KR20020045214A - A method for manufacturing high permeability grain oriented electrical steel sheet - Google Patents

A method for manufacturing high permeability grain oriented electrical steel sheet Download PDF

Info

Publication number
KR20020045214A
KR20020045214A KR1020000074585A KR20000074585A KR20020045214A KR 20020045214 A KR20020045214 A KR 20020045214A KR 1020000074585 A KR1020000074585 A KR 1020000074585A KR 20000074585 A KR20000074585 A KR 20000074585A KR 20020045214 A KR20020045214 A KR 20020045214A
Authority
KR
South Korea
Prior art keywords
rolling
steel sheet
oriented electrical
electrical steel
annealing
Prior art date
Application number
KR1020000074585A
Other languages
Korean (ko)
Inventor
김재관
우종수
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000074585A priority Critical patent/KR20020045214A/en
Publication of KR20020045214A publication Critical patent/KR20020045214A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing a high permeability grain oriented electrical steel sheet with high magnetic density is provided, in which edge cracks of hot rolled steel sheet can be prevented by regulating cooling rate properly over the temperature range from a dual phase of ferrite and austenite to ferrite monophase. CONSTITUTION: In a manufacturing method of a grain oriented electrical steel sheet where a steel slab comprising Si 2.0-4.0 wt.%, C 0.03-0.10 wt.%, Sol-Al 0.01-0.05 wt.%, Mn 0.03-0.10 wt.%, N 0.005-0.015 wt.%, S 0.007-0.030 wt.%, Cu 0.01-0.15 wt.%, a balance of Fe and other inevitable impurities undergoes rough rolling, finish rolling, coiling, preliminary annealing, cold rolling, decarburization annealing, applying of annealing separator, and hot annealing in order, the present invention is characterized in that cooling rate is regulated at 20 to 30°C/s over a temperature range of from end point of finish rolling to 810-860°C.

Description

고자속밀도 방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING HIGH PERMEABILITY GRAIN ORIENTED ELECTRICAL STEEL SHEET}A method for manufacturing high magnetic flux density oriented electrical steel sheet {A METHOD FOR MANUFACTURING HIGH PERMEABILITY GRAIN ORIENTED ELECTRICAL STEEL SHEET}

본 발명은 변압기 등의 철심재료로 사용되는 방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 제조공정중 열간압연 조건을 최적화함으로써, 자성이 우수하면서도 열연판 엣지크랙을 최소화할 수 있는 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as a core material such as a transformer, and more particularly, by optimizing the hot rolling conditions during the manufacturing process, the grain-oriented electrical steel that can minimize the hot-rolled sheet edge crack It relates to a method for producing a steel sheet.

최근, 변압기와 송전에 있어서 전력손실을 작게 하기 위하여, 전기강판에서 있어서 철손을 낮출 수 있는 저철손재의 개발이 추진되고 있다. 이러한 연구의 성과로, 자구제어기술 및 강판의 두께를 박물화하여 철손을 낮추는 기술이 개발되었는데, 실제 0.3mm, 0.27mm 등의 제품두께를 0.23mm, 0.20mm로 하여 생산 판매하고 있다. 이와 같은 저철손재의 제조시에는, 집합조직인 (110)<001>의 집적도를 높일 필요가 있기 때문에, 석출분산상, 소위 인히비터를 미세하고 균일하게 분포시키도록, 열연로의 가열로에 있어서 가열조건, 온도, 및 시간을 보다 엄격히 관리해야 한다. 즉, 보다 높은 온도에서 충분한 시간으로 하고, 열간압연에서의 석출을 방지하며, 고온의 사상압연기에서 압연중 석출을 방지해야 한다.Recently, in order to reduce power loss in transformers and power transmission, development of low iron loss materials capable of lowering iron losses in electrical steel sheets has been promoted. As a result of this research, the magnetic domain control technology and the technology of lowering the iron loss by thinning the thickness of steel sheet were developed. Actually, the product thickness of 0.3mm, 0.27mm, etc. is 0.23mm, 0.20mm. In the production of such low iron loss materials, it is necessary to increase the degree of integration of the aggregate structure (110) <001>, so that the heating conditions in the heating furnace of the hot-burning furnace are so as to distribute the dispersed dispersion phase, the so-called inhibitor finely and uniformly. , Temperature, and time should be tightly controlled. That is, a sufficient time at a higher temperature, to prevent precipitation in hot rolling, and to prevent precipitation during rolling in a high temperature finishing mill.

