

O: 0.003중량%이하O: 0.003% by weight or less

상기 O는 여러가지 산화물을 만들어 결정립성장을 억제하기 때문에 가급적 그 함량이 낮은 것이 좋으며, Al첨가등으로 탈산하여 산소량을 줄이는 것이 바람직하다. 또, Nb와 결합하여 용강중에서 산화물을 만들기 때문에 가능한 한 적게 함유토록 하며, 본 발명에서는 0.003중량% 이하로 제한하는 것이 바람직하다.The O is preferably made of various oxides to suppress grain growth, so the content thereof is preferably as low as possible, and it is preferable to reduce the amount of oxygen by deoxidation with Al addition or the like. In addition, since the oxide is formed in molten steel by combining with Nb, it is to be contained as little as possible, and in the present invention, it is preferable to limit it to 0.003% by weight or less.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

상기와 같이 조성되는 강 슬라브를 1050~1250℃로 재가열한 다음 열간압연한다. 상기 재가열 온도가 1050℃ 미만이면 압연시 압하부하가 너무 크고 강이 균질화가 부족하며, 1250℃를 초과하면 불순물 원소가 미세한 석출물로 석출되어 최종 제품의 결정립 성장을 억제하므로, 상기 재가열 온도는 1050~1250℃로 제한하는 것이 바람직하다.The steel slab formed as described above is reheated to 1050-1250 ° C. and then hot rolled. If the reheating temperature is less than 1050 ° C, the rolling load is too great and the steel is not homogenized when rolling, and if it exceeds 1250 ° C, the impurity element is precipitated as a fine precipitate to suppress grain growth of the final product, so the reheating temperature is 1050 ~ It is preferred to limit to 1250 ° C.

상기와 같이 제조된 열연판을 750℃ 이하에서 권취하고, 이후 공기중에서 코일상태로 또는 비산화성 분위기로에 넣어서 냉각한다. 상기 권취온도가 750℃를 초과하면 냉각시 산화가 많아질 수 있어서 산세성이 나빠질 수 있으므로, 상기 권취온도는 750℃ 이하로 제한하는 것이 바람직하다. 권취온도를 낮게 하는 것은 문제가 없으나, 과도하게 낮으면 냉각하는 물이 많이 들수 있다.The hot rolled sheet prepared as described above is wound up at 750 ° C. or lower, and then cooled in air in a coiled state or in a non-oxidizing atmosphere. When the coiling temperature exceeds 750 ° C., oxidation may increase during cooling, and pickling may deteriorate. Therefore, the coiling temperature is preferably limited to 750 ° C. or less. It is not a problem to lower the coiling temperature, but if the temperature is excessively low, a lot of cooling water may occur.

상기 권취된 열연판을 산세하고 냉각압연한다. 또한 산세하기 전에 통상 800℃ 이상에서 열연판소둔한 다음 산세할 수 도 있다. 상기 열연판소둔 온도가 800℃ 미만이면 소둔효과가 적으므로, 상기 열연판소둔 온도는 900℃ 이상으로 제한하는 것이 바람직하다. 상기 냉간압연은 1회 냉간압연법으로 냉간압연하거나, 또는 1차 냉간압연후 중간소둔한 다음 2차 냉간압연하는 2회 냉간압연법을 사용하는 것이 가능하다. 냉간압연의 두께는 0.15~0.7mm의 두께로 할 수 있다. 두께가 얇아지면 철 손이 낮아진다.The wound hot rolled sheet is pickled and cold rolled. It may also be pickled after hot-rolled annealing at 800 ° C. or higher before pickling. When the hot rolled sheet annealing temperature is less than 800 ° C., the annealing effect is small. Therefore, the hot rolled sheet annealing temperature is preferably limited to 900 ° C. or more. The cold rolling may be cold rolled by one cold rolling method, or may be used by cold rolling two times after the first cold rolling and annealing after the second cold rolling. Cold rolling can be 0.15 ~ 0.7mm thick. The thinner the lower the iron hand.

