KR20040056259A - Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing - Google Patents

Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing Download PDF

Info

Publication number
KR20040056259A
KR20040056259A KR1020020082838A KR20020082838A KR20040056259A KR 20040056259 A KR20040056259 A KR 20040056259A KR 1020020082838 A KR1020020082838 A KR 1020020082838A KR 20020082838 A KR20020082838 A KR 20020082838A KR 20040056259 A KR20040056259 A KR 20040056259A
Authority
KR
South Korea
Prior art keywords
annealing
temperature
stress relief
steel sheet
relief annealing
Prior art date
Application number
KR1020020082838A
Other languages
Korean (ko)
Other versions
KR100940714B1 (en
Inventor
이청산
봉원석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020082838A priority Critical patent/KR100940714B1/en
Publication of KR20040056259A publication Critical patent/KR20040056259A/en
Application granted granted Critical
Publication of KR100940714B1 publication Critical patent/KR100940714B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%

Abstract

PURPOSE: A method for manufacturing non-oriented electrical steel sheet having low core loss after performing stress relief annealing even when hot rolled strip does not pass through annealing and skin-pass processes is provided. CONSTITUTION: The method comprises the steps of reheating a steel slab comprising 0.005 wt.% or less of C, 0.0005 to 0.005 wt.% of S, 0.0005 to 0.005 wt.% of N, 0.1 to 1.5 wt.% of Si, 0.1 to 1.0 wt.% of Al, 0.1 to 1.0 wt.% of Mn, 0.016 to 0.160 wt.% of P and a balance of Fe and other impurities in the temperature range of 1,050 to 1,250 deg.C; hot rolling the reheated steel slab to a thickness of 1.8 to 3.0 mm; coiling the hot rolled coil in the temperature range of 600 to 800 deg.C; pickling the coiled hot rolled strip; cold rolling the pickled strip to a thickness of 0.2 to 0.65 mm for one time; annealing the cold rolled strip to a temperature controlled according to P content in the temperature range of 700 to 800 deg.C, that is, Ta=400-100xlog(P/160)±5 deg.C for 30 to 300 seconds, wherein Ta is proper annealing temperature of cold rolled strip, and P is P content (wt.%); processing the annealed strip by end users; and stress relief annealing the annealed strip processed by the end users in the temperature range of 700 to 850 deg.C.

Description

응력제거소둔 후 철손특성이 우수한 무방향성 전기강판의 제조방법 {Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing}Method for manufacturing non-oriented electrical steel sheet having excellent iron loss characteristics after stress relief annealing {Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing}

본 발명은 응력제거소둔 후 철손이 낮은 무방향성 전기강판의 제조방법에 관한 것으로, 더욱 상세하게는 열간압연판소둔과 경압연(Skin-Pass) 과정을 거치지 않고서도 응력제거소둔 후 철손 특성이 우수한 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a non-oriented electrical steel sheet with low iron loss after stress relief annealing, more specifically, excellent iron loss characteristics after stress removal annealing without undergoing hot rolling and annealing (Skin-Pass) process It relates to a method for producing a non-oriented electrical steel sheet.

무방향성 전기강판은 뛰어난 자기특성을 가지고 있으므로 각종 모터, 소형변압기, 안정기 등의 전기기기의 철심재료로 널리 사용되고 있으며, 수요가가 가공후에 응력제거소둔을 반드시 실시해야만 하는 세미프로세스(Semi-Process) 제품과 수요가가 응력제거소둔을 할 필요가 없는 풀리프로세스(Fully-process) 제품으로 크게 구분된다.Since non-oriented electrical steel has excellent magnetic properties, it is widely used as an iron core material for electric machines such as various motors, small transformers, and ballasts, and semi-process that must be subjected to stress relief annealing after the demand is processed. Products and demand are broadly divided into fully-process products that do not require stress relief annealing.

상기 세미프로세스 제품은 통상 제강 →연속주조 → 슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 소둔 → 경(Skin-Pass)압연 → 절연코팅의제조공정으로 변형을 받은 상태로 출하되므로 수요가는 제품을 구입하여 원하는 형상으로 제품을 가공한 후에는 그 제품에 맞는 자기특성을 얻기 위하여 응력제거소둔을 실시해야한다.The semi-process products are usually shipped in a modified state in the manufacturing process of steelmaking → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → annealing → skin-pass rolling → insulation coating After purchasing a thin product and processing the product into the desired shape, stress relief annealing must be performed to obtain magnetic properties suitable for the product.

또한, 풀리프로세스 제품은 제강 →연속주조 →슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 최종소둔 → 절연코팅의 제조공정을 통하여 변형이 해소된 상태로 출하되므로 수요가가 응력제거소둔을 하지 않고 사용할 수 있는 장점을 갖는다.In addition, pulley process products are shipped in a state where deformation is solved through the manufacturing process of steelmaking → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → final annealing → insulation coating. It has the advantage that it can be used without.