그런데, 이와 같이 열연가열과 압연조건을 엄격히 제어하는 경우, 여러가지 문제가 생기는데, 그 중 하나는 코일의 길이방향으로 자기적특성이 차이가 나는 것이다. 그 이유는 다음과 같다. 가열로에서 충분히 가열된 인히비터는 고용상태로 되더라도, 압연시 슬래브의 전단부와 후단부에서는 온도와 시간의 관계가 필연적으로 달라지기 때문에, 석출분산상의 차이가 발생하는 것이다. 즉, 슬래브의 전단부와 비교시, 압연중 온도저하, 온도 및 시간의 관계에서 후단부는 특성이 나빠지는 현상이 발생한다. 이로 인해, 코일 길이 방향의 자기특성변동이 커지게 된다. 이것은 공장의 제품실수율을 저하시켜 원가를 높게 할 뿐만 아니라, 생산과 주문의 밸런스가 맞지 않게 한다.By the way, in the case of strictly controlling the hot-rolled heating and rolling conditions, various problems arise, one of which is that the magnetic properties are different in the longitudinal direction of the coil. The reason for this is as follows. Even when the heater heated sufficiently in the heating furnace is in the solid state, the difference in precipitation dispersion occurs because the relationship between temperature and time inevitably varies at the front end and the rear end of the slab during rolling. That is, compared with the front end of the slab, the rear end of the slab occurs in the relationship between the temperature drop during the rolling, the temperature and the time, the phenomenon occurs. As a result, the magnetic characteristic variation in the coil length direction becomes large. This not only lowers the product yield rate of the factory, but also raises the cost, making the balance between production and order unbalanced.

또 하나의 큰 문제는, 열간압연시 엣지크랙이 생기는 현상이다. 상기 크랙은, 폭방향으로 100mm 혹은 그 이상의 크기를 갖는데, 압연후에 절단 (Triming)해야 하기 때문에 실수율의 막대한 저하를 가져올 뿐 아니라, 주문에 응하여 소정의 폭을 갖는 제품을 생산할 필요가 있는 공장으로서는, 판매할 수 없는 제품을 제조하게 되어 큰 문제가 되고 있다.Another big problem is the phenomenon of edge cracking during hot rolling. The crack has a size of 100 mm or more in the width direction, and since it must be trimmed after rolling, not only does it cause a huge drop in the error rate, but also a factory that needs to produce a product having a predetermined width in response to an order, It becomes a big problem to manufacture a product that cannot be sold.

이러한 크랙의 원인으로는 여러가지가 있는데, 가열로에서 고온가열에 의해 결정립이 조대해지기 때문이라는 것이 일반적인 생각이다. 즉, 통상, 재가열온도 및 열연온도를 높혀 자기특성을 개선하고자 하면, 엣지크랙이 많이 발생하게 되고, 역으로 재가열온도 및 열연온도를 낮추어 엣지크랙을 방지하고자 하면, 자기특성이 나빠지는 것이다.There are many causes of such cracks, and it is a general idea that crystal grains become coarse due to high temperature heating in a heating furnace. That is, in general, when the reheating temperature and the hot rolling temperature are increased to improve the magnetic properties, a lot of edge cracks are generated, and conversely, when the reheating temperature and the hot rolling temperature are lowered to prevent the edge cracks, the magnetic properties are deteriorated.

지금까지 이 크랙을 없앨 목적으로 여러 기술이 제안되었는데, 이제까지의 기술들은, 이 거대한 결정립이 형성된 슬라브에 크랙을 최소한으로 발생시키지 않으면서 열간압연으로 코일을 만드는 기술에 관한 것이다. 일예로, 일본 특개평 3-47601호에는 열간압연의 조압연에서 폭압연을 하여 엣지크랙을 방지하는 기술이 제안되었는데, 이 기술은 폭압연에서 거대결정의 재결정을 촉진함으로써 거대결정을 줄이는 것이다. 이 외에도 일본 특개평 6-122005, 일본 특개소 57-165102호에는, 설비, 압연중의 냉각법, 엣지가열법 등으로 엣지크랙을 방지하는 기술이 개시되어 있다.Many techniques have been proposed for the purpose of eliminating these cracks, and so far, techniques have been directed to hot rolling coils with minimal cracking in slabs with these large grains. For example, Japanese Patent Laid-Open No. 3-47601 proposes a technique for preventing edge cracking by rolling in rough rolling of hot rolling, which reduces the large crystal by promoting recrystallization of the large crystal in the rolling. In addition, Japanese Patent Laid-Open No. 6-122005 and Japanese Patent Laid-Open No. 57-165102 disclose techniques for preventing edge cracks by equipment, cooling during rolling, edge heating, and the like.

