KR100256342B1 - The manufacturing method for oriented electric steel sheet with magnetic and decarburing property - Google Patents

The manufacturing method for oriented electric steel sheet with magnetic and decarburing property Download PDF

Info

Publication number
KR100256342B1
KR100256342B1 KR1019950053582A KR19950053582A KR100256342B1 KR 100256342 B1 KR100256342 B1 KR 100256342B1 KR 1019950053582 A KR1019950053582 A KR 1019950053582A KR 19950053582 A KR19950053582 A KR 19950053582A KR 100256342 B1 KR100256342 B1 KR 100256342B1
Authority
KR
South Korea
Prior art keywords
less
annealing
temperature
steel sheet
cold rolling
Prior art date
Application number
KR1019950053582A
Other languages
Korean (ko)
Other versions
KR970043180A (en
Inventor
최규승
한규석
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950053582A priority Critical patent/KR100256342B1/en
Publication of KR970043180A publication Critical patent/KR970043180A/en
Application granted granted Critical
Publication of KR100256342B1 publication Critical patent/KR100256342B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing an oriented electrical steel sheet having superior magnetism and decarburization is provided to improve magnetism by containing carbon content in an amount of 0.025 wt.% or less during the steel making process, thereby improving decarburization in the subsequent processes, and increasing a second cold rolling ratio, thereby obtaining strong processing energy. CONSTITUTION: The method comprises the processes of hot rolling after reheating a slab comprising 2.9 to 3.3 wt.% of Si, 0.015 wt.% or less of P, 0.011 to 0.027 wt.% of sol-Al, 0.0080 to 0.012 wt.% of N, 0.007 wt.% or less of S, 0.06 to 0.18 wt.% of Ni and/or Cr, 0.32 wt.% or less of Mn, 0.6 wt.% or less of Cu, 0.010 to 0.025 wt.% wt.% of C and a balance of Fe and other inevitable impurities to a temperature of 1250 to 1320 deg.C; annealing the hot rolled steel slab at a temperature of 1000 deg.C or less; controlling a final thickness of the steel slab with a second cold rolling ratio of 58 to 65% by carrying out two times of cold rollings including the decarburization annealing performed under wet atmosphere (H) of a temperature ranging from 820 to 870 deg.C; coating a fusion preventing agent having a main constituent of MgO on the steel sheet and winding the steel sheet after performing a recovering annealing on the cold rolled steel sheet at a temperature of 600 deg.C or less; final finish annealing passing through a heat cycle in which the steel sheet is soaked for more than 20 hours and cooled; and cooling the resulting steel sheet.

Description

자성 및 탈탄성이 우수한 방향성 전기강판의 제조방법Manufacturing method of oriented electrical steel sheet excellent in magnetic and decarburization

본 발명은 변압기, 전동기, 발전기 및 기타 전기기기등의 철심재료로 사용되는 방향성 전기강판을 저온 스라브 가열방식에 의해 제조하는 방법에 관한 것으로써, AIN을 2차 재결정 성장억제제로 하고 저온 스라브 가열방식을 적용하는 자성 및 탈탄성이 우수한 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials for transformers, electric motors, generators, and other electric equipments by low temperature slab heating, wherein AIN is a secondary recrystallization inhibitor and low temperature slab heating. It relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic and decarburization properties.

방향성 전기강판이란 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며 이 제품은 압연 방향으로 극히 우수한 자기적특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기타 전자기기등의 철심 재료로 사용된다.A grain-oriented electrical steel has an aggregate structure in which the grain orientation is aligned in the direction of (110) [001], and this product has extremely good magnetic properties in the rolling direction. It is used as iron core material for equipment.

방향성전기강판의 제조공정은 일반적으로 2-4%의 규소와 입성장억제제로 대부분 MnS나 MnSe를 함유하는 것을 특징으로 용해하여 스라브를 만든후, (재가열 및 열간압연)-(예비소둔)-(중간소둔이 낀 1회의 냉간압연)-(탈탄 소둔)-(융착방지제 도포)-(최종 마무리고온소둔)등의 복잡한 공정을 거쳐서 최종 제품으로 완성되는데 이러한 복잡한 제조공정중 가장 제조상의 난문제를 안고 있는 공정이 고온에서 열처리를 행하는 스라브 재가열공정이다. 이 스라브 재가열공정은 입성장억제제로 사용되는 MnS나 AIN등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시켜야만 하는 것을 중심으로 하여 행하여지는데, 이를 위해서는 1400℃ 정도의 고온에서 5시간 정도의 유지가 불가피하게 된다. 이때 고온의 스라브 표면에서는 공기와의 산화반응에 의한 Si 및 Fe 성분의 산화물이 복합된 파이어라이트(Fe2SiO4)라는 산화물로 되며 이는 융점이 1300℃ 정도로 낮아 표면에서 부터 녹아내리게 된다. 이때 녹아내리는 스라그는 일부 바깥으로 흘러내리게 설계되어 있지만 대부분은 로 상부의 내화물등에 축적되기 때문에 작업종료와 동시에 내부수리가 불가피하다. 따라서 연속작업을 주 특징으로 하는 제철소에서는 이로 인한 작업성 불량, 생산성 감소, 원가 상승등의 엄청난 경제적 부담을 안고 있다.The manufacturing process of the grain-oriented electrical steel sheet is generally 2-4% of silicon and grain growth inhibitors, and most of them contain MnS or MnSe, and after making slabs, (reheating and hot rolling)-(pre-annealing)-( One time cold rolling with intermediate annealing)-(Decarburization annealing)-(Adhesion prevention agent)-(Final finishing high temperature annealing) is completed to the final product. An existing process is a slab reheating step of performing heat treatment at a high temperature. This slab reheating process focuses on having to completely disperse the precipitates such as MnS and AIN, which are used as grain growth inhibitors, and then deposit them finely. Done. At this time, on the surface of the hot slab, an oxide called Pyrite (Fe 2 SiO 4 ) in which oxides of Si and Fe components are combined by an oxidation reaction with air is melted from the surface with a melting point as low as 1300 ° C. At this time, the molten slag is designed to flow outward, but most of it accumulates in the refractory of the upper part of the furnace. Therefore, steelworks, which are characterized by continuous work, have enormous economic burdens such as poor workability, reduced productivity, and higher costs.