최근 에너지절약의 차원에서 전기기기의 효율을 높이려는 추세에 따라 철심재료인 전기강판에 있어서도 철손특성이 우수한(철손이 낮은) 제품에 대한 욕구가 점차 증가되고 있는 실정이다. 일반적으로 철손은 철심의 무게(㎏)당 전기적 손실(Watt), 즉, 특정 자속밀도 및 주파수에서 발열 등으로 나타나는 전기에너지 손실로서 W/㎏으로 표시한다. 따라서, 철손이 낮은 철심 소재일수록 고효율 전기기기를 제작하는 데 바람직하다.Recently, according to the trend of increasing the efficiency of electrical equipment in terms of energy saving, the demand for products having excellent iron loss characteristics (low iron loss) is gradually increasing even in steel sheets which are iron core materials. In general, the iron loss is expressed in W / kg as electrical loss (Watt) per weight (kg) of the iron core, that is, electrical energy loss caused by heat generation at a specific magnetic flux density and frequency. Therefore, the iron core material having a low iron loss is more preferable for manufacturing high-efficiency electric equipment.

이에 본 발명자 등은 저철손을 갖는 무방향성 전기강판을 제공하고자 한국특허출원 2000-82818호에 Si, Al, Mn, Ni 등을 함유한 응력제거소둔 후 우수한 철손특성을 갖는 무방향성 전기강판의 제조방법을 제안한 바 있다.Accordingly, the present inventors have prepared a non-oriented electrical steel sheet having excellent iron loss characteristics after stress relief annealing containing Si, Al, Mn, Ni, etc. in Korea Patent Application No. 2000-82818 to provide a non-oriented electrical steel sheet having a low iron loss I have suggested a method.

그러나, 이는 고가인 Ni을 첨가하는 것을 필수로 하며, Si을 다량으로 첨가해야 하므로 제조원가가 상승하게 되며, 아울러 강판의 강도 및 취성의 증가로 인해 타발성이 열화되는 문제점이 있다. 타발성이 좋지 않으면 수요가 가공시 금형의 마모 및 파손율이 증가하여 가공비용이 급증하게 되는 문제점을 유발하게 된다.However, this necessitates the addition of expensive Ni, and since a large amount of Si must be added, the manufacturing cost is increased, and the punchability is deteriorated due to the increase in strength and brittleness of the steel sheet. If the punchability is not good, the demand increases the wear and breakage rate of the mold during processing, which causes a problem that the processing cost increases rapidly.

이에, 본 발명자는 상기 문제점을 해결하기 위한 방법을 제공하고자 한국특허출원 2001-82121호에 제강시 Ni을 첨가하지 않음과 동시에 Si함량을 대폭 저감하여 제어함으로써 타발성을 개선하고, Ni 미첨가 및 Si 첨가량 저감에 따른 자기특성의 열화를 제어된 온도에서 슬라브 재가열 및 열간압연판 권취를 행함으로써 철손이 낮고 타발성이 우수한 무방향성 전기강판의 제조방법을 제안한 바 있다.Thus, the present inventors improve the punchability by controlling and reducing the Si content at the same time as not adding Ni during steelmaking in Korea Patent Application No. 2001-82121 to provide a method for solving the above problems, and Ni addition and A method of manufacturing non-oriented electrical steel sheet having low iron loss and excellent punchability by performing slab reheating and hot rolled sheet winding at a controlled temperature for deterioration of magnetic properties due to the reduction of Si addition amount has been proposed.

그러나 이 방법의 경우는 강중 불순물로 혼입되는 P의 함량이 0.015%이하로 함유될 경우에는 문제가 없지만, 0.015%를 초과하는 양으로 첨가될 경우는 철손이 열화되는 폐단을 최근 발견하였다. 통상 고로법으로 제작되는 용강중에는 P가 다량 함유되어 있어 P 함량을 0.015%이하로 낮추기 위해서는 전로조업중 탈린공정을 추가해야 하므로 생산성이 감소하는 문제가 있다. 또한, 탈린공정에 의해 P를 저감시켰을 경우에도, S를 0.005%이하로 제어하기 위해 용강의 버블링(Bubbling) 조업을 행할 때, 슬래그중의 P가 용강으로 다시 녹아 들어가는 현상 때문에 P의 함량을 0.015%이하로 제어하는 것은 공업적으로 매우 어려운 기술이다.However, this method has no problem when the content of P incorporated as impurities in the steel is less than 0.015%. However, recently, when the iron content is added in an amount exceeding 0.015%, iron loss is recently found. Usually, molten steel produced by the blast furnace method contains a large amount of P, so in order to lower the P content to 0.015% or less, it is necessary to add a delineation process during the converter operation, thereby reducing productivity. In addition, even when P is reduced by the dephosphorization process, when bubbling operation of molten steel is carried out to control S to 0.005% or less, the content of P is reduced due to the phenomenon that P in the slag melts back into the molten steel. Controlling less than 0.015% is a very difficult technique industrially.