그러나, 이러한 방법 및 기타 지금까지 제안된 기술에서는, 엣지크랙방지를 위하여 막대한 신규설비의 투자가 필요하기 때문에 비경제적일 뿐만 아니라, 엣지크랙을 완전히 해결할 수도 없었다.However, this method and other proposed techniques have not only been uneconomical, but also could not completely solve the edge cracks because of the huge investment of new equipment to prevent edge cracks.

따라서, 방향성 전기강판 특히, AlN과 MnS를 인히비터로 이용하는 고자속밀도 방향성 전기강판에서는, 엣지크랙이 필연적으로 발생하는 것이고, 이것은 어쩔 수 없이 생길 수밖에 없는 현상이라고 생각하기까지 이르고 있다.Therefore, edge cracks inevitably occur in directional electrical steel sheets, particularly high magnetic flux density oriented electrical steel sheets using AlN and MnS as inhibitors, and it is until now considered to be an unavoidable phenomenon.

그러나, 본 발명의 발명자들은, AlN과 MnS를 인히비터로 이용하는 고자속밀도 방향성 전기강판의 제조에 있어서, 엣지크랙을 없애지 않는 한 생산성 및 실수율의 향상에 한계가 있음을 실제 조업을 통해 확인하고, 엣지크랙의 원인규명 및 엣지크랙의 발생을 방지하기 위한 기술들을 출원한 바 있다. 이러한 기술들로는, 대한민국 특허출원 제96-44545호, 제96-69482호, 제97-73574호, 제98-49081호, 및 제99-13215호 등이 있는데, 상기 96-44545호에서는, 크랙의 주요원인이 MnS로 존재하지 않는 유리 S에 있다는 것을 규명하고 제강단계에서의 S의 양을 최대한 줄임으로써 엣지크랙을 방지하고 후공정 즉, MgO첨가제에 S첨가 또는 최종고온소둔 분위기에서의 S첨가 등의 방법을 통하여 자성을 확보하는 방법을 제안하였다. 상기 96-69482호에서는, 엣지크랙의 발생이 판의 엣지부의 유리S에 기인한다는 것을 확인하고, 연주에서 제조한 강 슬래브를 가열로에 장입하기 전 상태에서 Mn을 슬래브 엣지부에 도포함으로써 자성이 우수하고 열연판 엣지크랙이 없는 고자속밀도 방향성 전기강판의 제조방법을 제안하였다. 상기 97-73574호에서는, 제강단계에서 S를 낮추면 연주단계에서 생성된 조대한 MnS가 가열온도를 낮추더라도 고용될 수 있다는 것을 발견하고 가열온도를 하향화시킴으로써 엣지크랙을 방지할 수 있는 방법을 제안하였다. 상기 98-49081호에서는, 열간압연시 슬래브 냉각방법이 엣지크랙발생에 중대한 영향을 미친다는 것을 발견하고, 고압수 분사방법, 분사횟수 등을 제한함으로써 엣지크랙을 방지할 수 있는 방법을 제안하였다. 또한, 상기 99-13215호에서는, 가열로에서의 슬래브 가열속도가 열연판의 엣지크랙에 미치는 영향을 규명하고, 예열대의 예열온도(Tp)와 가열대의 가열온도(Th)가 145≥Th-Tp≥55인 조건을 만족하도록 함으로써 엣지크랙을 방지할 수 있는 방법을 제안하였다.However, the inventors of the present invention, in the manufacture of high magnetic flux density oriented electrical steel sheet using AlN and MnS as an inhibitor, confirms through the practical operation that there is a limit to the improvement in productivity and the error rate unless the edge crack is eliminated, We have applied for techniques for determining the cause of edge cracks and preventing the occurrence of edge cracks. Such techniques include Korean Patent Application Nos. 96-44545, 96-69482, 97-73574, 98-49081, and 99-13215, and in the above-mentioned 96-44545, Identifying the main cause is in glass S that does not exist as MnS and preventing edge cracks by reducing the amount of S in the steelmaking stage as much as possible, and adding S to MgO additive or S in final high temperature annealing atmosphere. We proposed a method of securing magnetism through the method of. In the above-mentioned 96-69482, it is confirmed that the generation of edge cracks is caused by the glass S of the edge portion of the plate, and by applying Mn to the slab edge portion in the state before charging the steel slab manufactured in the performance into the heating furnace, A method of manufacturing a high magnetic flux density oriented electrical steel sheet which is excellent and has no hot-rolled sheet edge crack is proposed. 97-73574 found that lowering the S in the steelmaking step can cause the coarse MnS produced in the playing step to be dissolved even if the heating temperature is lowered, and proposed a method for preventing edge cracks by lowering the heating temperature. . In 98-49081, it was found that the slab cooling method has a significant effect on edge crack generation during hot rolling, and proposed a method capable of preventing edge cracks by limiting the high pressure water injection method and the number of injection times. Further, in the above-mentioned 99-13215, the effect of the slab heating rate in the heating furnace on the edge crack of the hot rolled sheet is investigated, and the preheating temperature (Tp) of the preheating zone and the heating temperature (Th) of the heating zone are 145≥Th-Tp. A method that can prevent edge cracking by satisfying a condition of ≥ 55 has been proposed.