스라브 재가열온도의 하향화 노력은 선진제조업체를 중심으로 총력적인 관심속에 진행되고 있으며 여러가지 방법이 제시되고 있는 중이다. 그 방법으로서, 재가열은 도를 스라브가 녹지 않는 약 1300℃이하의 온도에서 행하는 것을 기준으로 하여 기본 성분계의 조정을 행하며 이 성분조정에 부가하여 제조공정중의 석출물 관리방법 개선등이 제안되고 있다. 현재까지의 공지 기술들로는 일본에서 주로 검토되어 국내에 까지 기술을 공개한 한국특허 공개 제 89-8334, 89-13200, 92-702728, 92-9999, 92-14941호 및 공고 제 89-8892호등이 있다. 이들은 모두 고자속밀도 방향성전기강판용을 대상으로 하였고, 실제적인 재가열온도는 보통 1150-1200℃ 범위이며, 자속밀도값을 확보하기 위해서 입성장억제제 성분의 하나인 N성분을 공정중에서 보충하기 위해서 탈탄소둔공정후 소재내에 질소를 함침시키는 침질화 처리공정이 필수적으로 추가되고 있다. 따라서 이들의 기술들은 제철소 일반강의 재가열온도인 1250-1280℃보다 오히려 낮은 온도로 관리함에 따라 상호 작업간섭이 있고, 침칠반응을 위한 추가설비의 설치가 불가피하여 원가부담이 되고, 특히 입성장억제력 확보를 위해 1회강압연 처리로 공정관리가 극히 어렵게 됨에 따라 로트별 자성변차가 심하게 나타나 실수율이 낮게 된다.Efforts to lower the slab reheating temperature are proceeding with full attention from leading manufacturers and various methods are being proposed. As a method, the reheating is performed on the basis of adjusting the degree at a temperature of about 1300 ° C. or less at which the slab does not melt, and in addition to this ingredient adjustment, improvement in the method of managing the precipitate during the manufacturing process has been proposed. Known technologies up to now include Korean Patent Publication Nos. 89-8334, 89-13200, 92-702728, 92-9999, 92-14941 and Publication No. 89-8892, which have been mainly studied in Japan and have disclosed the technology to Korea. have. These were all targeted for high magnetic flux density oriented electrical steel sheets, and the actual reheating temperature was usually in the range of 1150-1200 ° C, and decarbonized annealing was used to supplement the N component, which is one of the grain growth inhibitor components, in order to secure the magnetic flux density value. After the process, a nitriding treatment process in which nitrogen is impregnated into the material is essentially added. Therefore, as these technologies are managed at a temperature lower than the reheating temperature of 1250-1280 ℃ of general steel in steelworks, there is mutual work interference, and it is inevitable to install additional equipment for achievement reaction, which incurs cost burden, especially securing growth control. As the process control becomes extremely difficult with one-time rolling treatment, the magnetic variation per lot is severe, resulting in low error rate.

본 발명자들은 재래식 방향성전기강판을 제철소 일반강의 처리조건과 거의 동일한 재가열온도인 1250-1300℃ 부근에서 열처리하여 열간압연을 행하도록 하는 성분계를 설계하였으며, 기존의 제조공정에서의 설비를 보완 내지 신설하지 않고도 작업이 가능한 새로운 제조방법을 확립하여 한국특허출원 제 93-23751호로 특허출원한바 있고, 또한 부가적인 요소기술들을 한국특허출원 제 94-21388, 21389, 21390 및 21391호 등으로 특허출원하였다.The present inventors designed a component system for performing hot rolling by heat treating a conventional grain-oriented electrical steel sheet near 1250-1300 ° C., which is a reheating temperature almost the same as that of general steelworks, and supplementing or not installing a facility in an existing manufacturing process. Established a new manufacturing method that can be operated without a patent application in Korea Patent Application No. 93-23751, and additional element technologies in Korea Patent Application No. 94-21388, 21389, 21390 and 21391.

상기 제안된 저온재가열법을 이용하여 실제 생산시 높은 실수율 및 우수한 자기적 특성을 갖는 제품을 생산할 수 있었다. 그러나 이 제조방법에 의하면 통상재의 제조 순서와 달리 1차 냉간압연 후 중간두께에서 탈탄소둔을 행하여야만 하므로 최종 제품에서의 잔류탄소량관리를 위해서는 장기간의 탈탄소둔시간을 필요로 하여 연속 생산공정의 단절을 유발하기도 하고 또는 불가피하게 최종 제품에서의 잔류 탄소량관리한계인 25ppm 이하 범위를 넘어서는 경우도 생길수도 있기 때문에 수요가의 사용특성 저하의 한 요인이 되기도 한다. 따라서 생산공장에서의 공정 부하를 줄이면서 원활한 공정진행을 위해서는 초기 소강중의 탄소량을 줄여서 탈탄소둔공정의 중간두께에서 짧은 시간내에 탄소량을 관리기준인 25ppm이하로 관리할수 있다면 공정 진행이 원활히 되어 생산원가의 단축이 가능해 진다. 이에 본 발명자들은 초기 소강중의 탄소량을 공정중의 자연소실분과 유리질절연피막(glass film, Base coating)형성에 필요한 소재표면의 산화물형성시 동시에 일어나는 탈탄 반응에 의해 제거되는 탄소량을 고려하여 최적의 제강시 탄소량은 0.025%이하임을 확인하고, 이러한 저탄소성분계를 이용하여 안정적인 자성을 확보할수 있는 방법을 확립하여 본 발명을 제안하게 된 것으로써, 본 발명은 제강시의 성분중 탄소량을 0.025%이하로 함유시켜 이후 공정에서의 탈탄성을 향상시키고 2차 냉연율을 증가시켜 강한 가공에너지를 갖게 함으로써 자성을 향상시킬 수 있는 방향성 전기 강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.By using the proposed low temperature reheating method, it was possible to produce a product having high real rate and excellent magnetic properties in actual production. However, according to this manufacturing method, decarbonization annealing must be carried out at the intermediate thickness after the first cold rolling, unlike the manufacturing procedure of ordinary materials. In some cases, it may inevitably lead to a decrease in the usage characteristics of the demand because it may inevitably exceed the limit of 25 ppm, which is the limit of residual carbon in the final product. Therefore, in order to reduce the process load at the production plant and to proceed smoothly, if the carbon content can be managed within 25ppm within a short time in the middle thickness of the decarbonization process, the process proceeds smoothly. The production cost can be shortened. Therefore, the inventors of the present invention have optimized the amount of carbon in the initial steel sheet in consideration of the amount of carbon removed by the decarburization reaction occurring at the same time during the formation of the natural loss during the process and the oxide of the material surface necessary for forming a glass film (base coating). In the steelmaking, the carbon content was found to be 0.025% or less, and the present invention was proposed by establishing a method of securing stable magnetism using such a low carbon component system. It is intended to provide a method of manufacturing a grain-oriented electrical steel sheet that can improve the magnetism by containing less than% to improve the decarburization in the subsequent process and increase the secondary cold rolling rate to have a strong processing energy.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명에 의하면, 중량%로 Si: 2.9-3.3%, P: 0.015%이하, 용존 Al: 0.011-0.027%, N: 0.0080-0.012%, S: 0.007%이하, Ni 및 Cr의 단독 또는 복합: 0.06-0.18%, Mn: 0.32% 이하, Cu: 0.6%이하, C:0.010-0.025% 및 기타 불가피한 불순물로 조성되는 스라브를 1250-1320℃로 재가열한 후 열간압연을 행하고, 이어 1000℃이하의 온도에서 열연판 소둔을 행한후, 820-870℃의 습수소분위기에서 행하는 탈탄소둔을 포함한 2회의 냉간압연에 의해 최종두께로 조정하되 2차 냉간압연율을 58-65%로 하고, 이어 600℃이하에서 회복소둔을 행한다음 MgO를 주성분으로 하는 융착방지제를 도포하여 권취한 다음, 실온에서 1180-1220℃까지 승온하되 그 승온구간중의 분위기가스를 20-25%질소함유수소분위기로하고 1180-1220℃의 최고균열온도구간에서의 분위기가스를 100% 수소분위기로하여 총 20시간 이상의 균열후 냉각하는 열사이클을 거치는 최종마무리소둔을 행한후, 냉각하는 자성 및 탈탄성이 우수한 방향성 전기강판의 제조방법이 제공된다.According to the present invention, Si: 2.9-3.3%, P: 0.015% or less, dissolved Al: 0.011-0.027%, N: 0.0080-0.012%, S: 0.007% or less, Ni or Cr alone or in combination: Reheating the slab composed of 0.06-0.18%, Mn: 0.32% or less, Cu: 0.6% or less, C: 0.010-0.025% and other unavoidable impurities to 1250-1320 ° C, followed by hot rolling, followed by 1000 ° C or less After annealing the hot rolled sheet at the temperature, adjust the final thickness by two cold rolling including decarbonization annealing in a humidified hydrogen atmosphere at 820-870 ° C, and then set the secondary cold rolling rate to 58-65%. After recovery and annealing, MgO-based fusion inhibitor is applied and wound up. Then, the temperature is raised to 1180-1220 ° C at room temperature, and the atmosphere gas in the temperature rising zone is 20-25% nitrogen-containing hydrogen atmosphere. Cooling after cracking for more than 20 hours using 100% hydrogen atmosphere of atmospheric gas at the highest crack temperature range of 1220 ℃ After performing a final finishing annealing through a thermal cycle, there is provided a method for producing a grain-oriented electrical steel sheet having excellent cooling magnetic properties and decarburization.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

최종제품에 있어서 자기적 특성의 결정은 입성장억제제인 석출물들이 2차 재결정 생성시 최적상태에서의 역할을 하도록 하는 것이며 이를 위해서는 각 성분계에 적절한 제조공정의 정립이 필요하다. 본 발명성분계는 S량을 강력 억제하는 것을 특징으로 하는 AIN중심 성분계이고, 열간압연시의 냉각과정중 AIN은 자성이 우수한 2차 재결정립 형성에 유효한 극히 미세한 형태로 석출됨으로서 열연판소둔에 의한 석출물제어는 본 발명성분계에서는 필요치 않으며 이어 냉간압연을 행하게 된다. 또한 본 발명재의 특징은 중간 두께에서 탈탄소둔을 행하여 Si3N4의 석출물을 추가형성할 수 있다. 또 2차 냉간압연은 탈탄소둔 후인 저탄소하에서 행함으로서 상대적으로 가공에너지가 적게 됨으로써 2차 재결정 형성이 보다 용이하게 된다. 1차재결정 형성은 최종 마무리소둔중의 저온부에서 행하고 계속된 승온중에서 2차 재결정이 종료시키는 1,2차 재결정이 최종 마무리 소둔중에서 일으키게 함으로서 2차 소둔공정이 없는 생산공정의 단축이 가능하게 된다. 특히 최종 마무리소둔시 장시간에 걸친 완벽한 1차 재결정형성으로 이후 형성되는 2차 재결정립이 자화 용이 방향인 (110)[001]방향으로 보다 정열된 집합조직을 가지게 할 수 있어 통상의 일반방향성 보다 극히 우수한 자성을 확보할 수 있게 되는 것이 본 발명의 특징이라고 할 수 있다.Determination of the magnetic properties in the final product allows the precipitates, which are grain growth inhibitors, to play an optimal role in the production of secondary recrystallization. The component system of the present invention is an AIN center component system which strongly suppresses the amount of S. During the hot rolling process, the AIN precipitates in an extremely fine form effective in forming secondary recrystallized particles having excellent magnetic properties, thereby precipitating the precipitate by hot-rolled sheet annealing. Control is not necessary in the component system of the present invention and is then cold rolled. In addition, a feature of the present invention is to decarbonize an intermediate thickness to further form a precipitate of Si 3 N 4 . In addition, secondary cold rolling is performed under low carbon after decarbonization, so that processing energy is relatively low, thereby making secondary recrystallization easier. The primary recrystallization is performed at the low temperature portion during the final annealing, and the first and second recrystallizations in which the secondary recrystallization is terminated during the subsequent elevated temperature can be caused during the final annealing, thereby shortening the production process without the secondary annealing process. Particularly, during the final annealing, perfect primary recrystallization over a long period of time, the secondary recrystallized grains formed thereafter may have a more aligned aggregate structure in the (110) [001] direction, which is the easy magnetization direction, so that it is extremely more than general general orientation. It is a feature of the present invention that it is possible to secure excellent magnetic properties.