본 발명은 앞서 설명한 바와 같은 응력제거소둔 후 철손이 낮은 무방향성 전기강판을 더욱 간소화된 방법에 따라 제조하고자 하는 것으로서, 용강중 통상수준의 P를 함유하는 경우에도 타발 및 체결작업을 마친 후 응력제거소둔을 함으로써 철손특성이 우수한 무방향성 전기강판을 제조하는 방법을 제공하는 데 그 목적이 있다.The present invention is to manufacture a non-oriented electrical steel sheet with low iron loss after the stress relief annealing as described above according to a more simplified method, even if the molten steel contains a normal level of P after the punching and fastening work after the stress relief annealing The purpose is to provide a method for producing a non-oriented electrical steel sheet having excellent iron loss characteristics.

상기한 목적을 달성하기 위한 본 발명에 따른 철손 특성이 우수한 무방향성 전기강판의 제조방법은, 중량%로 0.005% 이하의 C, S:0.0005~0.005%, N:0.0005~0.005%, Si:0.1∼1.5%, Al:0.1~1.0%, Mn:0.1~1.0%, P:0.016~0.160%, 잔부의 Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도범위에서 재가열하고, 1.8~3.0mm두께로 열간압연한 후 600∼800℃온도범위에서 열연코일을 권취한 다음, 산세척 후 0.2~0.65mm두께로 1회 냉간압연한 다음, 660∼760℃ 온도범위에서 P함량에 따라 제어된 온도, Ta=360-100xlog(P/160)±5℃ [여기서 Ta:적정 냉연판 소둔온도, P:P함량(중량%)]에서 30∼300초동안 소둔하고, 이어서 수요가 가공 후 700∼850℃온도에서 응력제거소둔하는 것을 포함하여 구성된다.Method for producing a non-oriented electrical steel sheet having excellent iron loss characteristics according to the present invention for achieving the above object, by weight% of less than 0.005% C, S: 0.0005 ~ 0.005%, N: 0.0005 ~ 0.005%, Si: 0.1 ~ 1.5%, Al: 0.1 ~ 1.0%, Mn: 0.1 ~ 1.0%, P: 0.016 ~ 0.160%, steel slab composed of remainder Fe and other impurities is reheated in the temperature range of 1050 ~ 1250 ℃, 1.8 ~ 3.0 After hot rolling to a thickness of mm, the hot rolled coil is wound in a temperature range of 600 to 800 ° C., and then, once pickled, cold rolled to a thickness of 0.2 to 0.65 mm, and then controlled according to the P content in the temperature range of 660 to 760 ° C. Temperature, Ta = 360-100xlog (P / 160) ± 5 ° C. [where Ta: appropriate cold rolled sheet annealing temperature, P: P content (wt%)] annealing for 30 to 300 seconds, and then the demand is 700 to It comprises a stress relief annealing at a temperature of 850 ℃.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 P함량을 극미량(0.015%P이하)으로 제어하기 어려운 통상의 경우에도 냉간압연판 소둔시 소둔온도를 P함량에 따라 제어함으로써 열간압연 후 열간압연판소둔을 하지 않아도, 수요가 가공후의 응력제거소둔시 결정립 성장이 용이하게 되어 철손특성이 우수한 무방향성 전기강판을 제조할 수 있음을 연구와 실험을 통해 확인하고 본 발명을 완성한 것이다.The present inventors control the annealing temperature at the time of cold rolling annealing according to the P content even in a normal case that it is difficult to control the P content to an extremely small amount (0.015% P or less), even if the demand is not processed after hot rolling Grain growth during stress relief annealing is easy to confirm that the non-oriented electrical steel sheet excellent in iron loss characteristics can be produced through research and experiments to complete the present invention.

본 발명은 크게 강 슬라브의 성분조성단계, 열간압연단계, 냉간압연단계, 소둔단계 및 응력제거소둔단계로 분류된다. 각 단계별 공정조건을 제어하여 열간압연판소둔 및 경압연을 생략하고서도 응력제거소둔 후 저철손 특성을 갖는 무방향성전기강판을 제공하는데, 이하에서는 각 단계별로 작용 효과를 상세히 설명한다.The present invention is largely classified into the composition of steel slab, hot rolling, cold rolling, annealing and stress relief annealing. It provides a non-oriented electrical steel sheet having low iron loss characteristics after stress relief annealing without eliminating hot rolled sheet annealing and light rolling by controlling the process conditions of each step, in the following the effect of each step will be described in detail.