그러나, 상기 방법들에 의하면, 엣지크랙을 괄목할만하게 줄일 수 있었지만, 조업이 불안정한 경우에는 엣지크랙이 다발하는 등 엣지크랙 측면에서의 편차가 문제점으로 부각되었고, 이들 방법만으로는 충분하지 않다는 것을 인식하기에 이르렀다.However, according to the above methods, the edge cracks were remarkably reduced, but when the operation was unstable, it was recognized that the variation in the edge cracks was a problem, such as a large number of edge cracks, and these methods were not enough. Reached.

이에 본 발명자들은, 상기한 종래 방법들의 문제점을 개선하기 위해 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 사상압연의 종료로부터 페라이트와 오스테나이트의 2상역에서 페라이트 단상역으로 변태하는 온도까지의 온도구간에서 냉각속도를 적절히 제어함으로써, 열연판 엣지크랙의 발생을 최소화할 수 있는 고자속밀도 방향성 전기강판의 제조방법을 제공하고자 하는 데, 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments to improve the problems of the conventional methods described above, and have proposed the present invention based on the results. The present invention has been made in the two-phase region of ferrite and austenite from the end of finishing rolling. It is an object of the present invention to provide a method of manufacturing a high magnetic flux density oriented electrical steel sheet which can minimize the occurrence of hot-rolled sheet edge cracks by appropriately controlling a cooling rate in a temperature range up to a temperature transforming into a ferrite single phase region.

상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, Si:2.0∼4.0%, C:0.03∼0.10%, Sol-Al:0.01∼0.05%, Mn:0.03∼0.10%, N:0.005∼0.015%, S:0.007∼0.030%, Cu:0.01~0.15%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 조압연 및 사상압연한 후 권취하고, 예비소둔, 냉간압연, 탈탄소둔, 소둔분리제 도포, 및 고온소둔하는 방향성 전기강판의 제조방법에 있어서,By weight%, Si: 2.0 to 4.0%, C: 0.03 to 0.10%, Sol-Al: 0.01 to 0.05%, Mn: 0.03 to 0.10%, N: 0.005 to 0.015%, S: 0.007 to 0.030%, Cu: Preparation of oriented electrical steel sheet which is wound by rough rolling and finishing rolling of steel slab composed of 0.01 ~ 0.15%, balance Fe and other unavoidable impurities, followed by preannealing, cold rolling, decarbonization annealing, and hot annealing. In the method,

상기 사상압연의 종료시점부터 810~860℃까지 온도구간의 냉각속도를 20~30℃/s로 제어하는 것을 특징으로 하는 고자속밀도 방향성전기강판의 제조방법에 관한 것이다.It relates to a method of manufacturing a high magnetic flux density oriented electrical steel sheet characterized in that the cooling rate of the temperature section from the end of the finishing rolling to 810 ~ 860 ℃ controlled to 20 ~ 30 ℃ / s.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명자의 발명자들은, 열간압연시 가열로 조업조건 및 조압연 조업조건 등을 제어하면 열연판에서 발생하는 엣지크랙을 괄목할만한 수준으로 줄일 수는 있지만, 코일에 따라서는 완전하지 못한 것이 발생하는 것을 발견하였다. 특히, 장시간의 면밀한 조사결과, 열연판 권취직후에는 엣지크랙이 관찰되지 않은 코일의 경우에도 후공정으로 이송된 후에 관찰해보면 상당한 수의 크랙이 생겨 나는 현상을 포착하고, 이러한 원인을 제거하지 않고는 엣지크랙이 발생하지 않는 열연코일의 제조는 불가능하다는 결론에 도달하였다. 상기와 같이, 권취직후에 발견되지 않은 것이 수일 후에 관찰된다는 것은 권취이전에 미세한 크랙이 있어 그 미세크랙이 진전된 것이라고 판단하고 권취직후에 미세크랙을 관찰한 결과, 코일에 따라서는 미세크랙이 생겨있고, 이런 미세크랙은 시간이 지남에 따라서 조대한 크랙으로 발전한다는 사실을 확인할 수 있었다. 이에, 본 발명자들은 열연판의 엣지크랙이 없는 건전한 코일을 만들기 위해서는, 미세크랙의 발생원인을 원천적으로 차단하는 것이 필수불가결하다는 결론에 도달하였다.The inventors of the present invention can reduce the edge cracks generated in the hot rolled sheet to a remarkable level by controlling the heating furnace operating conditions and the rough rolling operating conditions. Found. In particular, as a result of a long time scrutiny, even after the coil has been observed, the edge cracks have not been observed immediately after being transported to the post process. It was concluded that it is impossible to manufacture a hot rolled coil without edge cracking. As described above, it was observed that a few days after the winding was observed after a few days because the microcracks were advanced before the winding and the microcracks were observed immediately after the winding. As a result, the microcracks are formed depending on the coil. And, it can be seen that these microcracks develop into coarse cracks over time. Accordingly, the present inventors have come to the conclusion that in order to make a sound coil without edge cracks of a hot rolled sheet, it is indispensable to fundamentally block the cause of the microcracks.