이러한 저온재가열법에 의한 새로운 제조방법에 의해 획기적인 제조기술의 진보가 이루어졌지만 보다 용이하게 제조공정을 확립하고자 하는 욕망이 있고 이에 부응하여 새로운 공저 개선책들이 강구되고 있다.The breakthrough advances in manufacturing technology have been made by the new low temperature reheating method, but there is a desire to establish a manufacturing process more easily.

방향성제품을 수요가에서 가공사용시 시간의 경과에 따라 사용전 전기강판소재의 자기적특성의 열화현상이 나타난다. 이것을 자기시효현상(magnetic aging)이라고 말하는데, 이는 예를 들면, 변압기로 가공 조립하여 사용시에 변압기 자체의 온도가 상승하게 되고 이에 따라 소재 내부에 있던 탄소성분은 Fe3C등의 탄화물로 결정립들입계(grain boundary)에 주로 석출하며, 또한 질소 및 유황성분의 존재도 각각 질화물이나 유화물을 만들어 석출하게 됨으로서 자구의 이동을 방해하기 때문에 자기적특성이 시간의 경과에 따라 열화하게 된다. 이때 자기시효현상이 가장 심한 성분이 탄소이기 때문에 제조공자에서는 특히 탄소성분의 관리에 유의를 하게 되며, 공장에서의 자체 관리범위는 25ppm이하로 유지하고 있다. 왜냐하면 잔류탄소량이 그 이하에서는 시간에 따른 자기시효현상이 극히 미약하기 때문이다. 그러나 통상 기본 제조법으로 적용하고 있는 한국특허출원제 93-23751호의 제조법에서는 중간 탈탄소둔공정에서 잔류탄소 관리에는 7-8분의 장시간 소둔이 필요하기 때문에 공정진행에 엄청난 방해를 끼치게 되고, 보다 짧은 시간의 소둔시는 잔류탄소량이 25ppm을 넘을수가 있어서 수용가 사용시 특성열화가 불가피하다. 따라서, 본 발명자는 초기 소강중의 탄소량을 공정중의 자연소실분과 유리질절연피막(glass film, Base coating)형성에 필요한 소재표면의 산화물형성시 동시에 일어나는 탈탄반응에 의해 제거되는 탄소량을 고려한 최적의 소강시 탄소량은 0.025% 이하임을 확인하여 소강시 0.025% 이하로 조절하고, 이후 제조공정에서 소강탄소량 하향에 따른 집합조직의 변화등은 이후 본 공정 조업조건들을 주어진 기본조건하에서 엄격히 관리함에 의해 보완이 가능하며 특히 2차 냉연율을 통상재에 비해 58% 이상으로 상향조업함에 의해 냉간압연시 소재의 가공에너지의 증가가 가능하여 최종 마무리소둔시에 형성되는 1,2차 재결정을 안정화시켜 보다 자성향상에 유리한 (110)[001]방위로 배향하는데 기여할수 있다.Deterioration of the magnetic properties of electrical steel materials before use occurs over time when processing aromatic products at demand. This is called magnetic aging. For example, the temperature of the transformer itself increases when it is processed and assembled into a transformer, and the carbon content inside the material is grains of carbide such as Fe 3 C. Precipitation mainly occurs in the grain boundary, and the presence of nitrogen and sulfur also causes the magnetic domains to deteriorate due to the formation of nitrides or sulfides, respectively, which interfere with the movement of the magnetic domains. At this time, since the most severe component of self-aging is carbon, manufacturing technicians pay particular attention to the management of carbon components, and the self-management range in the factory is kept below 25 ppm. This is because the self aging phenomenon with time is very weak at the residual carbon amount. However, in the manufacturing method of Korean Patent Application No. 93-23751, which is generally applied as a basic manufacturing method, it requires a long annealing of 7-8 minutes in the management of residual carbon in the intermediate decarbonization annealing process, which enormously hinders the progress of the process. When annealing at, the residual carbon content can exceed 25ppm, so deterioration of characteristics is inevitable when using a consumer. Therefore, the present inventors have optimized the amount of carbon in the initial steel sheet in consideration of the amount of carbon removed by the decarburization reaction occurring at the same time during the formation of the natural loss during the process and the oxide of the material surface required for forming the glass film (base coating). The amount of carbon in steel is 0.025% or less, so that it is adjusted to 0.025% or less in steelmaking. Afterwards, changes in the aggregate structure due to the decrease in the amount of carbon steel in the manufacturing process are strictly managed under the given basic conditions. It can be supplemented, and in particular, by increasing the secondary cold rolling rate to 58% or more compared to ordinary materials, it is possible to increase the processing energy of the material during cold rolling, thereby stabilizing the first and second recrystallizations formed during final annealing. It can contribute to orientation in the (110) [001] orientation which is more favorable for magnetic enhancement.

이하, 본 발명의 수지 한정이유에 대해 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the reason for resin limitation of this invention is demonstrated.

상기 C는 적정한 압연조직을 형성하게 하고, 냉간압연시 가공에너지를 부여하기 때문에 일부는 존재되어야 하나 이후 탈탄 공정의 어려움을 고려하여 공정 진행중 자연소실분 및 산화층 형성에 필요한 최소한의 탈탄시간에 제거되는 탄소량까지를 고려한 값인 0.025%이하로 한정하나, 바람직하게는 상기 탄소량은 불가피하게 첨가되는 량인 0.010% 이상이 좋다.Part C should be present because it forms an appropriate rolled structure and imparts processing energy during cold rolling. However, in consideration of the difficulty of the decarburization process, C is removed at the minimum decarburization time necessary for the formation of natural loss and oxide layer during the process. It is limited to 0.025% or less, which is a value considering the amount of carbon. Preferably, the carbon amount is 0.010% or more, which is an amount inevitably added.

상기 Si는 전기강판의 기본 성분으로 소재의 비저항치를 증가시켜 철심손실 즉 철손을 낮추는 역할을 한다. 2.9%이하에서는 철손특성이 나쁘고, 과잉 함유시 강이 취약해져 냉간압연성이 극히 나빠지고 2차 재결정 형성이 불안정해지므로 상기 Si의 함량은 2.9-3.3%로 제한하는 것이 바람직하다.The Si serves to lower the core loss, that is, iron loss by increasing the resistivity of the material as a basic component of the electrical steel sheet. It is preferable to limit the content of Si to 2.9-3.3% because the iron loss property is poor at 2.9% or less, the steel becomes brittle when excessively contained, the cold rolling property is extremely poor and the secondary recrystallization is unstable.