[강슬라브 성분조성 단계][Steel slab composition stage]

강 슬라브 제조를 위한 성분조성단계 전에는 통상적으로 제강, 용강 및 조괴 또는 연속주조공정이 선행된다. 먼저 제강단계에서 용강내에 C, N, S의 함유량을 낮게 제어하고 Si, Al, Mn 등을 적정량 부가한다. 이어 용강을 조괴 또는 연속주조공정을 행함으로써 적정량의 성분을 함유한 강 슬라브를 제조한다. 본 발명의 슬라브강의 구성성분 중 C, N, S는 결정립 성장을 방해하는 원소이므로 이미 제강단계에서 그 함유량을 낮게 제어하는 것이 필요하며, Si, Al, 및 Mn은 철손을 낮추기 위한 용도로 강내에 첨가한다. 그 조성범위 한정이유를 설명한다.Prior to the component composition step for steel slab production, steelmaking, molten steel and ingot or continuous casting process are usually preceded. First, in the steelmaking step, the content of C, N, S in the molten steel is controlled low, and an appropriate amount of Si, Al, Mn, etc. is added. Subsequently, the steel slab containing an appropriate amount of components is manufactured by performing a molten steel in the ingot or continuous casting process. Among the components of the slab steel of the present invention, C, N, and S are elements that interfere with grain growth, so it is necessary to control the content in the steelmaking step low, and Si, Al, and Mn are used in the steel to lower iron loss. Add. The reason for the composition range limitation is explained.

C: 0.005%이하C: 0.005% or less

C는 과량 함유될 경우 본 발명의 전기강판 제조과정중에 탄화물(Carbide)을 형성하여 결정립 성장을 방해하며, 또한 전기기기의 철심으로 사용하는 중 자기시효를 일으켜서 자기적 특성을 저하시키는 경향이 있으므로 슬라브강내에 0.005 이하의 조성을 갖도록 함유하는 것이 바람직하다.When C is excessively contained, slabs are formed during the manufacturing of the electrical steel sheet of the present invention, thereby inhibiting grain growth, and also causing magnetic aging during use as an iron core of an electric device. It is preferable to contain in a steel so that it may have a composition of 0.005 or less.

N:0.005%이하N: 0.005% or less

N은 본 발명의 강판 제조과정중에 Al과 반응하여 AlN 석출물을 형성하여 입자성장을 억제시키는 경향이 있어 가능한한 최소량을 갖도록 하는 것이 바람직하므로 본 발명의 경우 0.005% 이하의 조성을 갖도록 함유하는 것이 바람직하다.N tends to react with Al during the steel sheet manufacturing process of the present invention to form AlN precipitates, thereby suppressing grain growth, so that it has a minimum amount as much as possible. Therefore, the content of N is preferably 0.005% or less. .

S:0.005%이하S: 0.005% or less

상기 C 및 N과 더불어, S는 Mn과 반응하여 미세한 석출물인 MnS를 형성하여 결정립 성장을 억제시키는 경향이 있어 가능한한 최소량을 갖도록 하는 것이 중요하므로 본 발명의 경우 0.005% 이하의 조성을 갖도록 함유하는 것이 바람직하다.In addition to C and N, S tends to react with Mn to form MnS, which is a fine precipitate, to suppress grain growth, so it is important to have a minimum amount as much as possible. desirable.

Si:0.1~1.0%Si: 0.1 ~ 1.0%

Si의 함량이 0.1% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.0% 초과인 경우에는 우수한 자속밀도를 얻을 수 없을 뿐만 아니라 타발성이 열화되므로 수요가 금형마모율이 증가하여 좋지 않다.If the content of Si is less than 0.1%, the specific resistance of the steel is small and the iron loss characteristics are not preferable. If the content of Si is more than 1.0%, the excellent magnetic flux density is not obtained and the punchability is deteriorated. Not good.

Al:0.1~1.0%Al: 0.1 ~ 1.0%

Al은 0.1% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.0% 초과인 경우에는 냉간압연성을 해치게 되어 나쁘다.If Al is less than 0.1%, the specific resistance of the steel is small and iron loss characteristics are deteriorated, and if it is more than 1.0%, the cold rolling property is deteriorated.

Mn:0.1~1.0%Mn: 0.1 ~ 1.0%

Mn의 경우도 0.1% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.0% 초과인 경우에는 롤 하중이 증가하여 냉간압연성이 열화되므로 바람직하지 않다.In the case of Mn, less than 0.1% is not preferable because the specific resistance of the steel is small and the iron loss characteristics are deteriorated, and if it is more than 1.0%, the roll load increases and the cold rolling property is deteriorated.

상기 성분외에 강내에는 Fe 및 기타 불가피한 불순물들이 함유되어 있다. 제강중 강내에 불순물로 함유되는 P는 결정립계에 편석되어 결정립 성장을 억제함으로써 철손을 열화시키는 원소로 가급적 그 함량이 낮을수록 철손특성에 유리하다. 그러나 0.016%미만으로 극미량 함유된 경우에는 본 발명의 특징인 P함량에 따른 냉연판 소둔온도의 제어에 의한 철손개선 효과가 미약하며, 0.16%를 초과하는 경우에는 취성이 증가하여 냉간압연성이 열화되므로 , 본 발명의 경우 P의 함량은 0.016~0.16%의 범위로 제한한다.In addition to the above components, the steel contains Fe and other unavoidable impurities. P, which is contained as an impurity in steel during steelmaking, is segregated at grain boundaries and suppresses grain growth, thereby degrading iron loss. The lower the content, the better. However, in the case of containing a very small amount of less than 0.016%, the iron loss improvement effect by the control of the cold-rolled sheet annealing temperature according to the P content, which is a characteristic of the present invention, is insignificant. Therefore, in the case of the present invention, the content of P is limited to the range of 0.016 ~ 0.16%.