본 발명의 발명자들은, 미세크랙의 발생가능시기를 사상압연이전과 사상압연이후로 나누어 면밀히 검토하였는데, 특히 본 발명의 발명자들은 사상압연이후 소재가 냉각되고 권취하는 과정에서 미세크랙이 성장하지 못하도록 하는 데 초점을 두었다.The inventors of the present invention carefully examined the possible time periods of microcracks by dividing them before finishing rolling and after finishing rolling. In particular, the inventors of the present invention prevent the microcracks from growing during the process of cooling and winding the material after finishing rolling. De focused.

즉, 사상압연이 종료된 열연판은 런닝테이블을 거쳐 냉각되어 권취기에 도달되어 권취되는데, 상기 냉각과정에서 사상압연이전에 발생한 미세크랙이 진전되는 것을 발견하고, 냉각시 이와 같은 미세크랙의 진전을 방지할 수 있는 방법에 대하여 연구 및 실험을 수행하였다. 또한, 사상압연이후에 생기는 미세크랙은 소재의 취성과 관련이 있을 것으로 생각하고, 사상압연이후 권취까지의 냉각속도가 소재의 취성에 관여할 것이라는 점에 착안하여 본 발명을 완성하기에 이르렀다.That is, the hot-rolled sheet after finishing finishing is cooled through the running table to reach the winding machine and wound up, and it is found that the microcracks generated before the finishing rolling progress during the cooling process, and the progress of the microcracks during cooling is observed. Research and experiment were conducted on how to prevent this. In addition, since the microcracks generated after finishing rolling are considered to be related to brittleness of the material, the present invention has been completed by focusing on the fact that the cooling rate after winding is involved in brittleness of the material.

이하, 본 발명의 강 성분 및 제조조건에 대하여 설명한다.Hereinafter, the steel component and manufacturing conditions of this invention are demonstrated.

본 발명에서는 통상 방향성 전기강판에서 이용되는 중량%로, Si:2.0∼4.0%, C:0.03∼0.10%, Sol-Al:0.01∼0.05%, Mn:0.03∼0.10%, N:0.005∼0.015%, S:0.007∼0.030%, Cu:0.01~0.15%를 포함하여 조성되는 강 슬라브를 이용할 수 있다. 이와 같은 조성을 갖는 강 슬라브를 재가열한 다음, 열간압연하는데, 본 발명에서는 열간압연전 슬라브의 가열은 고온뿐만 아니라 저온에서도 행할 수 있다. 예를 들어, 1300℃이하의 저온가열에서도 사상압연종료온도가 1000℃이상이고 권취온도가 550℃ 부근에서 종료되며 엣지크랙이 발생하는 강종의 경우에는, 어떠한 경우에도 적용이 가능하다.In the present invention, in general, by weight% used in grain-oriented electrical steel sheet, Si: 2.0 to 4.0%, C: 0.03 to 0.10%, Sol-Al: 0.01 to 0.05%, Mn: 0.03 to 0.10%, N: 0.005 to 0.015% , S: 0.007% to 0.030%, and Cu: 0.01% to 0.15%. The steel slab having such a composition is reheated and then hot rolled. In the present invention, the heating of the hot rolled slab can be performed not only at a high temperature but also at a low temperature. For example, even in the case of low temperature heating of 1300 ° C. or less, in the case of steel grades in which the finishing rolling end temperature is 1000 ° C. or more, the winding temperature is terminated at around 550 ° C., and edge cracks occur, it is applicable in any case.

한편, 통상 방향성 전기강판의 열간압연작업에서는, 두께가 약 200~250mm인 슬래브를 가열로에서 1300~1400℃로 가열한 다음, 조압연하여 두께가 약 40mm인 바(bar)로 만든 후, 사상압연을 통하여 최종두께까지 압연한다. 통상 사상압연은, 6내지 7개의 스탠드로 구성된 사상압연기를 이용하여 실시하는데, 1200℃ 이상에서 첫번째 스탠드의 압연을 시작하여 1000℃이상에서 최종스탠드에서의 압연을 종료한다.On the other hand, in the hot rolling operation of a grain-oriented electrical steel sheet, the slab having a thickness of about 200 ~ 250mm is heated to 1300 ~ 1400 ℃ in a heating furnace, and then roughly rolled into a bar having a thickness of about 40mm, Roll to the final thickness through rolling. Normal finishing rolling is performed using a finishing mill comprised of 6 to 7 stands, starting rolling of the first stand at 1200 ° C or higher and ending rolling at the final stand at 1000 ° C or higher.

상기한 바와 같이, 사상압연이 종료된 열연판은 러닝테이블을 거쳐 권취기에 도달하여 권취되는데, 통상의 경우에는 1000℃ 부근에서 사상압연을 종료한 후 50℃/s 혹은 60℃/s이상, 특히 고온역일수록 냉각속도가 커서 900℃부근까지는 70℃/s이상의 속도로 권취기까지 냉각하는데 반하여, 본 발명에서는 사상압연종료후 810~860℃ 까지의 온도구간을 20~30℃/s의 속도로 냉각하는 것을 특징으로 하는데, 그 이유는 다음과 같다.As described above, the hot rolled sheet after finishing finishing reaches the winding machine via a running table and is wound. In the usual case, after finishing finishing finishing at around 1000 ° C, at least 50 ° C / s or 60 ° C / s, in particular, The higher the temperature range, the greater the cooling rate, while cooling to the winder at a speed of 70 ° C./s or more up to 900 ° C., while in the present invention, the temperature range from 810 to 860 ° C. after the finishing rolling is performed at a speed of 20 to 30 ° C./s. It is characterized by cooling, for the following reasons.

사상압연이 종료되는 시점에는 강판내 미세조직이 오스테나아트와 페라이트의 2상으로 되는데 권취까지 냉각하는 과정에서 오스테나이트가 페라이트로 변태하여 이후에는 페라이트 단상영역으로 된다. 본 발명의 발명자들은, 상기 오스테나이트와 페라이트의 혼합상(2상) 영역에서 페라이트만의 단상영역이 되는 810~860℃ 까지의 온도구간에 대한 냉각속도가 소재의 취성에 영향을 미친다는 점과 오스테나이트에서 페라이트로 변태할 때 급냉하면 페라이트 조직이 미세해진다는 점에 착안하여, 냉각속도를 변태구역 전후로 구분하여 달리하는 실험을 반복하였다. 그 결과, 압연 종료시점부터 810~860℃까지의 온도구간의 냉각속도를 30℃/s 이하로 낮추면 미세크랙의 방지에 큰 효과가 있다는 것을 알아내었다. 또한, 이와 같이 냉각속도를 조절하는 것은, 냉각수의 수압을 조절함으로써 실현가능하다는 것도 발견하였다. 즉, 상기한 효과를 얻기 위해서는, 상기 온도구간에서의 냉각속도를 30℃/s하로 설정해야 하는 것이다. 그러나, 상기 냉각속도가 20℃/s미만이면 860℃이후의 냉각속도가 지나치게 커서 통상의 런닝테이블의 길이로는 권취온도를 맞춰내기 어렵기 때문에, 냉각속도의 하한은 20℃/s로 설정하였다.At the end of finishing rolling, the microstructure in the steel sheet becomes two phases of austena art and ferrite. In the process of cooling to winding, the austenite is transformed into ferrite, and then becomes a ferrite single phase region. The inventors of the present invention, the cooling rate for the temperature range from the mixed phase (two phase) region of the austenite and ferrite to 810 ~ 860 ℃ to become a single phase region of the ferrite only affects the brittleness of the material In view of the fact that the quenching becomes fine when the transformation from austenite to ferrite becomes fine, the experiments were repeated by differentiating the cooling rate before and after the transformation zone. As a result, it was found that lowering the cooling rate from the end of rolling to the temperature range of 810 to 860 ° C. to 30 ° C./s or less has a great effect on the prevention of fine cracks. It has also been found that adjusting the cooling rate in this way can be realized by adjusting the water pressure of the cooling water. That is, in order to obtain the above-mentioned effect, the cooling rate in the temperature section should be set at 30 ° C / s or less. However, if the cooling rate is less than 20 ° C./s, the cooling rate after 860 ° C. is too large to make the winding temperature match with the length of a normal running table. Therefore, the lower limit of the cooling rate is set to 20 ° C./s. .

한편, 상기 오스테나이트와 페라이트의 혼합상(2상) 영역에서 페라이트만의 단상영역이 되는 810~860℃ 부터 권취기까지의 온도구간에서는 냉각속도에 특별한 제한을 두지 않는다. 한편, 상기 권취시 온도는 최종제품에서 안정된 자기적특성을 확보할 수 있는 범위로 설정하는 것이 바람직하며, 통상 500~550℃의 온도범위로 설정한다.On the other hand, there is no particular limitation on the cooling rate in the temperature range from 810 to 860 ° C. to the winder, which becomes the single phase region of the ferrite only in the mixed phase (two phase) region of the austenite and ferrite. On the other hand, the winding temperature is preferably set in a range that can ensure a stable magnetic properties in the final product, it is usually set to a temperature range of 500 ~ 550 ℃.

이후, 코일상태로 권취된 열연강판은 후속공정으로 이송된다.Then, the hot rolled steel sheet wound in the coil state is transferred to the subsequent process.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

중량%로, Si:3.12%, C:0.060%, Sol-Al:0.025%, Mn:0.085%, N:0.0087%, S:0.019%, Cu:0.08%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지는 강 슬라브를 1375℃의 가열로에서 총 285분간 재로시킨 후 추출하였다. 이것을 조압연하여 두께 40mm인 바로 제조하고, 이어서 사상압연하여 2.3mm의 두께까지 열간압연하였다. 이 때, 사상압연 종료온도를 1150℃로 하고, 사상압연종료이후부터 850℃까지의 냉각속도를 하기 표1과 같이 변화시켜 열연판의 엣지크랙을 조사하고, 그 결과를 하기 표 1에 나타내었다.By weight, Si: 3.12%, C: 0.060%, Sol-Al: 0.025%, Mn: 0.085%, N: 0.0087%, S: 0.019%, Cu: 0.08%, remaining Fe and other unavoidable impurities The steel slab made of ash was reloaded in a furnace of 1375 ° C. for a total of 285 minutes and then extracted. This was rough-rolled to prepare a bar having a thickness of 40 mm, followed by finishing rolling and hot rolling to a thickness of 2.3 mm. At this time, the finishing rolling temperature is set to 1150 ℃, the cooling rate from the end of finishing rolling to 850 ℃ changed as shown in Table 1 to investigate the edge crack of the hot rolled sheet, the results are shown in Table 1 below .

또한, 이와 같이 제조된 각 열연판을 1120℃에서 열처리한 후, 5패스로 최종두께 0.29mm까지 냉간압연하였다. 이 코일을 845℃에서 탈탄소둔하고, 그후 MgO를 주성분으로 하는 소둔분리제를 도포하여 1200℃에서 최종 고온소둔하였다. 이후, 이와 같이 하여 얻어진 최종 고온소둔판의 자기적특성을 측정하고, 그 결과를 하기 표 1에 나타내었다.In addition, each hot rolled sheet thus prepared was heat-treated at 1120 ° C., and then cold rolled to a final thickness of 0.29 mm in five passes. The coil was decarbonized at 845 占 폚, and thereafter, an annealing separator containing MgO as a main component was applied, followed by final high temperature annealing at 1200 占 폚. Thereafter, the magnetic properties of the final high temperature annealing plate thus obtained were measured, and the results are shown in Table 1 below.

구분division 사상압연종료부터 850°C까지의 냉각속도(°C/초)Cooling speed from finishing finishing to 850 ° C (° C / sec) 엣지크랙 발생율(%)Edge crack incidence (%) 자속밀도 B10(Tesla)Magnetic flux density B 10 (Tesla) 5mm이하5mm or less 5~10mm5 ~ 10mm 10~15mm10-15mm 발명예1Inventive Example 1 2020 100100 00 00 1.951.95 발명예2Inventive Example 2 2525 100100 00 00 1.951.95 발명예3Inventive Example 3 3030 100100 00 00 1.951.95 비교예1Comparative Example 1 3535 9595 55 00 1.941.94 비교예2Comparative Example 2 4040 9090 1010 00 1.941.94 비교예3Comparative Example 3 5050 9090 1010 00 1.941.94 비교예4Comparative Example 4 7070 8585 1010 55 1.941.94

상기 표1에 나타난 바와 같이, 사상압연종료부터 850℃까지의 냉각속도가 본 발명범위인 20~30℃/s인 발명예(1)~(3)의 경우에는, 5mm 이상인 엣지크랙이 발생하지 않아 열연판의 엣지상태가 매우 양호하고, 최종제품의 자성도 우수한 것을 알 수 있다.As shown in Table 1, in the case of Inventive Examples (1) to (3) in which the cooling rate from finishing finishing to 850 ° C is in the range of 20 to 30 ° C / s, the edge crack of 5 mm or more does not occur. Therefore, the edge state of the hot rolled sheet is very good, it can be seen that the magnetic properties of the final product is also excellent.

상기한 바와 같은 본 발명에 의하면, 열연판에서 엣지크랙의 발생을 현저히 감소시키면서도 우수한 자성을 확보할 수 있어서, 고자속밀도 및 저철손을 요하는 제품에 적용할 수 있는 효과가 있는 것이다.According to the present invention as described above, it is possible to secure an excellent magnetic properties while significantly reducing the occurrence of edge cracks in the hot rolled sheet, there is an effect that can be applied to products requiring high magnetic flux density and low iron loss.

Claims (1)

중량%로, Si:2.0∼4.0%, C:0.03∼0.10%, Sol-Al:0.01∼0.05%, Mn:0.03∼0.10%, N:0.005∼0.015%, S:0.007∼0.030%, Cu:0.01~0.15%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 조압연 및 사상압연한 후 권취하고, 예비소둔, 냉간압연, 탈탄소둔, 소둔분리제 도포, 및 고온소둔하는 방향성 전기강판의 제조방법에 있어서,By weight%, Si: 2.0 to 4.0%, C: 0.03 to 0.10%, Sol-Al: 0.01 to 0.05%, Mn: 0.03 to 0.10%, N: 0.005 to 0.015%, S: 0.007 to 0.030%, Cu: Preparation of oriented electrical steel sheet which is wound by rough rolling and finishing rolling of steel slab composed of 0.01 ~ 0.15%, balance Fe and other unavoidable impurities, followed by preannealing, cold rolling, decarbonization annealing, and hot annealing. In the method, 상기 사상압연의 종료시점부터 810~860℃까지 온도구간의 냉각속도를 20~30℃/s로 제어하는 것을 특징으로 하는 고자속밀도 방향성 전기강판의 제조방법Method of manufacturing a high magnetic flux density oriented electrical steel sheet characterized in that the cooling rate of the temperature section from the end of the finishing rolling to 810 ~ 860 ℃ controlled to 20 ~ 30 ℃ / s
KR1020000074585A 2000-12-08 2000-12-08 A method for manufacturing high permeability grain oriented electrical steel sheet KR20020045214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000074585A KR20020045214A (en) 2000-12-08 2000-12-08 A method for manufacturing high permeability grain oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000074585A KR20020045214A (en) 2000-12-08 2000-12-08 A method for manufacturing high permeability grain oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
KR20020045214A true KR20020045214A (en) 2002-06-19

Family

ID=27680505

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000074585A KR20020045214A (en) 2000-12-08 2000-12-08 A method for manufacturing high permeability grain oriented electrical steel sheet

Country Status (1)

Country Link
KR (1) KR20020045214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940718B1 (en) * 2002-12-26 2010-02-08 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940718B1 (en) * 2002-12-26 2010-02-08 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet without hot band annealing

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
KR920006581B1 (en) Method of making non-oriented silicon steel sheets having excellent magnetic properties
KR930009976B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
EP3960887B1 (en) Method for producing grain-oriented electrical steel sheet
KR100721823B1 (en) A hot rolling method for grain-oriented electrical steel sheet
CN115992331A (en) High-magnetic-induction oriented silicon steel and manufacturing method thereof
KR20020045214A (en) A method for manufacturing high permeability grain oriented electrical steel sheet
KR19980018489A (en) Manufacturing method of unidirectional silicon steel sheet
KR101130724B1 (en) A method for grain-oriented electrical steel sheet with uniform magnetic properties
KR100480002B1 (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
KR100501005B1 (en) A method for manufacturing grain oriented electrical steel sheet
KR100501004B1 (en) A method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
KR100352594B1 (en) Hot rolling method of oriented electrical steel sheets with excellent magnetic properties and few hot-rolled sheet edge cracks
KR100530064B1 (en) A Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
JPS59193216A (en) Preparation of orientated silicon steel plate
KR20020032829A (en) Method for manufacturing grain oriented electrical steel sheet
KR960003901B1 (en) Process for the production of oriented electrical steel sheet having excellent magnetic properties
KR101459730B1 (en) Oriented electrical steel sheets and method for manufacturing the same
JP3885240B2 (en) Method for producing unidirectional silicon steel sheet
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
KR100817156B1 (en) A method for grain-oriented electrical steel sheet with good magnetic properties
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
KR20000066252A (en) Method for preventing cracks in edge part of grain oriented electrical hot rolled steel sheet
KR100544616B1 (en) Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination