KR100890812B1 - A electrical steel sheet manufacturing method having low iron loss and high magnetic property - Google Patents

A electrical steel sheet manufacturing method having low iron loss and high magnetic property Download PDF

Info

Publication number
KR100890812B1
KR100890812B1 KR1020060137841A KR20060137841A KR100890812B1 KR 100890812 B1 KR100890812 B1 KR 100890812B1 KR 1020060137841 A KR1020060137841 A KR 1020060137841A KR 20060137841 A KR20060137841 A KR 20060137841A KR 100890812 B1 KR100890812 B1 KR 100890812B1
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
iron loss
temperature
steel
Prior art date
Application number
KR1020060137841A
Other languages
Korean (ko)
Other versions
KR20080062270A (en
Inventor
최재영
봉원석
김재관
김용수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060137841A priority Critical patent/KR100890812B1/en
Publication of KR20080062270A publication Critical patent/KR20080062270A/en
Application granted granted Critical
Publication of KR100890812B1 publication Critical patent/KR100890812B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본원 발명은 전기강판 제조에 관한 것으로서, 더욱 상세하게는, Si, Al, Mn 및 P을 적정량으로 첨가하고, 열간압연판소둔 및 재결정소둔시 강판의 균열온도를 적정온도에서 제어하여 강판의 집합조직을 개선함으로써 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조하는 방법을 제공하는 것을 그 목적으로 하며,The present invention relates to the production of electrical steel sheet, more specifically, Si, Al, Mn and P is added in an appropriate amount, the hot rolled sheet annealing and recrystallization annealing by controlling the cracking temperature of the steel sheet at an appropriate temperature texture of the steel sheet The purpose of the present invention is to provide a method for manufacturing non-oriented electrical steel sheet having low iron loss and high magnetic flux density,

상술한 목적을 달성하기 위하여 중량%로, C:0.005%이하, S :0.005%이하, N :0.005%이하, Si: 1.5∼3.0%, Al:0.5~1.5%, Mn:0.3~1.2%, P:0.03∼0.14%, Si+20*P < 4.5이고 나머지Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도에서 재가열하여 1.8~3.0mm두께로 열간압연하고 650∼800℃온도에서 권취한 다음, 900∼1050℃온도에서 열연판소둔 및 산세척 후 0.2~0.65mm두께로 1회 냉간압연하고, 10℃/초~50℃/초의 승온속도로 가열하여 900∼1100℃온도에서 30∼300초동안 재결정소둔하는 것으로 이루어지는 것을 특징으로 한다.In order to achieve the above object, by weight%, C: 0.005% or less, S: 0.005% or less, N: 0.005% or less, Si: 1.5 to 3.0%, Al: 0.5 to 1.5%, Mn: 0.3 to 1.2%, P: 0.03 ~ 0.14%, Si + 20 * P <4.5 and steel slabs composed of remaining Fe and other impurities are reheated at 1050 ~ 1250 ℃, hot rolled to 1.8 ~ 3.0mm thickness and wound at 650 ~ 800 ℃ Then, after hot-rolled sheet annealing and pickling at 900 ~ 1050 ℃ temperature, cold rolling once to 0.2 ~ 0.65mm thickness, heated at a temperature rising rate of 10 ℃ / sec ~ 50 ℃ / second 30 ~ at 900 ~ 1100 ℃ temperature Recrystallization annealing for 300 seconds.

무방향성 전기강판, 고자속밀도, 저철손, 풀리프로세스재 무방향성 전기강판, P, 적정 성분계 설계, 재결정소둔 Non-oriented electrical steel sheet, high magnetic flux density, low iron loss, non-oriented electrical steel sheet of pulley process material, P, proper component system design, recrystallization annealing

Description

철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법{A electrical steel sheet manufacturing method having low iron loss and high magnetic property}A electrical steel sheet manufacturing method having low iron loss and high magnetic property

본원 발명은 전기강판 제조에 관한 것으로서, 더욱 상세하게는, Si, Al, Mn 및 P을 적정량으로 첨가하고, 열간압연판소둔 및 재결정소둔시 강판의 균열온도를 적정온도에서 제어하여 강판의 집합조직을 개선함으로써 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to the production of electrical steel sheet, more specifically, Si, Al, Mn and P is added in an appropriate amount, the hot rolled sheet annealing and recrystallization annealing by controlling the cracking temperature of the steel sheet at an appropriate temperature texture of the steel sheet By improving the low iron loss and high magnetic flux density relates to a method for producing a non-oriented electrical steel sheet.

무방향성 전기강판은 뛰어난 자기특성을 가지고 있으므로 각종 모터, 소형변압기, 안정기 등의 전기기기의 철심재료로 널리 사용되고 있으며, 크게 2종류로 구분된다. 수요가가 가공 후에 응력제거소둔을 반드시 실시해야만 하는 세미프로세스(Semi-Process) 제품과 수요가가 응력제거소둔을 할 필요가 없는 풀리프로세스(Fully-process) 제품이 그것이다.Since non-oriented electrical steel has excellent magnetic properties, it is widely used as an iron core material for electric machines such as various motors, small transformers, and ballasts, and is classified into two types. These are semi-process products that must be subjected to stress relief annealing after demand processing and fully-process products that do not require stress relief annealing.

상기 세미프로세스 제품은 통상 제강 →연속주조 → 슬라브 재가열 →열간압 연 →권취 →열연판소둔 → 냉간압연 → 소둔 → 경(Skin-Pass)압연 → 절연코팅의 제조공정으로 변형을 받은 상태로 출하되므로 수요가는 제품을 구입하여 원하는 형상으로 제품을 가공한 후에는 그 제품에 맞는 자기특성을 얻기 위하여 응력제거소둔을 실시해야한다.The semi-process products are usually shipped in a modified state in the manufacturing process of steelmaking → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → annealing → skin-pass rolling → insulation coating. After the product is purchased and processed into the desired shape, stress relief annealing must be performed to obtain the magnetic properties for the product.

