JP4277529B2 - Method for producing grain-oriented electrical steel sheet having no undercoat - Google Patents

Method for producing grain-oriented electrical steel sheet having no undercoat Download PDF

Info

Publication number
JP4277529B2
JP4277529B2 JP2003017826A JP2003017826A JP4277529B2 JP 4277529 B2 JP4277529 B2 JP 4277529B2 JP 2003017826 A JP2003017826 A JP 2003017826A JP 2003017826 A JP2003017826 A JP 2003017826A JP 4277529 B2 JP4277529 B2 JP 4277529B2
Authority
JP
Japan
Prior art keywords
ppm
less
steel sheet
oriented electrical
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003017826A
Other languages
Japanese (ja)
Other versions
JP2004225151A (en
Inventor
浩一 平嶋
寿郎 藤山
康之 早川
猛 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003017826A priority Critical patent/JP4277529B2/en
Publication of JP2004225151A publication Critical patent/JP2004225151A/en
Application granted granted Critical
Publication of JP4277529B2 publication Critical patent/JP4277529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として小型のモーターや発電機の鉄心材料に用いられる方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
例えば、小型トランスでは、電磁鋼板を積層してコアとして使用している。このコアの代表的な形状としては、図1(a)または(b)に示すような、EI型コアが知られている。このEI型コアは、打ち抜き加工により製造されているが、打ち抜く際に発生するスクラップの量が少ない、同図(c)に示すような、効率的な加工方法が用いられている。
【0003】
現在、このEI型コア用の鉄心材料には、無方向性電磁鋼板と方向性電磁鋼板の両方が用いられている。まず、無方向性電磁鋼板を使用した場合は、方向性電磁鋼板を使用した場合に比較して磁気特性のレベルが低いために、コアの磁気特性は劣っている。しかしながら、無方向性電磁鋼板は方向性電鋼板に比較して製造プロセスが単純で価格を低く抑えられることから、経済的な観点から使用されている。
【0004】
一方、方向性電磁鋼板は、圧延方向の磁気特性は良好であるが、圧延直角方向の磁気特性は著しく劣っている。但し、EIコア内での磁束の流れは、その2割程度は圧延直角方向に流れるが、8割程度は圧延方向であるから、EI型コアの鉄心材料として方向性電磁鋼板を使用した場合には、無方向性電磁鋼板よりも遥かに良好な特性が得られる。そのため、鉄損を重視する多くの場合には方向性電磁鋼板が用いられている。
【0005】
ここで、EI型コアは、鋼板を金型によって打抜き加工することによって製造されている。通常、方向性電磁鋼板の表面には、フォルステライト(Mg2SiO4)を主体とした下地被膜(グラス被膜)が施されているが、無方向性電磁鋼板に施されている有機樹脂系の被膜に比べて、フォルステライト被膜は著しく硬質であるため、打抜金型の磨耗が大きい。そのために、金型の再研磨または交換が必要となり、需要家における鉄心加工時の作業効率の低下とコストアップをもたらすことになる。また、スリット性、切断性も同様にフォルステライト被膜の存在により劣化する。
【0006】
方向性電磁鋼板の打抜加工性を改善する方法として、フォルステライト被膜を酸洗や研削などにて除去することが一般的であるが、コスト高になるのみならず、表面性状が悪化し磁気特性も劣化するという、大きな問題がある。
【0007】
一方、特許文献1および特許文献2には、仕上焼鈍時に適用するMgOを主体とする焼鈍分離剤中に薬剤を配合し、フォルステライト被膜の形成を抑制する技術が、また特許文献3には、Mnを含有する素材にシリカ、アルミナを主体とする焼鈍分離剤を適用する技術が、それぞれ提案されている。
【0008】
これらの方法では、コイルの層間における仕上焼鈍雰囲気の変動によりフォルステライトが部分的に形成されることが多く、フォルステライトの形成を完全に抑制した製品板を得ることは、極めて困難であった。
【0009】
これに対して、発明者らは、特許文献4において、インヒビタ成分を含有しない高純度素材を用いて、固溶窒素の粒界移動抑制効果を利用して二次再結晶を発現させる技術を提案した。この技術では、高温でのインヒビタ成分の純化が不要となるため、焼鈍分離剤を用いずに仕上焼鈍することが可能となり、フォルステライト被膜のない鋼板を得ることができる。
【0010】
さらに、Cを低減した成分を用いて再結晶焼鈍における雰囲気を低酸化性とすることによって、酸化被膜の生成をさらに抑制する技術を、特許文献5に提案した。これらの技術により、フォルステライトを形成しない方向性電磁鋼板を安価に製造することができるようになった。そして、このような表面に硬質なフォルステライト被膜を有しない方向性電磁鋼板は、EI型コア等の、打ち抜き加工性を重視する小型電気機器に有利に適合する。
【0011】
【特許文献1】
特公平6−49948号公報
【特許文献2】
特公平6−49949号公報
【特許文献3】
特開平8−134542号公報
【特許文献4】
特開2000-129356号公報
【特許文献5】
特開2001-32021号公報
【0012】
【発明が解決しようとする課題】
しかしながら、発明者らが、上記の技術にて製造を重ねる内に、最終製品のコイル長手方向において、電磁特性のばらつきが生じることがわかった。
【0013】
そこで、本発明は、フォルステライト被膜のない電磁鋼板における、磁気特性のばらつきを抑制する方途を与えることによって、均一な電磁特性を有する方向性電磁鋼板を提供しようとするものである。
【0014】
【課題を解決するための手段】
さて、最終製品のコイル長手方向における電磁特性のばらつきについて、その原因を調査したところ、例えばS、Seの様なMn化合物を作る微量元素が比較的多い場合に、ばらつきが大きいことがわかった。すなわち、これら不純物が多い場合に、スラブ再加熱により一旦再固溶した不純物が熱間圧延の粗圧延時に温度の低い部分で再析出を開始し、その析出物が粗大にオストワルド成長することによって、以降の再結晶焼鈍過程において、コイル内の再結晶が不均一になり、結果として、最終製品の電磁特性にばらつきを生じさせている、と考えられる。
【0015】
ここに、方向性電磁鋼板の素材となるスラブは、一般的に燃焼ガスを燃料とするガス炉で再加熱された後、熱間圧延に供されるが、熱間圧延前の加熱抽出温度や熱間圧延の粗圧延出側温度、或いは仕上圧延出側温度は、通常は鋼種によって一義的に決められている。
【0016】
そこで、発明者らは、上記課題を解決するための方途について鋭意究明したところ、溶鋼中の不純物の含有量に応じて熱間圧延の粗圧延出側温度を制御することが、上記課題を解決するのに極めて有効であることを知見するに到った。
以下、本発明を成功に至らしめた実験について説明する。
【0017】
C:0.0030mass%、Si:3.2mass%およびMn:0.05mass%を含有し、かつAlを30ppm、Nを15ppm、Sを5、10、20、30、40ppmの5水準とし、その他成分を合計で10ppm以下に低減した組成の鋼スラブを、連続鋳造にて製造した。ついで、スラブを1200℃に加熱後、粗圧延出側温度を850〜1100℃までの範囲内の種々の温度に調整して熱間圧延を行って2.5mm厚に仕上げた。その後、N2雰囲気中で900℃で1分間均熱した後急冷した。
【0018】
次に、冷間圧延により0.35mmの最終板厚とした後、水素50vol%および窒素50vol%、露点-10℃の雰囲気中で900℃で10秒の再結晶焼鈍を行った。その後、露点-20℃以下の窒素雰囲気中にて、常温〜875℃までを50℃/hの速度で昇温し、その温度で50時間保持する条件に従って、最終仕上げ焼鈍を行った。
【0019】
かくして得られた製品板の鉄損と磁束密度を測定した。その結果を、図2に示すように、微量元素であるSの含有量が増大するに従って、粗圧延出側温度が低い場合に良好な電磁特性が得られなくなった。
この理由は、次の通りと考えられる。
【0020】
すなわち、鋼中に含まれるSは,スラブの状態ではMnSの様な硫化物として析出している。このスラブを加熱することで硫化物は固溶するが,粗圧延のような歪みを付与することで歪みの部分が析出の核となる。圧延中に温度が下がることで硫化物の再析出が始まるが、この再析出は不純物の量が多いほど、より高温側で開始する。粗圧延中に析出が開始した部分は,仕上げ圧延までに析出物のオストワルド成長が起こるため、以降の工程でのコイル長手方向の再結晶が不均一になり、最終製品において均一かつ良好な電磁特性が得られなかったもの、と考えられる。
【0021】
Sと同様に、Mn化合物を作るSeについても同様の検討を行った。
すなわち、C:0.0030mass%、Si:3.2mass%、 Mn:0.05mass%、Al:25ppmおよびNを15ppm含有し、S:5ppmであって、Seが20、30、40、50ppmの各水準であり、その他成分を合計で10ppm以下に低減した組成の鋼スラブを、連続鋳造にて製造した。ついで、スラブを1200℃に加熱後、粗圧延出側温度を850〜1100℃までの範囲内の種々の温度に調整して熱間圧延を行って2.5mm厚に仕上げた。その後、N2雰囲気中で900℃で1分間均熱した後急冷した。
【0022】
次に、冷間圧延により0.35mmの最終板厚とした後、水素50vol%および窒素50vol%、露点-10℃の雰囲気中で900℃で10秒の再結晶焼鈍を行った。その後、露点-20℃以下の窒素雰囲気中にて、常温〜875℃までを50℃/hの速度で昇温し、その温度で50時間保持する条件に従って、最終仕上焼鈍を行った。
【0023】
かくして得られた製品板の鉄損と磁束密度を測定した。その結果を、図3に示すように、Sの場合と同様に、微量元素であるSeの含有量が増大するに従って、粗圧延出側温度が低い場合に良好な電磁特性が得られなくなった。
この理由についても前述の通りと考えられる。
【0024】
さらに、C:0.0030mass%、Si:3.2mass%、Mn:0.05mass%およびNを15ppm含有し、S:5ppm、Se:10ppm、Alが20、50、80ppmの各水準であり、その他成分を合計で10ppm以下に低減した組成の鋼スラブを連続鋳造にて製造した。ついで、スラブを1200℃に加熱後、粗圧延出側温度を850〜1100℃までの範囲内の種々の温度に調整して熱間圧延を行って2.5mm厚に仕上げた。その後、N2雰囲気中で900℃で1分間均熱した後急冷した。
【0025】
次に、冷間圧延により0.35mmの最終板厚とした後、水素50vol%および窒素50vol%、露点-10℃の雰囲気中で900℃で10秒の再結晶焼鈍を行った。その後、露点-20℃以下の窒素雰囲気中にて、常温〜875℃までを50℃/hの速度で昇温し、その温度で50時間保持する条件に従って、最終仕上焼鈍を行った。
【0026】
かくして得られた製品板の鉄損と磁束密度を測定した。その結果を、図4に示すように、SおよびSeの場合と同様に、微量元素であるAlの含有量が増大するに従って、粗圧延出側温度が低い場合に良好な電磁特性が得られなくなった。
この理由についても前述の通りと考えられる。
【0027】
以上の実験により、鋼中の不純物元素の含有量に応じて粗圧延出側温度を制御することによって、良好な磁気特性が得られることがわかった。
そして、これらの実験を含めて、粗圧延出側温度と鋼中不純物元素との関係について鋭意調査したところ、粗圧延出側温度T(℃)を
T≧3.14×[S(ppm) ]+1.28×[Se(ppm)]+1.14×[Al(ppm)]+842
となるように制御することが、良好な電磁特性を得るためには望ましいことを見出した。すなわち、前掲の実験を含めた種々の実験から、鋼中不純物の中でも特にS、SeおよびAlが最低限必要な粗圧延出側温度に与える影響が強いことを明らかにし、これら元素含有量と粗圧延出側温度との相関関係を調査して前式を導出したのである。
【0028】
なお、不純物元素の影響を排除するためには不純物元素そのものを除去することも有効であるが、精錬コストの増加を招き、また不可避的に元素が含まれるので、実用的では無い。
【0029】
以上の実験を基に、良好な磁気特性が安定して得られることを新規に知見し、本発明を完成させたものである。
すなわち、本発明の要旨構成は次の通りである。
(1)C:0.08mass%以下、Si:2.0〜8.0mass%およびMn:0.005〜3.0mass%を含み、sol.Alを100ppm以下およびNを50ppm以下にそれぞれ低減し、かつSおよびSeをそれぞれ50ppm以下に低減し、残部Feおよび不可避的不純物からなる溶鋼を用いて製造したスラブを、熱間圧延し、次いで1回若しくは中間焼鈍を挟む2回以上の冷間圧延を施したのち、露点が40℃以下の雰囲気にて再結晶焼鈍を行い、その後最終仕上げ焼鈍を露点が40℃以下の雰囲気にて行って、フォルステライト(Mg2SiO4)を主体とする下地被膜を有しない、方向性電磁鋼板を製造するに際し、前記溶鋼での成分組成および下記式に基づいて熱間圧延の粗圧延出側温度T(℃)の目標値を定め、該目標値を満足するように熱間圧延を制御することを特徴とする下地被膜を有しない方向性電磁鋼板の製造方法。

T≧3.14×[S(ppm) ]+1.28×[Se(ppm)]+1.14×[Al(ppm)]+842
【0030】
【発明の実施の形態】
次に、本発明の各構成要件について、その限定理由を述べる。
まず、この電磁鋼板を製造する際の、溶鋼成分の限定理由を以下に説明する。
溶鋼におけるCが0.08mass%を超えると、鋼板における磁気時効の起こらないC含有量である50ppm以下の範囲に、低減することが困難になるため、0.08mass%以下に制限する。特に、素材段階で50ppm以下に低減しておくことが、再結晶焼鈍を乾燥雰囲気で行い脱炭を省略して平滑な製品表面を得る上で望ましい。または、C量が高い素材の場合、最終仕上焼鈍後、平坦化焼鈍時に低酸化性雰囲気で脱炭することも可能である。
【0031】
Mnは、熱間加工性を良好にするために必要な元素であるが、0.005mass%未満であると効果がなく一方3.0mass%を超えると磁束密度が低下するため、0.005〜3.0mass%とする。
【0032】
sol. Alは100ppm以下に、Nは50ppm以下好ましくは30ppm以下に、それぞれ低減することが、良好に二次再結晶を発現させるために必要である。
また、析出物形成元素であるSおよびSeについても、それぞれ50ppm以下、好ましくは30ppm以下に低減することが必要である。
【0033】
上記成分を有する溶鋼は、通常の通常造塊法または連続鋳造法にてスラブとしてもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。その後の熱間圧延は、必要に応じて熱延板焼鈍を施してもよい。ここで、上述したように、熱間圧延の粗圧延出側温度T(℃)を、
T≧3.14×[S(ppm) ]+1.28×[Se(ppm)]+1.14×[Al(ppm)]+842
に従って制御することが必要である。
【0034】
次いで、1回若しくは中間焼鈍を挟む2回以上の冷間圧延を施したのち、露点が40℃以下の雰囲気にて再結晶焼鈍を行い、その後最終仕上げ焼鈍を露点が40℃以下の雰囲気にて行って、フォルステライト(Mg2SiO4)を主体とする下地被膜を有しない、方向性電磁鋼板を製造する。
ここで、最終冷延後の再結晶焼鈍は、800〜1000℃の範囲で行うことが好適である。再結晶焼鈍の雰囲気は露点40℃以下の雰囲気で行う。露点が高すぎると鋼板表面に酸化物を形成し良好な鉄損が得られなくなる。
【0035】
また、Cによる磁気時効を起こさないためには、Cを50ppm以下に低減する必要があるが、溶鋼成分としてCを50ppm以下を含有する素材を用いる場合には脱炭の必要が無いために、溶鋼成分のCを50ppm以下として再結晶焼鈍の雰囲気を0℃以下の非酸化性にすることは、鋼板表面に酸化物の形成をより少なくするために有効である。
【0036】
その後、最終仕上焼鈍を施すことにより二次再結晶組織を発達させる。最終仕上焼鈍の雰囲気も再結晶焼鈍と同様の理由で、露点40℃以下に抑えることが必要である。
【0037】
【実施例】
実施例1
C:0.0030mass%、Si:3.2mass%およびMn:0.05mass%を含有し、かつAlを30ppm、Nを15ppm、Seを10ppm、Sを5、10、20、30、40ppmの5水準とし、その他成分を合計で10ppm以下に低減した組成の鋼スラブを連続鋳造にて製造した。ついで、スラブを1200℃に加熱後、粗圧延出側温度を表1に示す種々の温度に調整して熱間圧延を行って2.5mm厚に仕上げた。その後、N2雰囲気中で900℃で1分間均熱した後急冷した。
【0038】
次に、冷間圧延により0.35mmの最終板厚とした後、水素50vol%および窒素50vol%、露点-10℃の雰囲気中で900℃で10秒の再結晶焼鈍を行った。その後、露点-20℃以下の窒素雰囲気中にて、常温〜875℃までを50℃/hの速度で昇温し、その温度で50時間保持する条件に従って、最終仕上焼鈍を行った。
【0039】
かくして得られた製品板の鉄損と磁束密度を測定した。その結果を、表1に併記するように、S:5ppmおよび10ppmでは粗圧延出側温度:950℃以上で、S:20ppmおよび30 ppmでは同1000℃以上で、S:40ppmでは同1050℃以上で、B8:1.83T以上の良好な磁気特性が得られた。
【0040】
【表1】

Figure 0004277529
【0041】
実施例2
C:0.0030mass%、Si:3.2mass%、Al:25ppmおよびMn:0.05mass%を含有し、N:15ppm、S:5ppmであって、Seが20、30、40、50ppmの4水準であり、その他成分を合計で10ppm以下に低減した組成の鋼スラブを連続鋳造にて製造した。ついで、スラブを1200℃に加熱後、粗圧延出側温度を表2に示す種々の温度に調整して熱間圧延を行って2.5mm厚に仕上げた。その後、N2雰囲気中で900℃で1分間均熱した後急冷した。
【0042】
次に、冷間圧延により0.35mmの最終板厚とした後、水素50vol%および窒素50vol%、露点-10℃の雰囲気中で900℃で10秒の再結晶焼鈍を行った。その後、露点-20℃以下の窒素雰囲気中にて、常温〜875℃までを50℃/hの速度で昇温し、その温度で50時間保持する条件に従って、最終仕上焼鈍を行った。
【0043】
かくして得られた製品板の鉄損と磁束密度を測定した。その結果を、表2に併記するように、Se:10ppmでは粗圧延出側温度:900℃以上で、Se:20ppm、30ppmおよび40ppmでは同950℃以上で、B8:1.83T以上の良好な磁気特性が得られた。
【0044】
【表2】
Figure 0004277529
【0045】
実施例3
C:0.0030mass%、Si:3.2mass%、Mn:0.05mass%およびN:15ppm含有し、S:5ppm、Se:10ppmであって、Alが20、50、80ppmの3水準であり、その他成分を合計で10ppm以下に低減した組成の鋼スラブを連続鋳造にて製造した。ついで、スラブを1200℃に加熱後、粗圧延出側温度を表3に示す種々の温度に調整して熱間圧延を行って2.5mm厚に仕上げた。その後、N2雰囲気中で900℃で1分間均熱した後急冷した。
【0046】
次に、冷間圧延により0.35mmの最終板厚とした後、水素50vol%および窒素50vol%、露点-10℃の雰囲気中で900℃で10秒の再結晶焼鈍を行った。その後、露点-20℃以下の窒素雰囲気中にて、常温〜875℃までを50℃/hの速度で昇温し、その温度で50時間保持する条件に従って、最終仕上焼鈍を行った。
【0047】
かくして得られた製品板の鉄損と磁束密度を測定した。その結果を、表3に併記するように、Al:20ppmでは粗圧延出側温度:900℃以上で、Al:50ppmでは同950℃以上で、そしてAl:80ppmでは同1000℃以上で、B8:1.83T以上の良好な磁気特性が得られた。
【0048】
【表3】
Figure 0004277529
【0049】
【発明の効果】
本発明によれば、フォルステライト(Mg2SiO4)を主体とする下地被膜(グラス被膜)を有しないため打ち抜き加工性に優れ、しかもコイル長さ方向に安定した磁気特性を有する方向性電磁鋼板を提供することができる。
【図面の簡単な説明】
【図1】 EI型コアの形状を示す図である。
【図2】 不純物S量と熱間圧延時の粗圧延出側温度を変えた場合のB8を示す図である。
【図3】 不純物Se量と熱間圧延時の粗圧延出側温度を変えた場合のB8を示す図である。
【図4】 不純物Al量と熱間圧延時の粗圧延出側温度を変えた場合のB8を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet used mainly for iron core materials of small motors and generators.
[0002]
[Prior art]
For example, in a small transformer, electromagnetic steel plates are laminated and used as a core. As a typical shape of this core, an EI type core as shown in FIG. 1 (a) or (b) is known. Although this EI type core is manufactured by punching, an efficient processing method as shown in FIG. 5C is used, which generates a small amount of scrap when punching.
[0003]
Currently, both non-oriented electrical steel sheets and directional electrical steel sheets are used for the core material for the EI type core. First, when a non-oriented electrical steel sheet is used, the magnetic properties of the core are inferior because the level of magnetic properties is lower than when a directional electrical steel sheet is used. However, non-oriented electrical steel sheet since it is kept low to simple price manufacturing process as compared to the directional electric magnetic steel sheet, it has been used from an economic point of view.
[0004]
On the other hand, grain-oriented electrical steel sheets have good magnetic properties in the rolling direction, but extremely poor magnetic properties in the direction perpendicular to the rolling direction. However, about 20% of the flow of magnetic flux in the EI core flows in the direction perpendicular to the rolling direction, but about 80% is in the rolling direction, so when a grain-oriented electrical steel sheet is used as the iron core material of the EI type core. Provides much better properties than non-oriented electrical steel sheets. For this reason, grain oriented electrical steel sheets are often used in many cases where iron loss is important.
[0005]
Here, the EI type core is manufactured by punching a steel plate with a die. Usually, the surface of the grain-oriented electrical steel sheet is provided with a base film (glass film) mainly composed of forsterite (Mg 2 SiO 4 ). Compared to the coating, the forsterite coating is remarkably hard, so the wear of the punching die is great. For this reason, it is necessary to re-grind or replace the mold, resulting in a reduction in work efficiency and an increase in cost at the time of iron core processing by the customer. Similarly, the slit property and the cut property are deteriorated by the presence of the forsterite film.
[0006]
As a method of improving the punchability of grain-oriented electrical steel sheets, it is common to remove the forsterite film by pickling or grinding, but this not only increases the cost, but also deteriorates the surface properties and magnetism. There is a big problem that the characteristics deteriorate.
[0007]
On the other hand, Patent Document 1 and Patent Document 2 include a technique for suppressing the formation of a forsterite film by blending a chemical in an annealing separator mainly composed of MgO applied at the time of finish annealing. Technologies for applying an annealing separator mainly composed of silica and alumina to a material containing Mn have been proposed.
[0008]
In these methods, forsterite is often formed partially due to fluctuations in the finish annealing atmosphere between the layers of the coil, and it has been extremely difficult to obtain a product plate in which the formation of forsterite is completely suppressed.
[0009]
In contrast, the inventors proposed a technique in Patent Document 4 that uses a high-purity material that does not contain an inhibitor component to develop secondary recrystallization using the effect of suppressing the grain boundary migration of solute nitrogen. did. In this technique, it is not necessary to purify the inhibitor component at a high temperature. Therefore, finish annealing can be performed without using an annealing separator, and a steel plate without a forsterite film can be obtained.
[0010]
Furthermore, Patent Document 5 proposes a technique for further suppressing the formation of an oxide film by making the atmosphere in recrystallization annealing low-oxidation using a component with reduced C. With these technologies, grain oriented electrical steel sheets that do not form forsterite can be manufactured at low cost. And the grain-oriented electrical steel sheet which does not have a hard forsterite film on such a surface is advantageously adapted to a small electric device such as an EI core that emphasizes punching workability.
[0011]
[Patent Document 1]
Japanese Patent Publication No. 6-49948 [Patent Document 2]
Japanese Patent Publication No. 6-49949 [Patent Document 3]
JP-A-8-134542 [Patent Document 4]
JP 2000-129356 [Patent Document 5]
Japanese Patent Laid-Open No. 2001-32021
[Problems to be solved by the invention]
However, it has been found that the electromagnetic characteristics vary in the longitudinal direction of the coil of the final product while the inventors repeatedly manufacture with the above technique.
[0013]
Therefore, the present invention intends to provide a grain-oriented electrical steel sheet having uniform electromagnetic characteristics by giving a way to suppress variation in magnetic characteristics in an electrical steel sheet without a forsterite coating.
[0014]
[Means for Solving the Problems]
Now, when the cause was investigated about the dispersion | variation in the electromagnetic characteristic in the coil longitudinal direction of a final product, when the trace element which produces Mn compounds like S and Se, for example was comparatively many, it turned out that dispersion | variation is large. That is, when these impurities are large, the impurities once re-dissolved by slab reheating start reprecipitation at a low temperature portion during hot rolling, and the precipitate grows Ostwald coarsely, In the subsequent recrystallization annealing process, the recrystallization in the coil becomes non-uniform, and as a result, the electromagnetic characteristics of the final product are considered to vary.
[0015]
Here, the slab, which is the material of the grain-oriented electrical steel sheet, is generally subjected to hot rolling after being reheated in a gas furnace using combustion gas as a fuel. The rough rolling outlet temperature or finish rolling outlet temperature of hot rolling is usually uniquely determined by the steel type.
[0016]
Accordingly, the inventors diligently studied how to solve the above problems, and controlling the hot rolling rough rolling outlet temperature in accordance with the content of impurities in the molten steel solved the above problems. It came to know that it was very effective to do.
Hereinafter, experiments that have made the present invention successful will be described.
[0017]
C: 0.0030mass%, Si: 3.2mass% and Mn: 0.05mass%, Al is 30ppm, N is 15ppm, S is 5, 10, 20, 30, 40ppm, and other components are total A steel slab having a composition reduced to 10 ppm or less was produced by continuous casting. Next, the slab was heated to 1200 ° C., and the rough rolling outlet temperature was adjusted to various temperatures within the range of 850 to 1100 ° C. to perform hot rolling to finish 2.5 mm. Thereafter, it was soaked at 900 ° C. for 1 minute in an N 2 atmosphere and then rapidly cooled.
[0018]
Next, after a final sheet thickness of 0.35 mm was obtained by cold rolling, recrystallization annealing was performed at 900 ° C. for 10 seconds in an atmosphere of 50 vol% hydrogen, 50 vol% nitrogen, and dew point of −10 ° C. Thereafter, in a nitrogen atmosphere with a dew point of −20 ° C. or lower, the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h, and final finish annealing was performed according to the condition of holding at that temperature for 50 hours.
[0019]
The iron loss and magnetic flux density of the product plate thus obtained were measured. As a result, as shown in FIG. 2, as the content of S, which is a trace element, increases, good electromagnetic characteristics cannot be obtained when the rough rolling exit temperature is low.
The reason is considered as follows.
[0020]
That is, S contained in the steel is precipitated as a sulfide like MnS in the slab state. By heating this slab, the sulfide dissolves, but by applying a strain like rough rolling, the strained portion becomes the core of precipitation. The reprecipitation of sulfide starts when the temperature decreases during rolling, but the reprecipitation starts at a higher temperature as the amount of impurities increases. In the part where precipitation began during rough rolling, the Ostwald growth of the precipitate occurs before finish rolling, resulting in non-uniform recrystallization in the coil longitudinal direction in the subsequent steps, and uniform and good electromagnetic properties in the final product. It is thought that was not obtained.
[0021]
Similar to S, the same examination was performed on Se which forms an Mn compound.
That is, C: 0.0030 mass%, Si: 3.2 mass%, Mn: 0.05 mass%, Al: 25 ppm, and N 15 ppm, S: 5 ppm, Se is each level of 20, 30, 40, 50 ppm A steel slab having a composition with other components reduced to 10 ppm or less in total was produced by continuous casting. Next, the slab was heated to 1200 ° C., and the rough rolling outlet temperature was adjusted to various temperatures within the range of 850 to 1100 ° C. to perform hot rolling to finish 2.5 mm. Thereafter, it was soaked at 900 ° C. for 1 minute in an N 2 atmosphere and then rapidly cooled.
[0022]
Next, after a final sheet thickness of 0.35 mm was obtained by cold rolling, recrystallization annealing was performed at 900 ° C. for 10 seconds in an atmosphere of 50 vol% hydrogen, 50 vol% nitrogen, and dew point of −10 ° C. Thereafter, in a nitrogen atmosphere having a dew point of −20 ° C. or lower, the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h, and final finish annealing was performed according to the condition of holding at that temperature for 50 hours.
[0023]
The iron loss and magnetic flux density of the product plate thus obtained were measured. As shown in FIG. 3, as in the case of S, the results show that as the content of Se as a trace element increases, good electromagnetic characteristics cannot be obtained when the rough rolling exit temperature is low.
The reason for this is also considered as described above.
[0024]
Furthermore, C: 0.0030mass%, Si: 3.2mass%, Mn: 0.05mass% and N 15ppm, S: 5ppm, Se: 10ppm, Al is each level of 20, 50, 80ppm, other components Steel slabs with a composition reduced to 10 ppm or less in total were produced by continuous casting. Next, the slab was heated to 1200 ° C., and the rough rolling outlet temperature was adjusted to various temperatures within the range of 850 to 1100 ° C. to perform hot rolling to finish 2.5 mm. Thereafter, it was soaked at 900 ° C. for 1 minute in an N 2 atmosphere and then rapidly cooled.
[0025]
Next, after a final sheet thickness of 0.35 mm was obtained by cold rolling, recrystallization annealing was performed at 900 ° C. for 10 seconds in an atmosphere of 50 vol% hydrogen, 50 vol% nitrogen, and dew point of −10 ° C. Thereafter, in a nitrogen atmosphere having a dew point of −20 ° C. or lower, the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h, and final finish annealing was performed according to the condition of holding at that temperature for 50 hours.
[0026]
The iron loss and magnetic flux density of the product plate thus obtained were measured. As shown in FIG. 4, the results show that, as in the case of S and Se, as the content of Al as a trace element increases, good electromagnetic characteristics cannot be obtained when the rough rolling exit temperature is low. It was.
The reason for this is also considered as described above.
[0027]
From the above experiments, it has been found that good magnetic properties can be obtained by controlling the rough rolling exit temperature in accordance with the content of impurity elements in the steel.
And, including these experiments, when the relationship between the rough rolling outlet temperature and the impurity elements in the steel was intensively investigated, the rough rolling outlet temperature T (° C.) was calculated as T ≧ 3.14 × [S (ppm)] +1.28 × [Se (ppm)] + 1.14 × [Al (ppm)] + 842
It has been found that it is desirable to control so as to obtain good electromagnetic characteristics. That is, from various experiments including the above-mentioned experiment, it has been clarified that, among impurities in steel, S, Se, and Al have a strong influence on the minimum required rough rolling exit temperature, and the content and coarseness of these elements We investigated the correlation with the rolling exit temperature and derived the previous equation.
[0028]
In order to eliminate the influence of the impurity element, it is effective to remove the impurity element itself, but this increases the refining cost and inevitably contains the element, which is not practical.
[0029]
Based on the above experiments, the inventors have newly found that good magnetic properties can be stably obtained, and completed the present invention.
That is, the gist configuration of the present invention is as follows.
(1) C: 0.08 mass% or less, Si: 2.0-8.0 mass% and Mn: 0.005-3.0 mass%, sol. A slab produced using molten steel consisting of Fe and unavoidable impurities, with Al reduced to 100 ppm or less and N reduced to 50 ppm or less, and S and Se reduced to 50 ppm or less, respectively, and then 1 After performing cold rolling at least twice with intermediate or intermediate annealing, perform recrystallization annealing in an atmosphere with a dew point of 40 ° C or lower, and then perform final finish annealing in an atmosphere with a dew point of 40 ° C or lower. When producing a grain-oriented electrical steel sheet having no undercoat mainly composed of forsterite (Mg 2 SiO 4 ), the hot rolling rough rolling outlet temperature T ( ° C.) determines the target value of the method of Do we have ways oriented electrical steel sheet having a base film and controlling the hot rolling so as to satisfy the target value.
Serial T ≧ 3.14 × [S (ppm )] + 1.28 × [Se (ppm)] + 1.14 × [Al (ppm)] + 842
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reasons for limitation of each component of the present invention will be described.
First, the reasons for limiting the molten steel components when manufacturing this electromagnetic steel sheet will be described below.
If C in the molten steel exceeds 0.08 mass%, it is difficult to reduce the content to 50 ppm or less, which is the C content in which no magnetic aging occurs in the steel sheet, so the amount is limited to 0.08 mass% or less. In particular, it is desirable to reduce to 50 ppm or less at the raw material stage in order to obtain a smooth product surface by performing recrystallization annealing in a dry atmosphere and omitting decarburization. Alternatively, in the case of a material having a high amount of C, it is possible to decarburize in a low-oxidation atmosphere during the flattening annealing after the final finish annealing.
[0031]
Mn is an element necessary for improving the hot workability, but if it is less than 0.005 mass%, there is no effect, whereas if it exceeds 3.0 mass%, the magnetic flux density decreases, so 0.005 to 3.0 mass%. To do.
[0032]
It is necessary to reduce sol. Al to 100 ppm or less and N to 50 ppm or less, preferably 30 ppm or less, in order to achieve secondary recrystallization satisfactorily.
Further, S and Se, which are precipitate forming elements, must be reduced to 50 ppm or less, preferably 30 ppm or less, respectively.
[0033]
The molten steel having the above components may be formed into a slab by a normal normal ingot forming method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be produced by a direct casting method. Subsequent hot rolling may be performed by hot-rolled sheet annealing as necessary. Here, as described above, the rough rolling exit temperature T (° C.) of hot rolling,
T ≧ 3.14 × [S (ppm)] + 1.28 × [Se (ppm)] + 1.14 × [Al (ppm)] + 842
It is necessary to control according to.
[0034]
Next, after one or two or more cold rollings with intermediate annealing, recrystallization annealing is performed in an atmosphere with a dew point of 40 ° C or lower, and then final finish annealing is performed in an atmosphere with a dew point of 40 ° C or lower. Then, a grain-oriented electrical steel sheet having no undercoat mainly composed of forsterite (Mg 2 SiO 4 ) is produced.
Here, the recrystallization annealing after the final cold rolling is preferably performed in the range of 800 to 1000 ° C. The recrystallization annealing is performed in an atmosphere having a dew point of 40 ° C. or lower. If the dew point is too high, an oxide is formed on the surface of the steel sheet and good iron loss cannot be obtained.
[0035]
Moreover, in order not to cause magnetic aging due to C, it is necessary to reduce C to 50 ppm or less, but when using a material containing 50 ppm or less as a molten steel component, there is no need for decarburization. Making the C of the molten steel component 50 ppm or less and making the recrystallization annealing atmosphere non-oxidizing at 0 ° C. or less is effective for reducing the formation of oxides on the steel sheet surface.
[0036]
Then, a secondary recrystallization structure is developed by performing final finish annealing. The atmosphere of the final finish annealing must be suppressed to a dew point of 40 ° C. or lower for the same reason as the recrystallization annealing.
[0037]
【Example】
Example 1
C: 0.0030 mass%, Si: 3.2 mass% and Mn: 0.05 mass%, and Al is 30 ppm, N is 15 ppm, Se is 10 ppm, S is 5, 10, 20, 30, 40 ppm, A steel slab having a composition in which other components were reduced to 10 ppm or less in total was produced by continuous casting. Subsequently, after heating the slab to 1200 ° C., the rough rolling exit temperature was adjusted to various temperatures shown in Table 1 and hot rolling was performed to obtain a 2.5 mm thickness. Thereafter, it was soaked at 900 ° C. for 1 minute in an N 2 atmosphere and then rapidly cooled.
[0038]
Next, after a final sheet thickness of 0.35 mm was obtained by cold rolling, recrystallization annealing was performed at 900 ° C. for 10 seconds in an atmosphere of 50 vol% hydrogen, 50 vol% nitrogen, and dew point of −10 ° C. Thereafter, in a nitrogen atmosphere having a dew point of −20 ° C. or lower, the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h, and final finish annealing was performed according to the condition of holding at that temperature for 50 hours.
[0039]
The iron loss and magnetic flux density of the product plate thus obtained were measured. As shown in Table 1, the results are as follows: S: 5 ppm and 10 ppm, rough rolling delivery temperature: 950 ° C or more, S: 20 ppm and 30 ppm, 1000 ° C or more, S: 40 ppm, 1050 ° C or more Thus, good magnetic characteristics of B 8 : 1.83 T or more were obtained.
[0040]
[Table 1]
Figure 0004277529
[0041]
Example 2
C: 0.0030 mass%, Si: 3.2 mass%, Al: 25 ppm and Mn: 0.05 mass%, N: 15 ppm, S: 5 ppm, Se is four levels of 20, 30, 40, 50 ppm A steel slab having a composition in which other components were reduced to 10 ppm or less in total was produced by continuous casting. Next, the slab was heated to 1200 ° C., and the rough rolling exit temperature was adjusted to various temperatures shown in Table 2 to perform hot rolling to finish 2.5 mm. Thereafter, it was soaked at 900 ° C. for 1 minute in an N 2 atmosphere and then rapidly cooled.
[0042]
Next, after a final sheet thickness of 0.35 mm was obtained by cold rolling, recrystallization annealing was performed at 900 ° C. for 10 seconds in an atmosphere of 50 vol% hydrogen, 50 vol% nitrogen, and dew point of −10 ° C. Thereafter, in a nitrogen atmosphere having a dew point of −20 ° C. or lower, the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h, and final finish annealing was performed according to the condition of holding at that temperature for 50 hours.
[0043]
The iron loss and magnetic flux density of the product plate thus obtained were measured. As shown in Table 2, the results are shown in Table 2. When Se: 10 ppm, the rough rolling exit temperature is 900 ° C. or higher, and Se: 20 ppm, 30 ppm and 40 ppm are 950 ° C. or higher, and B 8 is 1.83 T or higher. Magnetic properties were obtained.
[0044]
[Table 2]
Figure 0004277529
[0045]
Example 3
C: 0.0030mass%, Si: 3.2mass%, Mn: 0.05mass% and N: 15ppm, S: 5ppm, Se: 10ppm, Al is three levels of 20, 50, 80ppm, and other components Steel slabs with a composition reduced to a total of 10 ppm or less were produced by continuous casting. Next, the slab was heated to 1200 ° C., and then the rough rolling outlet temperature was adjusted to various temperatures shown in Table 3 to perform hot rolling to finish 2.5 mm. Thereafter, it was soaked at 900 ° C. for 1 minute in an N 2 atmosphere and then rapidly cooled.
[0046]
Next, after a final sheet thickness of 0.35 mm was obtained by cold rolling, recrystallization annealing was performed at 900 ° C. for 10 seconds in an atmosphere of 50 vol% hydrogen, 50 vol% nitrogen, and dew point of −10 ° C. Thereafter, in a nitrogen atmosphere having a dew point of −20 ° C. or lower, the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h, and final finish annealing was performed according to the condition of holding at that temperature for 50 hours.
[0047]
The iron loss and magnetic flux density of the product plate thus obtained were measured. The results, as shown in Table 3, Al: 20 ppm In rough rolling delivery temperature: at 900 ° C. or higher, Al: at 50ppm in the 950 ° C. or higher, and Al: at the 80ppm same 1000 ° C. or higher, B 8 : Good magnetic characteristics of 1.83 T or more were obtained.
[0048]
[Table 3]
Figure 0004277529
[0049]
【The invention's effect】
According to the present invention, there is no underlying coating (glass coating) mainly composed of forsterite (Mg 2 SiO 4 ), so that the grain-oriented electrical steel sheet has excellent punchability and has stable magnetic characteristics in the coil length direction. Can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the shape of an EI type core.
FIG. 2 is a diagram showing B 8 when the amount of impurities S and the temperature at the side of rough rolling during hot rolling are changed.
FIG. 3 is a diagram showing B 8 when the amount of impurity Se and the temperature at the side of rough rolling during hot rolling are changed.
FIG. 4 is a diagram showing B 8 when the amount of impurity Al and the temperature at the side of rough rolling during hot rolling are changed.

Claims (1)

C:0.08mass%以下、Si:2.0〜8.0mass%およびMn:0.005〜3.0mass%を含み、sol.Alを100ppm以下およびNを50ppm以下にそれぞれ低減し、かつSおよびSeをそれぞれ50ppm以下に低減し、残部Feおよび不可避的不純物からなる溶鋼を用いて製造したスラブを、熱間圧延し、次いで1回若しくは中間焼鈍を挟む2回以上の冷間圧延を施したのち、露点が40℃以下の雰囲気にて再結晶焼鈍を行い、その後最終仕上げ焼鈍を露点が40℃以下の雰囲気にて行って、フォルステライト(Mg2SiO4)を主体とする下地被膜を有しない、方向性電磁鋼板を製造するに際し、前記溶鋼での成分組成および下記式に基づいて熱間圧延の粗圧延出側温度T(℃)の目標値を定め、該目標値を満足するように熱間圧延を制御することを特徴とする下地被膜を有しない方向性電磁鋼板の製造方法。

T≧3.14×[S(ppm) ]+1.28×[Se(ppm)]+1.14×[Al(ppm)]+842
C: 0.08 mass% or less, Si: 2.0-8.0 mass% and Mn: 0.005-3.0 mass%, sol. A slab produced using molten steel consisting of Fe and unavoidable impurities, with Al reduced to 100 ppm or less and N reduced to 50 ppm or less, and S and Se reduced to 50 ppm or less, respectively, and then 1 After performing cold rolling at least twice with intermediate or intermediate annealing, perform recrystallization annealing in an atmosphere with a dew point of 40 ° C or lower, and then perform final finish annealing in an atmosphere with a dew point of 40 ° C or lower. When producing a grain-oriented electrical steel sheet having no undercoat mainly composed of forsterite (Mg 2 SiO 4 ), the hot rolling rough rolling outlet temperature T ( ° C.) determines the target value of the method of Do we have ways oriented electrical steel sheet having a base film and controlling the hot rolling so as to satisfy the target value.
Serial T ≧ 3.14 × [S (ppm )] + 1.28 × [Se (ppm)] + 1.14 × [Al (ppm)] + 842
JP2003017826A 2003-01-27 2003-01-27 Method for producing grain-oriented electrical steel sheet having no undercoat Expired - Fee Related JP4277529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017826A JP4277529B2 (en) 2003-01-27 2003-01-27 Method for producing grain-oriented electrical steel sheet having no undercoat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017826A JP4277529B2 (en) 2003-01-27 2003-01-27 Method for producing grain-oriented electrical steel sheet having no undercoat

Publications (2)

Publication Number Publication Date
JP2004225151A JP2004225151A (en) 2004-08-12
JP4277529B2 true JP4277529B2 (en) 2009-06-10

Family

ID=32904882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017826A Expired - Fee Related JP4277529B2 (en) 2003-01-27 2003-01-27 Method for producing grain-oriented electrical steel sheet having no undercoat

Country Status (1)

Country Link
JP (1) JP4277529B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854234B2 (en) * 2013-02-14 2016-02-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849146B2 (en) * 1994-12-05 2006-11-22 Jfeスチール株式会社 Method for producing unidirectional silicon steel sheet
JP4337147B2 (en) * 1997-08-08 2009-09-30 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP3997712B2 (en) * 2001-01-19 2007-10-24 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet for EI core

Also Published As

Publication number Publication date
JP2004225151A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
EP1992708B1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
EP0743370A2 (en) Grain oriented electrical steel having high volume resistivity and method for producing same
JP5428188B2 (en) Method for producing grain-oriented electrical steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP4224957B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP3928275B2 (en) Electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4259002B2 (en) Method for producing grain-oriented electrical steel sheet
JP4241125B2 (en) Method for producing grain-oriented electrical steel sheet without forsterite coating
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP5999040B2 (en) Method for producing grain-oriented electrical steel sheet
JP2011208196A (en) Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
JP2003034821A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic-flux density having no undercoat film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees