KR100241003B1 - The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property - Google Patents

The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property Download PDF

Info

Publication number
KR100241003B1
KR100241003B1 KR1019950053581A KR19950053581A KR100241003B1 KR 100241003 B1 KR100241003 B1 KR 100241003B1 KR 1019950053581 A KR1019950053581 A KR 1019950053581A KR 19950053581 A KR19950053581 A KR 19950053581A KR 100241003 B1 KR100241003 B1 KR 100241003B1
Authority
KR
South Korea
Prior art keywords
annealing
less
temperature
grain
steel sheet
Prior art date
Application number
KR1019950053581A
Other languages
Korean (ko)
Other versions
KR970043179A (en
Inventor
최규승
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950053581A priority Critical patent/KR100241003B1/en
Publication of KR970043179A publication Critical patent/KR970043179A/en
Application granted granted Critical
Publication of KR100241003B1 publication Critical patent/KR100241003B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 변압기, 전동기, 발전기 및 기타 전자기기등의 철심재료로 사용되는 방향성 전기강판을 저온스라브 가열방식에 의해 제조하는 방법에 관한 것으로써, 표면용융이 없는 저온재가열 온도에서 처리후 열연한다는 열연판소둔을 행하여 미세석출물을 추가분산 석출시키고, 이후 최종마무리소둔시 전열사이클을 질소 함유수소 분위기에서 행하므로써, 표면산화물에 의한 유리질 절연피막의 형성이 유리하여 표면피막특성이 우수하고, 또한, 자기적 성질도 우수한 방향성 전기강판을 높은 생산성으로 제조할수 있는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials for transformers, electric motors, generators and other electronic devices by low temperature slab heating, and hot rolling after treatment at low temperature reheating temperature without surface melting. By performing plate annealing to further disperse and deposit fine precipitates, and then conducting a heat transfer cycle during the final finishing annealing in a nitrogen-containing hydrogen atmosphere, the formation of a glassy insulating film by surface oxides is advantageous, resulting in excellent surface coating properties and It is an object of the present invention to provide a method for manufacturing high-strength grain-oriented electrical steel sheet with high productivity.

저온스라브 가열방식에 의해 방향성 전기강판을 제조하는 방법에 있어서, 중량%로, C:0.025%-0.045%, Si:2.9-3.3%, P:0.015%이하, 용존Al:0.008-0.027%, N:0.0080 -0.012%, S:0.007%이하, Ni 및 Cr 단독 또는 복합:0.06-0.18%, Mn:0.32%이하, Cu:0.6%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 스라브를 1250-1320℃에서 재가열한 후 열간압연하고, 열연판을 1100-1150℃의 온도에서 소둔한 다음, 1차 냉간 압연하고, 냉연판을 820-870℃의 습윤분위기에서 탈탄소둔을 행한 다음, 50% 이상의 압연율로 2차 냉간압연한 후, 650℃이하의 온도에서 회복소둔을 행한 다음, MgO를 주성분으로 하는 융착방지제를 도포하고 권취한후, 1180-1220℃에서 분위기 가스를 10-15%질소함유 수소분위기로하여 20시간이상 최종 마무리 소둔을 행하여 자성 및 표면 품질특성이 우수한 방향성 전기강판의 제조방법을 그 요지로 한다.In the method for producing a grain-oriented electrical steel sheet by low temperature slab heating method, in weight%, C: 0.025% -0.045%, Si: 2.9-3.3%, P: 0.015% or less, dissolved Al: 0.008-0.027%, N : 0.0080 -0.012%, S: 0.007% or less, Ni and Cr alone or composite: 0.06-0.18%, Mn: 0.32% or less, Cu: 0.6% or less, slab composed of residual Fe and other unavoidable impurities 1250-1320 After reheating at ℃, hot rolling, the hot rolled sheet is annealed at a temperature of 1100-1150 ℃, first cold rolled, and the cold rolled sheet is subjected to decarbonization annealing in a wet atmosphere of 820-870 ℃, then 50% or more rolling After secondary cold rolling at a rate, recovery annealing was carried out at a temperature of 650 ° C. or lower, and then coated with a fusion inhibitor containing MgO as a main component and wound up, followed by 10-15% nitrogen-containing hydrogen at 1180-1220 ° C. A method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic and surface quality characteristics by performing final finishing annealing for at least 20 hours in an atmosphere. It is decided.

Description

자성 및 표면품질특성이 우수한 방향성 전기강판의 제조방법Manufacturing method of oriented electrical steel sheet with excellent magnetic and surface quality characteristics

본 발명은 변압기, 전동기, 발전기 및 기타 전자기기등의 철심재료로 사용되는 방향성 전기강판을 저온 스라브 가열방식에 의해 제조하는 방법에 관한 것으로써, 보다 상세하게는, AlN을 2차 재결정 성장 억제제로 하고 저온 스라브 가열방식을 적용하여 자성 및 표면품질특성이 우수한 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used for iron core materials such as transformers, electric motors, generators, and other electronic devices by low temperature slab heating, and more specifically, AlN as a secondary recrystallization inhibitor. The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic and surface quality characteristics by applying a low temperature slab heating method.

방향성 전기강판은 결정립이(110)[001]방향으로 정열된 집합조직을 가지고 있으므로 압연방향으로 극히 우수한 자기적 특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기타 전자기기등의 철심재료로 사용된다.Since grain-oriented electrical steel has an aggregate structure in which grains are arranged in the direction of (110) [001], it has extremely excellent magnetic properties in the rolling direction. Used as

일반 방향성 전기 강판의 제조공정은 일반적으로 2-4%의 규소와 입성장억제제로 Mns, MnSe를 함유하는 것을 중심으로 용해하여 스라브를 만든후 (재가열 및 열간압연)-(예비 소둔)-(중간소둔이 낀 2회의 냉간압연)-(탈탄소둔)-(MgO 융착방지제 도표)-(최종 마무리소둔)등의 복잡한 공정을 거쳐서 최종 제품으로 완성된다. 그러나 이러한 복잡한 공정을 거쳐서 최종 제품으로 완성된다. 그러나 이러한 복잡한 제조공정중 가장 제조상의 난문제를 안고 있는 공정이 1400℃정도의 고온에서 열처리를 행하는 스라브 재가열공정이다.The manufacturing process of general grain electrical steel sheet is generally melted around 2-4% of silicon and Mns and MnSe as a grain growth inhibitor, and then made slab (reheating and hot rolling)-(pre-annealing)-(middle The final product is completed through a complex process of annealing, two times cold rolling), (decarbonization annealing), (MgO fusion inhibitor table), and (final finishing annealing). But this complex process leads to the final product. However, the most difficult manufacturing process among these complicated manufacturing processes is the slab reheating process which performs heat treatment at a high temperature of about 1400 ° C.

이 스라브 재가열공정은 입성장억제제로 사용되는 MnS나 AlN등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시키기 위하여 행하여지는데, 이를 위해서는 1400℃정도의 고온에서 5시간 정도의 유지가 불가피하게 된다. 이때 고온의 스라브 표면에서는 공기와의 산화반응으로 Si 및 Fe 성분의 산화물이 복합된 파이어라이트(Fe2SiO4)라는 산화물로 되며 이는 융점이 1300℃정도로 낮아 표면에서부터 녹아 내리게 된다. 이때 녹아내리는 스라그는 일부 바깥으로 흘러내리게 설계되어 있지만 대부분은 로상부의 내화물등에 축척되어 작업종료와 동시 완전 내부수리가 불가피하다. 따라서 연속작업을 주 특징으로 하는 제철소에서는 작업성 불량, 생성감소, 원가상승등의 엄청난 경제적 부담을 안고 있다.This slab reheating process is performed to disperse the precipitates such as MnS and AlN, which are used as grain growth inhibitors, in a completely solid solution and then precipitate finely. For this purpose, it is unavoidable to maintain them for about 5 hours at a high temperature of about 1400 ° C. At this time, the surface of the hot slab becomes an oxide called Pyrite (Fe 2 SiO 4 ), in which oxides of Si and Fe are combined by oxidation with air, and the melting point is about 1300 ° C. so that it melts from the surface. The molten slag is designed to flow out partly, but most of it accumulates in the refractory of the upper part of the furnace, so that the completion of work and complete internal repair are inevitable. Therefore, steelworks, which are characterized by continuous operation, have enormous economic burdens such as poor workability, reduced production, and cost increase.

이와같은 제문제점을 해결하기 위하여 본 발명자들은 재래식 방향성 전기강판을 표면의 용융이 없고 제철소 일반강의 처리 조건과 동일한 재가열온도인 1250-1320℃ 부근에서 열처리하여 열간압연을 행하도록 하는 성분계를 설계하였으며, 기존의 제조공정에서 설비 보완이나 신설이 없이도 작업이 가능한 새로운 제조방법을 확립하여 한국특허출원 제 93-23751호로 특허출원한바 있고, 또한, 부가적인 요소기술들을 한국특허출원 제 94-21388,21389,21390 및 21391호로 특허출원하였다.In order to solve this problem, the present inventors designed a component system for performing hot rolling by heating a conventional grain-oriented electrical steel sheet at around 1250-1320 ° C., which has no surface melting and a reheating temperature that is the same as that of a general steel mill. Established a new manufacturing method that can work without supplementary or new equipment in the existing manufacturing process and filed a patent with Korean Patent Application No. 93-23751. Also, additional element technologies are disclosed in Korean Patent Application No. 94-21388,21389, Patents No. 21390 and 21391.

상기 제안한 저온재가열법을 이용하여 실기 생산시 높은 실수율 및 안정적인 자기적 특성을 갖는 제품을 생산할 수 있었다. 그러나 이 제조 방법은 통상 고온재가 열재의 제조 순서와 달리 1차 냉간압연후 중간두께(통상 0.60-0.75mmt)에서 탈탄소둔을 하여야만 하므로 이 공정에서 형성되는 표면 산화물은 통상 0.30mmt두께에서 처리시에 비해 양과 질적인 측면에서 부족하다. 따라서 최종 마무리온도소둔시 형성되는 유리질절연피막(Forsterite, 2MgO·SiO2)형성이 불균일하고 불안정하여 전체적인 표면품질특성이 다소 저하된다. 또한 MnS석출물을 2차 재결정 성장 억제로 사용하는 통상의 일반 방향성 제품에서 최종 마무리소둔시는 100%수소 단일가스로 소둔함에 따른 터널식으로 행하기 때문에 단속식으로 행하는 방법에 비해 생산성이 우수하다. 그러나 새로 제안된 기술에서는 AlN의 석출물을 2차 재결정 성장억제제로 하기 때문에 질소가 함유된 혼합가스를 사용해야 하므로 분위기가스의 변경이 불가피하여 단속적인 소둔처리가 불가피하다.By using the low temperature reheating method proposed above, it was possible to produce a product having a high real rate and stable magnetic properties in actual production. However, this manufacturing method usually requires high-temperature materials to be decarbonized at the intermediate thickness (typically 0.60-0.75 mmt) after the first cold rolling, unlike the manufacturing order of the thermal materials, so that the surface oxides formed in this process are usually treated at 0.30 mmt thickness. It is insufficient in quantity and quality. Therefore, the formation of the glass insulation film (Forsterite, 2MgO · SiO 2 ) formed during the final finishing temperature annealing is uneven and unstable, so that the overall surface quality characteristics are slightly degraded. In addition, in general general aromatic products using MnS precipitates as secondary recrystallization growth suppression, the final finishing annealing is performed in a tunneled manner by annealing with 100% hydrogen single gas, which is superior to the intermittent method. However, in the newly proposed technique, the precipitate of AlN is used as a secondary recrystallization growth inhibitor, so a mixed gas containing nitrogen must be used to change the atmosphere gas, and thus an intermittent annealing treatment is inevitable.

따라서, 본 발명은 표면용융이 없는 저온재가열 온도에서 처리후 열연한다는 열연판 소둔을 행하여 미세석출물은 추가 분산 석출시키고, 이후 최종 마무리 소둔시 전열사이클을 질소함유수소분위기에서 행하므로써, 표면산화물에 의한 유리질 절연피막형성이 유리하여 표면 피막특성이 우수하고, 또한 자기적 성질도 우수한 방향성 전기강판을 높은 생산성으로 제조할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.Therefore, the present invention performs hot-rolled sheet annealing that is hot rolled after treatment at low temperature reheating temperature without surface melting, and further precipitates fine precipitates, and then conducts a heat transfer cycle in a nitrogen-containing hydrogen atmosphere during final annealing, It is an object of the present invention to provide a method for producing a grain-oriented electrical steel sheet having high surface film characteristics and excellent magnetic properties due to its favorable glassy insulating film formation with high productivity.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 저온스라브 가열방식에 의해 방향성 전기강판을 제조하는 방법에 있어서, 중량%로, C:0.025%-0.045%, Si:2.9-3.3%, P:0.015%이하, 용존Al:0.008-0.027%, N:0.0080 -0.012%, S:0.007%이하, Ni 및 Cr 단독 또는 복합:0.06-0.18%, Mn:0.32%이하, Cu:0.6%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 스라브를 1250-1320℃에서 재가열한 후 열간압연하고, 열연판을 1100-1150℃의 온도에서 소둔한 다음, 1차 냉간 압연하고, 냉연판을 820-870℃의 습윤분위기에서 탈탄소둔을 행한 다음, 50% 이상의 압연율로 2차 냉간압연한 후, 650℃이하의 온도에서 회복소둔을 행한 다음, MgO를 주성분으로 하는 융착방지제를 도포하고 권취한후, 1180-1220℃에서 분위기 가스를 10-15%질소함유 수소분위기로하여 20시간이상 최종 마무리 소둔을 행하여 자성 및 표면 품질특성이 우수한 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention is a method for producing a grain-oriented electrical steel sheet by low temperature slab heating method, by weight%, C: 0.025% -0.045%, Si: 2.9-3.3%, P: 0.015% or less, dissolved Al: 0.008-0.027 %, N: 0.0080 -0.012%, S: 0.007% or less, Ni and Cr alone or composite: 0.06-0.18%, Mn: 0.32% or less, Cu: 0.6% or less, slab composed of residual Fe and other unavoidable impurities After reheating at 1250-1320 ° C. and hot rolling, the hot rolled plate was annealed at a temperature of 1100-1150 ° C., first cold rolled, and the cold rolled plate was subjected to decarbonization annealing in a humid atmosphere of 820-870 ° C., and then 50 After secondary cold rolling at a rolling rate of at least%, after recovery annealing at a temperature of 650 ° C. or lower, and after applying and winding a fusion inhibitor containing MgO as a main component, 10-15% of the atmospheric gas at 1180-1220 ° C. The final finish annealing is carried out for 20 hours using a nitrogen-containing hydrogen atmosphere to produce oriented electrical steel sheets with excellent magnetic and surface quality characteristics. Is about the way.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 기본이 되는 한국특허출원 제 93-23751호에서 제안한 저온재가열법을 이용하여 실시 생산시 높은 실수율 및 안정적인 자기적 특성을 갖는 제품을 생산할 수 있었다. 그러나 이 제조방법은 공정 특성상 통상재와 달리 1차 냉간압연 후 중간두께(통상 0.60-0.75mmt)에서 탈탄소둔을 행하여야만 하므로 이 공정에서 형성되는 표면 산화물은 통상재인 0.30mmt두게에서 처리시에 비해 부족하고 따라서 최종 제품에서의 유리질절연피막형성이 불안정하며 표면품질특성이 다소 저하된다. 또한 MnS석출물을 2차 재결정성장억제제로 사용하는 통상제품에서 최종 마무리소둔시는 단일가스소둔에 따른 터널식으로 소둔처리를 행하기 때문에 생산성이 우수하나 새로 제안된 기술에서는 AlN석출물을 2차 재결정 성장억제제로 하기 때문에 수소와 질소의 혼합가스를 사용함으로 분위기가스의 변경이 불가피하여 단속적인 소둔처리를 행할 수 밖에 없었다. 따라서 본 발명은 유리질의 절연피막 형성에도 유리하고 또한 최종마무리소둔시의 생산성에서도 월등하게 유리한 전 사이클 동일가스분위기 처리를 기본으로 하여 소둔시 승온중의 분위기가스의 질소함량을 통상의 25%이상에서 10-15%수준으로 조정함으로서 동일한 양의 수분에서도 수소가스비가 증가함에 따른 표면산화능(PH20/PH2)이 상대적으로 낮아져 유리질절연피막형성에 불리한 FeO산화물 대신 저 산화능하에서 생성되기 쉬운 SiO2의 내부 산화물이 생성될 수 있다. 또한 본 발명에서 자기적특성의 확보를 위해서는 최종마무리소둔시는 통상의 25%질소분위기에서 10-15%의 질소함유분위기로 변화시킴에 따라 나타날 수 있는 AlN 석출물 추가 생성분의 부족분을 열연판소둔시 통상의 무소둔에서 1100-1150℃에서의 소둔처리를 추가행함으로서 열연석출시 덩어리석출물(cluster)상태의 AlN을 재 고용후 석출시킴으로서 이후 저질소 함유 분위기처리시의 부족분을 보충할 수가 있고 또한 최종 마무리소둔시에 비해 열연판 소둔시의 석출물관리가 용이하므로 조업관리측면에서도 훨씬 유리하다.By using the low temperature reheating method proposed in Korean Patent Application No. 93-23751, which is the basis of the present invention, it was possible to produce a product having a high realization rate and stable magnetic properties during actual production. However, this manufacturing method requires decarbonization annealing at the intermediate thickness (usually 0.60-0.75mmt) after the first cold rolling, unlike the conventional materials. Therefore, the surface oxides formed in this process are 0.30mmt thick than conventional materials. Lacking and thus the formation of the glass insulation film in the final product is unstable and the surface quality characteristics are somewhat degraded. In addition, in the conventional products using MnS precipitate as the secondary recrystallization growth inhibitor, the final finishing annealing is performed by tunneling annealing according to the single gas annealing, so the productivity is excellent. However, in the newly proposed technology, the AlN precipitate is the second recrystallization growth inhibitor. As a result, the use of a mixed gas of hydrogen and nitrogen inevitably changed the atmosphere gas, resulting in an intermittent annealing treatment. Therefore, the present invention is based on the same-cycle atmosphere treatment of all cycles, which is advantageous for forming a glassy insulating film and also excellent in productivity at the time of final finishing annealing. By adjusting the concentration to 10-15%, the surface oxidation capacity (P H20 / P H2 ) is relatively lower with increasing hydrogen gas ratio even at the same amount of moisture, and thus SiO 2 is easily produced under low oxidation capacity instead of FeO oxide, which is unfavorable to glass insulation film formation. Internal oxides may be produced. In addition, in order to secure the magnetic properties in the present invention, the final finishing annealing hot-rolled sheet annealing the shortage of additional AlN precipitates that may appear as a change from the normal 25% nitrogen atmosphere to a 10-15% nitrogen-containing atmosphere By adding an annealing treatment at 1100-1150 ℃ in normal annealing at the time of regeneration, the precipitated AlN in the form of a clumper can be precipitated after re-solubilization during hot-rolled precipitation, thereby replenishing the deficiency in the low nitrogen-containing atmosphere treatment. Compared to the final finishing annealing, it is easier to manage the precipitate during the hot-rolled sheet annealing.

이하, 본 발명강의 성분 및 그 범위의 한정이유등에 대해 설명한다.Hereinafter, the reason for limitation of the component of this invention steel, and its range is demonstrated.

상기 C는 적정한 압연조직을 형성하게 하고, 냉간압연시 가공에너지를 부여하기 때문에 최소 0.025%이상이 필요하며 이후 탈탄공정의 어려움을 고려하여 0.045%까지 한정하는 것이 바람직하다.The C is required to form an appropriate rolled structure, and at least 0.025% or more because it imparts processing energy during cold rolling, and is preferably limited to 0.045% in consideration of the difficulty of the decarburization process.

상기 Si는 전기강판의 기본 성분으로 소재의 비저항치를 증가시켜 철심손실 즉 철손을 낮추는 역할을 하는 성분으로써, 그 함량이 2.9%이하인 경우에는 철손특성이 나빠지고, 과잉 함유시 강이 취약해져 냉간압연성이 극히 나빠지고 2차 재결정 형성이 불안정해지므로 상기 Si의 함량은 2.9-3.3%로 제한하는 것이 바람직하다.The Si is a component that serves to lower the core loss or iron loss by increasing the resistivity of the material as a basic component of the electrical steel sheet, when the content is less than 2.9%, the iron loss characteristics worsen, the steel is vulnerable when the excess content is cold rolled It is desirable to limit the content of Si to 2.9-3.3% because the properties are extremely poor and the secondary recrystallization becomes unstable.

상기 Mn은 재가열시 석출물의 고용온도를 낮추며, 열간압연시 소재 양 끝부분에 생성되는 크랙을 방지하는 역할을 하므로 많이 첨가할수록, 유리하나 0.32%이상 첨가시에는 탈탄소둔시 형성되는 Mn산화물에 의해 고온소둔시 형성되는 포스테라이트피막의 밀착성이 악화되므로, 상기 Mn의 함량은 0.32%이하로 제한하는 것이 바람직하다.The Mn lowers the solid solution temperature of the precipitate during reheating and prevents cracks formed at both ends of the material during hot rolling. Therefore, Mn is more advantageous, but Mn oxide is formed when decarbonization is added when 0.32% or more is added. Since the adhesion of the forsterite film formed during high temperature annealing is deteriorated, the content of Mn is preferably limited to 0.32% or less.

상기 S는 Cu나 Mn과 유화물 형태의 석출물을 형성하여 억제제의 역할을 하는 성분으로써 제조공장에서 기본적으로 함유됨을 고려하며 가능한 한 하한관리가 필요하며, 0.007%이상이 함유되면 열연에서 저온재가열시 중심편석부의 고용 및 확산이 어려워지므로 탈 S공정등을 채용하여 강력 억제하여야 한다. 따라서, 상기 S의 함량은 0.0007%이하로 제한하는 것이 바람직하다.S is a component that acts as an inhibitor by forming a precipitate in the form of Cu or Mn and an emulsion, considering that it is basically contained in the manufacturing plant, and needs to be managed as low as possible. Employment and spread of segregation becomes difficult, so de-S process should be adopted and should be restrained strongly. Therefore, the content of S is preferably limited to 0.0007% or less.

상기 Al성분은 N과 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소이며, 총량적인 Al관리가 아닌 용존상태의 Al량이 중요하다. 상기 Al의 함량이 0.008%이하인 경우에는 2차재결정에 필요한 충분한 억제력을 갖지 못하기 때문에 결정립크기가 적고 불완전 미립자가 나타나 자속밀도가 낮고 철손이 나빠지고, 0.0027%이상인 경우에는 억제력이 너무 강해 자성이 우수한 (110)[001]방위의 2차 재결정 형성 자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 필요한 대표적 성분이다.The Al component forms a precipitate of AlN together with N and is a central element to secure grain growth inhibition, and the amount of Al in the dissolved state is important, not the total amount of Al management. If the content of Al is less than 0.008%, since it does not have sufficient inhibitory force necessary for secondary recrystallization, the grain size is small and incomplete fine particles appear, resulting in low magnetic flux density and poor iron loss. Secondary recrystallization in the excellent (110) [001] orientation makes it difficult to form itself, and thus the magnetic properties are rapidly deteriorated, and thus it is a representative component that needs to be managed.

따라서, 상기 Al의 함량은 0.008-0.027%로 제한하는 것이 바람직하다.Therefore, the content of Al is preferably limited to 0.008-0.027%.

상기 N은 용존 Al과 반응 석출물을 형성하여 1차 재결정의 입성장억제제로 작용하므로 2차 재결정형성에 있어서 필수적인 성분이며, 0.008%이하에서는 형성 석출물이 부족하게 되고, 0.012%이상 첨가시에는 강판 표면에 브리스터라는 결함이 생겨 제품의 표면특성을 열화시키므로 상기 N의 함량은 0.008-0.012%로 제한하는 것이 바람직하다.N is an essential component in secondary recrystallization because it forms a reaction precipitate with dissolved Al to act as a grain growth inhibitor of primary recrystallization. If N is less than 0.008%, formation precipitates are insufficient, and when 0.012% or more is added, the surface of steel sheet It is preferable to limit the content of N to 0.008-0.012% because a defect called an ester causes deterioration of the surface properties of the product.

상기 Ni와 Cr은 1차재결정립을 미세화시켜서 석출물 분산효과가 크기 때문에 적정 재가열온도범위를 보다 높일 수 있다. 따라서 재가열온도를 기본적으로 1250-1300℃에서 작업하기 위해서는 단독 또는 2종 복합으로 최소 0.06%이상 첨가가 필요하고, 0.18%이상 첨가시 소재중의 C성분과 결합함으로서 이후 탈탄성을 나쁘게 하므로 상기 Ni 및 Cr의 함량은 단독 또는 복합으로 0.06-0.18%로 제한하는 것이 바람직하다.The Ni and Cr may further increase the appropriate reheating temperature range by miniaturizing the primary recrystallized grains so that the precipitate dispersion effect is large. Therefore, in order to operate the reheating temperature at 1250-1300 ° C, at least 0.06% or more is required to be used alone or in combination of two kinds, and when 0.18% or more is added, the de-elasticity worsens afterwards by combining with the C component in the material. And the content of Cr is preferably limited to 0.06-0.18% alone or in combination.

이상의 성분계는 방항성전기강판 제조시 가장 큰 난문제인 스라브 재가열온도를 하향시키는 필수조건으로 이 성분계를 사용하며 스라브 가열온도를 통상 일반 탄소강의 재가열온도인 1250℃에서 작업을 행하여도 우수한 자기적 특성의 확보가 가능하다. 이때 재가열온도가 1320℃를 넘으면 전기강판 스라브가 용융하는 온도이므로 제철소에서 가장 경제적이고 용이한 재가열온도인 1250℃에서 1320℃까지로 한정하는 것이 바람직하다.The above component system uses this component system as the essential condition to lower slab reheating temperature, which is the biggest problem in the manufacture of anti-corrosion electrical steel sheet, and it has excellent magnetic properties even when the slab heating temperature is operated at 1250 ℃, which is the reheating temperature of ordinary carbon steel. It can be secured. In this case, when the reheating temperature exceeds 1320 ° C., the steel sheet slab is melted, and therefore, the steel sheet slab is preferably limited to 1250 ° C. to 1320 ° C., which is the most economical and easy reheating temperature in steel mills.

상기와 같은 재가열온도로 스라브를 재가열한 다음 열간압연을 행한후 열연판 소둔을 행해야 하는데 열연판소둔은 1100-1150℃에서 행하는 것이 바람직한데, 그 이유는 소둔온도가 1100℃이하인 경우에는 AlN의 재고용이 불가능하고 1150℃이상인 경우에는 냉각시 미세석출이 불가능하여 필요이상이 대형석출물로 성장할 수 있기 때문이다.After reheating the slab to the above reheating temperature and performing hot rolling, the hot rolled sheet annealing should be performed at 1100-1150 ℃. The reason for this is that when the annealing temperature is 1100 ℃ or lower, re-use of AlN If this is impossible and the temperature is more than 1150 ° C, fine precipitation is impossible during cooling, and it is possible to grow larger precipitates than necessary.

다음에, 상기와 같이 소둔된 열연판을 1차 냉간압연한후 820-870℃의 습윤분위기에서 탈탄소둔을 행하고, 이어 50%이상의 압연율로 2차 냉간압연을 행하여 최종 두께로 조정한다. 다음에, 650℃이하의 온도에서 회복소둔을 한 다음 MgO를 주성분으로 하는 융착방지제를 도포하고 권취하여 대형코일로 만든다음, 코일을 최종 마무리 소둔하게 된다. 상기 최종마무리 소둔공정은 전소둔사이클을 10-15%질소함유 수소분위기에서 행하게 되는데, 그 이유는 상기 질소함유수소분위기중의 질소함량이 10%이하인 경우에는 추가적인 AlN형성에 부족하며, 15% 이상의 질소분위기하에서는 유리질절연피막형성에 유리한 내부 SiO2산화물형성에 불리해지기 때문이다.Next, after hot-rolling the hot-rolled sheet annealed as described above, decarbonized annealing is performed in a wet atmosphere at 820-870 ° C., followed by secondary cold rolling at a rolling rate of 50% or more to adjust the final thickness. Next, recovery annealing is performed at a temperature of 650 ° C. or lower, then MgO-based fusion inhibitor is applied and wound to form a large coil, and the coil is finally finished annealed. The final annealing process is carried out in the hydrogen an atmosphere containing 10-15% nitrogen before the annealing cycle, the reason is that if the nitrogen content in the nitrogen-containing hydrogen atmosphere is less than 10%, additional AlN formation is insufficient, more than 15% This is because, under the nitrogen atmosphere, it is disadvantageous for the formation of the internal SiO 2 oxide, which is advantageous for the formation of the glass insulating film.

그리고, 상기 최종마무리 소둔시의 소둔온도는 1180-1220℃로 선정하는 것이 바람직하고, 소둔시간은 20시간이상으로 선정하는 것이 바람직하다.The annealing temperature at the time of the final finishing annealing is preferably selected to be 1180-1220 ° C., and the annealing time is preferably set to 20 hours or more.

이하 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following Examples.

[실시예 1]Example 1

중량%로, C:0.032%, Si:3.05%, P:0.013%, 용존 Al:0.016%, N:0.0093%, S:0.004%, Ni:0.052%, Cr:0.048%, Mn:0.20%, Cu:0.46% 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 연주스라브를 1305℃에서 4시간 재가열 후 열간압연을 행하고, 이어 열연판소둔을 통상의 무소둔처리에서 본 발명의 1150℃까지 변화시켜 처리하고 열연판을 1차 냉간압연하여 0.65mm두께로 한후, 870℃의 습윤분위기에서 탈탄소둔을 하고, 이어 2차 냉간압연을 행하여 최종 두께인 0.30mm로 조정하였다. 이어 2차 냉간압연을 행하여 최종 두께인 0.30mm로 조정하였다. 이어 550℃의 온도에서 회복소둔을 한 다음 MgO를 주성분으로 하는 융착 방지제를 도포하고 권취하여 대형코일로 만든후, 최종 마무리 소둔을 행하였다.By weight%, C: 0.032%, Si: 3.05%, P: 0.013%, dissolved Al: 0.016%, N: 0.0093%, S: 0.004%, Ni: 0.052%, Cr: 0.048%, Mn: 0.20%, Cu: 0.46% residual Fe and other unavoidable impurities are reheated at 1305 DEG C for 4 hours, followed by hot rolling, followed by hot rolling annealing from annealed to 1150 DEG C of the present invention. Was cold rolled to a thickness of 0.65 mm, then subjected to decarbonization in a wet atmosphere at 870 ° C., followed by secondary cold rolling to adjust to a final thickness of 0.30 mm. Subsequently, secondary cold rolling was performed to adjust the final thickness to 0.30 mm. Subsequently, after recovery annealing at a temperature of 550 ° C., a fusion inhibitor containing MgO as a main component was applied and wound to make a large coil, followed by final finishing annealing.

최종 마무리 소둔은 650℃에서 1차 저온균열, 이어 시간당 20℃의 속도로 승온, 1200℃에서 총 25시간 2차 고온균열 후 30시간에 걸쳐 상온까지 냉각하였으며, 이때의 분위기가스는 전 구간을 10%질소 함유 수소분위기에서 행하였다. 상기와 같이 최종 마무리 소둔된후의 자성을 측정하여 하기 표 1에 나타내었다.The final finishing annealing was performed at 650 ° C for the first low temperature crack, followed by an elevated temperature at a rate of 20 ° C per hour, followed by a total of 25 hours at 1200 ° C for 2 hours, and then cooled to room temperature for 30 hours. The reaction was carried out in a nitrogen atmosphere containing% nitrogen. The magnetic properties after the final finishing annealing as described above are shown in Table 1 below.

[표 1]TABLE 1

* 자속밀도, B10(Tesla):1000Amp/m로 자화했을 때의 유도되는 자속밀도* Magnetic flux density, B10 (Tesla): The magnetic flux density induced when magnetized at 1000 Amp / m

* 철손, W17/50(W/kg):50Hz에서 1.7Tesla가 얻어지도록 자화했을 때의 철심의 손실값* Iron loss, W17 / 50 (W / kg): Loss of iron core when magnetized to obtain 1.7 Tesla at 50 Hz

상기 표 1에 나타난 바와같이, 통상적인 무소둔처리재의 경우 자속밀도가 낮고 철심손실값이 높아 제품화가 불가능한 상태이며, 950℃처리재[비교재(1)]도 부분적인 자성은 확보되었으나 역시 자속밀도값이 낮고 철심손실값이 높음을 알 수 있다.As shown in Table 1, in the case of a conventional annealing treatment material, low magnetic flux density and high iron core loss value make it impossible to commercialize it, and the 950 ° C. treated material (comparative material (1)) also has partial magnetic properties, but also magnetic flux. It can be seen that the density value is low and the iron core loss value is high.

반면에, 1100-1150℃에서 열연판소둔한 발명재(a)(b)의 경우에는 자속밀도 1.86Tesla이상, 철심손실값 1.20W/Kg이하의 우수한 자기적특성을 나타내고 있음을 알수 있다.On the other hand, the invention (a) (b) hot-rolled annealing at 1100-1150 ℃ exhibits excellent magnetic properties with a magnetic flux density of 1.86 Tesla or more, iron core loss value of 1.20 W / Kg or less.

한편, 소둔온도가 본 발명 범위보다 높은 비교재(2)의 경우에도 자기적 특성이 열화됨을 알 수 있다.On the other hand, it can be seen that even in the case of the comparative material 2, the annealing temperature is higher than the range of the present invention, the magnetic properties deteriorate.

[실시예 2]Example 2

실시예 1의 조성을 갖는 연주스라브를 1300℃에서 4시간 재가열 후 열간압연을 행하고, 이어 1125℃에서 열연판소둔을 한후 실시예 1의 동일조건으로 처리하여 대형코일로 만들었다. 최종 마무리소둔은 통상재의 조건인 650℃에서 1차 저온균열, 이어 시간당 20℃의 속도로 승온, 1200℃에서 총 25시간 2차 고온균열 후 30시간에 걸쳐 상온까지 냉각하였으며 이때의 분위기가스는 1200℃까지의 승온시는 25%질소 함유 수소분위기에서, 그 이후는 100%수소분위기에서 행하는 방법과 이것과의 특성을 비교를 위하여 상기와 같은 열사이클에서 전구간의 분위기 가스를 100% 수소가스, 5%, 10%, 15% 및 25%질소함유 수소분위기에서 최종 마무리 소둔처리를 행한후 이들의 자기적 특성과 표면 품질특성을 비교하여 하기 표 2에 나타내었다.The slab having the composition of Example 1 was reheated at 1300 ° C. for 4 hours, followed by hot rolling, followed by hot roll annealing at 1125 ° C., and then treated under the same conditions as in Example 1 to obtain a large coil. The final finishing annealing was performed at 650 ° C., the first low temperature crack, followed by an elevated temperature at a rate of 20 ° C. per hour, followed by a total of 25 hours at 1200 ° C. for 2 hours, followed by cooling at room temperature over 30 hours. In order to compare the characteristics of this method with the method performed in a 25% nitrogen-containing hydrogen atmosphere at 100 ° C and thereafter at 100% hydrogen atmosphere, and the characteristics thereof, 100% hydrogen gas, 5 After the final finish annealing treatment in%, 10%, 15% and 25% nitrogen-containing hydrogen atmosphere and compared their magnetic properties and surface quality characteristics are shown in Table 2 below.

[표 2]TABLE 2

* 자속밀도, B10(Tesla):1000Amp/m로 자화했을 때의 유도되는 자속밀도* Magnetic flux density, B10 (Tesla): The magnetic flux density induced when magnetized at 1000 Amp / m

* 철손, W17/50(W/kg):50Hz에서 1.7Tesla가 얻어지도록 자화했을 때의 철심의 손실값* Iron loss, W17 / 50 (W / kg): Loss of iron core when magnetized to obtain 1.7 Tesla at 50 Hz

* 절연성은 300psi 압력하에서 입력전압 0.5Volt, 1.0Amp의 전류르르 통했을 때 수납전류값* Insulation property is the storage current value when the input voltage is 0.5Volt, 1.0Amp at 300psi

상기 표 2에 나타난 바와같이, 통상의 처리조건인 분위기 전환인 경우(통상재), 자성은 비교적 양호하나 표면품질에서 절연성이 불량하고 표면의 얼룩등의 분균일하여 정상등록의 표면품질을 확보하기 힘들다는 것을 알 수 있다. 한편, 전사이클 동일가스 처리시 0 및 5%질소함유 수소분위기의 경우[비교재(3) 및 (4)]표면품질은 확보되었으나 자기적 특성이 열위하여 제품화가 어렵다는 것을 알 수 있다.As shown in Table 2 above, in the case of the atmosphere change which is a normal treatment condition (normal material), the magnetic properties are relatively good, but the insulation quality is poor in the surface quality, and the surface unevenness is uniform, so as to secure the normal surface quality. You can see it's hard. On the other hand, the surface quality of 0 and 5% nitrogen-containing hydrogen atmosphere (comparative materials (3) and (4)) was secured during the same cycle of all cycles, but it was found that the product was difficult to commercialize due to inferior magnetic properties.

반면에, 본 발명에 부합되는 10-15%질소함유 수소분위기 소둔처리시 [발명재(C) 및 (d)]자속밀도는 1.87Tesla이상이고 철손은 1.20W/kg이하인 우수한 자성특성을 갖고 또한 표면품질에서도 절연성이 낮은 값이라 우수하고 외관 형상도 양호함을 알 수 있다. 한편, 본 발명 범위보다 많은 질소를 함유하고 있는 비교재(5)의 경우에는 자성은 확보되었으나, 표면품질이 다소 저조함을 알 수 있다.On the other hand, in the 10-15% nitrogen-containing hydrogen atmosphere annealing treatment according to the present invention, the magnetic flux density of [inventive material (C) and (d)] is 1.87 Tesla or more and the iron loss is 1.20 W / kg or less. In terms of surface quality, it is excellent because of low insulation properties, and it can be seen that appearance is also good. On the other hand, in the case of the comparative material (5) containing more nitrogen than the scope of the present invention, it can be seen that the magnetic properties, but the surface quality is somewhat poor.

Claims (1)

저온스라브 가열방식에 의해 방향성 전기강판을 제조하는 방법에 있어서, 중량%로, C:0.025%-0.045%, Si:2.9-3.3%, P:0.015%이하, 용존Al:0.008-0.027%, N:0.0080 -0.012%, S:0.007%이하, Ni 및 Cr 단독 또는 복합:0.06-0.18%, Mn:0.32%이하, Cu:0.6%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 스라브를 1250-1320℃에서 재가열한 후 열간압연하고, 열연판을 1100-1150℃의 온도에서 소둔한 다음, 1차 냉간 압연하고, 냉연판을 820-870℃의 습윤분위기에서 탈탄소둔을 행한 다음, 50% 이상의 압연율로 2차 냉간압연한 후, 650℃이하의 온도에서 회복소둔을 행한 다음, MgO를 주성분으로 하는 융착방지제를 도포하고 권취한후, 1180-1220℃에서 분위기 가스를 10-15%질소함유 수소분위기로하여 20시간이상 최종 마무리 소둔을 행하는 것을 특징으로 하는 자성 및 표면 품질특성이 우수한 방향성 전기강판의 제조방법.In the method for producing a grain-oriented electrical steel sheet by low temperature slab heating method, in weight%, C: 0.025% -0.045%, Si: 2.9-3.3%, P: 0.015% or less, dissolved Al: 0.008-0.027%, N : 0.0080 -0.012%, S: 0.007% or less, Ni and Cr alone or composite: 0.06-0.18%, Mn: 0.32% or less, Cu: 0.6% or less, slab composed of residual Fe and other unavoidable impurities 1250-1320 After reheating at ℃, hot rolling, the hot rolled sheet is annealed at a temperature of 1100-1150 ℃, first cold rolled, and the cold rolled sheet is subjected to decarbonization annealing in a wet atmosphere of 820-870 ℃, then 50% or more rolling After secondary cold rolling at a rate, recovery annealing was carried out at a temperature of 650 ° C. or lower, and then coated with a fusion inhibitor containing MgO as a main component and wound up, followed by 10-15% nitrogen-containing hydrogen at 1180-1220 ° C. A grain-oriented electrical steel sheet with excellent magnetic and surface quality characteristics, characterized by performing final finishing annealing for at least 20 hours in an atmosphere. Manufacturing method.
KR1019950053581A 1995-12-21 1995-12-21 The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property KR100241003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950053581A KR100241003B1 (en) 1995-12-21 1995-12-21 The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950053581A KR100241003B1 (en) 1995-12-21 1995-12-21 The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property

Publications (2)

Publication Number Publication Date
KR970043179A KR970043179A (en) 1997-07-26
KR100241003B1 true KR100241003B1 (en) 2000-03-02

Family

ID=19442469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950053581A KR100241003B1 (en) 1995-12-21 1995-12-21 The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property

Country Status (1)

Country Link
KR (1) KR100241003B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276283B1 (en) * 1996-08-14 2000-12-15 이구택 The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960007797A (en) * 1994-08-29 1996-03-22 김만제 Method for manufacturing oriented electrical steel sheet with stabilized magnetic properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960007797A (en) * 1994-08-29 1996-03-22 김만제 Method for manufacturing oriented electrical steel sheet with stabilized magnetic properties

Also Published As

Publication number Publication date
KR970043179A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
JP6663999B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
EP0709470B1 (en) Production method of directional electromagnetic steel sheet of low temperature slab heating system
JPS631371B2 (en)
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR970007030B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet
KR100276283B1 (en) The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
KR100276341B1 (en) The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating
KR100340500B1 (en) A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR100435456B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
KR100340506B1 (en) A Method of spraying MgO agent on Oriented Electrical Steel Sheet for Preventing Sticking of its edge parts
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
KR100406420B1 (en) A method for manufacturing grain oriented electrical steel sheet with high permeability
KR100268855B1 (en) Method for manufacturing low-temperature reheat oriented electrical steel sheet by one-time rolling annealing
KR100479994B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
JPH02259016A (en) Manufacturing method of unidirectional electrical steel sheet without surface swelling defects
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR970007032B1 (en) Method for manufacturing oriented electrical steel sheet having excellent plating properties
KR20000008646A (en) Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating
KR100256343B1 (en) The manufacturing method for oriented electric steel sheet with low temperature heating type
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19951221

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970827

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19951221

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19990601

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19991004

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19991101

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19991102

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20021025

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20021025

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20040810