한편, 풀리프로세스 제품은 제강 →연속주조 →슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 재결정소둔 → 절연코팅의 제조공정을 통하여 변형이 해소된 상태로 출하되므로 수요가가 응력제거소둔을 하지 않고 사용할 수 있는 장점을 갖는다.On the other hand, pulley process products are shipped from the steelmaking process → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → recrystallization annealing → insulation coating. It has the advantage that it can be used without.

최근 에너지절약의 차원에서 전기기기의 효율을 높이고 소형화하려는 추세에 따라 철심재료인 전기강판에 있어서도 철손이 낮고 자속밀도가 높은 제품에 대한 욕구가 점차 증가되고 있는 실정이다. 일반적으로 철손은 철심의 무게(㎏)당 전기적손실(Watt), 즉, 특정 자속밀도 및 주파수에서 발열 등으로 나타나는 전기에너지 손실로서 W/㎏으로 표시한다. 따라서, 철손이 낮은 철심 소재일수록 고효율 전기기기를 제작하는 데 바람직하다.In recent years, as the energy efficiency of electric devices has been increased and miniaturized, the demand for products having low iron loss and high magnetic flux density has been gradually increased even for electric steel sheets which are iron core materials. In general, the iron loss is expressed in W / kg as electrical loss (Watt) per weight (kg) of the iron core, that is, electrical energy loss caused by heat generation at a specific magnetic flux density and frequency. Therefore, the iron core material having a low iron loss is more preferable for manufacturing high-efficiency electric equipment.

이에 고자속밀도와 저철손을 갖는 무방향성 전기강판을 제공하고자 다양한 방법이 제시되어오고 있다. 이중 미국특허 4,204,890호에는 Si, Al, Mn, Sb 등을 함유한 고자속밀도와 저철손 등 우수한 자기특성을 갖는 무방향성 전기강판의 제조방법이 제안되어 있다.Accordingly, various methods have been proposed to provide a non-oriented electrical steel sheet having high magnetic flux density and low iron loss. US Pat. No. 4,204,890 proposes a method for producing a non-oriented electrical steel sheet having excellent magnetic properties such as high magnetic flux density and low iron loss containing Si, Al, Mn, Sb and the like.

그러나 상술한 바와 같은 종래기술의 무방향성 전기강판에는 인체에 유해한 Sb를 첨가하는 것을 필수로 하므로 제강공정에서 별도의 첨가설비가 필요하게 되는 문제점을 가진다.However, since the non-oriented electrical steel sheet of the prior art as described above is required to add Sb harmful to the human body has a problem that a separate additional equipment is required in the steelmaking process.

따라서 본원 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 무방향성 전기강판의 제조시 재결정소둔 후 저철손과 동시에 고자속밀도 특성이 우수한 무방향성 전기강판을 더욱 간소화된 방법에 따라 제조하고자 하는 것으로서, 풀리프로세스재 무방향성 전기강판의 경우에 P을 강중에 첨가하는 적정 성분계 설계를 통해 재결정소둔 후 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조할 수 있도록 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법을 제공하는 것을 그 목적으로 한다.Therefore, the present invention is to solve the problems of the prior art described above, to manufacture a non-oriented electrical steel sheet having excellent low magnetic loss and high magnetic flux density characteristics after recrystallization annealing in the production of non-oriented electrical steel sheet according to a more simplified method In the case of a non-oriented electrical steel sheet of pulley process material, a low component and high magnetic flux density are required to produce non-oriented electrical steel sheet having low iron loss and high magnetic flux density after recrystallization annealing through the design of an appropriate component system in which P is added to steel. It is an object of the present invention to provide a method for producing non-oriented electrical steel sheet.

상술한 목적을 달성하기 위한 본원 발명의 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법은, 중량%로, C:0.005%이하, S :0.005%이하, N :0.005%이하, Si: 1.5∼3.0%, Al:0.5~1.5%, Mn:0.3~1.2%, P:0.03∼0.14%, Si+20*P < 4.5이고 나머지Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도에서 재가열하여 1.8~3.0mm두께로 열간압연하고 650∼800℃온도에서 권취한 다음, 900∼1050℃온도에서 열연판소둔 및 산세척 후 0.2~0.65mm두께로 1회 냉간압연하고, 10℃/초~50℃/초의 승온속도로 가열하여 900∼1100℃온도에서 30∼300초동안 재결정소둔하는 것으로 이루어지는 것을 특징으로 한다.The method for producing a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density according to the present invention for achieving the above object is, in weight%, C: 0.005% or less, S: 0.005% or less, N: 0.005% or less, Si: A steel slab composed of 1.5 to 3.0%, Al: 0.5 to 1.5%, Mn: 0.3 to 1.2%, P: 0.03 to 0.14%, Si + 20 * P <4.5, and the remaining Fe and other impurities was formed at 1050 to 1250 ° C. Re-heated at 1.8 ~ 3.0mm, hot rolled and wound at 650 ~ 800 ℃, hot rolled annealed and pickled at 900 ~ 1050 ℃, cold rolled once at 0.2 ~ 0.65mm thickness, 10 ℃ / It is characterized by consisting of recrystallization annealing for 30 to 300 seconds at a temperature of 900 ~ 1100 ℃ by heating at a temperature increase rate of seconds ~ 50 ℃ / second.

상술한 본원 발명의 처리과정에서 상기 열간압연은 800~950℃에서 마무리 압연을 행하는 것을 특징으로 하며, 상기 냉간압연은 64% ~ 85%의 압하율로 1회 압연하는 것을 특징으로 한다.In the process of the present invention described above, the hot rolling is characterized in that the finish rolling is carried out at 800 ~ 950 ℃, the cold rolling is characterized in that rolling once with a rolling reduction of 64% to 85%.

이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본원 발명은 P를 적정량 첨가하고, 열간압연판소둔시의 균열온도 및 재결정소둔시의 균열온도를 동시에 제어함으로써 재결정소둔시 결정립 성장이 용이하게 되며, 자성에 유리한 집합조직이 발달하게 되어 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조할 수 있도록 한다.In the present invention, by adding an appropriate amount of P, simultaneously controlling the cracking temperature during hot rolling annealing and the cracking temperature during recrystallization annealing, grain growth is facilitated during recrystallization annealing, and an iron structure is low due to the development of a texture that is advantageous for magnetism. The non-oriented electrical steel sheet with high magnetic flux density can be manufactured.