[열간압연단계][Hot Rolling Step]

상기 성분조성단계 이후 행하여지는 열간압연단계의 전처리과정으로서 상기 강 슬라브를 가열로에 장입하여 재가열하는데, 이때 열간압연이 용이하기 위해서는 강 슬라브의 재가열온도를 1050℃ 이상으로 하여야 하지만, 1250℃를 넘으면 AlN, MnS 등과 같은 철손특성에 해로운 석출물이 재용해되어 열간압연 후 미세한 석출물이 과도하게 발생하는 경향이 있다. 이러한 미세한 석출물은 결정립 성장을 방해하여 철손특성을 열화시키므로 바람직하지 않다. 따라서, 본 발명의 경우 1050∼1250℃ 온도로 가열하는 것이 좋다.The steel slab is charged into a heating furnace and reheated as a pretreatment step of the hot rolling step performed after the composition step. In this case, in order to facilitate hot rolling, the reheating temperature of the steel slab should be 1050 ° C. or higher, but if it exceeds 1250 ° C. Precipitates, which are harmful to iron loss characteristics such as AlN and MnS, are re-dissolved and tend to cause excessive generation of fine precipitates after hot rolling. Such fine precipitates are undesirable because they hinder grain growth and deteriorate iron loss characteristics. Therefore, in the case of the present invention, it is preferable to heat to a temperature of 1050 ~ 1250 ℃.

상기와 같이 가열하여 열간압연하는데, 그 조업조건은 통상의 방법에 따라 행해지며, 이때 열간압연판의 산화층이 과다하게 발생하지 않도록 하기 위해서는 마무리압연온도는 800∼950℃로 조절하는 것이 바람직하다. 열간압연판 두께는1.8mm 미만인 경우는 열간압연판 형상이 불량해지므로 바람직하지 않으며, 3.0mm를 초과하는 경우는 양호한 집합조직을 얻을 수 없어 자속밀도가 열화되므로 좋지 않다.The hot rolling is performed as described above, and the operating conditions are performed according to a conventional method. In this case, in order to prevent excessive generation of an oxide layer of the hot rolled sheet, the finishing rolling temperature is preferably adjusted to 800 to 950 ° C. If the thickness of the hot rolled plate is less than 1.8 mm, the shape of the hot rolled plate becomes poor, which is not preferable. If the thickness of the hot rolled plate exceeds 3.0 mm, a good texture is not obtained and the magnetic flux density deteriorates.

이어, 열간압연판 권취는 열간압연판에 산화층이 과도하게 발생되지 않도록 800℃ 이하의 온도에서 행하되 열간압연판의 결정립 성장을 위해 600℃ 이상의 온도에서 행하는 것이 바람직하다. 이후 공기중에서 코일상태로 냉각하거나, 보다 바람직하게는 로냉한다.Subsequently, the hot rolled sheet winding may be performed at a temperature of 800 ° C. or lower so that an oxide layer is not excessively generated in the hot rolled sheet, but is preferably performed at a temperature of 600 ° C. or higher for grain growth of the hot rolled sheet. After cooling in air in a coil state, or more preferably furnace cooling.

[냉간압연단계][Cold rolling stage]

이어, 상기 열간압연판은 열간압연판소둔을 행하지 않고 산세 후 바로 냉간압연 단계를 행한다. 이때 64% 미만의 압하율로 압연하는 경우 압연 생산성이 감소하므로 64%이상의 압하율로 1회 압연하는 것이 바람직하다. 이 때, 냉간압연 두께는 0.20mm미만인 경우 소둔후 자성에 불리한 집합조직인 (111)면 강도가 증가하여 자속밀도가 감소하므로 바람직하지 않으며, 0.65mm를 초과하는 경우에는 판두께의 증가에 따라 와전류손실(eddy current loss)이 증가하여 총 철손이 증가하게 되므로 좋지 않다.Subsequently, the hot rolled sheet is cold rolled immediately after pickling without performing hot rolled sheet annealing. In this case, when rolling at a reduction ratio of less than 64%, rolling productivity is reduced, so it is preferable to roll once at a reduction ratio of 64% or more. At this time, if the cold rolling thickness is less than 0.20mm, the strength of the (111) plane, which is an unfavorable texture after annealing, is not preferable because the magnetic flux density decreases. If the thickness exceeds 0.65mm, the eddy current loss is increased with the increase of the plate thickness. This is not good because (eddy current loss) increases and total iron loss increases.