상기 Mn은 재가열시 석출물의 고용온도를 낮추며, 열간압연시 소재 양 끝부분에 생성되는 크랙을 방지의 역할을 하므로 많이 첨가할수록 유리하지만, 0.32%이상 첨가시에는 탈탄소둔시 형성되는 Mn 산화물에 의해 고온소둔시 형성되는 포스테라이트 피막의 밀착성이 악하되므로 상기 Mn의 함량은 0.32%이하로 제한하는 것이 바람직하다.The Mn lowers the solid solution temperature of the precipitate upon reheating and prevents cracks formed at both ends of the material during hot rolling, so it is more advantageous to add Mn, but when added over 0.32%, Mn oxide is formed by decarbonization. Since the adhesion of the forsterite film formed during high temperature annealing is deteriorated, the Mn content is preferably limited to 0.32% or less.

상기 S는 Cu나 Mn과 유화물 형태의 석출물을 형성하여 억제제의 역할을 하는 성분으로서, 0.005%까지는 제조공장에서 기본적으로 함유됨을 고려하며 가능한 한 하한관리가 필요하며, 0.007%이상이 함유되면 열연에서 저온재가열시 중심편석부의 고용 및 확산이 어려워지므로 탈 S공정등을 채용하여 강력 억제하여야 한다. 따라서, 상기 S의 함량은 0.007% 이하로 제한하는 것이 바람직하다.S is a component that acts as an inhibitor by forming precipitates in the form of emulsions with Cu or Mn, considering that it is basically contained in the manufacturing plant up to 0.005%, and the minimum limit management is necessary, if more than 0.007% is contained in hot rolling Since low temperature reheating makes it difficult to employ and spread the central segregation, it should be strongly restrained by adopting a desorption process. Therefore, the content of S is preferably limited to 0.007% or less.

상기 Al 성분은 N과 함께 AIN의 석출물을 형성하여 입성장억제력을 확보하는 중심 원소이며, 총량적인 Al관리가 아닌 용존상태의 Al량이 중요하다. 상기 Al함량이 0.01%이하인 경우에는 2차 재결정에 필요한 충분한 억제력을 갖지 못하기 때문에 결정립크기가 작고 불완전 미립자가 나타나 자속밀도가 낮고 철손이 나빠진다. 0.027%이상에서는 억제력이 너무 강해 자성이 우수한 (110)[001]방위의 2차재결정 형성자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 필요한 대표적 성분이다.The Al component forms a precipitate of AIN together with N and is a central element to secure grain growth inhibitory power, and the amount of Al in the dissolved state is important, not the total amount of Al management. When the Al content is 0.01% or less, since it does not have sufficient inhibitory force necessary for secondary recrystallization, the grain size is small and incomplete fine particles appear, resulting in low magnetic flux density and poor iron loss. Above 0.027%, the restraining force is too strong to make the secondary recrystallization itself in the (110) [001] orientation which is excellent in magnetism, and the magnetic properties deteriorate rapidly.

따라서, 상기 Al 함량은 0.011-0.027%로 제한하는 것이 바람직하다.Therefore, the Al content is preferably limited to 0.011-0.027%.

상기 N은 용존 Al과 반응 석출물을 형성하여 1차 재결정의 입성장억제제로 작용하므로 2차 재결정형성에 있어서 필수적인 성분이며, 0.008% 이하에서는 형성 석출물이 부족하게 되고, 0.012% 이상 첨가시에는 강판표면에 브리스터라는 결함이 생겨 제품의 표면특성을 열화시키므로 상기 N의 함량은 0.008-0.012%로 제한하는 것이 바람직하다.N is an essential component in secondary recrystallization since it forms a reaction precipitate with dissolved Al to act as a grain growth inhibitor of primary recrystallization. If N is not more than 0.008%, the precipitate formed is insufficient, and when added to 0.012% or more, the surface of steel sheet It is preferable to limit the content of N to 0.008-0.012% because a defect called an ester causes deterioration of the surface properties of the product.

상기 Cu는 불순성분인 S와 결합하여 Cu2S의 석출물을 형성하고, 석출물중 가장 저온에서 고용되는 성분으로써, 본 발명에서는 S 성분이 MnS로의 형성을 가능한 억제하여야 하므로 가능한한 많이 첨가할수록 유리하지만, 0.60%이상 되면 탈탄소둔시 형성되는 산화물이 절연 피막 형성에 악영향을 줄 뿐만 아니라 2차 재결정립의 크기가 거대하여 자속밀도는 좋으나 철손값이 열화될수 있으므로, 총 Cu량은 0.6%이하로 제한하는 것이 바람직하다.Cu is combined with S, which is an impurity component, to form a precipitate of Cu 2 S, which is a solid solution at the lowest temperature of the precipitate. In the present invention, the S component should be suppressed to form MnS as much as possible. If the oxide is more than 0.60%, the oxides formed during decarbonization do not only adversely affect the formation of the insulating film, but the secondary recrystallized grains have a large magnetic flux density, but the iron loss can be deteriorated, so the total amount of Cu is limited to 0.6% or less. It is desirable to.

상기 Ni의 Cr은 1차재결정립을 미세화시켜 석출물 분산효과가 크기 때문에 적정재가열온도범위를 보다 높일 수 있다, 따라서 재가열온도를 기본적으로 1250-1300℃에서 작업하기 위해서는 단독 또는 2종 복합으로 최소 0.06%이상 첨가가 필요하고, 0.18% 이상 첨가시 소재중의 C성분과 결합함으로써 이후 탈탄성을 나쁘게 하므로, 상기 Ni 및 Cr의 함량은 단독 또는 복합으로 0.06-0.18%로 제한하는 것이 바람직하다.Since the Cr of Ni is finer in the primary recrystallized grains, the precipitate dispersion effect is greater, so that the optimum reheating temperature range can be further increased. Therefore, in order to operate the reheating temperature basically at 1250-1300 ° C., a minimum of 0.06 is used alone or in combination. Since addition of more than% is required, since debonding becomes worse after combining with C component in the material when adding more than 0.18%, the content of Ni and Cr is preferably limited to 0.06-0.18% alone or in combination.