상술한 본원 발명은 크게 강 슬라브의 성분조성단계, 열간압연단계, 열간압연판소둔단계, 냉간압연단계 및 재결정소둔단계로 이루어진다. 각 단계별 공정조건을 제어하여 재결정소둔 후 저철손 및 고자속밀도를 갖는 무방향성 전기강판을 제공하는데, 이하에서는 각 단계별로 작용 효과를 상세히 설명한다.The present invention described above is largely composed of the steel slab composition step, hot rolling step, hot rolled sheet annealing step, cold rolling step and recrystallization annealing step. By controlling the process conditions in each step to provide a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density after recrystallization annealing, the effect of each step will be described in detail below.

[강슬라브 성분조성 단계][Steel slab composition stage]

강 슬라브 제조를 위한 성분조성단계 전에는 통상적으로 제강, 용강 및 조괴 또는 연속주조공정이 선행된다. 먼저 제강단계에서 용강 내에 C, N, S의 함유량을 낮게 제어하고 Si, Al, Mn, P 등을 적정량 부가한다. 이어 용강을 조괴 또는 연속주조공정을 행함으로써 적정량의 성분을 함유한 강 슬라브를 제조한다. 이때 본원 발명의 슬라브강의 구성성분 중 C, N, S는 결정립성장을 방해하는 원소이므로 이미 제강단계에서 그 함유량을 낮게 제어하는 것이 필요하며, Si, Al, 및 Mn은 철손을 낮추고 동시에 자속밀도를 높이기 위해 적정 비율로 적정량 강 내에 첨가하고, P는 재결정소둔시 결정립의의 집합조직을 바람직한 방향으로 형성시키기 위한 용도로 첨가한다. 그 조성범위 한정이유는 다음과 같다.Prior to the component composition step for steel slab production, steelmaking, molten steel and ingot or continuous casting process are usually preceded. First, in the steelmaking step, the content of C, N, S in the molten steel is controlled low, and an appropriate amount of Si, Al, Mn, P, etc. is added. Subsequently, the steel slab containing an appropriate amount of components is manufactured by performing a molten steel in the ingot or continuous casting process. At this time, C, N, S among the components of the slab steel of the present invention is an element that prevents grain growth, it is necessary to control the content already in the steelmaking step, Si, Al, and Mn to lower the iron loss and at the same time the magnetic flux density In order to increase, it adds in a suitable quantity steel in a suitable ratio, and P is used for the purpose of forming the grain structure of a grain in a preferable direction at the time of recrystallization annealing. The reason for limiting the composition range is as follows.

C: 0.005중량%이하C: 0.005 wt% or less

C는 과량 함유될 경우 본 발명의 전기강판 제조과정중에 탄화물(Carbide)을 형성하여 결정립 성장을 방해하며, 또한, 전기기기의 철심으로 사용하는 중 자기시효를 일으켜서 자기적 특성을 저하시키는 경향이 있으므로 슬라브강 내에 0.005 중량% 이하의 조성을 갖도록 함유하는 것이 바람직하다.When C is excessively contained, carbides are formed during the manufacturing process of the electrical steel sheet of the present invention, thereby inhibiting grain growth. Also, C tends to lower magnetic properties by causing magnetic aging during use as an iron core of electrical equipment. It is preferable to contain in slab steel so that it may have a composition of 0.005 weight% or less.

N:0.005중량%이하N: 0.005% by weight or less

N은 본 발명의 강판 제조과정중에 Al과 반응하여 AlN 석출물을 형성하여 입자성장을 억제시키는 경향이 있어 가능한 한 최소량을 갖도록 하는 것이 바람직하므로 본 발명의 경우 0.005중량% 이하의 조성을 갖도록 함유하는 것이 바람직하다.N tends to react with Al in the manufacturing process of the steel sheet of the present invention to form AlN precipitates, thereby inhibiting grain growth, so that it has a minimum amount as much as possible. Therefore, the content of N is preferably 0.005% by weight or less. Do.

S:0.005중량%이하S: 0.005% by weight or less

상기 C 및 N과 더불어, S는 Mn과 반응하여 미세한 석출물인 MnS를 형성하여 결정립 성장을 억제시키는 경향이 있어 가능한 한 최소량을 갖도록 하는 것이 중요 하므로 본 발명의 경우 0.005중량% 이하의 조성을 갖도록 함유하는 것이 바람직하다.In addition to the C and N, S tends to react with Mn to form MnS, which is a fine precipitate, to suppress grain growth, so it is important to have a minimum amount as much as possible. It is preferable.

Si: 1.5∼3.0중량%Si: 1.5-3.0 weight%

Si의 함량이 1.5중량% 미만인 경우에는 강의 비저항이 작게 되어 철손 특성이 열화되어 바람직하지 않으며, 3.0중량% 초과인 경우에는 우수한 자속밀도를 얻을 수 없을 뿐만 아니라 타발성이 열화되므로 수요가 금형마모율이 증가하여 좋지 않다.If the content of Si is less than 1.5% by weight, the specific resistance of the steel is small and the iron loss characteristics are deteriorated, and if it is more than 3.0% by weight, the excellent magnetic flux density is not obtained and the punchability is deteriorated, so the demand for mold wear rate is high. Not good to increase

Al: 0.5~1.5중량%Al: 0.5-1.5 wt%

산가용성 Al은 0.5중량% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.5중량% 초과인 경우에는 냉간압연성을 해치게 되어 나쁘다.If the acid-soluble Al is less than 0.5% by weight, the specific resistance of the steel is small and the iron loss characteristics are deteriorated, and if it is more than 1.5% by weight, cold rolling property is deteriorated.