[소둔단계][Annealing Step]

상기 방법에 따라 제조된 냉간압연판은 이어 행하여지는 소둔단계에서, 소둔온도가 700℃보다 낮으면 재료내에 압연조직이 과도하게 잔류하여 수요가 가공시가공이 어렵고, 800℃보다 높으면 재료내의 잔류응력이 없어져서 수요가가 응력제거 소둔후 강판의 자기적 특성 개선율이 낮게 되는 단점이 있으므로, 700∼800℃온도에서 소둔하는 것이 바람직하다.In the cold annealing step performed according to the above method, in the subsequent annealing step, if the annealing temperature is lower than 700 ° C., the rolling structure remains excessively in the material, so that the demand is difficult to process during processing, and if it is higher than 800 ° C., residual stress in the material Since there is a disadvantage that the demand is low after the stress relief annealing, the improvement rate of the magnetic properties of the steel sheet is low, it is preferable to anneal at a temperature of 700 ~ 800 ℃.

한편, 본 발명자 등은 다수의 실험결과 냉간압연판 소둔온도는 응력제거소둔시의 입성장 및 집합조직 형성에도 영향을 미치게 됨을 발견하였다. P함량이 많은 경우에는 소둔온도가 낮을수록 우수한 철손특성이 얻어지는 반면, P함량이 적은 경우에는 소둔온도가 높을수록 보다 향상된 철손특성이 얻어지는 것을 발견하였으며, 이에 근거하여 적정한 소둔온도는 P함량에 의해 아래 관계식1에 의해 제어된 온도에서 소둔하는 것이 바람직하다는 결론을 얻었다.On the other hand, the present inventors have found that the cold rolling annealing temperature has an effect on the grain growth and texture formation during the stress relief annealing results. It was found that the higher the annealing temperature, the higher the annealing temperature, the higher the iron annealing property was obtained, while the higher the annealing temperature, the higher the annealing temperature was obtained. It was concluded that annealing at a temperature controlled by Equation 1 below is desirable.

(관계식1)(Relationship 1)

Ta=400-100×log(P/160)±5℃Ta = 400-100 × log (P / 160) ± 5 ℃

여기서 Ta:적정 냉연판 소둔온도, P:P함량(중량%)Where Ta is the appropriate cold roll annealing temperature and P is the P content (% by weight)

적정 소둔온도가 P함량에 따라 달라지는 점을 설명하면 다음과 같다. P는 입계편석에 의해 응력제거소둔시의 입성장 및 집합조직의 형성에 영향을 미친다. 본 발명과 같이 P가 일정량이상으로 함유되는 경우 소둔시 P가 입계에 편석되어 응력제거소둔시 입성장을 억제하는 결과 철손특성이 열화된다. 따라서 P의 입계 편석량을 감소시키기 위해서는 소둔온도를 낮게 가져갈 필요가 있다. 그러나 집합조직의 측면에서는 소둔온도가 높을수록 유리하게 된다. 그것은 소둔온도가 증가하게 되면 강판의 초기 승온속도가 증가하여 응력제거소둔시 자기특성에 불리한 (111)면의 강도가 감소하기 때문이다.Explaining that the proper annealing temperature depends on the P content is as follows. P influences grain growth and formation of aggregates during stress relief annealing due to grain boundary segregation. When P is contained in a predetermined amount as in the present invention, P is segregated at grain boundaries during annealing, thereby suppressing grain growth during stress relief annealing, resulting in deterioration of iron loss characteristics. Therefore, in order to reduce the amount of grain boundary segregation of P, it is necessary to bring the annealing temperature low. However, in terms of texture, the higher the annealing temperature, the better. This is because the increase in the annealing temperature increases the initial temperature rise rate of the steel sheet and decreases the strength of the (111) plane, which is disadvantageous to the magnetic properties during stress relief annealing.

이상을 종합해 보면 P함량이 많은 경우에는 소둔온도를 낮춰 편석의 폐해를 감소시키는 것이 중요한 반면, P함량이 적은 경우에는 입계편석에 의한 폐해가 크게 나타나지 않는 한도내에서 오히려 소둔온도가 높을수록 보다 향상된 철손특성이 얻어지는 것으로 결론지을 수 있다.Taken together, it is important to reduce the annealing temperature by reducing the annealing temperature in the case of a large P content, while the annealing temperature is higher when the P content is small, so long as the damage by grain boundary segregation is not large. It can be concluded that improved iron loss properties are obtained.

상기 소둔단계에서 소둔한 강판은 경(Skin-Pass) 압연 단계를 거치지 않고 바로 유기질, 무기질 및 유무기복합피막으로 처리하거나 기타 절연가능한 피막제를 입혀 절연피막처리후 수요가로 출하되며, 수요가는 원하는 형상의 제품으로 타발한다.The steel sheet annealed in the annealing step is processed immediately with organic, inorganic and organic / inorganic composite coatings or coated with other insulating coatings without going through the skin-pass rolling step. Punch into shaped products.

[응력제거소둔단계][Stress Removal Annealing Step]

이후 잔류응력을 제거하기 위한 수요가 열처리과정인 응력제거소둔단계는, 온도가 700℃보다 낮으면 강판내 잔류응력이 잔존할 수 있으며, 850℃보다 높으면 절연피막이 손상될 수 있으므로 본 발명의 경우 700∼850℃온도로 조절하는 것이 바람직하다. 이러한 온도하에서 30분 이상 비산화성 분위기로 실시한다.After the stress removal annealing step in which the demand for removing the residual stress is a heat treatment process, the residual stress in the steel sheet may remain when the temperature is lower than 700 ℃, if the temperature higher than 850 ℃ may damage the insulating film 700 in the present invention It is preferable to adjust to -850 degreeC temperature. Under such a temperature, it is performed in a non-oxidizing atmosphere for 30 minutes or more.