최종 목표로 하는 두께로 냉간압연된 강판은 750~1070℃에서 최종소둔한다. 상기 소둔온도가 750℃ 미만이면 결정립 성장이 미흡하고, 1070℃를 초과하면 표면온도가 과다하게 높아서 판표면에 표면결함이 발생될 수 있을 뿐만 아니라 자기적 특성도 나빠지므로, 상기 냉연판소둔 온도는 750~1070℃로 제한하는 것이 바람직하다. 또한, 상기 소둔시 소둔분위기는 비산화성 분위기에서 습도가 없는 건조한 분위기에서 실시한다. 수분이 있으면 수분중의 O가 강의 C와 결합하여 탈탄은 될 수 있으나, 강판의 Si 및 Al 등과 결합하여 강판내부에 산화층을 형성하여 자기적 특성을 저하시키므로 건조한 비산화 분위기로 소둔한다. 가능하면 수소량을 3%이상 사용한 수소와 질소의 혼합분위기로 소둔한다. 이는 3%이하의 수소분위기에서는 소둔분위기중의 미량의 산소가 강판내부로 침입하여 내부산화를 일으키기 때문이다. The cold rolled steel sheet to the target thickness is annealed at 750 ~ 1070 ℃. If the annealing temperature is less than 750 ℃ grain growth is insufficient, if the temperature exceeds 1070 ℃ excessive surface temperature not only can cause surface defects on the surface of the plate but also worse magnetic properties, the cold rolled sheet annealing temperature is It is preferable to limit to 750-1070 degreeC. In addition, the annealing atmosphere during annealing is performed in a dry atmosphere without humidity in a non-oxidizing atmosphere. If there is moisture, O in the water may be decarburized by bonding with C of the steel, but by bonding with Si and Al of the steel sheet to form an oxide layer inside the steel sheet to lower the magnetic properties, annealing in a dry non-oxidizing atmosphere. If possible, annealing is carried out with a mixed atmosphere of hydrogen and nitrogen used for at least 3% hydrogen. This is because a trace amount of oxygen in the annealing atmosphere penetrates into the steel sheet and causes internal oxidation in a hydrogen atmosphere of 3% or less.

상기 소둔판은 절연피막처리후 수요가로 출하된다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다.The annealing plate is shipped at the demand price after the insulation coating. The insulating coating may be treated with an organic, inorganic and organic-inorganic composite coating, and may be treated with other insulating coating.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1]Example 1

하기 표 1과 같이 조성되는 강 슬라브를 1130℃로 재가열하고, 2.0mm로 열간압연한 후, 660℃에서 권취하였다. 상기 권취된 열연판을 1000℃에서 2분간 소둔하고, 산세한 다음 0.5mm 두께로 냉간압연하였다. 냉간압연된 강판은 1000℃에서 수소10%, 질소90% 및 이슬점이하의 분위기에서 1분간 소둔하였다. 상기 소둔판은 절 단후 자기적 특성이 조사되었으며, 그 결과는 하기 표 2와 같다. The steel slab, as shown in Table 1 below, was reheated to 1130 ° C., hot rolled to 2.0 mm, and wound up at 660 ° C. The wound hot rolled sheet was annealed at 1000 ° C. for 2 minutes, pickled, and cold rolled to a thickness of 0.5 mm. The cold rolled steel sheet was annealed at 1000 ° C. for 10 minutes in hydrogen, at 90% in nitrogen and in a dew point or less for 1 minute. After the annealing plate was cut magnetic properties were investigated, the results are shown in Table 2 below.

구분division 성분(중량%)Ingredient (% by weight) CC SiSi MnMn PP SS AlAl NN NbNb OO 발명강AInventive Steel A 0.00210.0021 2.052.05 0.190.19 0.0130.013 0.00230.0023 0.300.30 0.00120.0012 0.00040.0004 0.00150.0015 발명강BInventive Steel B 0.00220.0022 2.012.01 0.180.18 0.0130.013 0.00280.0028 0.310.31 0.1130.113 0.00070.0007 0.00180.0018 발명강CInvention Steel C 0.00200.0020 2.032.03 0.190.19 0.0120.012 0.00230.0023 0.290.29 0.00140.0014 0.00090.0009 0.00170.0017 비교강AComparative Steel A 0.00220.0022 2.032.03 0.180.18 0.0130.013 0.00240.0024 0.320.32 0.00120.0012 0.00120.0012 0.00150.0015 비교강BComparative Steel B 0.00210.0021 2.062.06 0.190.19 0.0130.013 0.00250.0025 0.300.30 0.00130.0013 0.00250.0025 0.00160.0016 비교강CComparative Steel C 0.00230.0023 2.022.02 0.180.18 0.0120.012 0.00270.0027 0.320.32 0.00120.0012 0.00400.0040 0.00150.0015 비교강DComparative Steel D 0.00220.0022 2.002.00 0.190.19 0.0120.012 0.00260.0026 0.310.31 0.00110.0011 0.00520.0052 0.00160.0016 비교강EComparative Steel E 0.00210.0021 2.002.00 0.190.19 0.00020.0002 0.00260.0026 0.310.31 0.00110.0011 0.00090.0009 0.00150.0015

구분division 강종Steel grade 철손(W15/50)
(W/kg)
Iron loss (W 15/50 )
(W / kg)
자속밀도(B50)
(Tesla)
Magnetic flux density (B 50 )
(Tesla)
결정립
크기(㎛)
Crystal grain
Size (μm)
발명재1Invention 1 발명강AInventive Steel A 2.822.82 1.7521.752 120120 발명재2Invention 2 발명강BInventive Steel B 2.872.87 1.7501.750 112112 발명재3Invention 3 발명강CInvention Steel C 2.912.91 1.7451.745 105105 비교재1Comparative Material 1 비교강AComparative Steel A 3.323.32 1.7251.725 8686 비교재2Comparative Material 2 비교강BComparative Steel B 3.453.45 1.7231.723 8080 비교재3Comparative Material 3 비교강CComparative Steel C 3.543.54 1.7201.720 8080 비교재4Comparative Material 4 비교강DComparative Steel D 3.653.65 1.7151.715 7575 비교재5Comparative Material 5 비교강EComparative Steel E 3.283.28 1.7251.725 7878

-W15/50 : 50Hz 에서 1.5Tesla로 자화했을 때의 발생되는 손실-W 15/50 : Loss generated when magnetizing to 1.5 Tesla at 50 Hz

-B50 : 50Hz 에서 5000A/m로 자기장을 부가했을 때의 유기되는 자속밀도-B 50 : Induced magnetic flux density when a magnetic field is added at 5000 A / m at 50 Hz

상기 표2에 나타난 바와 같이, 본 발명의 성분범위를 만족하는 발명강(A~C)를 이용하여 본 발명의 제조조건으로 제조한 발명재(1~3)는 비교재(1~5)에 비하여 철손이 낮고, 자속밀도가 높은 것을 알 수 있다. Nb는 0.001% 이하의 범위에서 특이하게 자속밀도가 크게 향상되며, 철손이 낮아짐을 알 수 있다. Nb에 의한 질화물과 탄화물이 극력 억제되기 때문에 특히 자성이 향상되는 것으로 보여진다.As shown in Table 2, the invention materials (1 to 3) manufactured under the manufacturing conditions of the present invention using the invention steel (A to C) satisfying the component range of the present invention to the comparative material (1 to 5) It can be seen that the iron loss is low and the magnetic flux density is high in comparison. It can be seen that Nb has a magnetic flux density that is significantly improved in the range of 0.001% or less and iron loss is low. Since nitride and carbides by Nb are suppressed as much as possible, magnetism is particularly shown to be improved.

또한 도1은 실시예에서와 같은 P가 본 발명의 범위로 함유된 강과, P가 0.07~0.072 중량%로 함유된 강에서 P의 양에 따른 철손 특성을 조사비교한 결과이며, 도2는 자속밀도를 조사비교한 결과이다. P가 발명의 범위보다 많은 경우 Nb의 발명의 범위에서 철손이 보다 높고, 자속밀도가 낮게 나타나는 것으로 조사되었다.In addition, Figure 1 is a result of comparing the iron loss characteristics according to the amount of P in the steel containing P as in the embodiment of the present invention and the steel containing P in the range of 0.07 to 0.072% by weight as in the embodiment, Figure 2 is a magnetic flux This is the result of investigating and comparing the density. In the case where P is larger than the scope of the invention, it was found that the iron loss is higher and the magnetic flux density is lower in the scope of the invention of Nb.