이상의 성분계는 방향성전기강판 제조시 가장 큰 난문제인 스라브 재가열온도를 하향화시키는 필수조건으로 스라브 조성을 상기와같이 조성하는 경우에는 스라브 가열온도를 통상 일반 탄소강의 재가열온도인 1250℃에서 작업을 행하여도 우수한 자기적 특성의 확보가 가능하여 경제적인 효과는 크다. 이때 재가열온도가 1320℃를 넘으면 전기강판 스라브가 용융하는 온도이므로 재철소에서 가장 경제적이고 용이한 재가열온도인 1250℃에서 1320℃까지로 한정하는 것이 바람직하다.The above component system is an essential condition for lowering slab reheating temperature, which is the biggest problem in producing oriented electrical steel sheet. When the slab composition is formed as described above, the slab heating temperature is generally excellent even when the slab heating temperature is performed at 1250 ° C, which is the reheating temperature of ordinary carbon steel. It is possible to secure enemy characteristics, so the economic effect is great. In this case, since the reheating temperature exceeds 1320 ° C., the steel sheet slab is melted, and therefore, it is preferable to limit the reheating temperature from 1250 ° C. to 1320 ° C., which is the most economical and easy reheating temperature in re-iron.

이후 제조공정은 1000℃이하에서 열연판소둔을 행하고, 1차 냉간압연하고 중간의 820-870℃에서의 습윤분위기 탈탄소둔을 포함한 2차의 냉간압연으로 최종두께로 조정한다. 이때 본 발명의 저탄소하에서의 자성안정화를 위해 냉간압연시에 보다 더 높은 가공에너지를 확보하여야 하므로 2차 냉간압하율을 최소 58%이상 확보하여야만 본 발명의 저탄소성분계에서는 우수한 자성이 확보될 수 있다. 이때 58% 이하에서는 2차 재결정 형성자체가 불가능하여 자성이 급격히 저하되고, 65% 이상에서는 탈탄성이 악화될 우려가 있으므로 본 발명에서는 2차 냉간압하율을 58%이상 65% 이하로 제한하는 것이 바람직하다.After that, the manufacturing process is performed by hot-rolled sheet annealing at 1000 ° C. or lower, followed by primary cold rolling, and then adjusted to the final thickness by secondary cold rolling including a wet atmosphere decarbonized annealing at 820-870 ° C. in the middle. In this case, in order to stabilize the magnetic properties under low carbon of the present invention, it is necessary to secure higher processing energy during cold rolling, so that the secondary cold reduction rate must be at least 58% or more to secure excellent magnetic properties in the low carbon component system of the present invention. At this time, the secondary recrystallization itself is impossible at 58% or less, the magnetism is sharply lowered, decarburization may deteriorate at 65% or more, so in the present invention, limiting the secondary cold reduction rate to 58% or more and 65% or less. desirable.

최종 두께로 조정된 소재는 600℃ 이하에서의 중간 회복소둔을 거쳐서 MgO를 주성분으로 하는 소둔분리제를 도포한후 권취하여 대형코일로 만든 다음 최종 마무리소둔공정을 행한다. 특히 최종 마무리소둔시 1200±20℃까지의 승온동안에는 분위기 가스는 20-25% 질소 함유 수소분위기에서 행하고 1200±20℃의 최고 균열온도구간에서 100% 수소분위기에서 균열하는 것을 특징으로 하여 총 20시간이상 처리 후 냉각하는 열사이클을 거치는 마무리고온소둔을 행하므로써 탈탄성 및 자성이 우수한 방향성 전기강판이 제조된다.The material adjusted to the final thickness is subjected to an intermediate recovery annealing at 600 ° C. or lower, followed by application of an annealing separator containing MgO as a main component, followed by winding into a large coil, followed by a final finishing annealing process. In particular, during the final temperature of annealing up to 1200 ± 20 ℃, the atmosphere gas is subjected to 20-25% nitrogen-containing hydrogen atmosphere and cracks in 100% hydrogen atmosphere at the highest crack temperature range of 1200 ± 20 ℃ for a total of 20 hours. By carrying out the finishing high temperature annealing through the heat cycle to cool after the abnormal treatment, a grain-oriented electrical steel sheet excellent in decarburization and magnetic properties is produced.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로 Si: 3.18%, Mn: 0.205%, S: 0.005%, N: 0.005%, 용존 Al: 0.017%, Cu: 0.493%, Cr: 0.047% 및 Ni: 0.049%를 기준으로 하여 여기에 C량을 0.019, 0.022, 0.033, 0.041 및 0.052%로 변화시키고 잔부 Fe 및 기타 불가피하게 혼입되는 불순물을 포함하여 조성되는 5개의 성분계를 용해한 다음 230mm 두께의 스라브를 제조하였다. 이들 스라브를 표면 용융이 없는 1300℃의 저온에서 4.5시간 재가열 후 열간 압연을 하여 2.3mm두께의 열연판을 만들었다. 다음에, 960℃에서 열연판소둔을 하고 산세후 1차 냉간압연하여 0.75mm 두께로 조정하였다. 이 중간소둔판을 850℃의 습윤분위기에서 탈탄소둔을 거쳐 0.30mm 두께로 최종 냉간압연을 행하였다. 이어 560℃에서 회복소둔, MgO 도포 후 코일상태로 권취하여 최종 마무리고온소둔을 실시하였다. 최종 마무리소둔은 600℃에서 1차 저온균열, 이어 시간당 20℃의 속도로 승온, 1200℃에서 총 20시간이상 2차 고온 균열 후 30시간에 걸쳐 상온까지 냉각하였으며, 이때의 분위기가스는 1200℃까지의 승온시는 25% 질소 함유 수소분위기에서, 그 이후는 100% 수소분위기에서 행하여 자기적 특성을 확보하였다. 이때 탈탄소둔후의 소재의 잔류탄소량을 측정하고, 최종 마무리소둔후의 자성을 측정하여 하기표1에 나타내었다.C by weight based on Si: 3.18%, Mn: 0.205%, S: 0.005%, N: 0.005%, dissolved Al: 0.017%, Cu: 0.493%, Cr: 0.047% and Ni: 0.049% The amounts were changed to 0.019, 0.022, 0.033, 0.041 and 0.052%, and the five component systems including the remaining Fe and other unavoidable impurities were dissolved, and then a 230 mm thick slab was prepared. These slabs were hot-rolled after 4.5 hours of reheating at a low temperature of 1300 ° C. without surface melting to form a 2.3 mm thick hot rolled sheet. Next, hot-rolled sheet annealing was carried out at 960 ° C. and after primary pickling, cold rolling was performed to adjust the thickness to 0.75 mm. The intermediate annealing plate was subjected to final cold rolling to a thickness of 0.30 mm through decarbonization annealing in a 850 ° C. wet atmosphere. Subsequently, after recovery annealing and application of MgO at 560 ° C., the coils were wound in a coil state to give a final high temperature annealing. The final finishing annealing was performed at 600 ° C. for the first low temperature crack, followed by an elevated temperature at a rate of 20 ° C. per hour, and then cooled to room temperature for 30 hours after the secondary high temperature cracking for more than 20 hours at 1200 ° C. for a total of 20 hours. The temperature was increased in a 25% nitrogen-containing hydrogen atmosphere and thereafter in a 100% hydrogen atmosphere to secure magnetic properties. At this time, the amount of residual carbon of the material after decarbonization annealing was measured, and the magnetism after the final finishing annealing was measured and shown in Table 1 below.