이하, 본 발명을 보다 구체적으로 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.Hereinafter, although this invention is demonstrated more concretely, this invention is not limited only to these examples.

(실시예 1)(Example 1)

하기 표1과 같은 성분을 갖는 강슬라브를 제조하고, 이 강슬라브를 1150℃의 온도에서 가열하고 850℃의 마무리압연 온도조건으로 열간압연하여 2.0mm두께로 열간압연판을 만든 후, 700℃의 온도에서 권취후 공기중에서 냉각하였다.냉각권취된 열간압연판은 열간압연판 소둔을 행하지 않고 산세만 한 후 0.5mm두께로 냉간압연한 다음, 하기 표2에 나타낸 바와 같이 최종 소둔하였다.To prepare a steel slab having the components shown in Table 1, the steel slab was heated at a temperature of 1150 ℃ and hot-rolled under the finish rolling temperature conditions of 850 ℃ to make a hot rolled plate with a thickness of 2.0mm, then 700 ℃ After winding at the temperature, it was cooled in the air. The cold rolled hot rolled plate was annealed without performing hot rolled sheet annealing, and then cold rolled to 0.5 mm thickness, and finally annealed as shown in Table 2 below.

최종소둔분위기는 수소 25%와 질소75%의 분위기였다. 소둔판은 유무기복합의 절연피막을 입힌후 절단후 780℃의 온도에서 1시간30분간 비산화성분위기로 응력제거소둔을 실시한 다음, 자기특성, 결정립도 및 (111)면강도를 조사하고 그 결과를 하기표2에 나타내었다. 이때, 철손, W15/50은 50Hz의 교류에서 철심에 1.5Tesla의 자속밀도를 유도하였을 때 열 등으로 소모되는 에너지 손실량이며, 자속밀도, B50은 5000A/m의 여자력에서 유기되는 값이며, 결정립도는 응력제거소둔한 시편의 단면을 연마한 후 3% 나이탈(Nital)로 에칭하여 이미지 어넬라이저(Image Analyzer)로 측정하였다. 면강도는 호르타(Horta)식에 의한 집합조직강도로 그 정도를 나타내었는데, (111)면강도가 감소할수록 자화가 용이해져 자기특성이 개선되는 것이다.The final annealing atmosphere was 25% hydrogen and 75% nitrogen. After the annealing plate is coated with an organic / inorganic composite coating, the annealing plate is subjected to stress relief annealing with a non-oxidizing atmosphere at a temperature of 780 ° C. for 1 hour 30 minutes, and then the magnetic properties, grain size and (111) surface strength are investigated. It is shown in Table 2 below. At this time, iron loss and W15 / 50 are energy loss consumed by heat when inducing magnetic flux density of 1.5 Tesla to iron core at AC of 50Hz, magnetic flux density, B50 is induced value at excitation force of 5000A / m, The cross section of the stress-annealed specimen was polished and then etched with 3% nital and measured with an image analyzer. The surface strength is represented by the aggregate structure strength according to the Horta equation, and as the (111) surface strength decreases, the magnetization becomes easier and the magnetic properties are improved.

상기 표 2에 나타난 바와 같이, 발명재(1-4)가 비교재(1-10)에 비해 철손특성이 우수함을 알 수 있었다. 구체적으로 설명하면, 비교재(1,3,5,7)은 적정 소둔온도를 초과한 경우로서, P의 입계편석량이 과다하여 응력제거소둔후 소둔판 결정립도가 감소하게 되는 결과 철손이 열화되었으며, 비교재(2,4,6,8)은 적정 소둔온도에 못미쳐서 소둔된 경우로서 응력제거소둔후 (111)면강도가 증가하여 자속밀도가 감소하게 되는 결과 우수한 철손특성이 얻어지지 않았다.As shown in Table 2, it was found that the invention material (1-4) is superior in iron loss characteristics than the comparative material (1-10). In detail, the comparative materials (1, 3, 5, 7) exceeded the proper annealing temperature, and the grain loss of P was excessive, resulting in the decrease of the grain size of the annealing plate after the stress relief annealing. , The comparative materials (2,4,6,8) were annealed below the proper annealing temperature, and after the stress relief annealing, the (111) surface strength increased and the magnetic flux density decreased.