Mn: 0.3~1.2중량%Mn: 0.3 ~ 1.2 wt%

Mn의 경우도 0.3중량% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.2wt% 초과인 경우에는 롤 하중이 증가하여 냉간압연성이 열화되므로 바람직하지 않다.Mn is also less than 0.3% by weight is not preferable because the specific resistance of the steel is small to deteriorate the iron loss characteristics, and when it is more than 1.2wt% roll load is increased to deteriorate cold rolling property is not preferable.

P: 0.03∼0.14중량%P: 0.03-0.14 wt%

제강중 강 내에 첨가되는 P은 자기특성에 유해한 (111)면강도를 감소시키는 원소로서, 첨가량이 0.03중량% 미만인 경우 재결정소둔 후 자속밀도 개선 효과가 미미하며, 0.14중량% 초과인 경우에는 상승되는 효과가 없어 원재료비의 상승만을 초래하며 냉간압연성이 열화되므로 본 발명의 경우 P은 0.03∼0.14중량%의 양으로 첨가하는 것이 바람직하다.P added in steel during steelmaking is an element that reduces (111) surface strength, which is harmful to magnetic properties.If the added amount is less than 0.03% by weight, the effect of improving the magnetic flux density after recrystallization annealing is insignificant. It is preferable to add P in an amount of 0.03 to 0.14% by weight in the present invention because there is no effect and only increases the raw material cost and cold rolling property is deteriorated.

Si+20*P < 4.5Si + 20 * P <4.5

각 성분의 함량을 만족하는 범위에서 Si과 P의 함량이 위식을 만족해야 한다. Si+20*P값이 4.5 이상이면 재질의 경도가 높아서 냉간압연성이 열화되며 그리 인해 냉간압연시 재료 내부에 응력이 집중되어 최종소둔시 자성에 불리한 {111}집합조직을 발달시킨다.The content of Si and P in the range satisfying the content of each component should satisfy the above formula. If the Si + 20 * P value is 4.5 or higher, the cold rolling property is deteriorated due to the high hardness of the material. Therefore, the stress is concentrated inside the material during cold rolling, thereby developing the {111} aggregate structure, which is disadvantageous to magnetism during final annealing.

상기 성분외에 강 내에는 Fe 및 기타 불가피한 불순물들이 함유되어 있다. In addition to the above components, the steel contains Fe and other unavoidable impurities.

[열간압연단계][Hot Rolling Step]

상기 성분조성단계 이후 행하여지는 열간압연단계의 전처리과정으로서 상기 강 슬라브를 가열로에 장입하여 재가열하는데, 이때 열간압연이 용이하기 위해서는 강 슬라브의 재가열온도를 1050℃ 이상으로 하여야 하지만, 1250℃를 넘으면 AlN, MnS 등과 같은 철손 특성에 해로운 석출물이 재용해되어 열간압연 후 미세한 석출물이 과도하게 발생하는 경향이 있다. 이러한 미세한 석출물은 결정립 성장을 방해하여 철손특성을 열화시키므로 바람직하지 않다. 따라서, 본 발명의 경우 1050∼1250℃ 온도로 가열하는 것이 좋다.The steel slab is charged into a heating furnace and reheated as a pretreatment step of the hot rolling step performed after the composition step. In this case, in order to facilitate hot rolling, the reheating temperature of the steel slab should be 1050 ° C. or higher, but if it exceeds 1250 ° C. Precipitates, which are detrimental to iron loss characteristics such as AlN and MnS, are redissolved and tend to cause excessive generation of fine precipitates after hot rolling. Such fine precipitates are undesirable because they hinder grain growth and deteriorate iron loss characteristics. Therefore, in the case of the present invention, it is preferable to heat to a temperature of 1050 ~ 1250 ℃.

상기와 같이 가열하여 열간압연하는데, 그 조업조건은 통상의 방법에 따라 행해지며, 이때 열간압연판의 산화층이 과다하게 발생하지 않도록 하기 위해서는 마무리 압연온도는 800∼950℃로 조절하는 것이 바람직하다. 열간압연판 두께는1.8mm 미만인 경우는 열간압연판 형상이 불량해지므로 바람직하지 않으며, 3.0mm를 초과하는 경우는 양호한 집합조직을 얻을 수 없어 자속밀도가 열화되므로 좋지 않다.The hot rolling is performed as described above, and the operating conditions are performed according to a conventional method. In this case, in order to prevent excessive generation of an oxide layer of the hot rolled sheet, the finishing rolling temperature is preferably adjusted to 800 to 950 ° C. If the thickness of the hot rolled plate is less than 1.8 mm, the shape of the hot rolled plate becomes poor, which is not preferable. If the thickness of the hot rolled plate exceeds 3.0 mm, a good texture is not obtained and the magnetic flux density deteriorates.

이어, 열간압연판 권취는 열간압연판에 산화층이 과도하게 발생되지 않도록 800℃ 이하의 온도에서 행하되 열간압연판의 결정립 성장을 위해 650℃ 이상의 온도에서 행하는 것이 바람직하다. 이후 공기 중에서 코일상태로 냉각하거나, 보다 바람직하게는 로냉한다.Subsequently, the hot rolled sheet winding may be performed at a temperature of 800 ° C. or lower so as not to excessively generate an oxide layer in the hot rolled sheet, but at a temperature of 650 ° C. or higher for grain growth of the hot rolled sheet. After cooling in air in a coiled state, or more preferably furnace cooled.

[열간압연판소둔단계][Hot Rolled Sheet Annealing Step]

이어, 상기 열간압연판은 중심부의 연신립을 재결정시키고 강판두께방향으로 균일한 결정립분포가 얻어지도록 열간압연판소둔을 행한다. 이 때 소둔온도가 900℃미만의 경우에는 균일한 결정립분포가 얻어지지 않아 자속밀도 및 철손 개선효과가 미흡하게 되므로 바람직하지 않으며, 1050℃를 초과하는 경우에는 자성에 불리한 (111)면 집합조직이 증가하여 자속밀도가 열화된다.Subsequently, the hot rolled sheet is subjected to hot rolled sheet annealing so as to recrystallize the stretched grains in the center portion and to obtain a uniform grain distribution in the steel plate thickness direction. At this time, if the annealing temperature is lower than 900 ℃, the uniform grain distribution is not obtained, and thus the effect of improving the magnetic flux density and iron loss is insufficient. If the annealing temperature is higher than 1050 ℃, the (111) plane texture is unfavorable to the magnetic. Increasing magnetic flux density deteriorates.

[냉간압연단계][Cold rolling stage]

이어, 상기 열간압연판소둔판은 산세 후 냉간압연 단계를 행한다. 이때 64%~85%의 압하율로 1회 냉간압연하는 것이 바람직하다. 64% 미만의 압하율로 압연하는 경우 압연 생산성이 감소하고 85%이상의 압하율로 압연하면 냉연판 내부에 응력이 많이 축적되어 소둔 후 자성에 불리한 {111}면 강도가 증가하여 자속밀도가 감소한다. 냉간압연 두께는 0.20mm미만인 경우 소둔 후 자성에 불리한 집합조직인 (111)면 강도가 증가하여 자속밀도가 감소하므로 바람직하지 않으며, 0.65mm를 초과하는 경우에는 판 두께의 증가에 따라 와전류손실(eddy current loss)이 증가하여 총 철손이 증가하게 되므로 좋지 않다.Subsequently, the hot rolled sheet annealing plate is subjected to cold rolling after pickling. At this time, it is preferable to cold-roll once with the reduction ratio of 64%-85%. When rolling with a rolling reduction of less than 64%, the rolling productivity decreases and rolling with a rolling reduction of 85% or more reduces the stress density in the cold rolled sheet, increasing the strength of the {111} plane, which is detrimental to the magnetic properties after annealing, thereby decreasing the magnetic flux density. . If the cold rolling thickness is less than 0.20mm, the strength of the (111) plane, which is an unfavorable texture after annealing, is not preferable because the magnetic flux density decreases. If the thickness exceeds 0.65mm, the eddy current loss is increased according to the increase of the plate thickness. This is not good because the loss increases, resulting in an increase in total iron loss.

[재결정소둔단계][Recrystallization Annealing Step]

상기 방법에 따라 제조된 냉연판은 이어 행하여지는 재결정소둔단계에서, 소둔온도가 900℃보다 낮으면 재결정 후 결정성장율이 저조하여 철손이 열화되며, 1100℃보다 높으면 결정성장의 이점보다는 표면산화층 증가에 의한 폐해로 인하여 철손 및 자속밀도 특성이 열화하므로, 900∼1100℃온도에서 소둔시간은 30∼300초로 조절함이 바람직하다. 그리고 균열온도까지의 승온속도는 10℃/초~50℃/초로 제한하는 것이 바람직하며, 이렇게 함으로써 재료의 자성이 향상된다. 상기 승온속도를 초당 10℃이하로 하여 가열시에는 {222}, {112}집합조직이 발달하여 자성이 악화되며, 승온속도가 초당 50℃ 이상에서는 제품의 판형상이 나빠지게 되며 Goss조직의 과다 발달로 자성이방성이 커진다.In the recrystallization annealing step performed according to the above method, the annealing temperature is lower than 900 ℃ when the annealing temperature is lower than the crystal growth rate after recrystallization deteriorated iron loss, higher than 1100 ℃ to increase the surface oxide layer rather than the advantage of crystal growth Due to the deterioration caused by the iron loss and magnetic flux density characteristics deteriorate, the annealing time at 900 ~ 1100 ℃ temperature is preferably adjusted to 30 to 300 seconds. The temperature increase rate up to the cracking temperature is preferably limited to 10 ° C./sec to 50 ° C./sec, thereby improving the magnetic properties of the material. When the heating rate is lower than 10 ℃ per second, when heated {222}, {112} aggregated tissue is deteriorated, the magnetism deteriorates. If the temperature rise rate is higher than 50 ℃ per second, the plate shape of the product worsens and excessive development of Goss tissue Magnetic anisotropy increases.

상기 재결정소둔단계에서 소둔한 강판은 경(Skin-Pass) 압연 단계를 거치지 않고 바로 유기질, 무기질 및 유무기복합피막으로 처리하거나 기타 절연가능한 피 막제를 입혀 절연피막처리 후 수요가로 출하되며, 수요가는 원하는 제품으로 타발한다.The steel sheet annealed in the recrystallization annealing step is treated with organic, inorganic and organic / inorganic composite film or coated with other insulating film without any skin-pass rolling step, and then shipped at demand price. Squeeze into the desired product to go.

이하, 본 발명을 보다 구체적으로 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.Hereinafter, although this invention is demonstrated more concretely, this invention is not limited only to these examples.

[실시예 1]Example 1

하기 표1과 같은 성분을 갖는 강슬라브를 제조하고, 이 강슬라브를 1160℃의 온도에서 가열하고 890℃의 마무리 압연 온도조건으로 열간압연하여 2.0mm 두께로 열간압연판을 만든 후, 700℃의 온도에서 권취 후 공기 중에서 냉각하였다. 냉각권취된 열간압연판은 1000℃에서 5분간 열간압연판 소둔을 행한 후 산세하고 이어서 0.35mm두께로 냉간압연한 다음, 1000℃에서 100초간 재결정소둔하였다. 열연판소둔분위기는 공기였으나, 질소나 아르곤 등 불활성가스 분위기로 하여도 무방하다. 재결정소둔분위기는 수소 20%와 질소80%의 분위기였다.To prepare a steel slab having the components shown in Table 1, the steel slab was heated at a temperature of 1160 ℃ and hot-rolled at the finish rolling temperature conditions of 890 ℃ to make a hot rolled plate to a thickness of 2.0mm, 700 ℃ After winding at temperature, it was cooled in air. The cold rolled hot rolled sheet was subjected to hot rolled sheet annealing at 1000 ° C. for 5 minutes, followed by pickling, followed by cold rolling to a thickness of 0.35 mm, followed by recrystallization annealing at 1000 ° C. for 100 seconds. The hot-rolled sheet annealing atmosphere was air, but may be an inert gas atmosphere such as nitrogen or argon. The recrystallization annealing atmosphere was atmosphere of 20% hydrogen and 80% nitrogen.

재결정소둔판은 유무기복합의 절연피막을 입힌 후 절단 후 자기특성 및 결정립도를 조사하고 그 결과를 하기 표2에 나타내었다. 이때, 철손, W15/50은 50Hz의 교류에서 철심에 1.5Tesla의 자속밀도를 유도하였을 때 열 등으로 소모되는 에너지 손실량이며, 자속밀도,B50은 5000A/m의 여자력에서 유기되는 값이며, 결정립도는 재결정소둔한 시편의 단면을 연마한 후 3% 나이탈(Nital)로 에칭하여 이미지 어넬라이저(Image Analyzer)로 측정하였다.The recrystallized annealing plate was coated with an insulating film of the organic-inorganic composite, and the magnetic properties and grain size after the cutting were investigated. The results are shown in Table 2 below. At this time, iron loss and W15 / 50 are energy loss consumed by heat when inducing magnetic flux density of 1.5 Tesla to iron core under AC of 50Hz, magnetic flux density, B50 is induced value at excitation force of 5000A / m, After the recrystallized annealing cross section of the specimen was etched with 3% nital (Nital) was measured by an Image Analyzer (Image Analyzer).

강종Steel grade CC SiSi AlAl MnMn SS NN PP 발명강Invention steel AA 0.0030.003 1.61.6 0.70.7 0.80.8 0.0030.003 0.0030.003 0.120.12 BB 0.0040.004 1.81.8 1.11.1 0.60.6 0.0030.003 0.0020.002 0.10.1 CC 0.0030.003 2.02.0 0.70.7 0.60.6 0.0050.005 0.0030.003 0.090.09 DD 0.0020.002 1.91.9 0.80.8 0.70.7 0.0030.003 0.0040.004 0.080.08 EE 0.0030.003 2.02.0 0.90.9 0.50.5 0.0040.004 0.0020.002 0.090.09 FF 0.0040.004 2.42.4 0.70.7 0.50.5 0.0020.002 0.0030.003 0.050.05 비교강Comparative steel AA 0.006*0.006 * 1.91.9 0.80.8 0.70.7 0.0020.002 0.0030.003 0.070.07 BB 0.0030.003 1.0*1.0 * 0.70.7 0.50.5 0.0030.003 0.0020.002 0.120.12 CC 0.0030.003 3.5*3.5 * 0.70.7 0.60.6 0.0030.003 0.0020.002 0.050.05 DD 0.0020.002 1.91.9 0.3*0.3 * 0.60.6 0.0030.003 0.0030.003 0.090.09 EE 0.0030.003 1.81.8 0.60.6 0.2*0.2 * 0.0020.002 0.0030.003 0.080.08 FF 0.0030.003 2.02.0 0.80.8 0.70.7 0.006*0.006 * 0.0030.003 0.070.07 GG 0.0020.002 2.22.2 1.01.0 0.70.7 0.0020.002 0.006*0.006 * 0.070.07 HH 0.0020.002 2.02.0 0.90.9 0.80.8 0.0030.003 0.0020.002 0.01*0.01 * II 0.0030.003 1.91.9 1.01.0 0.80.8 0.0020.002 0.0030.003 0.17*0.17 * JJ 0.0020.002 2.52.5 0.70.7 0.60.6 0.0030.003 0.0020.002 0.120.12 *:본 발명번위를 벗어난 조건, J: Si+20*P > 4.5*: Conditions outside the invention, J: Si + 20 * P> 4.5

상기 표1 및 표2에 나타난 바와 같이, 발명재(1-6)가 비교재(1-10)에 비해 철손 및 자속밀도 특성이 우수함을 알 수 있었다.As shown in Table 1 and Table 2, it was found that the invention material (1-6) is superior in iron loss and magnetic flux density characteristics than the comparative material (1-10).

구체적으로 설명하면, 비교재1,6,7은 C,S,N의 함유량이 본 발명범위 이상인 경우로 재결정소둔시 결정립 성장이 저조하여 우수한 철손 특성이 얻어지지 않았으며, 비교재2는 Si의 함량이 본 발명범위 미만으로 첨가되었기 때문에 역시 우수한 철손특성이 얻어지지 않은 반면, 비교재3은 Si이 본 발명범위를 초과하여 첨가된 경우로 철손특성은 우수하나 자속밀도가 열등하였다. 또한 Al 및 Mn이 각각 본 발명범위 미만으로 첨가된 비교재4, 비교재5의 경우도 우수한 철손특성이 얻어지지 않았다. 비교재8은 P첨가량이 본 발명범위를 미만으로 첨가된 경우로 집합조직이 열화된 결과로 우수한 자속밀도 및 철손특성이 얻어지지 않았다. 비교재9는 P이 본 발명범위 초과하는 경우로 철손우수하나 냉간압연성이 열위하였으며 {111}면강도 저감에 의한 집합조직개선 효과가 더 이상 나타나지 않았다. 비교재 10은 Si+20*P 값이 4.5이상으로 냉간압연성이 열위하였으며 자속밀도가 열등하였다.Specifically, the comparative materials 1, 6, and 7 have C, S, and N contents in the range of the present invention, and the grain growth during recrystallization annealing was poor, so that excellent iron loss characteristics were not obtained. Since the content was added below the range of the present invention, also excellent iron loss characteristics were not obtained, while Comparative Material 3 was excellent in iron loss characteristics but inferior magnetic flux density when Si was added beyond the range of the present invention. In addition, excellent iron loss characteristics were not obtained in Comparative Material 4 and Comparative Material 5 in which Al and Mn were added below the present invention, respectively. In Comparative Material 8, when the P addition amount was less than the scope of the present invention, excellent magnetic flux density and iron loss characteristics were not obtained as a result of deterioration of the texture. Comparative material 9 was excellent in iron loss, but inferior in cold rolling property when P exceeded the scope of the present invention, and the effect of improving the texture by reducing {111} surface strength was no longer exhibited. Comparative Material 10 was inferior in cold rolling with Si + 20 * P value of 4.5 or higher and inferior in magnetic flux density.