[실시예2]Example 2

하기 표3과 같이 조성되는 강 슬라브를 하기 표4의 재가열온도로 재가열하고, 2.3mm로 열간압연한 후, 700℃에서 권취하였다. 상기 권취된 열연판은 발명재6을 제외하고, 나머지는 모두 900℃에서 소둔하고, 산세한 다음 0.5mm 두께로 냉간압연하였다. 냉간압연강판은 1000℃에서 하기 표4와 같은 분위기로 2분간 냉연판소둔하였다. 상기 소둔판은 절단후 자기적 특성 및 결정립 크기가 조사되었으며, 그 결과는 하기 표4와 같다.The steel slab formed as shown in Table 3 below was reheated to the reheating temperature shown in Table 4 below, hot rolled to 2.3 mm, and wound up at 700 ° C. The wound hot rolled sheet except for Inventive Material 6, the rest were annealed at 900 ℃, pickled and cold rolled to a thickness of 0.5mm. The cold rolled steel sheet was annealed at 1000 ° C. for 2 minutes in an atmosphere as shown in Table 4 below. The annealing plate was investigated after the magnetic properties and grain size, the results are shown in Table 4 below.

구분division 성분(중량%)Ingredient (% by weight) CC SiSi MnMn PP SS AlAl NN NbNb OO 발명강DInventive Steel D 0.00220.0022 0.500.50 0.400.40 0.0210.021 0.00120.0012 0.250.25 0.00160.0016 0.00070.0007 0.00170.0017 발명강EInventive Steel E 0.00230.0023 1.121.12 0.250.25 0.0160.016 0.00110.0011 0.300.30 0.00150.0015 0.00060.0006 0.00150.0015 발명강FInventive Steel F 0.00230.0023 1.131.13 0.740.74 0.0130.013 0.00090.0009 0.650.65 0.00140.0014 0.00090.0009 0.00160.0016 비교강EComparative Steel E 0.00220.0022 1.111.11 0.260.26 0.0140.014 0.00070.0007 0.310.31 0.00140.0014 0.00150.0015 0.00150.0015 비교강FComparative Steel F 0.00220.0022 1.121.12 0.250.25 0.0700.070 0.00080.0008 0.320.32 0.00150.0015 0.00140.0014 0.00180.0018 비교강GComparative Steel G 0.01200.0120 1.121.12 0.270.27 0.0130.013 0.00070.0007 0.300.30 0.00140.0014 0.00090.0009 0.00140.0014

구분division 강종Steel grade 슬리브
재가열온도
(℃)
sleeve
Reheating temperature
(℃)
냉연판
소둔온도
(℃)
Cold rolled plate
Annealing Temperature
(℃)
냉연판
소둔 분위기
Cold rolled plate
Annealing atmosphere
철손
(W15/50)
(W/kg)
Iron loss
(W 15/50 )
(W / kg)
자속밀도
(B50)
(Tesla)
Magnetic flux density
(B 50 )
(Tesla)
결정립
크기(㎛)
Crystal grain
Size (μm)
발명재4Invention 4 발명강DInventive Steel D 12001200 800800 수소30%,질소70%30% hydrogen, 70% nitrogen 5.305.30 1.7951.795 4242 발명재5Invention 5 발명강EInventive Steel E 11201120 950950 수소5%,질소95%5% hydrogen, 95% nitrogen 4.204.20 1.7721.772 8585 발명재6Invention 6 발명강EInventive Steel E 11201120 950950 수소30%,질소70%30% hydrogen, 70% nitrogen 4.124.12 1.7611.761 7878 발명재7Invention Material7 발명강EInventive Steel E 11201120 10001000 수소50%,질소50%50% hydrogen, 50% nitrogen 1.051.05 1.7731.773 8888 발명재8Invention Material 8 발명강FInventive Steel F 11501150 950950 수소30%,질소70%30% hydrogen, 70% nitrogen 3.653.65 1.7651.765 9292 비교재5Comparative Material 5 비교강EComparative Steel E 11201120 950950 수소30%,질소70%30% hydrogen, 70% nitrogen 4.564.56 1.7501.750 7575 비교재6Comparative Material 6 비교강FComparative Steel F 11201120 950950 수소30%,질소70%30% hydrogen, 70% nitrogen 4.664.66 1.7481.748 7070 비교재7Comparative Material7 비교강GComparative Steel G 11201120 950950 수소30%,질소70%30% hydrogen, 70% nitrogen 4.984.98 1.7011.701 5555 비교재8Comparative Material 8 비교강GComparative Steel G 11201120 950950 수소30%,질소70%, 이슬점℃30% hydrogen, 70% nitrogen, dew point 3.403.40 1.7321.732 7575

-W15/50 : 50Hz 에서 1.5Tesla로 자화했을 때의 발생되는 손실-W 15/50 : Loss generated when magnetizing to 1.5 Tesla at 50 Hz

-B50 : 50Hz 에서 5000A/m로 자기장을 부가했을 때의 유기되는 자속밀도-B 50 : Induced magnetic flux density when a magnetic field is added at 5000 A / m at 50 Hz

비교재5는 비교강에서 Nb가 높았으며, 비교재 6은 P가 과도하게 높아서 자성을 나쁘게 하였다. 비교재 7은 소재의 C을 탈탄하기 위하여 이슬점을 부가하였으나 자성향상은 한계가 있었다. 비교재7 이외의 소재는 건조한 분위기에서 소둔하였다.Comparative material 5 had a high Nb in the comparative steel, and comparative material 6 had an excessively high P, which deteriorated the magnetism. Comparative material 7 added a dew point to decarburize C, but the magnetic enhancement was limited. Materials other than Comparative Material 7 were annealed in a dry atmosphere.

[실시예3]Example 3

중량%로, C : 0.0026%, Si : 3.02%, Mn : 0.16%, P : 0.009%, S : 0.0009%, Al : 1.3%, N : 0014%, Nb : 0.007%, O : 0.0018%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1140℃로 재가열한 다음 열간압연하여 1.8mm 두께의 강판을 제조하였다. 상기 강판을 620℃에서 권취한 다음 1000℃에서 2분간 비산화 분위기에서 소둔하였다. 상기 강판을 산세후 0.35mm 의 두께로 냉간압연하였다. 상기 냉연판을 1070℃에서 30초간 수소 70%와 질소 30%의 건조한 분위기에서 냉연판소둔하였다. 상기 소둔후 연속하여 유무기복합의 절연피막을 입힌 후 절단하여, 자기적 특성 및 결정립 크기를 조사하였다. 상기한 강판의 자기적 특성중 철손(W15/50)은 1.97W/kg 이었으며, 자속밀도(B50)는 1.67Tesla 이었고, 결정립 크기는 152㎛이었다.By weight, C: 0.0026%, Si: 3.02%, Mn: 0.16%, P: 0.009%, S: 0.0009%, Al: 1.3%, N: 0014%, Nb: 0.007%, O: 0.0018%, rest A slab composed of Fe and other unavoidable impurities was reheated to 1140 ° C. and then hot rolled to prepare a 1.8 mm thick steel sheet. The steel sheet was wound at 620 ° C. and then annealed at 1000 ° C. for 2 minutes in a non-oxidizing atmosphere. The steel sheet was cold rolled to a thickness of 0.35 mm after pickling. The cold rolled sheet was cold-annealed at 1070 ° C. for 30 seconds in a dry atmosphere of 70% hydrogen and 30% nitrogen. After annealing, the organic and inorganic composite insulating coating was continuously coated and then cut to investigate magnetic properties and grain size. Among the magnetic properties of the steel sheet, the iron loss (W 15/50 ) was 1.97 W / kg, the magnetic flux density (B 50 ) was 1.67 Tesla, and the grain size was 152 μm.

상술한 바와 같이, 본 발명은 무방향성 전기강판 제조에 있어 강판소재 불순물 원소중 Nb 와 P의 함량을 적정하게 제어함으로써 철손을 보다 낮추고 자속밀도 를 더욱 향상시킨 무방향성 전기강판 및 그 제조방법을 제공하는 효과가 있다.As described above, the present invention provides a non-oriented electrical steel sheet and a method for manufacturing the non-oriented electrical steel sheet by lowering the iron loss and further improving the magnetic flux density by appropriately controlling the content of Nb and P in the sheet material impurity elements in the production of non-oriented electrical steel sheet It is effective.

Claims (5)

중량%로, C: 0%초과 0.005%이하, Si: 0%초과 3.5%이하, Mn: 0%초과 1.0% 이하, P: 0.005~0.04%, S: 0%초과 0.005% 이하, Al: 0.005~1.5%, N: 0%초과 0.003% 이하, Nb: 0%초과 0.001% 이하, O: 0%초과 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판.By weight%, C: greater than 0% and less than 0.005%, Si: greater than 0% and less than 3.5%, Mn: greater than 0% and less than 1.0%, P: 0.005 to 0.04%, S: greater than 0% and less than 0.005%, Al: 0.005 ~ 1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and more than 0.001%, O: more than 0% and less than 0.003%, excellent magnetic non-directional electricity, characterized in that it is composed of the remaining Fe and other unavoidable impurities Grater. 중량%로, C: 0%초과 0.005%이하, Si: 0%초과 3.5%이하, Mn: 0%초과 1.0% 이하, P: 0.005~0.04중량%, S: 0%초과 0.001% 이하, Al: 0.005~1.5%, N: 0%초과 0.003% 이하, Nb: 0%초과 0.001% 이하, O: 0%초과 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판.By weight%, C: greater than 0% and less than 0.005%, Si: greater than 0% and 3.5% or less, Mn: greater than 0% and 1.0% or less, P: 0.005 to 0.04% by weight, S: greater than 0% and less than 0.001%, Al: 0.005 to 1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and less than 0.001%, O: more than 0% and less than 0.003%, excellent magnetic non-directional, characterized in that it is composed of the remaining Fe and other unavoidable impurities Electrical steel sheet. 중량%로, C: 0%초과 0.005%이하, Si: 0%초과 3.5%이하, Mn: 0%초과 1.0% 이하, P: 0.005~0.04중량%, S: 0%초과 0.005% 이하, Al: 0.2~1.5%, N: 0%초과 0.003% 이하, Nb: 0%초과 0.001% 이하, O: 0%초과 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판.By weight%, C: greater than 0% and less than 0.005%, Si: greater than 0% and 3.5% or less, Mn: greater than 0% and 1.0% or less, P: 0.005 to 0.04% by weight, S: greater than 0% and less than 0.005%, Al: 0.2-1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and more than 0.001%, O: more than 0% and less than 0.003%, excellent magnetic non-directional, characterized in that it is composed of the remaining Fe and other unavoidable impurities Electrical steel sheet. 중량%로, C: 0%초과 0.005%이하, Si: 0%초과 3.5%이하, Mn: 0%초과 1.0% 이하, P: 0.005~0.04중량%, S: 0%초과 0.001% 이하, Al: 0.2~1.5%, N: 0%초과 0.003% 이하, Nb: 0%초과 0.001% 이하, O: 0%초과 0.003%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판.By weight%, C: greater than 0% and less than 0.005%, Si: greater than 0% and 3.5% or less, Mn: greater than 0% and 1.0% or less, P: 0.005 to 0.04% by weight, S: greater than 0% and less than 0.001%, Al: 0.2-1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and more than 0.001%, O: more than 0% and less than 0.003%, excellent magnetic non-directional, characterized in that it is composed of the remaining Fe and other unavoidable impurities Electrical steel sheet. 중량%로, C : 0%초과 0.005%이하, Si : 0%초과 3.5%이하, Mn : 0%초과 1.0%이하, P : 0.005~0.04%, S : 0%초과 0.005% 이하, Al : 0.005~1.5%, N : 0%초과 0.003% 이하, Nb : 0%초과 0.001% 이하, O : 0%초과 0.003% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 슬라브를 1050~1250℃로 재가열한 다음 열간압연하고, 750℃ 이하에서 권취한 다음 열연판소둔 생략 또는 열연판소둔한 후, 산세하고, 냉간압연하고, 800~1070℃의 온도로 3%이상의 수소와 나머지 질소로 이루어지는 혼합가스 분위기에서 최종소둔하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: more than 0% and less than 0.005%, Si: more than 0% and more than 3.5% or less, Mn: more than 0% and more than 1.0%, P: 0.005 to 0.04%, S: more than 0% and less than 0.005%, Al: 0.005 ~ 1.5%, N: more than 0% and less than 0.003%, Nb: more than 0% and more than 0.001%, O: more than 0% and more than 0.003%, reheat the slab composed of remaining Fe and other unavoidable impurities to 1050 ~ 1250 ℃ Hot rolled, wound up to 750 ° C or lower, then omitted or hot rolled annealed, pickled, cold rolled, and finished in a mixed gas atmosphere consisting of at least 3% hydrogen and the remaining nitrogen at a temperature of 800-1070 ° C. Method for producing a non-oriented electrical steel sheet excellent magnetic properties, characterized in that the annealing.
KR1020030095775A 2003-12-23 2003-12-23 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof KR101059215B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030095775A KR101059215B1 (en) 2003-12-23 2003-12-23 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095775A KR101059215B1 (en) 2003-12-23 2003-12-23 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20050064414A KR20050064414A (en) 2005-06-29
KR101059215B1 true KR101059215B1 (en) 2011-08-24

Family

ID=37256013

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030095775A KR101059215B1 (en) 2003-12-23 2003-12-23 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101059215B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842418B1 (en) * 2018-01-10 2018-03-26 포항공과대학교 산학협력단 Non-oriented electrical steels and method for manufacturing the same
KR101842417B1 (en) * 2018-01-05 2018-03-26 포항공과대학교 산학협력단 Electrical steels with (100) texture and method for manufacturing the same
KR101877198B1 (en) * 2018-01-16 2018-07-10 포항공과대학교 산학협력단 Non-oriented electrical steels and method for manufacturing the same
US11060170B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060170B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor
KR101842417B1 (en) * 2018-01-05 2018-03-26 포항공과대학교 산학협력단 Electrical steels with (100) texture and method for manufacturing the same
KR101842418B1 (en) * 2018-01-10 2018-03-26 포항공과대학교 산학협력단 Non-oriented electrical steels and method for manufacturing the same
KR101877198B1 (en) * 2018-01-16 2018-07-10 포항공과대학교 산학협력단 Non-oriented electrical steels and method for manufacturing the same

Also Published As

Publication number Publication date
KR20050064414A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
KR100733345B1 (en) Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR101059215B1 (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR20000039855A (en) Method for producing non-oriented electric steel plate having excellent magnetism
JP6950748B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR101141278B1 (en) method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties
KR101067478B1 (en) Non-oriented electrical sheets with improved magnetic properties and method for manufacturing the same
KR100832342B1 (en) Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
KR100957931B1 (en) Method for manufacturing non-oriented electrical sheets with low core loss
KR101130725B1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR101119960B1 (en) Method for manutacturing non-Oriented Electrical steel sheet having good properties
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100865317B1 (en) Non orient electric steel sheet and the manufacturing method thereof
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR100237157B1 (en) The manufacturing method for non orient electric steel sheet with excellent high frequency property
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property
KR100946143B1 (en) Method for manufacturing Glassless electrical steel sheet by controlling atomosphere gas
KR20020016025A (en) A method for manufacturing non-grain oriented electric steel sheet with superior magnetic property
KR100721820B1 (en) Method for manufacturing non-oriented electrical steel sheets with high magnetic induction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150817

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170816

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190723

Year of fee payment: 9