KR20060000490A - Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction - Google Patents

Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction Download PDF

Info

Publication number
KR20060000490A
KR20060000490A KR1020040049373A KR20040049373A KR20060000490A KR 20060000490 A KR20060000490 A KR 20060000490A KR 1020040049373 A KR1020040049373 A KR 1020040049373A KR 20040049373 A KR20040049373 A KR 20040049373A KR 20060000490 A KR20060000490 A KR 20060000490A
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
magnetic flux
flux density
iron loss
Prior art date
Application number
KR1020040049373A
Other languages
Korean (ko)
Other versions
KR101089302B1 (en
Inventor
이청산
김재관
봉원석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020040049373A priority Critical patent/KR101089302B1/en
Publication of KR20060000490A publication Critical patent/KR20060000490A/en
Application granted granted Critical
Publication of KR101089302B1 publication Critical patent/KR101089302B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 Si, Al, Mn 및 Sn을 적정량으로 첨가하고, 열간압연판소둔 및 재결정소둔시 강판의 균열온도를 적정온도에서 제어하여 강판의 집합조직을 개선함으로써 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조하는 방법에 관한 것이다. The present invention improves the texture of the steel sheet by adding Si, Al, Mn and Sn in an appropriate amount, and controlling the cracking temperature of the steel sheet at the appropriate temperature during hot rolling annealing and recrystallization annealing, thereby reducing the iron loss and high magnetic flux density. It relates to a method of manufacturing electrical steel sheet.

본 발명은 중량%로, C:0.005%이하, S :0.005%이하, N :0.005%이하, Si:1.2∼2.3%, Al:0.5~1.5%, Mn: 0.3~1.2%, Sn: 0.03∼0.10%, 나머지 Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도에서 재가열하여 1.8~3.0mm두께로 열간압연하고 650∼800℃온도에서 권취한 다음, 800∼1050℃온도에서 열간압연판소둔 및 산세척 후 0.2~0.65mm두께로 1회 냉간압연하고, 5℃/초 이상의 승온속도로 가열하여 900∼1100℃온도에서 30∼300초동안 재결정소둔하는 것을 포함하여 이루어짐을 특징으로 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법에 관한 것을 그 기술요지로 한다.The present invention is by weight, C: 0.005% or less, S: 0.005% or less, N: 0.005% or less, Si: 1.2 to 2.3%, Al: 0.5 to 1.5%, Mn: 0.3 to 1.2%, Sn: 0.03 to Steel slab composed of 0.10%, remaining Fe and other impurities is reheated at 1050-1250 ℃, hot rolled to 1.8 ~ 3.0mm thickness, wound at 650 ~ 800 ℃, and hot rolled sheet at 800 ~ 1050 ℃ After annealing and pickling, cold rolling is performed once at 0.2 ~ 0.65mm thickness, heating at a temperature rising rate of 5 ° C./sec or more, and recrystallization annealing at 900-1100 ° C. for 30 to 300 seconds. This technical summary relates to a method for producing a non-oriented electrical steel sheet having a low magnetic flux density.

무방향성 전기강판, 자속밀도, 철손, 열간압연, 열간압연판소둔, 재결정소둔Non-oriented electrical steel sheet, magnetic flux density, iron loss, hot rolling, hot rolled sheet annealing, recrystallization annealing

Description

철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법{Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction}Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction}

본 발명은 낮은 철손과 동시에 높은 자속밀도 특성을 갖는 무방향성 전기강판의 제조방법에 관한 것으로, 더욱 상세하게는 인체에 유해한 Sb를 강중에 첨가하지 않고서도 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density characteristics, and more particularly, a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density without adding Sb harmful to the human body. It relates to a method of manufacturing.

무방향성 전기강판은 뛰어난 자기특성을 가지고 있으므로 각종 모터, 소형변압기, 안정기 등의 전기기기의 철심재료로 널리 사용되고 있으며, 크게 2종류로 구분된다. 수요가가 가공후에 응력제거소둔을 반드시 실시해야만 하는 세미프로세스(Semi-Process) 제품과 수요가가 응력제거소둔을 할 필요가 없는 풀리프로세스(Fully-process) 제품이 그것이다. 상기 세미프로세스 제품은 통상 제강 →연속주조 → 슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 소둔 → 경(Skin-Pass)압연 → 절연코팅의 제조공정으로 변형을 받은 상태로 출하되므로 수요가는 제품을 구입하여 원하는 형상으로 제품을 가공한 후에는 그 제품에 맞는 자기특성을 얻기 위하여 응력제거소둔을 실시해야한다. 한편, 풀리프로세스 제품은 제강 →연속주조 →슬라브 재가열 →열간압연 →권취 →열연판소둔 → 냉간압연 → 재결정소둔 → 절연코팅의 제조공정을 통하여 변형이 해소된 상태로 출하되므로 수요가가 응력제거소둔을 하지 않고 사용할 수 있는 장점을 갖는다.Since non-oriented electrical steel has excellent magnetic properties, it is widely used as an iron core material for electric machines such as various motors, small transformers, and ballasts, and is classified into two types. These include semi-process products, which must be subjected to stress relief annealing after demand processing, and fully-process products, which do not require stress relief annealing. The semi-process products are usually shipped in a modified state in the manufacturing process of steelmaking → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → annealing → skin-pass rolling → insulation coating After purchasing a thin product and processing the product into the desired shape, stress relief annealing must be performed to obtain magnetic properties suitable for the product. On the other hand, pulley process products are shipped from the steelmaking process → continuous casting → slab reheating → hot rolling → winding → hot rolled sheet annealing → cold rolling → recrystallization annealing → insulation coating. It has the advantage that it can be used without.