상기 표1에 나타난 바와 같이, 본 발명에 부합되는 소재탄소량 0.019 및 0.023%인 발명재(a) 및 (b)의 경우에는 탈탄소둔처리후 잔류탄소량이 관리기준인 25ppm이하를 잘 만족하고 또한 자성특성도 자속밀도가 1.876Tesla이상으로 높고, 철심손실특성(철손)은 1.19W/Kg이하로 낮아서 우수한 자기적 특성을 확보하고 있음을 알 수 있다. 그러나 비교재인 소재탄소 0.032%이상재에서는 자성은 비교적 우수하나 소재 잔류탄소가 관리기준치를 훨신 초과함을 알수 있으며, 이는 수요가에서의 사용특성이 급격히 나빠질 수 있어 본 발명의 범위에서 제외하였다.As shown in Table 1, in the case of the inventive materials (a) and (b) having a material carbon amount of 0.019 and 0.023%, the residual carbon content after decarbonization annealing satisfies the management criteria of 25 ppm or less. The magnetic properties also show that the magnetic flux density is higher than 1.876 Tesla and the core loss characteristics (iron loss) are lower than 1.19 W / Kg, thus ensuring excellent magnetic properties. However, in the comparative material material carbon of 0.032% or more, the magnetic properties are relatively good, but it can be seen that the material residual carbon far exceeds the management standard value, and this is excluded from the scope of the present invention because the use characteristics at the demand price may be sharply worsened.

[실시예 2]Example 2

중량비로, C: 0.013%, Si: 3.18%, Mn: 0.205%, S: 0.005%, N: 0.0095%, 용존 Al: 0.017%, Cu: 0.493%, Cr: 0.047% 및 Ni: 0.049% 잔부 Fe 및 기타불가피한 불순물로 조성되는 성분계를 용해하여 230mm 두께의 스라브를 제조하였다. 이들 스라브를 스라브 표면용융이 없는 1310℃의 저온에서 4시간 재가열후 열간압연을 하여 2.3mm 두께의 열연판을 만들었다. 그 다음 950℃에서 열연판소둔을 하고 산세후 최종 2차 냉연율이 50-62.5%가 되도록 두께를 조정하여 1차 냉간압연하였다. 이 중간소둔판을 870℃의 습윤분위기에서 균열기준 3분간 탈탄소둔을 거친 후에 모든 시편을 0.30mm 두께로 최종 냉간압연을 행하였다. 이어 560℃에서 회복소둔, MgO 도포 후 코일상태로 권취하여 최종 마무리 고온소둔을 실시하였다. 최종 마무리 소둔은 600℃에서 1차 저온균열, 이어 시간당 20℃의 속도로 승온, 1200℃에서 총 20시간 이상 2차 고온균열 후 30시간에 걸쳐 상온까지 냉각하였으며 이때의 분위기가스는 1200℃까지의 승온시는 25%질소함유수소분위기에서, 그 이후는 100% 수소분위기에서 행하여 자기적 특성을 확보하였다. 이때 2차 냉연율에 따른 탈탄소둔후의 소재의 잔류탄소량 및 최종 마무리소둔후의 자성을 측정하여 하기표2에 나타내었다.By weight ratio, C: 0.013%, Si: 3.18%, Mn: 0.205%, S: 0.005%, N: 0.0095%, dissolved Al: 0.017%, Cu: 0.493%, Cr: 0.047% and Ni: 0.049% balance Fe And a component system composed of other unavoidable impurities to prepare a slab having a thickness of 230 mm. These slabs were hot-rolled after 4 hours of reheating at a low temperature of 1310 ° C. without slab surface melting to form a 2.3 mm thick hot rolled sheet. Then, hot-rolled sheet annealing at 950 ℃ and after the pickling, the primary cold rolling was adjusted by adjusting the thickness so that the final secondary cold rolling rate is 50-62.5%. After the intermediate annealing plate was subjected to decarbonization annealing for 3 minutes on a crack basis in a humid atmosphere at 870 ° C., all the specimens were finally cold rolled to a thickness of 0.30 mm. Subsequently, after recovery annealing and application of MgO at 560 ° C., the coils were wound in a coil state, and final finishing high temperature annealing was performed. The final finishing annealing was performed at 600 ° C. for the first low temperature crack, followed by an elevated temperature at a rate of 20 ° C. per hour, and then cooled to room temperature for 30 hours after the secondary high temperature crack at 20 ° C. for a total of 20 hours or more. At elevated temperatures, the magnetic properties were ensured in a 25% nitrogen-containing hydrogen atmosphere and thereafter in a 100% hydrogen atmosphere. In this case, the residual carbon content of the material after decarbonization annealing and the magnetism after the final finishing annealing according to the secondary cold rolling rate were measured and shown in Table 2 below.