철손Iron loss 자속밀도Magnetic flux density 결정립크기(㎛)Crystal grain size (㎛) 강종Steel grade 발명재1Invention 1 2.332.33 1.721.72 148148 발명강AInventive Steel A 발명재2Invention 2 2.312.31 1.711.71 153153 발명강BInventive Steel B 발명재3Invention 3 2.342.34 1.711.71 139139 발명강CInvention Steel C 발명재4Invention 4 2.292.29 1.701.70 146146 발명강DInventive Steel D 발명재5Invention 5 2.282.28 1.701.70 151151 발명강EInventive Steel E 발명재6Invention 6 2.212.21 1.691.69 149149 발명강FInventive Steel F 비교재1Comparative Material 1 2.85*2.85 * 1.701.70 9696 비교강AComparative Steel A 비교재2Comparative Material 2 2.96*2.96 * 1.731.73 134134 비교강BComparative Steel B 비교재3Comparative Material 3 2.152.15 1.67*1.67 * 153153 비교강CComparative Steel C 비교재4Comparative Material 4 2.74*2.74 * 1.711.71 141141 비교강DComparative Steel D 비교재5Comparative Material 5 2.69*2.69 * 1.711.71 137137 비교강EComparative Steel E 비교재6Comparative Material 6 2.98*2.98 * 1.691.69 8888 비교강FComparative Steel F 비교재7Comparative Material7 2.93*2.93 * 1.691.69 9292 비교강GComparative Steel G 비교재8Comparative Material 8 2.352.35 1.68*1.68 * 133133 비교강HComparative Steel H 비교재9Comparative Material 9 2.382.38 1.67*1.67 * 145145 비교강IComparative Steel I 비교재10Comparative Material 10 2.452.45 1.66*1.66 * 138138 비교강JComparative Steel J

[실시예 2]Example 2

발명강 B, F와 같은 성분을 갖는 강슬라브를 제조하고, 이 강슬라브를 1160℃의 온도에서 가열하고 890℃의 마무리압연 온도조건으로 열간압연하여 2.0mm 두께로 열간압연판을 만든 후, 700℃의 온도에서 권취후 공기중에서 냉각하였다. 냉각권취된 열간압연판은 1000℃에서 5분간 열간압연판 소둔을 행한 후 산세하고 이어서 0.35mm두께로 냉간압연한 다음, 하기 표3의 승온속도로 1000℃까지 승온한 후 100초간 재결정소둔하였다. 열연판소둔분위기는 공기였으나, 질소나 아르곤 등 불활성가스 분위기로 하여도 무방하다. 재결정소둔분위기는 수소 20%와 질소 80%의 분위기였다. 재결정소둔판은 유무기복합의 절연피막을 입힌 후 절단 후 자기특성 및 형상을 조사하고 그 결과를 하기 표3에 나타내었다. 이때, 철손, W15/50은 50Hz의 교류에서 철심에 1.5Tesla의 자속밀도를 유도하였을 때 열 등으로 소모되는 에너지 손실량이며, 자속밀도 B50은 5000A/m의 여자력에서 유기되는 값이며, 결정립도는 재결정소둔한 시편의 단면을 연마한 후 3% 나이탈(Nital)로 에칭하여 이미지 어넬라이저(Image Analyzer)로 측정하였다.Steel slabs having the same components as the inventive steels B and F were prepared, and the steel slabs were heated at a temperature of 1160 ° C. and hot rolled at a finish rolling temperature of 890 ° C. to produce hot rolled plates having a thickness of 2.0 mm. After winding up at a temperature of C, it was cooled in air. The cold rolled hot rolled plate was subjected to hot rolled sheet annealing at 1000 ° C. for 5 minutes, followed by pickling. Then, cold rolled to a thickness of 0.35 mm. The hot-rolled sheet annealing atmosphere was air, but may be an inert gas atmosphere such as nitrogen or argon. The recrystallization annealing atmosphere was atmosphere of 20% hydrogen and 80% nitrogen. The recrystallized annealing plate was coated with an insulating film of organic / inorganic composite, and then the magnetic properties and shape were examined after cutting. The results are shown in Table 3 below. At this time, iron loss, W15 / 50 is the energy loss consumed by heat when inducing magnetic flux density of 1.5 Tesla to the iron core at 50 Hz alternating current, magnetic flux density B50 is induced at an excitation force of 5000 A / m, and the grain size is The cross section of the recrystallized annealed specimen was polished and then etched with 3% nital and measured with an image analyzer.

번호number 승온속도Temperature rise rate 철손Iron loss 자속밀도Magnetic flux density 형상shape 강종Steel grade 비교재1Comparative Material 1 55 2.522.52 1.791.79 양호Good 발명강BInventive Steel B 발명재1Invention 1 1515 2.312.31 1.711.71 양호Good 발명강BInventive Steel B 발명재2Invention 2 3030 2.292.29 1.711.71 양호Good 발명강BInventive Steel B 비교재2Comparative Material 2 6060 2.492.49 1.701.70 불량Bad 발명강BInventive Steel B 비교재3Comparative Material 3 55 2.452.45 1.671.67 양호Good 발명강FInventive Steel F 발명재3Invention 3 1515 2.212.21 1.691.69 양호Good 발명강FInventive Steel F 발명재4Invention 4 3030 2.232.23 1.701.70 양호Good 발명강FInventive Steel F 비교재4Comparative Material 4 6060 2.392.39 1.671.67 불량Bad 발명강FInventive Steel F

상기 표3에 나타난 바와 같이, 발명재(1-4)가 비교재(1-4)에 비해 철손, 자속밀도 및 형상 특성이 우수함을 알 수 있었다. 구체적으로 설명하면, 비교재1,3은 승온속도가 본 발명범위 이하인 경우로 재결정소둔시 집합조직 발달이 저조하여 우수한 자성특성이 얻어지지 않았으며, 비교재2,4는 본 발명범위 이상의 승온속도때문에 역시 우수한 자성 및 형상특성이 얻어지지 않았다. As shown in Table 3, it was found that the invention material (1-4) is superior to the iron loss, magnetic flux density and shape characteristics compared to the comparative material (1-4). Specifically, the comparative materials 1 and 3 had a temperature rise rate of less than or equal to the range of the present invention, and the development of the aggregate structure during recrystallization annealing was poor, so that excellent magnetic properties were not obtained. Therefore, excellent magnetic and shape characteristics were not obtained.

즉, 상술한 본원 발명은 성분 및 열간압연 조건 제어로 인해 냉연 후 최종소둔시 자성에 불리한 {111}집합조직의 핵생성을 억제하여 자기적 성질이 우수한 무방향성 전기강판을 제조할 수 있도록 한다.That is, the present invention described above allows the production of a non-oriented electrical steel sheet having excellent magnetic properties by suppressing nucleation of {111} aggregates, which is disadvantageous to magnetism at the time of final annealing due to the control of components and hot rolling conditions.

상술한 바의 본원 발명은 무방향성 전기강판의 제조시 철손이 낮고 및 자속밀도가 높은 우수한 무방향성 전기강판을 용이하게 제조할 수 있도록 하는 효과를 제공한다.The present invention as described above provides an effect of easily producing excellent non-oriented electrical steel sheet having a low iron loss and high magnetic flux density in the production of non-oriented electrical steel sheet.

Claims (3)

중량%로, C:0.005%이하, S :0.005%이하, N :0.005%이하, Si: 1.5∼3.0%, Al:0.5~1.5%, Mn: 0.3~1.2%, P:0.03~0.14%, Si+20*P < 4.5%이고 나머지 Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도에서 재가열하고 800~950℃에서 마무리 압연하여 1.8~3.0mm두께로 열간압연하고 650∼800℃온도에서 권취한 다음, 900∼1050℃온도에서 열연판소둔 및 산세척 후 64%~85%의 압하율로 1회 압연하여 0.2~0.65mm 두께로 냉간압연하고, 10℃/초~50℃/초의 승온속도로 가열하여 900∼1100℃ 온도에서 30∼300초 동안 재결정소둔하는 것을 포함하여 이루어지는 것을 특징으로 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법.By weight%, C: 0.005% or less, S: 0.005% or less, N: 0.005% or less, Si: 1.5 to 3.0%, Al: 0.5 to 1.5%, Mn: 0.3 to 1.2%, P: 0.03 to 0.14%, Reheat the steel slab with Si + 20 * P <4.5% and the remaining Fe and other impurities at 1050-1250 ℃ and finish-roll at 800 ~ 950 ℃ to hot roll to 1.8 ~ 3.0mm thickness and 650 ~ 800 ℃ After hot-rolled at 900∼1050 ℃, hot rolled sheet annealing and pickling, and then rolled once with a reduction ratio of 64% ~ 85%, cold rolled to a thickness of 0.2 ~ 0.65mm, of 10 ℃ / second ~ 50 ℃ / second A method of manufacturing a non-oriented electrical steel sheet having low iron loss and high magnetic flux density, comprising heating and heating at an elevated rate to recrystallize annealing at a temperature of 900 to 1100 ° C. for 30 to 300 seconds. 삭제delete 삭제delete
KR1020060137841A 2006-12-29 2006-12-29 A electrical steel sheet manufacturing method having low iron loss and high magnetic property KR100890812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060137841A KR100890812B1 (en) 2006-12-29 2006-12-29 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060137841A KR100890812B1 (en) 2006-12-29 2006-12-29 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Publications (2)

Publication Number Publication Date
KR20080062270A KR20080062270A (en) 2008-07-03
KR100890812B1 true KR100890812B1 (en) 2009-03-31

Family

ID=39814416

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060137841A KR100890812B1 (en) 2006-12-29 2006-12-29 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Country Status (1)

Country Link
KR (1) KR100890812B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426810A (en) * 2023-02-17 2023-07-14 湖南宏旺新材料科技有限公司 Preparation method of high-frequency low-iron-loss non-oriented silicon steel for new energy automobile driving motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107719A (en) * 1988-10-18 1990-04-19 Kawasaki Steel Corp Manufacture of non-oriented electrical steel sheet having high magnetic flux density in ring sample
KR20030053139A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet with low iron loss
KR20040056259A (en) * 2002-12-23 2004-06-30 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR20060000490A (en) * 2004-06-29 2006-01-06 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
JP2006213975A (en) 2005-02-04 2006-08-17 Nippon Steel Corp Non-oriented electromagnetic steel plate having excellent magnetic property, method for producing the same, and method for stress relieving annealing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107719A (en) * 1988-10-18 1990-04-19 Kawasaki Steel Corp Manufacture of non-oriented electrical steel sheet having high magnetic flux density in ring sample
KR20030053139A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet with low iron loss
KR20040056259A (en) * 2002-12-23 2004-06-30 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR20060000490A (en) * 2004-06-29 2006-01-06 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
JP2006213975A (en) 2005-02-04 2006-08-17 Nippon Steel Corp Non-oriented electromagnetic steel plate having excellent magnetic property, method for producing the same, and method for stress relieving annealing

Also Published As

Publication number Publication date
KR20080062270A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR101286245B1 (en) Semiprocess non-oriented electrical steel sheets with superior magnetic properties and method for manufacturing the same
KR101701195B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101707452B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102079771B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101919529B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101051744B1 (en) Oriented electrical steel with excellent magnetic properties and manufacturing method thereof
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR20150074930A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100940714B1 (en) Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR100782762B1 (en) A method for manufacturing non-oriented silicon steel with excellent magnetic property
KR20060074649A (en) A method for grain-oriented electrical steel sheet with uniform magnetic properties
KR100466176B1 (en) Method for Manufacturing non-oriented electrical steel sheet having low core loss
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130320

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170320

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200312

Year of fee payment: 12