또한 비교재8은 700℃이하에서 소둔되어 소둔판에 냉간압연시 부여된 잔류응력의 제거가 미흡한 결과 수요가 가공시 타발성이 불량하였다. 비교재(9,10)은 강성분중 P가 0.015%이하 함유된 것으로서 계산된 적정 소둔온도가 800℃를 초과하는 경우인데, 응력제거소둔후 결정립이 크게 성장하지 않아 우수한 철손특성이 얻어지지 않았다.In addition, Comparative Material 8 was annealed at 700 ° C. or lower, and insufficient removal of residual stress applied during cold rolling on the annealing plate resulted in poor punchability during processing. The comparative material (9,10) contained less than 0.015% of P in steel, and the calculated annealing temperature exceeded 800 ℃. The crystal grains did not grow significantly after stress relief annealing, so excellent iron loss characteristics were not obtained. .

상술한 바와 같이, 본 발명은 강중 P이 극미량으로 제어되지 않는 경우에(0.016P%이상) 응력제거소둔후 철손특성이 우수한 무방향성 전기강판을 제공할 수 있는 효과가 있다.As described above, the present invention has the effect of providing a non-oriented electrical steel sheet having excellent iron loss characteristics after stress removal annealing in the case that P in the steel is not controlled to a very small amount (more than 0.016P%).

또한, 본 발명에 의하면 열간압연판소둔 및 경압연을 거치지 않고도 우수한 자기특성을 확보할 수 있어 제조공정이 단축되는 효과가 있는 것이다.In addition, according to the present invention, it is possible to secure excellent magnetic properties without undergoing hot rolling annealing and light rolling, thereby reducing the manufacturing process.

Claims (1)

중량%로 C : 0.005% 이하, S:0.0005~0.005%, N:0.0005~0.005%, Si: 0.1∼1.5%, Al:0.1~1.0%, Mn:0.1~1.0%, P:0.016~0.160%, 잔부의 Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃ 온도범위에서 재가열하고, 1.8~3.0mm 두께로 열간 압연한 후 600∼800℃온도범위에서 열연코일을 권취한 다음, 산세척 후 0.2~0.65mm두께로 1회 냉간압연한 다음, 700∼800℃ 온도범위에서 P함량에 따라 제어된 온도, Ta=400-100xlog(P/160)±5℃ {여기서 Ta:적정 냉연판 소둔온도, P:P함량(중량%)}에서 30∼300초동안 소둔한 다음, 수요가 가공 후 700∼850℃온도에서 응력제거소둔하는 것을 포함하여 이루어짐을 특징으로 하는 응력제거소둔후 철손특성이 우수한 무방향성 전기강판의 제조방법.By weight% C: 0.005% or less, S: 0.0005 to 0.005%, N: 0.0005 to 0.005%, Si: 0.1 to 1.5%, Al: 0.1 to 1.0%, Mn: 0.1 to 1.0%, P: 0.016 to 0.160% , Re-heat the steel slab composed of the balance of Fe and other impurities in the temperature range of 1050 to 1250 ℃, hot rolled to 1.8 ~ 3.0mm thickness and wound the hot rolled coil in the temperature range of 600 ~ 800 ℃, and then pickling Once cold rolled to 0.2 ~ 0.65mm thickness, then controlled temperature according to P content in 700 ~ 800 ℃ temperature range, Ta = 400-100xlog (P / 160) ± 5 ℃ {where Ta: suitable cold rolled sheet annealing temperature , P: P content (% by weight)}, followed by annealing for 30 to 300 seconds, and then excellent stress loss after stress relief annealing, characterized in that the demand is made including the stress relief annealing at a temperature of 700 ~ 850 ℃ after processing Method for producing non-oriented electrical steel sheet.
KR1020020082838A 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing KR100940714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020082838A KR100940714B1 (en) 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020082838A KR100940714B1 (en) 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing

Publications (2)

Publication Number Publication Date
KR20040056259A true KR20040056259A (en) 2004-06-30
KR100940714B1 KR100940714B1 (en) 2010-02-08

Family

ID=37348660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020082838A KR100940714B1 (en) 2002-12-23 2002-12-23 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing

Country Status (1)

Country Link
KR (1) KR100940714B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890812B1 (en) * 2006-12-29 2009-03-31 주식회사 포스코 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819465B2 (en) * 1990-02-02 1996-02-28 日本鋼管株式会社 Non-oriented electrical steel sheet manufacturing method
KR100395100B1 (en) * 1998-06-16 2003-10-17 주식회사 포스코 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100466176B1 (en) * 2000-12-27 2005-01-13 주식회사 포스코 Method for Manufacturing non-oriented electrical steel sheet having low core loss
JP4987190B2 (en) 2001-01-29 2012-07-25 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890812B1 (en) * 2006-12-29 2009-03-31 주식회사 포스코 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Also Published As

Publication number Publication date
KR100940714B1 (en) 2010-02-08

Similar Documents

Publication Publication Date Title
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR950013287B1 (en) Method of making non-viented magnetic steel strip
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
KR100940714B1 (en) Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP4259002B2 (en) Method for producing grain-oriented electrical steel sheet
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR20030053139A (en) Method for manufacturing non-oriented electrical steel sheet with low iron loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR100466176B1 (en) Method for Manufacturing non-oriented electrical steel sheet having low core loss
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR100544738B1 (en) Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
KR20020012643A (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130121

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160126

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 9