상기 표2에 나타난 바와같이, 2차 냉연율이 통상의 냉연율에 해당되는 50-54%인 비교재(4) 및 (5)에서는 거의 2차 재결정이 형성되지 않아서 자성이 확보되지 않으며 57%의 경우인 비교재(6)의 경우 자성이 다소 불안정하며, 비교재(7)의 경우 잔류탄 소량이 관리기준인 30ppm을 초과함을 알 수 있다. 그러나, 본 발명에 부합되는 압연율 58% 이상인 경우 발명재(c-e)에는 자속밀도가 높고, 철심손실은 낮아서 우수한 자기적 특성을 나타내고 또한 소재중의 잔류탄소량도 낮아서 양호한 품질상태임을 알 수 있다.As shown in Table 2, in the comparative materials (4) and (5) where the secondary cold rolling rate is 50-54%, which corresponds to the normal cold rolling rate, almost no secondary recrystallization is formed, so that magnetism is not secured and 57%. In the case of the comparative material 6, which is a case of the magnetism is somewhat unstable, in the case of the comparative material (7) it can be seen that the residual carbon exceeds the management standard 30ppm. However, when the rolling ratio in accordance with the present invention is 58% or more, the invention material (ce) has a high magnetic flux density, low iron core loss, excellent magnetic properties, and low residual carbon in the material. .

Claims (1)

중량%로 Si: 2.9-3.3%, P: 0.015% 이하, 용존 Al: 0.011-0.027%, N: 0.0080-0.012%, S: 0.007%이하, Ni 및 Cr의 단독 또는 복합: 0.06-0.18%, Mn: 0.32% 이하, Cu: 0.6%이하, C: 0.010-0.025%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 스라브를 1250-1320℃로 재가열한 후 열간압연을 행하고, 이어 1000℃이하의 온도에서 열연판 소둔을 행한 후, 820-870℃의 습수소분위기에서 행하는 탈탄소둔을 포함한 2회의 냉간압연에 의해 최종두께로 조정하되 2차 냉간압연율을 58-65%로 하고 이어 600℃이하에서 회복소둔을 행한다음 MgO를 주성분으로 하는 융착방지제를 도포하여 권취한 다음, 실온에서 1180-1220℃까지 승온하되 승온구간중의 분위기가스를 20-25% 질소함유수소 분위기로 하고 1180-1220℃의 최고균열온도구간에서의 분위기 가스를 100% 수소 분위기로하여 총 20시간 이상의 균열후 냉각하는 열사이클을 거치는 최종마무리소둔을 행한 후, 냉각하는 자성 및 탈탄성이 우수한 방향성 전기강판의 제조방법.Si: 2.9-3.3%, P: 0.015% or less, dissolved Al: 0.011-0.027%, N: 0.0080-0.012%, S: 0.007% or less, Ni or Cr alone or in combination: 0.06-0.18%, Mn: 0.32% or less, Cu: 0.6% or less, C: 0.010-0.025%, remainder Fe and other unavoidable slabs are reheated to 1250-1320 ° C, followed by hot rolling, followed by a temperature of 1000 ° C or less. After performing hot-rolled sheet annealing, adjust the final thickness by two cold rolling including decarbonization annealing in a humidified hydrogen atmosphere at 820-870 ℃, and recover the temperature of secondary cold rolling to 58-65% and below 600 ℃. After annealing, the film is wound by applying a fusion inhibitor containing MgO as its main ingredient, and then the temperature is raised to 1180-1220 ° C at room temperature, and the atmosphere gas in the heating zone is 20-25% nitrogen-containing hydrogen atmosphere and the highest is 1180-1220 ° C. Atmospheric gas at the cracking temperature range is 100% hydrogen atmosphere and heat is cooled after cracking for more than 20 hours After carrying out finishing annealing method for producing a magnetic cooling and de-oriented electrical steel sheet excellent in elasticity undergoes.
KR1019950053582A 1995-12-21 1995-12-21 The manufacturing method for oriented electric steel sheet with magnetic and decarburing property KR100256342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950053582A KR100256342B1 (en) 1995-12-21 1995-12-21 The manufacturing method for oriented electric steel sheet with magnetic and decarburing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950053582A KR100256342B1 (en) 1995-12-21 1995-12-21 The manufacturing method for oriented electric steel sheet with magnetic and decarburing property

Publications (2)

Publication Number Publication Date
KR970043180A KR970043180A (en) 1997-07-26
KR100256342B1 true KR100256342B1 (en) 2000-05-15

Family

ID=19442470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950053582A KR100256342B1 (en) 1995-12-21 1995-12-21 The manufacturing method for oriented electric steel sheet with magnetic and decarburing property

Country Status (1)

Country Link
KR (1) KR100256342B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Manufacturing method of high silicon oriented electrical steel sheet with excellent magnetic properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900662B1 (en) * 2002-11-11 2009-06-01 주식회사 포스코 Powder coating agent for immersion diffusion and manufacturing method of high silicon oriented electrical steel sheet using same
EP1570094B1 (en) * 2002-11-11 2008-04-16 Posco Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Manufacturing method of high silicon oriented electrical steel sheet with excellent magnetic properties

Also Published As

Publication number Publication date
KR970043180A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
KR101506679B1 (en) Oriented electrical steel steet and method for the same
KR20190078164A (en) Grain oriented electrical steel sheet method for manufacturing the same
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
KR101351957B1 (en) Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
KR101263842B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR100276283B1 (en) The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property
KR20020044243A (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
KR102319831B1 (en) Method of grain oriented electrical steel sheet
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR100268855B1 (en) Method for manufacturing low-temperature reheat oriented electrical steel sheet by one-time rolling annealing
KR102325004B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
KR101263841B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR970007334B1 (en) Manufacturing method of oriented electrical steel sheet with excellent magnetic properties
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR970007161B1 (en) Method for manufacturing oriented electrical steel sheet having low iron loss characteristics
KR100256343B1 (en) The manufacturing method for oriented electric steel sheet with low temperature heating type
KR960003901B1 (en) Manufacturing method of oriented electrical steel sheet with excellent magnetic properties
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR101632870B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
KR100276294B1 (en) The manufacturing method for oriented electric steel sheet by non decarburized

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19951221

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970827

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19951221

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19990601

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20000104

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20000222

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20000223

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20030129

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20040203

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20050207

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20060131

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20070223

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20080222

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20090224

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20100223

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20110223

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20120208

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20130208

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20130208

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20140221

Start annual number: 15

End annual number: 15

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20160109