최근 에너지절약의 차원에서 전기기기의 효율을 높이고 소형화하려는 추세에 따라 철심재료인 전기강판에 있어서도 철손이 낮고 자속밀도가 높은 제품에 대한 욕구가 점차 증가되고 있는 실정이다. 일반적으로 철손은 철심의 무게(㎏)당 전기적 손실(Watt), 즉, 특정 자속밀도 및 주파수에서 발열 등으로 나타나는 전기에너지 손실로서 W/㎏으로 표시한다. 따라서, 철손이 낮은 철심 소재일수록 고효율 전기기기를 제작하는 데 바람직하다. 이에 고자속밀도와 저철손을 갖는 무방향성 전기강판을 제공하고자 다양한 방법이 제시되어오고 있다. 이중 미국특허 4,204,890호에는 Si, Al, Mn, Sb 등을 함유한 고자속밀도와 저철손 등 우수한 자기특성을 갖는 무방향성 전기강판의 제조방법이 제안되어 있다. 그러나, 이 무방향성 전기강판에는 인체에 유해한 Sb를 첨가하는 것을 필수로 하므로 제강공정에서 별도의 첨가설비가 필요한 단점이 있다.In recent years, as the energy efficiency of electric devices has been increased and miniaturized, the demand for products having low iron loss and high magnetic flux density has been gradually increased even for electric steel sheets which are iron core materials. In general, the iron loss is expressed in W / kg as electrical loss (Watt) per weight (kg) of the iron core, that is, electrical energy loss caused by heat generation at a specific magnetic flux density and frequency. Therefore, the iron core material having a low iron loss is more preferable for manufacturing high-efficiency electric equipment. Accordingly, various methods have been proposed to provide a non-oriented electrical steel sheet having high magnetic flux density and low iron loss. US Pat. No. 4,204,890 proposes a method for producing a non-oriented electrical steel sheet having excellent magnetic properties such as high magnetic flux density and low iron loss containing Si, Al, Mn, Sb and the like. However, since the non-oriented electrical steel sheet is required to add Sb harmful to the human body, there is a disadvantage that a separate additional equipment is required in the steelmaking process.

본 발명은 앞서 설명한 바와 같은 재결정소둔 후 저철손과 동시에 고자속밀도 특성이 우수한 무방향성 전기강판을 더욱 간소화된 방법에 따라 제조하고자 하는 것으로서, 풀리프로세스재 무방향성 전기강판의 경우에 인체에 유해한 Sb를 첨가치 않고서도 재결정소둔 후 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조하는 방법을 제공하는 데 그 목적이 있다.The present invention is to manufacture a non-oriented electrical steel sheet having excellent low magnetic loss and high magnetic flux density characteristics according to a more simplified method after recrystallization annealing as described above, Sb harmful to the human body in the case of a pulley process material non-oriented electrical steel sheet It is an object of the present invention to provide a method for producing a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density after recrystallization annealing without addition of a.

상기한 목적을 달성하기 위한 본 발명에 따른 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법은, 중량%로, C:0.005%이하, S :0.005%이하, N :0.005%이하, Si: 1.2∼2.3%, Al:0.5~1.5%, Mn:0.3~1.2%, Sn:0.03∼0.20%, 나머지 Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도에서 재가열하여 1.8~3.0mm두께로 열간압연하고 650∼800℃온도에서 권취한 다음, 800∼1050℃온도에서 열연판소둔 및 산세척 후 0.2~0.65mm두께로 1회 냉간압연하고, 5℃/초 이상의 승온속도로 가열하여 900∼1100℃온도에서 30∼300초동안 재결정소둔하는 것을 포함하여 구성된다.Low iron loss and high magnetic flux density according to the present invention for achieving the above object is a method for producing a non-oriented electrical steel sheet, by weight, C: 0.005% or less, S: 0.005% or less, N: 0.005% or less, Si : 1.2 ~ 2.3%, Al: 0.5 ~ 1.5%, Mn: 0.3 ~ 1.2%, Sn: 0.03-0.20%, Steel slab composed of remaining Fe and other impurities is reheated at 1050 ~ 1250 ℃, 1.8 ~ 3.0mm Hot rolled to thickness and wound at 650 ~ 800 ℃, hot rolled sheet annealed and pickled at 800 ~ 1050 ℃, cold rolled once to 0.2 ~ 0.65mm thickness, and heated at a temperature increase rate of 5 ℃ / sec. Recrystallization annealing for 30 to 300 seconds at 900 ~ 1100 ℃ temperature.

이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 Sb를 첨가하는 대신 Sn을 적정량 첨가하고, 열간압연판소둔시의 균열온도 및 재결정소둔시의 균열온도를 동시에 제어함으로써 재결정소둔시 결정립 성장이 용이하게 되며, 자성에 유리한 집합조직이 발달하게 되어 철손이 낮고 자속밀도가 높은 무방향성 전기강판을 제조할 수 있음을 연구와 실험을 통해 확인하고 본 발명을 완성한 것이다. The present inventors add Sn in an appropriate amount instead of adding Sb, and simultaneously control the cracking temperature during hot rolling annealing and the cracking temperature during recrystallization annealing, thereby facilitating grain growth during recrystallization annealing. The iron loss is low and the magnetic flux density of the non-oriented electrical steel sheet can be produced through research and experiments to complete the present invention.

본 발명은 크게 강 슬라브의 성분조성단계, 열간압연단계, 열간압연판소둔단계, 냉간압연단계 및 재결정소둔단계 로 분류된다. 각 단계별 공정조건을 제어하여 재결정소둔후 저철손 및 고자속밀도를 갖는 무방향성 전기강판을 제공하는데, 이하에서는 각 단계별로 작용 효과를 상세히 설명한다. The present invention is largely divided into steel slab composition step, hot rolling step, hot rolled sheet annealing step, cold rolling step and recrystallization annealing step. By controlling the process conditions in each step to provide a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density after recrystallization annealing, the operation effect in each step will be described in detail.                     

[강슬라브 성분조성 단계][Steel slab composition stage]

강 슬라브 제조를 위한 성분조성단계 전에는 통상적으로 제강, 용강 및 조괴 또는 연속주조공정이 선행된다. 먼저 제강단계에서 용강내에 C, N, S의 함유량을 낮게 제어하고 Si, Al, Mn, Sn 등을 적정량 부가한다. 이어 용강을 조괴 또는 연속주조공정을 행함으로써 적정량의 성분을 함유한 강 슬라브를 제조한다. 본 발명의 슬라브강의 구성성분 중 C, N, S는 결정립 성장을 방해하는 원소이므로 이미 제강단계에서 그 함유량을 낮게 제어하는 것이 필요하며, Si, Al, 및 Mn은 철손을 낮추고 동시에 자속밀도를 높이기 위해 적정 비율로 적정량 강내에 첨가하고, Sn은 재결정소둔시 결정립의의 집합조직을 바람직한 방향으로 형성시키기 위한 용도로 첨가한다. 그 조성범위 한정이유는 다음과 같다. Prior to the component composition step for steel slab production, steelmaking, molten steel and ingot or continuous casting process are usually preceded. First, in the steelmaking step, the content of C, N, S in the molten steel is controlled low, and an appropriate amount of Si, Al, Mn, Sn, etc. is added. Subsequently, the steel slab containing an appropriate amount of components is manufactured by performing a molten steel in the ingot or continuous casting process. Among the components of the slab steel of the present invention, C, N, and S are elements that interfere with grain growth, so it is necessary to control the content in the steelmaking step at a low level, and Si, Al, and Mn lower the iron loss and at the same time increase the magnetic flux density. In an appropriate ratio, a suitable amount is added into the steel, and Sn is added for the purpose of forming a grain structure of grains in the preferred direction during recrystallization annealing. The reason for limiting the composition range is as follows.

·C: 0.005%이하C: 0.005% or less

C는 과량 함유될 경우 본 발명의 전기강판 제조과정중에 탄화물(Carbide)을 형성하여 결정립 성장을 방해하며, 또한 전기기기의 철심으로 사용하는 중 자기시효를 일으켜서 자기적 특성을 저하시키는 경향이 있으므로 슬라브강내에 0.005% 이하의 조성을 갖도록 함유하는 것이 바람직하다.When C is excessively contained, slabs are formed during the manufacturing of the electrical steel sheet of the present invention, thereby inhibiting grain growth, and also causing magnetic aging during use as an iron core of an electric device. It is preferable to contain in a steel so that it may have a composition of 0.005% or less.

·N:0.005%이하N: 0.005% or less

N은 본 발명의 강판 제조과정중에 Al과 반응하여 AlN 석출물을 형성하여 입자성장을 억제시키는 경향이 있어 가능한한 최소량을 갖도록 하는 것이 바람직하므로 본 발명의 경우 0.005% 이하의 조성을 갖도록 함유하는 것이 바람직하다.N tends to react with Al during the steel sheet manufacturing process of the present invention to form AlN precipitates, thereby suppressing grain growth, so that it has a minimum amount as much as possible. Therefore, the content of N is preferably 0.005% or less. .

·S:0.005%이하 S: 0.005% or less                     

상기 C 및 N과 더불어, S는 Mn과 반응하여 미세한 석출물인 MnS를 형성하여 결정립 성장을 억제시키는 경향이 있어 가능한한 최소량을 갖도록 하는 것이 중요하므로 본 발명의 경우 0.005% 이하의 조성을 갖도록 함유하는 것이 바람직하다.In addition to C and N, S tends to react with Mn to form MnS, which is a fine precipitate, to suppress grain growth, so it is important to have a minimum amount as much as possible. desirable.

·Si: 1.2∼2.3%Si: 1.2 to 2.3%

Si의 함량이 1.2wt% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 2.30wt% 초과인 경우에는 우수한 자속밀도를 얻을 수 없을 뿐만 아니라 타발성이 열화되므로 수요가 금형마모율이 증가하여 좋지 않다. If the Si content is less than 1.2wt%, the resistivity of the steel is small and the iron loss characteristics are not preferable. If the Si content is more than 2.30wt%, the excellent magnetic flux density is not obtained and the punchability is deteriorated. Not good to increase

·Al: 0.5~1.5%Al: 0.5-1.5%

산가용성 Al은 0.5wt% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.5wt% 초과인 경우에는 냉간압연성을 해치게 되어 나쁘다. When the acid-soluble Al is less than 0.5wt%, the specific resistance of the steel is small, the iron loss characteristics are deteriorated, and if it is more than 1.5wt%, the cold rolling property is deteriorated.

·Mn: 0.3~1.2%Mn: 0.3 ~ 1.2%

Mn의 경우도 0.3wt% 미만인 경우에는 강의 비저항이 작게 되어 철손특성이 열화되어 바람직하지 않으며, 1.2wt% 초과인 경우에는 롤 하중이 증가하여 냉간압연성이 열화되므로 바람직하지 않다.Mn is also less than 0.3 wt% is not preferable because the specific resistance of the steel is small to deteriorate the iron loss characteristics, and if it is more than 1.2wt% roll load is increased to deteriorate cold rolling property.

·Sn: 0.03∼0.20%Sn: 0.03-0.20%

제강중 강내에 첨가되는 Sn은 자기특성에 유해한 (111)면강도를 감소시키는 원소로서, 첨가량이 0.03wt% 미만인 경우 재결정소둔후 자속밀도개선 효과가 미미하며, 0.20wt% 초과인 경우에는 상승되는 효과가 없어 원재료비의 상승만을 초래하므로, 본 발명의 경우 Sn은 0.3∼0.20wt%의 양으로 첨가하는 것이 바람직하다. Sn added to steel during steelmaking is an element that reduces (111) surface strength, which is harmful to magnetic properties.If the added amount is less than 0.03wt%, the effect of improving the magnetic flux density after recrystallization annealing is insignificant. Since there is no effect and only raises a raw material cost, it is preferable to add Sn in the quantity of 0.3-0.20 wt% in this invention.                     

상기 성분외에 강내에는 Fe 및 기타 불가피한 불순물들이 함유되어 있다. 본 발명에서는 Sb를 첨가하지 않는 것이 중요하다. 이는 인체에 유해한 Sb를 첨가하기 위해서는 제강시 별도의 용강내 Sb 투입설비를 구비해야 할 뿐만 아니라, Sb첨가에 의해 자속밀도는 개선된다 하더라도 C, N이 극한으로 제어된 청정강에서, Sb가 입계에 과도하게 편석되어 재결정소둔시 결정립 성장율이 감소하게 되는 결과 이력손실(hysteresis loss)이 증가하여 청정강 제조의 잇점을 살릴 수 없기 때문이다. In addition to the above components, the steel contains Fe and other unavoidable impurities. In the present invention, it is important not to add Sb. In order to add Sb that is harmful to human body, it is necessary not only to have a separate molten steel Sb input facility during steelmaking, but even if the magnetic flux density is improved by adding Sb, in the clean steel where C and N are extremely controlled, Sb is grain boundary This is because the hysteresis loss is increased due to excessive segregation and decrease of grain growth rate during recrystallization annealing, which can not take advantage of clean steel manufacturing.

[열간압연단계][Hot Rolling Step]

상기 성분조성단계 이후 행하여지는 열간압연단계의 전처리과정으로서 상기 강 슬라브를 가열로에 장입하여 재가열하는데, 이때 열간압연이 용이하기 위해서는 강 슬라브의 재가열온도를 1050℃ 이상으로 하여야 하지만, 1250℃를 넘으면 AlN, MnS 등과 같은 철손특성에 해로운 석출물이 재용해되어 열간압연 후 미세한 석출물이 과도하게 발생하는 경향이 있다. 이러한 미세한 석출물은 결정립 성장을 방해하여 철손특성을 열화시키므로 바람직하지 않다. 따라서, 본 발명의 경우 1050∼1250℃ 온도로 가열하는 것이 좋다.The steel slab is charged into a heating furnace and reheated as a pretreatment step of the hot rolling step performed after the composition step. In this case, in order to facilitate hot rolling, the reheating temperature of the steel slab should be 1050 ° C. or higher, but if it exceeds 1250 ° C. Precipitates, which are harmful to iron loss characteristics such as AlN and MnS, are re-dissolved and tend to cause excessive generation of fine precipitates after hot rolling. Such fine precipitates are undesirable because they hinder grain growth and deteriorate iron loss characteristics. Therefore, in the case of the present invention, it is preferable to heat to a temperature of 1050 ~ 1250 ℃.

상기와 같이 가열하여 열간압연하는데, 그 조업조건은 통상의 방법에 따라 행해지며, 이때 열간압연판의 산화층이 과다하게 발생하지 않도록 하기 위해서는 마무리압연온도는 800∼950℃로 조절하는 것이 바람직하다. 열간압연판 두께는 1.8mm 미만인 경우는 열간압연판 형상이 불량해지므로 바람직하지 않으며, 3.0mm를 초과하는 경우는 양호한 집합조직을 얻을 수 없어 자속밀도가 열화되므로 좋지 않다. The hot rolling is performed as described above, and the operating conditions are performed according to a conventional method. In this case, in order to prevent excessive generation of an oxide layer of the hot rolled sheet, the finishing rolling temperature is preferably adjusted to 800 to 950 ° C. If the thickness of the hot rolled sheet is less than 1.8 mm, the shape of the hot rolled sheet becomes poor, which is not preferable. If the thickness of the hot rolled sheet exceeds 3.0 mm, a good texture cannot be obtained, and the magnetic flux density deteriorates.                     

이어, 열간압연판 권취는 열간압연판에 산화층이 과도하게 발생되지 않도록 800℃ 이하의 온도에서 행하되 열간압연판의 결정립 성장을 위해 650℃ 이상의 온도에서 행하는 것이 바람직하다. 이후 공기중에서 코일상태로 냉각하거나, 보다 바람직하게는 로냉한다. Subsequently, the hot rolled sheet winding may be performed at a temperature of 800 ° C. or lower so as not to excessively generate an oxide layer in the hot rolled sheet, but at a temperature of 650 ° C. or higher for grain growth of the hot rolled sheet. After cooling in air in a coil state, or more preferably furnace cooling.

[열간압연판소둔단계][Hot Rolled Sheet Annealing Step]

이어, 상기 열간압연판은 중심부의 연신립을 재결정시키고 강판두께방향으로 균일한 결정립분포가 얻어지도록 열간압연판소둔을 행한다. 이 때 소둔온도가 800℃미만의 경우에는 균일한 결정립분포가 얻어지지 않아 자속밀도 및 철손 개선효과가 미흡하게 되므로 바람직하지 않으며, 1050℃를 초과하는 경우에는 자성에 불리한 (111)면 집합조직이 증가하여 자속밀도가 열화된다.Subsequently, the hot rolled sheet is subjected to hot rolled sheet annealing so as to recrystallize the stretched grains in the center portion and to obtain a uniform grain distribution in the steel plate thickness direction. At this time, if the annealing temperature is lower than 800 ℃, the uniform grain distribution is not obtained, and thus the effect of improving the magnetic flux density and iron loss is insufficient. If the annealing temperature is higher than 1050 ℃, the (111) plane texture which is unfavorable to magnetic Increasing magnetic flux density deteriorates.

[냉간압연단계][Cold rolling stage]

이어, 상기 열간압연판소둔판은 산세 후 냉간압연 단계를 행한다. 이때 64% 미만의 압하율로 압연하는 경우 압연 생산성이 감소하므로 64%이상의 압하율로 1회 압연하는 것이 바람직하다. 이 때, 냉간압연 두께는 0.20mm미만인 경우 소둔후 자성에 불리한 집합조직인 (111)면 강도가 증가하여 자속밀도가 감소하므로 바람직하지 않으며, 0.65mm를 초과하는 경우에는 판두께의 증가에 따라 와전류손실(eddy current loss)이 증가하여 총 철손이 증가하게 되므로 좋지 않다. Subsequently, the hot rolled sheet annealing plate is subjected to cold rolling after pickling. In this case, when rolling at a reduction ratio of less than 64%, rolling productivity is reduced, so it is preferable to roll once at a reduction ratio of 64% or more. At this time, if the cold rolling thickness is less than 0.20mm, the strength of the (111) plane, which is an unfavorable texture after annealing, is not preferable because the magnetic flux density decreases. If the thickness exceeds 0.65mm, the eddy current loss is increased with the increase of the plate thickness. This is not good because (eddy current loss) increases and total iron loss increases.

[재결정소둔단계][Recrystallization Annealing Step]

상기 방법에 따라 제조된 냉연판은 이어 행하여지는 재결정소둔단계에서, 소둔온도가 900℃보다 낮으면 재결정후 결정성장율이 저조하여 철손이 열화되며, 1100℃보다 높으면 결정성장의 잇점보다는 표면산화층 증가에 의한 폐해로 인하여 철손 및 자속밀도 특성이 열화하므로, 900∼1100℃온도에서 소둔하는 것이 바람직하다. 또한, 이 때 승온속도는 강판내에 자성에 유리한 집합조직인 (200)면의 강도에 영향을 미쳐 철손특성과 자속밀도치를 좌우하는데, 이들 특성을 우수하게 만들기 위해서는 승온속도는 5℃/초 이상으로 제어하는 것이 바람직하고, 소둔시간은 30∼300초로 조절함이 바람직하다.
In the recrystallization annealing step performed according to the above method, the annealing temperature is lower than 900 ℃, the crystal growth rate is low after recrystallization, the iron loss is deteriorated, if higher than 1100 ℃, the surface oxide layer increase rather than the advantage of crystal growth The iron loss and magnetic flux density characteristics are deteriorated due to the harmful effects, and therefore, it is preferable to anneal at 900 to 1100 ° C. At this time, the temperature increase rate influences the strength of the (200) plane, which is an advantageous structure in the steel sheet, to influence the iron loss characteristics and the magnetic flux density values. In order to improve these characteristics, the temperature increase rate is controlled at 5 ° C / sec or more. Preferably, the annealing time is adjusted to 30 to 300 seconds.

상기 재결정소둔단계에서 소둔한 강판은 경(Skin-Pass) 압연 단계를 거치지 않고 바로 유기질, 무기질 및 유무기복합피막으로 처리하거나 기타 절연가능한 피막제를 입혀 절연피막처리후 수요가로 출하되며, 수요가는 원하는 제품으로 타발한다.
The steel sheet annealed in the recrystallization annealing step is processed immediately with organic, inorganic and organic-inorganic composite coatings or coated with other insulating coatings without going through the skin-pass rolling step. Punch into the desired product.

이하, 본 발명을 보다 구체적으로 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.Hereinafter, although this invention is demonstrated more concretely, this invention is not limited only to these examples.

[실시예1]Example 1

하기 표1과 같은 성분을 갖는 강슬라브를 제조하고, 이 강슬라브를 1160℃의 온도에서 가열하고 890℃의 마무리압연 온도조건으로 열간압연하여 2.5mm두께로 열간압연판을 만든 후, 740℃의 온도에서 권취후 공기중에서 냉각하였다. 냉각권취된 열간압연판은 하기 표2에 나타낸 바와 같이 열간압연판 소둔을 행한 후 산세하고 이어서 0.35mm두께로 냉간압연한 다음, 하기 표2에 나타낸 바와 같이 재결정소둔하 였다. 열연판소둔분위기는 공기였으나, 질소나 아르곤 등 불활성가스 분위기로 하여도 무방하다. 재결정소둔분위기는 수소 20%와 질소80%의 분위기였다. 재결정소둔판은 유무기복합의 절연피막을 입힌후 절단 후 자기특성, 결정립도 및 (200)면강도를 조사하고 그 결과를 하기표2에 나타내었다. 이때, 철손, W15/50은 50Hz의 교류에서 철심에 1.5Tesla의 자속밀도를 유도하였을 때 열 등으로 소모되는 에너지 손실량이며, 자속밀도, B50은 5000A/m의 여자력에서 유기되는 값이며, 결정립도는 재결정소둔한 시편의 단면을 연마한 후 3% 나이탈(Nital)로 에칭하여 이미지 어넬라이저(Image Analyzer)로 측정하였다. 면강도는 호르타(Horta)식에 의한 집합조직강도로 그 정도를 나타내었는데, (200)면강도가 증가하거나, (111)면강도가 감소할수록 자화가 용이해져 자기특성이 개선되는 것이다.To prepare a steel slab having the components shown in Table 1, the steel slab was heated at a temperature of 1160 ℃ and hot-rolled under the finish rolling temperature conditions of 890 ℃ to make a hot rolled plate to a thickness of 2.5mm, then 740 ℃ After winding up at temperature, it was cooled in air. The cold rolled hot rolled plate was subjected to hot rolled sheet annealing as shown in Table 2, followed by pickling, followed by cold rolling to a thickness of 0.35 mm, and then recrystallized annealing as shown in Table 2 below. The hot-rolled sheet annealing atmosphere was air, but may be an inert gas atmosphere such as nitrogen or argon. The recrystallization annealing atmosphere was atmosphere of 20% hydrogen and 80% nitrogen. The recrystallized annealing plate was coated with an insulating film of organic / inorganic composite, and then the magnetic properties, grain size, and (200) surface strength after cutting were investigated and the results are shown in Table 2 below. At this time, iron loss and W15 / 50 are energy loss consumed by heat when inducing magnetic flux density of 1.5 Tesla to iron core at AC of 50Hz, magnetic flux density, B50 is induced value at excitation force of 5000A / m, After the recrystallized annealing cross section of the specimen was etched with 3% nital (Nital) was measured by an Image Analyzer (Image Analyzer). The surface strength is represented by the aggregate structure strength according to the Horta equation. As the (200) surface strength increases or the (111) surface strength decreases, the magnetization becomes easier and the magnetic properties are improved.

[표1]Table 1

강종Steel grade 성분(중량%)Ingredient (% by weight) CC SiSi AlAl MnMn SS NN SnSn SbSb 발명강Invention steel AA 0.0030.003 1.21.2 0.70.7 0.50.5 0.0030.003 0.0020.002 0.050.05 0.000.00 BB 0.0050.005 1.51.5 0.60.6 0.60.6 0.0030.003 0.0030.003 0.060.06 0.000.00 CC 0.0030.003 1.81.8 0.50.5 0.60.6 0.0050.005 0.0020.002 0.070.07 0.000.00 DD 0.0020.002 1.71.7 0.50.5 0.70.7 0.0040.004 0.0020.002 0.050.05 0.000.00 EE 0.0030.003 1.61.6 0.60.6 0.80.8 0.0030.003 0.0030.003 0.060.06 0.000.00 FF 0.0040.004 1.71.7 0.50.5 0.70.7 0.0030.003 0.0030.003 0.070.07 0.000.00 GG 0.0030.003 1.51.5 0.70.7 0.60.6 0.0030.003 0.0020.002 0.050.05 0.000.00 비교강Comparative steel AA 0.006* 0.006 * 1.81.8 0.50.5 0.60.6 0.0030.003 0.0030.003 0.060.06 0.000.00 BB 0.0030.003 1.0* 1.0 * 0.70.7 0.60.6 0.0030.003 0.0020.002 0.070.07 0.000.00 CC 0.0030.003 2.5* 2.5 * 0.70.7 0.60.6 0.0030.003 0.0020.002 0.050.05 0.000.00 DD 0.0030.003 1.71.7 0.3* 0.3 * 0.70.7 0.0030.003 0.0020.002 0.060.06 0.000.00 EE 0.0030.003 1.51.5 0.60.6 0.2* 0.2 * 0.0030.003 0.0030.003 0.050.05 0.000.00 FF 0.0030.003 1.61.6 0.50.5 0.70.7 0.006* 0.006 * 0.0030.003 0.060.06 0.000.00 GG 0.0030.003 1.71.7 0.80.8 0.60.6 0.0030.003 0.006* 0.006 * 0.070.07 0.000.00 HH 0.0030.003 1.71.7 0.80.8 0.60.6 0.0030.003 0.0030.003 0.21* 0.21 * 0.000.00 II 0.0030.003 1.71.7 0.80.8 0.80.8 0.0030.003 0.0030.003 0.02* 0.02 * 0.000.00 JJ 0.0020.002 1.71.7 0.80.8 0.80.8 0.0030.003 0.0020.002 0.000.00 0.05* 0.05 * *: 본 발명범위를 벗어난 조건임 * : Conditions outside the scope of the present invention

[표2][Table 2]

시료번호Sample Number 열간압연 판소둔 균열온도 (℃)Hot Rolled Plate Annealing Crack Temperature (℃) 재결정 소둔 균열온도 (℃)Recrystallization Annealing Crack Temperature (℃) 철손, W15/50 (W/kg)Iron loss, W15 / 50 (W / kg) 자속밀도, B10 (T)Magnetic flux density, B10 (T) 재결정 소둔판 결정립도 (㎛)Recrystallized Annealed Plate Grain Size (㎛) 재결정 소둔판 (200) 면강도Recrystallized Annealing Plate (200) 재결정 소둔판 (111) 면강도Recrystallized Annealing Plate (111) Surface Strength 강종Steel grade 발명재1Invention 1 10251025 10251025 2.322.32 1.741.74 160160 1.581.58 4.524.52 발명강AInventive Steel A 발명재2Invention 2 800800 900900 2.352.35 1.731.73 150150 1.561.56 4.564.56 발명강BInventive Steel B 발명재3Invention 3 950950 950950 2.302.30 1.741.74 152152 1.591.59 4.574.57 발명강CInvention Steel C 발명재4Invention 4 900900 900900 2.342.34 1.721.72 156156 1.511.51 4.514.51 발명강DInventive Steel D 발명재5Invention 5 10501050 11001100 2.282.28 1.751.75 159159 1.621.62 4.654.65 발명강EInventive Steel E 발명재6Invention 6 10301030 10301030 2.332.33 1.731.73 158158 1.531.53 4.534.53 발명강FInventive Steel F 발명재7Invention 7 900900 900900 2.312.31 1.741.74 153153 1.551.55 4.584.58 발명강GInvention Steel G 비교재1Comparative Material 1 1070* 1070 * 10251025 2.372.37 1.69* 1.69 * 168168 1.231.23 8.58* 8.58 * 발명강FInventive Steel F 비교재2Comparative Material 2 780* 780 * 10251025 3.12* 3.12 * 1.67* 1.67 * 156156 0.38* 0.38 * 4.694.69 발명강FInventive Steel F 비교재3Comparative Material 3 10251025 1120* 1120 * 2.92* 2.92 * 1.69* 1.69 * 176176 1.181.18 4.924.92 발명강FInventive Steel F 비교재4Comparative Material 4 10251025 880* 880 * 3.02* 3.02 * 1.721.72 9090 1.501.50 4.534.53 발명강FInventive Steel F 비교재5Comparative Material 5 10001000 10001000 3.30* 3.30 * 1.731.73 85* 85 * 1.551.55 0.550.55 비교강AComparative Steel A 비교재6Comparative Material 6 10501050 10501050 3.09* 3.09 * 1.741.74 152152 1.571.57 0.570.57 비교강BComparative Steel B 비교재7Comparative Material7 10001000 10001000 2.282.28 1.68* 1.68 * 155155 1.561.56 0.560.56 비교강CComparative Steel C 비교재8Comparative Material 8 10001000 10001000 3.06* 3.06 * 1.741.74 154154 1.551.55 0.550.55 비교강DComparative Steel D 비교재9Comparative Material 9 10301030 10301030 3.05* 3.05 * 1.741.74 155155 1.561.56 0.560.56 비교강EComparative Steel E 비교재10Comparative Material 10 10001000 10001000 3.35* 3.35 * 1.731.73 77* 77 * 1.551.55 0.550.55 비교강FComparative Steel F 비교재11Comparative Material 11 900900 900900 3.34* 3.34 * 1.731.73 78* 78 * 1.551.55 0.550.55 비교강GComparative Steel G 비교재12Comparative Material 12 930930 930930 3.293.29 1.751.75 155155 1.621.62 0.620.62 비교강HComparative Steel H 비교재13Comparative Material 13 10001000 10001000 3.18* 3.18 * 1.69* 1.69 * 153153 0.40* 0.40 * 0.40* 0.40 * 비교강IComparative Steel I 비교재14Comparative Material14 10001000 10001000 3.32* 3.32 * 1.731.73 88* 88 * 1.551.55 0.550.55 비교강JComparative Steel J

상기 표1 및 표2에 나타난 바와 같이, 발명재(1-7)가 비교재(1-14)에 비해 철손 및 자속밀도 특성이 우수함을 알 수 있었다. 구체적으로 설명하면, 비교재1은 성분과 재결정소둔 조건은 본 발명범위내에 있으나 열간압연판소둔시 균열온도가 과도하여 (111)면의 집합조직이 강하게 발달하는 결과 자속밀도가 증가하였다. 비교재 2는 열간압연판소둔시 균열온도가 미흡한 경우로서 높은 (100) 면강도가 얻어지지 않아 자속밀도 및 철손 공히 열화하였다. 비교재 3은 성분 및 열간압연판소둔 조건은 본 발명범위내에 있으나 재결정소둔시 균열온도가 과도하여 결정립도는 증 가하는 반면 표면산화층이 과도하게 형성되는 까닭에 우수한 자기특성이 얻어지지 않았으며, 비교재 4는 재결정소둔시 균열온도가 미흡한 경우로 결정립 성장이 저조하여 철손특성이 열화하였다. 비교재5,10,11은 C,S,N의 함유량이 본 발명범위 이상인 경우로 시 결정립 성장이 저조하여 우수한 철손특성이 얻어지지 않았으며, 비교재6은 Si의 함량이 본 발명범위 미만으로 첨가되었기 때문에 역시 우수한 철손특성이 얻어지지 않은 반면, 비교재7는 Si이 본 발명범위를 초과하여 첨가된 경우로 철손특성은 우수하나 자속밀도가 열등하였다. 또한 Al 및 Mn이 각각 본 발명범위 미만으로 첨가된 비교재8, 비교재9의 경우도 우수한 철손특성이 얻어지지 않았다. 비교재12는 Sn첨가량이 본 발명범위를 초과하는 경우로 철손 및 자속밀도 특성이 공히 우수하나 Sn첨가에 의한 (111)면강도 저감에 의한 집합조직개선 효과가 더 이상 나타나지 않아, 제조원가는 상승하는데 반해 Sn증량에 의한 철손 및 자속밀도 개선효과는 포화되므로 본 발명범위에 포함하지 않았다. 비교재13은 Sn이 본 발명범위 미만으로 첨가된 경우로 집합조직이 열화된 결과로 우수한 자속밀도 및 철손특성이 얻어지지 않았다. 비교재 14는 C, N 함량이 극저로 제어된 강에 Sb가 첨가된 경우로 Sb의 과도한 입계편석에 의해 재결정소둔시 결정립성장이 저조한 결과 양호한 철손특성이 얻어지지 않았다.As shown in Table 1 and Table 2, it was found that the invention material (1-7) is superior in iron loss and magnetic flux density characteristics than the comparative material (1-14). Specifically, in Comparative Material 1, the components and recrystallization annealing conditions are within the scope of the present invention. However, when the hot rolled sheet annealing is excessively cracked, the texture of the (111) plane strongly develops, resulting in increased magnetic flux density. In Comparative Material 2, the crack temperature was insufficient during annealing of the hot rolled sheet. Therefore, high (100) surface strength was not obtained, and thus the magnetic flux density and iron loss deteriorated. In Comparative 3, the composition and hot-rolled sheet annealing conditions are within the scope of the present invention, but the excellent magnetic properties were not obtained because the grain size increased due to excessive crack temperature during recrystallization annealing, but the surface oxide layer was excessively formed. In case of 4, the crack temperature was insufficient during recrystallization annealing, and grain loss was poor, resulting in deterioration of iron loss characteristics. Comparative materials 5, 10, and 11 had C, S, and N contents in the range of the present invention, and the grain growth was low, so that excellent iron loss characteristics were not obtained. Also excellent iron loss characteristics were not obtained because they were added, while Comparative Material 7 was excellent in iron loss characteristics but inferior magnetic flux density when Si was added beyond the scope of the present invention. In addition, excellent iron loss characteristics were not obtained in Comparative Materials 8 and 9 in which Al and Mn were added below the present invention, respectively. Comparative material 12 is excellent in iron loss and magnetic flux density characteristics when the amount of Sn added exceeds the scope of the present invention, but the improvement of the texture due to the reduction of the (111) surface strength due to the addition of Sn no longer appears, thus increasing the manufacturing cost. On the contrary, the iron loss and magnetic flux density improvement effect due to the increase of Sn are saturated and thus not included in the present invention. In Comparative Material 13, when Sn was added below the range of the present invention, excellent magnetic flux density and iron loss characteristics were not obtained as a result of deterioration of the texture. In Comparative Material 14, when Sb was added to steel with extremely low C and N contents, grain growth was poor when recrystallization annealing due to excessive grain boundary segregation of Sb.

상술한 바와 같이, 본 발명은 응력제거소둔후 철손이 낮고 및 자속밀도가 높은 우수한 무방향성 전기강판을 제공할 수 있는 효과가 있다. 또한, 본 발명에 의하면 제강시 인체에 유해한Sb를 첨가하기 위해 별도의 용강내 Sb투입설비를 필요로 하지 않고도 우수한 자기특성을 확보할 수 있는 효과가 있는 것이다.As described above, the present invention has an effect of providing an excellent non-oriented electrical steel sheet having low iron loss and high magnetic flux density after stress relief annealing. In addition, the present invention has the effect of ensuring excellent magnetic properties without the need for a separate molten steel Sb injection equipment in order to add Sb harmful to the human body during steelmaking.

Claims (4)

중량%로, C:0.005%이하, S :0.005%이하, N :0.005%이하, Si: 1.2∼2.3%, Al:0.5~1.5%, Mn: 0.3~1.2%, Sn: 0.03∼0.20%, 나머지 Fe 및 기타 불순물로 조성된 강 슬라브를 1050∼1250℃온도에서 재가열하여 1.8~3.0mm두께로 열간압연하고 650∼800℃온도에서 권취한 다음, 800∼1050℃온도에서 열연판소둔 및 산세척 후 0.2~0.65mm두께로 냉간압연하고, 900∼1100℃온도에서 30∼300초동안 재결정소둔하는 것을 포함하여 이루어짐을 특징으로 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법.By weight%, C: 0.005% or less, S: 0.005% or less, N: 0.005% or less, Si: 1.2 to 2.3%, Al: 0.5 to 1.5%, Mn: 0.3 to 1.2%, Sn: 0.03 to 0.20%, The steel slab composed of the remaining Fe and other impurities is reheated at a temperature of 1050 to 1250 ° C, hot rolled to a thickness of 1.8 to 3.0mm, wound at a temperature of 650 to 800 ° C, and then annealed and pickled at a temperature of 800 to 1050 ° C. After the cold rolling to a thickness of 0.2 ~ 0.65mm, and recrystallized annealing for 30 to 300 seconds at a temperature of 900 ~ 1100 ℃ low iron loss, high magnetic flux density non-oriented electrical steel sheet manufacturing method. 제1항에 있어서,The method of claim 1, 상기 열간압연은 800~950℃에서 마무리 압연을 행하는 것을 특징으로 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법.The hot rolling is a method of producing a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density, characterized in that the finish rolling at 800 ~ 950 ℃. 제1항에 있어서,The method of claim 1, 상기 냉간압연은 64%이상의 압하율로 1회 압연하는 것을 특징으로 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법.The cold rolling is a method of producing a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density, characterized in that the rolling once with a rolling reduction of 64% or more. 제1항에 있어서,The method of claim 1, 상기 재결정소둔은 5℃/초 이상의 승온속도로 가열하여 행하는 것을 특징으 로 하는 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법.The recrystallization annealing is a method for producing a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density, characterized in that the heating is performed at a temperature increase rate of 5 ° C / sec or more.
KR1020040049373A 2004-06-29 2004-06-29 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction KR101089302B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040049373A KR101089302B1 (en) 2004-06-29 2004-06-29 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040049373A KR101089302B1 (en) 2004-06-29 2004-06-29 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction

Publications (2)

Publication Number Publication Date
KR20060000490A true KR20060000490A (en) 2006-01-06
KR101089302B1 KR101089302B1 (en) 2011-12-02

Family

ID=37103776

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040049373A KR101089302B1 (en) 2004-06-29 2004-06-29 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction

Country Status (1)

Country Link
KR (1) KR101089302B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890812B1 (en) * 2006-12-29 2009-03-31 주식회사 포스코 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108231B1 (en) 2017-12-26 2020-05-07 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890812B1 (en) * 2006-12-29 2009-03-31 주식회사 포스코 A electrical steel sheet manufacturing method having low iron loss and high magnetic property

Also Published As

Publication number Publication date
KR101089302B1 (en) 2011-12-02

Similar Documents

Publication Publication Date Title
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR101286245B1 (en) Semiprocess non-oriented electrical steel sheets with superior magnetic properties and method for manufacturing the same
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR100940714B1 (en) Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR100544612B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR20150015308A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100782762B1 (en) A method for manufacturing non-oriented silicon steel with excellent magnetic property
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR20110015278A (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
KR100466176B1 (en) Method for Manufacturing non-oriented electrical steel sheet having low core loss
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property
KR100544738B1 (en) Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
KR101081295B1 (en) Method of manufacturing non-oriented electrical steel sheet and non-oriented electrical steel sheet manufactured using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191028

Year of fee payment: 9