KR100435479B1 - A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property - Google Patents

A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property Download PDF

Info

Publication number
KR100435479B1
KR100435479B1 KR10-1999-0063052A KR19990063052A KR100435479B1 KR 100435479 B1 KR100435479 B1 KR 100435479B1 KR 19990063052 A KR19990063052 A KR 19990063052A KR 100435479 B1 KR100435479 B1 KR 100435479B1
Authority
KR
South Korea
Prior art keywords
annealing
temperature
electrical steel
steel sheet
oriented electrical
Prior art date
Application number
KR10-1999-0063052A
Other languages
Korean (ko)
Other versions
KR20010060646A (en
Inventor
이청산
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0063052A priority Critical patent/KR100435479B1/en
Publication of KR20010060646A publication Critical patent/KR20010060646A/en
Application granted granted Critical
Publication of KR100435479B1 publication Critical patent/KR100435479B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

본 발명은 저온슬라브가열 방향성 전기강판의 제조방법에 관한 것으로서, 2차 냉간압연의 압하율을 낮추고 중간소둔시 분위기를 조정함으로써, 유리질 피막의 특성향상과 동시에 2차재결정의 방향성 열화 방지를 달성할 수 있는 피막특성이 우수한 저온슬라브가열 방향성 전기강판을 제조하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing low-temperature slab heating oriented electrical steel sheet, by lowering the reduction ratio of secondary cold rolling and adjusting the atmosphere during intermediate annealing, thereby improving the characteristics of the glass coating and at the same time preventing directional degradation of the secondary recrystallization. To produce a low-temperature slab heating oriented electrical steel sheet having excellent coating properties, the purpose is.

본 발명은 규소강 슬라브를 가열한 후 열간압연한 다음, 열연판소둔하고 중간소둔을 포함한 2회 냉간압연에 의해 최종두께의 냉연판을 만든 다음, 상기 냉연판을 2차소둔하고, 소둔분리제를 도포하여 마무리고온소둔하는 공정을 포함하는 방향성 전기강판의 제조방법에 있어서,According to the present invention, after the silicon steel slab is heated and hot rolled, the hot rolled sheet is annealed and the cold rolled sheet is finally made by two cold rolling including intermediate annealing, and the second cold annealed sheet is annealed and annealing separator. In the manufacturing method of the grain-oriented electrical steel sheet comprising the step of applying a high temperature annealing finish

상기 규소강 슬라브는 중량%로, C:0.02∼0.08%, Si:2.90∼3.30%, Mn:0.10∼0.40%, S≤0.006%, 산가용성Al:0.005∼0.030%, N:0.005∼0.012%, Cu:0.30∼0.70%, Cr:0.03∼0.07% 및 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지고;The silicon steel slab is by weight, C: 0.02 to 0.08%, Si: 2.90 to 3.30%, Mn: 0.10 to 0.40%, S≤0.006%, acid soluble Al: 0.005 to 0.030%, N: 0.005 to 0.012% , Cu: 0.30 to 0.70%, Cr: 0.03 to 0.07% and the balance Fe and other inevitably contained impurities;

상기 중간소둔은 850~950℃의 온도범위에서 실시하고;The intermediate annealing is carried out in a temperature range of 850 ~ 950 ℃;

상기 냉간압연시 2차 냉간압연율을 25∼45%로 제어하여 최종 냉연판의 두께를 0.26∼0.35mm로 하고;Controlling the secondary cold rolling rate during the cold rolling to 25 to 45% so that the thickness of the final cold rolled sheet is 0.26 to 0.35 mm;

상기 2차소둔은 습윤수소 및 질소분위기하의 800∼900℃에서 30초∼10분 동안 실시하고;The secondary annealing is carried out for 30 seconds to 10 minutes at 800 to 900 ° C. under humid hydrogen and nitrogen atmosphere;

상기 마무리고온소둔은 10~50℃/hr의 승온율로 1150~1200℃의 온도범위까지 승온하고, 그 온도에서 5시간 이상 균열하는 식으로 실시하는 것을 특징으로 하는 피막특성이 우수한 저온 슬라브가열 방향성전기강판의 제조방법을, 그 기술적 요지로 한다.The finishing high temperature annealing is carried out by heating up to a temperature range of 1150 to 1200 ℃ at a temperature rising rate of 10 to 50 ℃ / hr, and cracking at that temperature for 5 hours or more. The manufacturing method of an electrical steel sheet shall be the technical summary.

Description

피막특성이 우수한 저온 슬라브가열 방향성전기강판 제조방법{A METHOD FOR MANUFACTURING LOW TEMPERATURE SLAB REHEATING GRAIN-ORIENTED ELECTRICAL STEEL SHEET WITH SUPERIOR FILM PROPERTY}A method for manufacturing low-temperature slab heating oriented electrical steel with excellent film characteristics {A METHOD FOR MANUFACTURING LOW TEMPERATURE SLAB REHEATING GRAIN-ORIENTED ELECTRICAL STEEL SHEET WITH SUPERIOR FILM PROPERTY}

본 발명은 변압기, 발전기 및 기타 전자기기등의 철심재료로 사용되는 방향성전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 특정성분을 첨가하고 2차 냉간압하율을 낮추어 최종냉간압연판에 적절한 산화층을 형성시킴으로써, 2차재결정의 방향성을 개선시키고 양호한 유리질 피막특성과 우수한 자기특성을 동시에 안정하게 얻을 수 있는 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials for transformers, generators, and other electronic devices, and more particularly, by adding a specific component and lowering the secondary cold rolling rate, thereby providing an oxide layer suitable for the final cold rolled sheet. The present invention relates to a method for producing a grain-oriented electrical steel sheet which can improve the directionality of secondary recrystallization and obtain stable glassy film characteristics and excellent magnetic properties at the same time.

방향성 전기강판은 결정립의 방위가 (110)[001]방향으로 정렬된 집합조직을 가지고 있어서, 냉간압연 방향으로 우수한 자기적 특성을 갖는다.The grain-oriented electrical steel sheet has an aggregate structure in which the orientations of the grains are aligned in the (110) [001] direction, and thus have excellent magnetic properties in the cold rolling direction.

방향성 전기강판의 자기적 특성은 주로 자속밀도와 철손으로 나타내는데, 자속밀도는 통상 1000A/m의 자장에 의해 철심내에 유기되는 자속밀도(B10)로, 철손은 일정한 주파수, 예컨데, 50Hz의 교류에 의해 1.7Tesla의 자속밀도가 얻어지도록 할때 철심내에서 열 등으로 낭비되는 에너지손실, 즉 W17/50으로 평가하고 있다.The magnetic properties of oriented electrical steel are mainly represented by magnetic flux density and iron loss. The magnetic flux density is a magnetic flux density (B 10 ) that is induced in the iron core by a magnetic field of 1000 A / m, and the iron loss is alternating at a constant frequency, for example, 50 Hz. When the magnetic flux density of 1.7 Tesla is obtained, it is estimated to be W 17/50 , that is, energy loss wasted due to heat in the iron core.

자속밀도가 높은 소재를 사용하게 되면 소형, 고성능의 전기기기의 제작이 가능하게 되고, 철손이 적으면 적을수록 전기에너지 손실을 대폭 줄일 수 있다.The use of materials with high magnetic flux density makes it possible to manufacture small, high-performance electrical devices. The less iron loss, the greater the loss of electrical energy.

상기와 같은 특성을 갖는 방향성 전기강판은 N.P.Goss에 의해 그 제조법이 발명된 이래, 개량을 거듭하여 많은 진보가 있었는데, 방향성 전기강판의 연구의 역사는 철손저감 노력의 역사라해도 과언이 아니다. 주요한 개선내용을 보면, 제품의 두께를 얇게하고, 성분에 첨가원소를 다양하게 한다든가, 또는 제품에 레이저를 조사하여 자구를 미세하게 하는 방법등이 있다. 이러한 모든 방법들은 제조원가를 높히고, 작업자들의 노력을 많이 필요로 하는 것들이다.Since the manufacturing method was invented by N.P.Goss, the oriented electrical steel sheet having the above characteristics has been improved and many improvements have been made. The history of research on oriented electrical steel sheets is not an exaggeration to say that it is a history of iron loss reduction efforts. Major improvements include thinning the product, varying the number of additives in the components, or minimizing the domains by irradiating the product with a laser. All of these methods increase manufacturing costs and require a lot of labor.

그러나, 최근에는 수요가들의 욕구가 다양해지면서, 최종제품의 용도에 맞게 경제적으로 재료를 선택하려는 움직임이 있으나, 이러한 다양한 욕구를 만족시킬 만큼 제품이 세분화되어 있지 않다. 예컨데, 저철손 전자기기의 철심용 박물제품의 수요 외에도, 가공비가 저렴한 소형, 고성능 기기의 철심용 방향성 전기강판을 낮은 가격에 공급받기를 원하는 수요가들이 있다.However, in recent years, as the demands of the demanders are diversified, there is a movement to select a material economically for the purpose of the final product, but the products are not subdivided enough to satisfy these various needs. For example, in addition to the demand for iron core products of low iron loss electronic devices, there are demands for low-cost supply of oriented electrical steel sheets for iron cores of small, high-performance devices with low processing costs.

이들의 욕구를 만족시키기 위해서는 두께가 두꺼운 고자속밀도 방향성 전기강판을 저온 슬라브가열 방식으로 제조할 수 있는 기술이 필요하다. 또한, 이러한 제품의 철손은 두께를 감안하더라도, 강판 두께가 두꺼운 만큼 에너지손실이 크지 않다면 바람직할 것이다.In order to satisfy these needs, there is a need for a technology capable of manufacturing a thick high magnetic flux density oriented electrical steel sheet by a low temperature slab heating method. In addition, the iron loss of such a product would be desirable if the energy loss is not so great that the thickness of the steel sheet is thick, even considering the thickness.

따라서, 방향성 전기강판을 후물로 제조할 수 있다면, 수요가의 측면에서는 전기강판을 철심으로 타발하는 시간과 경비를 절약할 수 있는 잇점이 있으며, 또한, 생산자의 측면에서는 연속압연과 연속소둔으로 제조할 경우 기존의 얇은 방향성 전기강판에 비해 생산성이 증대되는 잇점도 있는 것이다.Therefore, if the oriented electrical steel sheet can be manufactured as a thick material, in terms of demand, it is advantageous to save time and expense of punching the electrical steel sheet with iron core, and also from the producer side, it is manufactured by continuous rolling and continuous annealing. In this case, there is also an advantage that productivity is increased compared to conventional thin oriented electrical steel sheet.

한편, 상기 (110)[001] 집합조직은 2차재결정 현상을 이용하여 얻어지는데, 2차재결정은 보통의 1차재결정에 의해 생긴 미세한 결정립들 중에서 특정방위의 결정립, 소위 고스(Goss)방위라 불리우는 (110)[001]의 방위를 가진 결정립(2차재결정의 핵)이 시편 전체로 이상성장(Abnormal growth)한 것으로, 이러한 2차재결정이 완전히 일어나고 그 방향성이 우수할 때 자기특성이 향상되는 것으로 알려져 있다.On the other hand, the (110) [001] texture is obtained by using a secondary recrystallization phenomenon. Secondary recrystallization is a grain of a specific orientation, which is called a Goss orientation, among the fine grains produced by ordinary primary recrystallization. Abnormal growth of crystal grains (nuclei of secondary recrystallization) with an orientation of (110) [001] is called, and the magnetic properties are improved when such secondary recrystallization occurs completely and its orientation is excellent. It is known.

2차 재결정을 안정화하기 위해서는 1차 재결정립들의 크기가 균일함과 동시에 1차 재결정립들의 방위(이후 '1차재결정 집합조직'으로 칭함)가 2차 재결정의 핵에 잘 잠식될 뿐만 아니라, 2차 재결정의 성장과정에서 2차재결정이 이상적인 [001]방향을 고수하는데, 즉, 우수한 방향성을 갖는 2차 재결정립을 발달시키는데 유리한 것이어야 하는 것으로 알려져 있다.In order to stabilize the secondary recrystallization, not only are the primary recrystallized grains uniform in size, but also the orientation of the primary recrystallized grains (hereinafter referred to as 'primary recrystallized aggregate') is well encroached on the nucleus of the secondary recrystallization. It is known that secondary recrystallization adheres to the ideal [001] direction during growth of the secondary recrystallization, that is, it should be advantageous to develop secondary recrystallized grains having excellent directionality.

이러한 목적을 달성하기 위해서는 적절한 함금설계 및 이에 따른 적절한 공정제어가 필요하다. 또한, 이에 못지 않게 중요한 것으로 2차재결정이 일어나기전까지 1차재결정립의 성장을 억제하는 것이 필요하다.To achieve this goal, proper alloy design and appropriate process control are required. Equally important, it is necessary to suppress the growth of the primary recrystallized grains before the secondary recrystallization occurs.

이를 위한 입성장억제제로는 MnS, MnSe, AlN, Cu2S등과 같은 석출물이 알려져 있으며, 일반적으로 상기 석출물에 의한 입성장억제력이 강할수록 2차 재결정이안정화된다. 그러나, 강한 입성장억제력을 얻기 위해서는 석출물의 양 및 크기, 그리고 분포를 잘 제어해야 하는데, 수백 내지 2000Å 크기의 미세한 석출물들이 가능한한 많은 양 균일하게 분포되면 이에 상응하여 입성장억제력이 증가하는 것으로 알려져 있다.As the grain growth inhibitor for this, precipitates such as MnS, MnSe, AlN, Cu 2 S, and the like are known, and in general, the stronger the grain growth inhibition by the precipitates, the more stable the second recrystallization. However, in order to obtain strong grain growth inhibition, it is necessary to control the amount, size, and distribution of precipitates well, and it is known that the grain growth inhibitory force increases correspondingly if the fine precipitates of several hundred to 2000 microns are uniformly distributed as much as possible. have.

이러한 적절한 석출물분포 제어를 위해 재래식 방향성 전기강판 제조의 경우는 제강단계에서 적정량의 석출물 형성원소를 첨가하고, 연속주조후 슬라브내에 형성된 조대한 석출물을 슬라브가열에 의해 완전히 고용시키고, 후속되는 열간압연 공정에서 석출물들이 미세하고 균일하게 분포되도록 제어하는 데 비중을 두고 있다. 이를 위해, 상기 재래식 공정에서는 1400℃정도에서 5시간 정도의 슬라브가열을 실시해야 하는 바, 이 때 고온의 슬라브 표면에서는 공기와의 산화반응으로 Si 및 Fe가 복합된 파얄라이트(Fayalite)라는 산화물이 형성 되며 이 산화물은 융점이 낮아 슬라브 표면온도가 1330℃ 정도만 되어도 표면에서부터 쇳물이 녹아내리는 현상이 발생한다. 이 때, 녹아내리는 쇳물(Slag)은 외측으로 흘러내리게 설계되어 있지만 일부는 가열로내의 지지대 등에 축적되어 작업종료시 응고 스케일 제거등을 위한 내부보수를 필요로 하게 되어, 연속작업을 특징으로 하는 제철소에서는 작업성 불량, 생산성 감소, 원가상승등의 상당한 비용부담을 안게 된다. 따라서, 슬라브가 녹지 않는 온도인 1320℃이하의 온도에서 슬라브를 가열하는 것이 가능하다면 매우 큰 이익을 기대할 수 있다.In the case of conventional grain-oriented electrical steel sheet manufacturing for proper control of the precipitate distribution, an appropriate amount of precipitate forming element is added in the steelmaking step, and the coarse precipitate formed in the slab after continuous casting is completely dissolved by slab heating, followed by a hot rolling process. The emphasis is on controlling the precipitates to be finely and uniformly distributed. To this end, in the conventional process, the slab heating should be performed at about 1400 ° C. for about 5 hours. At this time, the surface of the hot slab has an oxide called Payalite, in which Si and Fe are combined by oxidation with air. The oxide has a low melting point, and even though the slab surface temperature is about 1330 ° C, the molten metal melts from the surface. At this time, the molten slag is designed to flow outward, but some of it accumulates in the support in the furnace and requires internal repair to remove the solidification scale at the end of the work. There is a significant cost burden, such as poor workability, reduced productivity, and higher costs. Therefore, if it is possible to heat the slab at a temperature of 1320 ° C. or less, which is a temperature at which the slab does not melt, very large profits can be expected.

이에, 본 발명자는 한국특허공보 96-6026호에서 저온 슬라브가열 방식에 의한 방향성 전기강판의 제조방법을 제안한 바 있다. 이 기술은 적절한 강 성분을 첨가하고 0.60-0.75mm로 1차냉간압연 후 820-840℃의 온도에서 습윤(wet) 분위기로 중간 탈탄소둔을 행한 후 최종 제품두께로 2차냉간압연을 완료하고 이어서 1차재결정이 일어나지 않는 500-600℃의 온도에서 건조한(dry) 분위기로 2차소둔하는 것을 특징으로 한다.Thus, the present inventor has proposed a method of manufacturing a grain-oriented electrical steel sheet by low temperature slab heating method in Korean Patent Publication No. 96-6026. This technique adds the appropriate steel component, first cold rolls to 0.60-0.75mm, then performs intermediate decarbonization annealing in a wet atmosphere at a temperature of 820-840 ℃, then completes second cold rolling to the final product thickness. It is characterized in that the secondary annealing in a dry atmosphere at a temperature of 500-600 ℃ where primary recrystallization does not occur.

그러나 이 경우는 상기 2차소둔을 건조한 분위기에서 낮은 온도로 행해야 하기 때문에 2차소둔시 적정량의 산화층을 강판 표면에 형성시키기 어려울 뿐만 아니라, 2차냉간압연 중 형성되는 중파(Center Wave)등의 판형상 불량부를 교정하기 곤란한 문제점이 있다. 이로 인해 후속되는 마무리 고온소둔 후 제품 표면에 우수한 유리질 피막을 형성시키기 어렵게 되고, 표면 평탄도가 열화되어 제품의 실수율이 저하된다.However, in this case, since the secondary annealing has to be performed at a low temperature in a dry atmosphere, it is difficult not only to form an appropriate amount of oxide layer on the surface of the steel sheet during the second annealing, but also to form a plate such as a center wave formed during the secondary cold rolling. There is a problem that it is difficult to correct the shape defect. This makes it difficult to form an excellent glassy film on the surface of the product after the subsequent finishing high temperature annealing, and the surface flatness is deteriorated, thereby lowering the error rate of the product.

이러한 문제점은 2차소둔시 800℃이상의 온도에서 습윤분위기의 열처리를 행하게 되면 해소할 수 있으나, 이 때는 평균입도가 약 13μm이하인 미세한 1차 재결정이 형성되어 2차 재결정이 상기 공지기술에 비해 100℃정도 낮은 950℃ 부근에서 일어나게 되는 결과, 2차재결정의 방향성이 열화되어 우수한 자기특성이 얻어지지 않는 더 큰 문제점이 발생하는 것을 관찰하게 되었다. 이것은 1차재결정 입도가 작으면 2차재결정에 대한 구동력이 증가하여 {110}<001>, 소위 Goss방위의 선택적 성장 가능성이 감소하기 때문으로 풀이된다.This problem can be solved when the wet atmosphere is heat-treated at a temperature of 800 ° C. or higher during the second annealing, but at this time, fine primary recrystallization having an average particle size of about 13 μm or less is formed so that the secondary recrystallization is 100 ° C. compared with the known technology. As a result of the low temperature around 950 DEG C, it was observed that the problem of deterioration in the orientation of the secondary recrystallization was caused by the problem that excellent magnetic properties were not obtained. This is because small particle size of primary recrystallization increases the driving force for secondary recrystallization, reducing the possibility of selective growth of the so-called Goss orientation.

한편, 1차 재결정 입도는 고온에서 2차소둔을 행하는 방법을 고려해 볼 수있으나, 상기 방향성 규소강에는 AlN등의 석출물이 이미 형성되어 있어서 입성장이 억제되기 때문에 2차재결정이 일어나기 전까지는 입도의 증가가 거의 없게 된다.On the other hand, the primary recrystallized grain size may be considered a method of performing secondary annealing at a high temperature, but since grains such as AlN are already formed in the grain-oriented silicon steel, grain growth is suppressed, so that the grain size increases until the secondary recrystallization occurs. There will be almost no.

이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 2차 냉간압연의 압하율을 낮추고 2차 냉간압연후 2차소둔분위기 및 온도를 조정함으로써, 유리질 피막의 특성향상과 동시에 2차재결정의 방향성 열화 방지를 달성할 수 있는 피막특성이 우수한 저온슬라브가열 방향성 전기강판을 제조하고자 하는데, 그 목적이 있다.Thus, the present inventors have repeatedly conducted research and experiments to solve the above problems and propose the present invention based on the results, and the present invention lowers the reduction rate of the secondary cold rolling and the second after the second cold rolling. The purpose of the present invention is to manufacture low-temperature slab heating oriented electrical steel sheets having excellent coating properties that can improve the characteristics of glassy coatings and prevent directional deterioration of secondary recrystallization by adjusting the differential annealing atmosphere and temperature.

본 발명은 규소강 슬라브를 가열한 후 열간압연한 다음, 열연판소둔하고 중간소둔을 포함한 2회 냉간압연에 의해 최종두께의 냉연판을 만든 다음, 상기 냉연판을 2차소둔하고, 소둔분리제를 도포하여 마무리고온소둔하는 공정을 포함하는 방향성 전기강판의 제조방법에 있어서,According to the present invention, after the silicon steel slab is heated and hot rolled, the hot rolled sheet is annealed and the cold rolled sheet is finally made by two cold rolling including intermediate annealing, and the second cold annealed sheet is annealed and annealing separator. In the manufacturing method of the grain-oriented electrical steel sheet comprising the step of applying a high temperature annealing finish

상기 규소강 슬라브는 중량%로, C:0.02∼0.08%, Si:2.90∼3.30%, Mn:0.10∼0.40%, S≤0.006%, 산가용성Al:0.005∼0.030%, N:0.005∼0.012%, Cu:0.30∼0.70%, Cr:0.03∼0.07% 및 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지고;상기 중간소둔은 850~950℃의 온도범위에서 실시하고;The silicon steel slab is by weight, C: 0.02 to 0.08%, Si: 2.90 to 3.30%, Mn: 0.10 to 0.40%, S≤0.006%, acid soluble Al: 0.005 to 0.030%, N: 0.005 to 0.012% Cu: 0.30 to 0.70%, Cr: 0.03 to 0.07% and the balance Fe and other inevitable impurities; the intermediate annealing is performed at a temperature range of 850 to 950 ° C;

상기 냉간압연시 2차 냉간압연율을 25∼45%로 제어하여 최종 냉연판의 두께를 0.26∼0.35mm로 하고;Controlling the secondary cold rolling rate during the cold rolling to 25 to 45% so that the thickness of the final cold rolled sheet is 0.26 to 0.35 mm;

상기 냉연판의 2차소둔은 습윤수소와 질소의 혼합분위기하의 800∼900℃에서 30초∼10분 동안 실시하고;상기 마무리고온소둔은 10~50℃/hr의 승온율로 1150~1200℃의 온도범위까지 승온하고, 그 온도에서 5시간 이상 균열하는 식으로 실시하는 것을 특징으로 하는 피막특성이 우수한 저온 슬라브가열 방향성 전기강판의 제조방법에 관한 것이다.Secondary annealing of the cold rolled sheet is carried out for 30 seconds to 10 minutes at 800 ~ 900 ℃ under a mixed atmosphere of wet hydrogen and nitrogen; The finishing high temperature annealing is 1150 ~ 1200 ℃ at a temperature rising rate of 10 ~ 50 ℃ / hr It relates to a method for producing a low-temperature slab heating oriented electrical steel sheet having excellent coating properties, characterized in that the temperature is raised to a temperature range and cracked at that temperature for at least 5 hours.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자는 상기한 종래기술의 제반문제점들을 동시에 해결하기 위해, 제조공정조건을 변화하는 다수의 실험을 행한 결과, 상기 2차 냉간압연시 압하율을 25-45%로 낮추면 800℃이상에서 습윤분위기로 2차소둔을 행하는 경우에도 약 20μm이상의 1차재결정이 형성되어, 상기한 공지기술과 유사하게 1050℃부근에서 2차 재결정이 개시되고 2차 재결정완료 후 그 방향성이 열화되지 않는 것을 발견할 수 있었다. 이것은 냉간압하율이 감소하게 되면 전위(Dislocation) 등의 1차재결정의 핵생성 사이트(Site) 수가 감소하기 때문인 것으로 생각할 수 있다.In order to simultaneously solve the above-mentioned problems of the prior art, the present inventors have conducted a number of experiments varying manufacturing process conditions. As a result, when the secondary cold rolling reduction rate is reduced to 25-45%, the wet atmosphere is higher than 800 ° C. Even when secondary annealing is carried out, primary recrystallization of about 20 μm or more is formed, and similarly to the above known technique, secondary recrystallization is started at around 1050 ° C. and its orientation is not degraded after completion of secondary recrystallization. there was. This may be because the decrease in the cold reduction rate decreases the number of nucleation sites of primary recrystallization such as dislocation.

즉, 본 발명은 특정 강 성분을 첨가하여 저온 슬라브가열을 가능하게 하는 방향성전기강판의 제조방법에 있어서, 2차냉간압연시의 압하율을 상기 공지기술에 비해 대폭 감소시킴으로서 적정량의 산화층의 형성과 판형상 교정이 용이한 약 800℃이상에서 습윤분위기로 2차소둔을 행하여도 적정 크기의 1차재결정 입도가 얻어져 마무리 고온소둔시 방향성이 우수한 2차재결정이 형성되는 결과, 우수한 피막특성과 동시에 기존방법에 필적하는 자기특성을 갖는 저온 슬라브가열 방식의 방향성전기강판을 제조하는 방법에 관한 것이다.That is, the present invention is a method of manufacturing a grain-oriented electrical steel sheet that enables low-temperature slab heating by adding a specific steel component, by greatly reducing the reduction rate during the secondary cold rolling compared to the known technique to form an appropriate amount of oxide layer and Even if the secondary annealing is performed in a wet atmosphere at about 800 ° C or above, which is easy to correct the plate shape, the primary recrystallized grain size is obtained. The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet of low temperature slab heating method having a magnetic property comparable to the conventional method.

이하, 본 발명의 규소강 슬라브의 성분에 대하여 설명한다.Hereinafter, the component of the silicon steel slab of this invention is demonstrated.

상기 C는 그 함량이 0.02% 미만이면 슬라브가열시 결정립들이 조대하게 성장하여 최종고온소둔시 2차재결정의 발달이 불안정해지고, 0.08%를 초과하면 탈탄소둔에 장시간이 소요되므로, 그 함량은 0.02~0.08%로 설정하는 것이 바람직하다.When the content of C is less than 0.02%, the grains grow coarsely during slab heating, and the development of secondary recrystallization becomes unstable at the time of final high temperature annealing. It is preferable to set it to 0.08%.

상기 Si은 그 함량이 2.90% 미만이면 우수한 철손특성이 얻어지지 않고, 3.30%를 초과하면 냉간압연성이 열화되므로, 그 함량은 2.90~3.30%로 설정하는 것이 바람직하다.If the content of Si is less than 2.90%, excellent iron loss characteristics are not obtained. If the content of Si is more than 3.30%, the cold rolling property is deteriorated, the content thereof is preferably set to 2.90 to 3.30%.

상기 Mn은 슬라브에 오스테나이트를 형성하여 AlN의 고용을 용이하게 하는 원소로, 그 함량이 0.10% 미만이면 오스테나이트의 형성량이 너무 적게 되어 좋지 않고, 0.40%을 초과하는 경우에는 압연시 Roll force가 너무 증가하여 판형상이 불균일해지므로, 그 함량을 0.10~0.40%로 설정하는 것이 바람직하다.The Mn is an element that forms austenite in the slab to facilitate the solid solution of AlN. If the content is less than 0.10%, the amount of austenite is too small. If the content exceeds 0.40%, the rolling force is increased. Since it increases too much and the plate shape becomes nonuniform, it is preferable to set the content to 0.10 to 0.40%.

상기 S은 과도하게 첨가하면 슬라브중심부의 S편석이 심해져 이를 균질화 하는데 본 발명범위 이상의 온도로 슬라브를 가열해야 하므로, 0.006%이하로 함유되도록 하는 것이 바람직하다.When the S is excessively added, the S segregation in the center of the slab becomes severe, so that the slab needs to be heated to a temperature above the range of the present invention to homogenize it, so that the S content is preferably 0.006% or less.

상기 산가용성 Al과 N은 AlN 석출물의 형성에 필요한 원소이다. 산가용성Al은 그 함량이 0.005%미만이면 2차재결정의 방향성이 열화되어 자속밀도가 저하되고, 0.030%를 초과하면 2차재결정의 발달이 불안정해지므로, 그 함량은 0.005~0.030%로 설정하는 것이 바람직하다.The acid soluble Al and N are elements necessary for the formation of AlN precipitates. If the content of acid-soluble Al is less than 0.005%, the direction of secondary recrystallization deteriorates and the magnetic flux density is lowered. If it exceeds 0.030%, the development of secondary recrystallization becomes unstable, so the content is set to 0.005 to 0.030%. It is preferable.

상기 N는 그 함량이 0.005% 미만이면 AlN의 형성량이 부족하게 되어 2차재결정이 불안정해지고, 0.012%를 초과하는 경우에는 강판에 블리스터(Blister) 결함을 유발하므로, 그 함량을 0.005~0.012%로 설정하는 것이 바람직하다.When the content of N is less than 0.005%, the amount of AlN formation is insufficient, so that secondary recrystallization becomes unstable, and when the content exceeds 0.012%, a blister defect occurs in the steel sheet, so that the content is 0.005 to 0.012%. It is preferable to set to.

상기 Cu 및 Cr은 열연판 미세조직을 균질하게 할 뿐만 아니라 2차소둔후 1차재결정 미세조직을 균일하게 하기 위해 첨가하는 중요한 성분들로서, 그 첨가량은 각각 0.3∼0.7% 및 0.03∼0.07%로 선정하는 것이 바람직하다.Cu and Cr are important components added not only to make the hot rolled sheet microstructure homogeneous but also to homogenize the first recrystallized microstructure after the second annealing, and the addition amounts thereof are selected as 0.3 to 0.7% and 0.03 to 0.07%, respectively. It is desirable to.

상기 성분들중 어느 한 성분이라도 그 첨가량의 하한치 미만으로 첨가되는 경우에는 1차재결정의 미세조직이 불균일해지게 되어 2차재결정이 불안정하게 일어나 자기적 특성이 열화된다. 또한, 각 성분범위의 상한치를 초과하게 되는 경우 그 첨가효과는 크지 않으며 오히려 탈탄을 어렵게 하여 2차소둔후 허용치(약 30ppm이하) 이하로 강판내 잔류탄소량을 낮추려면 소둔시간을 늘여야 하므로 바람직하지 않다.When any one of the above components is added below the lower limit of the added amount, the microstructure of the primary recrystallization becomes nonuniform, and the secondary recrystallization becomes unstable and the magnetic properties deteriorate. In addition, when the upper limit of each component range is exceeded, the effect of addition is not large. Rather, it is not preferable because the annealing time should be increased to lower the amount of carbon remaining in the steel sheet below the allowable value (about 30 ppm or less) after the second annealing, making it difficult to decarburize. not.

본 발명의 강 슬라브에는 상기한 성분들 외에 제강시 원재료로부터 혼입되는 불가피한 원소(B, Ti, Nb, V)들이 미량(80ppm이하)으로 함유되어도 무방하다.In addition to the above components, the steel slab of the present invention may contain an unavoidable element (B, Ti, Nb, V) mixed from raw materials during steelmaking in a trace amount (below 80 ppm).

이하, 상기와 같이 조성되는 규소강 슬라브를 이용하여 방향성 전기강판을 제조하는 공정에 대하여 설명한다.Hereinafter, the process of manufacturing a grain-oriented electrical steel sheet using the silicon steel slab comprised as mentioned above is demonstrated.

상기 규소강 슬라브는 1200∼1320℃의 온도범위에서 재가열하는 것이 바람직한데, 그 이유는 가열온도가 1200℃미만인 경우에는 열간압연시 작업이 어려워지고 1320℃보다 높은 경우에는 자기적 특성에는 크게 영향이 없으나 슬라브의 저온가열에서 오는 이점이 크게 감소되기 때문이다. 또한, 상기 슬라브 가열시간은 슬라브 내부까지의 균열과 경제성을 고려하여 1∼10시간으로 한다.The silicon steel slab is preferably reheated at a temperature range of 1200 to 1320 ° C. The reason for this is that when the heating temperature is less than 1200 ° C, it is difficult to work during hot rolling, and when the temperature is higher than 1320 ° C, the magnetic properties are greatly affected. Nonetheless, the benefits from low-temperature heating of slabs are greatly reduced. In addition, the slab heating time is set to 1 to 10 hours in consideration of cracking and economical efficiency to the inside of the slab.

상기와 같이 가열된 슬라브는 통상의 방법으로 열간압연되는데, 이때의 열간압연판 두께는 후속의 최종 냉간압연 두께를 고려하여 보통 1.5∼3mm로 제한하는 것이 바람직하다.The slabs heated as described above are hot rolled in a conventional manner, and the hot rolled sheet thickness is preferably limited to 1.5 to 3 mm in consideration of the subsequent final cold rolled thickness.

그 후 열연판소둔(예비소둔)을 행하는데, 이 예비소둔은 강판의 산세성 향상과 적절한 크기의 AlN등의 석출물이 얻어지도록 850∼1000℃에서 30초∼10분간 실시하는 것이 바람직하다.Thereafter, hot-rolled sheet annealing (pre-annealing) is performed. The pre-annealing is preferably carried out at 850 to 1000 ° C. for 30 seconds to 10 minutes to improve pickling properties of the steel sheet and to obtain precipitates such as AlN having an appropriate size.

상기와 같이 예비소둔된 열연판은 중간소둔을 포함한 2회의 냉간압연으로 최종두께로 제작된다. 이때 중간소둔은 적절한 1차재결정 집합조직의 형성과 상기 석출물의 추가 형성을 위해 건조한 질소 및 수소의 혼합가스 분위기로 850~950℃에서 30초∼10분간 실시하는 것이 바람직하다.The pre-annealed hot rolled sheet as described above is produced to the final thickness by two cold rolling including the intermediate annealing. At this time, the intermediate annealing is preferably carried out for 30 seconds to 10 minutes at 850 ~ 950 ℃ in a mixed gas atmosphere of dry nitrogen and hydrogen in order to form an appropriate primary recrystallized texture and further formation of the precipitate.

상기 냉간압연시 2차냉간 압하율은 25∼45%로 선정하는 것이 바람직한데, 그 이유는 25%미만의 경우 1차재결정 평균입도가 너무 조대해져 2차재결정이 불안정해지며, 45%를 초과하는 경우는 2차재결정의 방향성이 열화되기 때문이다.The secondary cold reduction ratio during the cold rolling is preferably selected to be 25 to 45%, because if less than 25%, the primary recrystallization average particle size is too coarse and the secondary recrystallization becomes unstable and exceeds 45%. This is because the directivity of the secondary recrystallization deteriorates.

또한, 최종냉연판의 두께는 0.26∼0.35mm두께로 선정하는 것이 바람직한데, 그 이유는 최종냉연판의 두께가 0.26mm미만인 경우에는 2차재결정이 잘 발달되지 않으며, 0.35mm를 초과하는 경우에는 와류 철손특성이 나빠지므로 바람직하지 않기 때문이다.In addition, the thickness of the final cold rolled sheet is preferably selected to be 0.26 ~ 0.35mm thickness, because the second recrystallization is not well developed when the thickness of the final cold rolled sheet is less than 0.26mm, if it exceeds 0.35mm This is because the vortex iron loss property is deteriorated, which is not preferable.

상기와 같이 냉간압연된 냉연판은 탈탄, 적정량의 산화층 형성 및 냉간압연시 형성된 불량한 판형상을 교정하기 위해 800∼900℃ 온도에서 30초∼10분 동안 이슬점이 30∼70℃인 습윤 질소 및 수소의 혼합가스 분위기하에서 2차소둔된다. 상기 소둔온도가 800℃미만이거나 시간이 30초미만인 경우에는 탈탄 및 판형상 교정이 불충분하게 되고, 소둔온도가 900℃를 초과하거나 시간이 10분을 초과하는 경우에는 1차재결정의 집합조직이 열화되어 우수한 방향성의 2차재결정이 얻어지지 않는 결과 우수한 자속밀도를 얻을 수 없게 되므로 바람직하지 않다. 그리고, 이때분위기 가스의 이슬점이 너무 낮은 경우에는 탈탄능 감소로 인해 소둔시간을 늘여야 하므로 바람직하지 않으며, 지나치게 높은 경우에는 강판 표면산화층이 불균일하게 형성되어 후속되는 고온소둔시 형성되는 유리질피막(Glass Film)이 불량하게 형성되므로 30∼70℃의 범위로 선정하는 것이 바람직하다.Cold rolled sheet as described above is wet nitrogen and hydrogen having a dew point of 30 to 70 ℃ for 30 seconds to 10 minutes at a temperature of 800 ~ 900 ℃ to correct the poor plate shape formed during decarburization, the formation of an appropriate amount of oxide layer and cold rolling Is annealed under a mixed gas atmosphere of. When the annealing temperature is less than 800 ° C. or less than 30 seconds, decarburization and plate shape correction are insufficient, and when the annealing temperature is more than 900 ° C. or the time is more than 10 minutes, the texture of the primary recrystallization deteriorates. This is not preferable because excellent magnetic flux density cannot be obtained as a result of not obtaining excellent aromatic secondary recrystallization. In this case, when the dew point of the atmosphere gas is too low, the annealing time should be increased due to the decrease in decarburization ability. If the dew point is too high, the glass film formed during the subsequent high temperature annealing may be formed unevenly. ) Is poorly formed, it is preferable to select in the range of 30 to 70 ℃.

이때, 상기 습윤 수소 및 질소 분위기는 방향성 전기강판의 2차소둔시 통상적으로 이용되는 분위기를 이용하는 것이 가능하며, 대표적인 예로는 수소: 10~50%, 나머지 질소로 이루어지는 분위기가 있다.한편, 본 발명의 성분계에서 생성된 석출물을 고려하면 적당한 1차재결정의 평균입도는 20∼30μm 정도이다.At this time, the wet hydrogen and nitrogen atmosphere can use the atmosphere commonly used during secondary annealing of the grain-oriented electrical steel sheet, a typical example is the hydrogen: 10 ~ 50%, the atmosphere consisting of the remaining nitrogen. Considering the precipitate produced in the component system of, the average particle size of a suitable primary recrystallization is about 20 to 30 μm.

상기와 같이 2차소둔한 다음, 강판의 표면에 MgO를 주성분으로 하는 소둔분리제를 도포한 후, 마무리 고온소둔을 행한다.After secondary annealing as described above, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, followed by finishing high temperature annealing.

구체적으로, 마무리고온소둔은 2차재결정 조직을 발달시키는 승온구간과 유리질피막의 형성 및 불순물을 제거하는 고온 균열구간으로 이루어진다. 이때, 승온구간의 승온율은 너무 빠르면 2차재결정이 불안정해지고, 반면에 승온속도가 너무느리면 소둔시간이 길어져 비경제적이므로 10∼50℃/hr의 승온율이 바람직하다. 상기와 같은 승온율로 1150∼1200℃까지 승온한 후, 유리질피막의 형성 및 순화를 위해 최소한 5시간 이상 균열처리하는 것이 바람직하다. 이때 고온소둔 중의 분위기 가스로는 순수소 또는 질소와 수소의 혼합개스 모두 사용이 가능하다.Specifically, the finish high temperature annealing consists of a temperature rising section for developing a secondary recrystallized structure and a high temperature cracking section for forming a glassy film and removing impurities. At this time, if the rate of temperature increase is too fast, the secondary recrystallization becomes unstable. On the other hand, if the rate of temperature rise is too slow, the annealing time is long and uneconomical, and thus the rate of temperature increase of 10 to 50 ° C / hr is preferable. After heating up to 1150-1200 degreeC by the said temperature increase rate, it is preferable to crack-process at least 5 hours for formation and purification of a glassy film. At this time, as the atmospheric gas during high temperature annealing, both pure gas or a mixed gas of nitrogen and hydrogen can be used.

상기 고온소둔에 의해 무기질의 유리질피막이 형성된 강판 표면에는 절연성 향상과 자구미세화에 의한 철손개선의 목적으로 고온소둔후 장력부여 코팅을 하여도 좋다.The surface of the steel sheet in which the inorganic glass coating is formed by the high temperature annealing may be subjected to a tension-coating coating after the high temperature annealing for the purpose of improving the insulation and improving the iron loss due to finer microstructure.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

중량%로, C:0.35%, Si:3.15%, Mn:0.17%, S:0.006%, 산가용성Al:0.016%, N:0.009%, Cu:0.5%, Cr:0.05% 및 잔부 Fe로 조성된 210mm두께의 슬라브를 제조하였다. 이것을 1300℃에서 5시간 슬라브가열한후 열간압연하여 2.0mm두께의 열연코일을 만들었다. 그 다음 930℃에서 2분간 예비소둔 및 산세하고 이어서 중간소둔을 포함한 2회의 냉간압연을 행하여 0.29mm의 최종두께로 조정하였다. 이 때, 1차냉간압연은 2차냉간시의 압하율을 변화하기 위해 1차냉간압연판 두께를 하기 표1과 같이 달리하였으며, 중간소둔은 건조한 25%H2+75%N2분위기로 900℃에서 3분30초간 행하였다.Composition by weight: C: 0.35%, Si: 3.15%, Mn: 0.17%, S: 0.006%, acid soluble Al: 0.016%, N: 0.009%, Cu: 0.5%, Cr: 0.05% and the balance Fe A slab of 210 mm thickness was prepared. The slab was heated at 1300 ° C. for 5 hours and hot rolled to make a 2.0 mm thick hot rolled coil. Then, pre-annealed and pickled at 930 ° C. for 2 minutes, followed by two cold rolling including intermediate annealing to adjust to a final thickness of 0.29 mm. At this time, the primary cold rolling was changed to the thickness of the primary cold rolling plate in order to change the reduction rate during the secondary cold as shown in Table 1, the intermediate annealing is 900 in a dry 25% H 2 + 75% N 2 atmosphere It carried out for 3 minutes and 30 seconds at ° C.

그 후, 최종두께의 압연판은 이슬점이 50℃인 25%H2+75%N2분위기로 850℃에서 3분30초간 2차소둔을 하였으며, 연이어 중량%로, 5%TiO2및 나머지 MgO로 구성된 소둔분리제를 강판 표면에 도포한 다음 마무리 고온소둔하였다. 이 때 2차재결정을 일으키기 위해 20℃/hr의 승온율로 1200℃까지 승온하고 유리질피막의 형성 및 불순물 제거를 위해 상기온도에서 10시간 균열후 냉각하였으며, 승온중 분위기개스로는 25%H2+75%N2를 사용하고, 1200℃ 균열구간에서는 순수소 가스를 사용하였다.Thereafter, the final thickness of the rolled sheet was subjected to secondary annealing at 850 ° C. for 3 minutes and 30 seconds in a 25% H 2 + 75% N 2 atmosphere having a dew point of 50 ° C., followed by 5% TiO 2 and the remaining MgO in weight%. The annealing separator consisting of a coating on the surface of the steel sheet and then finished high temperature annealing. At this time, the temperature was raised to 1200 ° C. at a temperature rising rate of 20 ° C./hr to cause secondary recrystallization, and after cooling at 10 ° C. for 10 hours to form a glassy film and to remove impurities, it was cooled by 25% H 2 as an atmosphere gas during temperature rising. + 75% N 2 was used and pure hydrogen gas was used in the crack section at 1200 ° C.

상기와 같이 2차 냉간압하율을 변화한 시편들에 대하여 2차소둔후 1차재결정평균입도를 측정하였으며, 마무리 고온소둔 후 2차재결정 발달율, 자기특성을 측정하고, 또한 강판표면의 유리질 피막 형성상태 및 판형상을 육안으로 관찰하여, 그 결과를 하기 표1에 나타내었다. 여기서, 1차재결정 평균입도는 2차소둔판 단면을 2%질산용액으로 에칭한 후 Image Analyzer로 측정하였으며, 2차재결정 발달율은 고온소둔 종료후 강판표면을 약 80℃의 20%염산용액으로 부식하여 노출한 마크로(Macro) 조직을 관찰한 2차재결정 면적비율이며, 자기특성은 단판자성측정기로 B10과 W17/50을 측정한 값이다.The primary recrystallization average particle size was measured after the secondary annealing on the specimens with the secondary cold reduction rate as described above, and the secondary recrystallization development rate and the magnetic properties were measured after the finishing high temperature annealing. The state and plate shape were visually observed, and the results are shown in Table 1 below. Here, the average particle size of primary recrystallization was measured by Image Analyzer after etching the end face of secondary annealing plate with 2% nitric acid solution, and the secondary recrystallization development rate was corroded with 20% hydrochloric acid solution at about 80 ℃ after high temperature annealing. The secondary recrystallization area ratio was observed by observing the exposed macrostructure. The magnetic properties were measured by measuring B 10 and W 17/50 with a single-plate magnetometer.

구분division 1차냉연두께(mm)Primary cold rolled thickness (mm) 2차냉간압하율(%)Secondary cold reduction rate (%) 1차재결정평균입도(μm)Primary recrystallization average particle size (μm) 2차재결정발생율(%)Secondary Recrystallization Rate (%) 유리질피막외관Vitreous coating appearance 제품판형상Product plate shape 자속밀도Magnetic flux density 철손Iron loss B10(Tesla)B 10 (Tesla) W17/50(W/Kg)W 17/50 (W / Kg) 비교재1Comparative Material 1 0.360.36 2020 3333 4040 양호Good 양호Good 1.671.67 2.012.01 발명재1Invention 1 0.390.39 2525 3030 100100 양호Good 양호Good 1.851.85 1.181.18 발명재2Invention 2 0.410.41 3030 2626 100100 양호Good 양호Good 1.861.86 1.151.15 발명재3Invention 3 0.530.53 4545 2020 100100 양호Good 양호Good 1.851.85 1.161.16 비교재2Comparative Material 2 0.580.58 5050 1717 100100 양호Good 양호Good 1.801.80 1.351.35 비교재2Comparative Material 2 0.730.73 6060 1313 100100 양호Good 양호Good 1.791.79 1.391.39

상기 표1에 나타난 바와 같이, 2차 냉간압하율이 본 발명범위 미만인 비교재(1)은 1차재결정 입도가 너무 조대해져 2차재결정이 불안정하게 발달하는 결과, 자기특성이 열등하였고, 반면에 상기 압하율이 본 발명범위를 초과하는 비교재(2),(3)은 2차 재결정은 완전하게 일어나지만 그 방향성이 열화되어 자기특성이 열등하였다.As shown in Table 1, the comparative material (1) having a secondary cold reduction ratio of less than the scope of the present invention, the primary recrystallization grain size is too coarse, the secondary recrystallization unstable, resulting in inferior magnetic properties, while Comparing materials (2) and (3) whose reduction ratios exceed the scope of the present invention, secondary recrystallization occurs completely, but the orientation is deteriorated, and the magnetic properties are inferior.

그러나, 2차냉간 압하율이 본 발명범위로 제어된 발명재(1)∼(3)는 양호한 유리질 피막과 동시에 우수한 자기특성을 얻을 수 있었다.However, the inventive materials (1) to (3) in which the secondary cold reduction rate was controlled in the present invention range were able to obtain a good glassy film and excellent magnetic properties at the same time.

상기한 바와 같이, 본 발명은 냉간압하율을 조정하고 2차소둔조건을 적절히 제어함으로써, 유리질 피막특성을 향상시키고, 동시에 우수한 자기적 특성을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has the effect of improving the glass coating properties and at the same time providing excellent magnetic properties by adjusting the cold reduction rate and appropriately controlling the secondary annealing conditions.

Claims (5)

규소강 슬라브를 가열한 후 열간압연한 다음, 열연판소둔하고 중간소둔을 포함한 2회 냉간압연에 의해 최종두께의 냉연판을 만든 다음, 상기 냉연판을 2차소둔하고, 소둔분리제를 도포하여 마무리고온소둔하는 공정을 포함하는 방향성 전기강판의 제조방법에 있어서,After the silicon steel slab is heated and hot rolled, hot rolled sheet is annealed and cold rolled sheet of final thickness is made by two cold rolling including intermediate annealing, and then the cold rolled sheet is annealed secondly and coated with annealing separator. In the manufacturing method of the grain-oriented electrical steel sheet comprising the step of finishing high temperature annealing, 상기 규소강 슬라브는 중량%로, C:0.02∼0.08%, Si:2.90∼3.30%, Mn:0.10∼0.40%, S≤0.006%, 산가용성Al:0.005∼0.030%, N:0.005∼0.012%, Cu:0.30∼0.70%, Cr:0.03∼0.07% 및 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지고;The silicon steel slab is by weight, C: 0.02 to 0.08%, Si: 2.90 to 3.30%, Mn: 0.10 to 0.40%, S≤0.006%, acid soluble Al: 0.005 to 0.030%, N: 0.005 to 0.012% , Cu: 0.30 to 0.70%, Cr: 0.03 to 0.07% and the balance Fe and other inevitably contained impurities; 상기 중간소둔은 850~950℃의 온도범위에서 실시하고;The intermediate annealing is carried out in a temperature range of 850 ~ 950 ℃; 상기 냉간압연시 2차 냉간압연율을 25∼45%로 제어하여 최종 냉연판의 두께를 0.26∼0.35mm로 하고;Controlling the secondary cold rolling rate during the cold rolling to 25 to 45% so that the thickness of the final cold rolled sheet is 0.26 to 0.35 mm; 상기 2차소둔은 습윤수소 및 질소분위기하의 800∼900℃에서 30초∼10분 동안 실시하고;The secondary annealing is carried out for 30 seconds to 10 minutes at 800 to 900 ° C. under humid hydrogen and nitrogen atmosphere; 상기 마무리고온소둔은 10~50℃/hr의 승온율로 1150~1200℃의 온도범위까지 승온하고, 그 온도에서 5시간 이상 균열하는 식으로 실시하는 것을 특징으로 하는 피막특성이 우수한 저온 슬라브가열 방향성전기강판의 제조방법.The finishing high temperature annealing is carried out by heating up to a temperature range of 1150 to 1200 ℃ at a temperature rising rate of 10 to 50 ℃ / hr, and cracking at that temperature for 5 hours or more. Method of manufacturing electrical steel sheet. 제1항에 있어서, 상기 1차 냉간압연후 냉연판의 두께가 1.5~3.0mm인 것을 특징으로 하는 피막특성이 우수한 저온 슬라브가열 방향성전기강판의 제조방법.The method of claim 1, wherein the cold rolled sheet after the primary cold rolling has a thickness of 1.5 to 3.0 mm. 삭제delete 제1항에 또는 제2항에 있어서, 상기 2차 소둔후 1차 재결정의 평균입도가 20~30㎛인 것을 특징으로 하는 피막특성이 우수한 저온 슬라브가열 방향성전기강판의제조방법.The method for manufacturing a low-temperature slab heated oriented electrical steel sheet having excellent coating properties according to claim 1 or 2, wherein the average particle size of the primary recrystallization after the second annealing is 20 to 30 µm. 삭제delete
KR10-1999-0063052A 1999-12-27 1999-12-27 A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property KR100435479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063052A KR100435479B1 (en) 1999-12-27 1999-12-27 A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063052A KR100435479B1 (en) 1999-12-27 1999-12-27 A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property

Publications (2)

Publication Number Publication Date
KR20010060646A KR20010060646A (en) 2001-07-07
KR100435479B1 true KR100435479B1 (en) 2004-06-10

Family

ID=19630437

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063052A KR100435479B1 (en) 1999-12-27 1999-12-27 A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property

Country Status (1)

Country Link
KR (1) KR100435479B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737101A (en) * 2020-05-28 2021-12-03 宝山钢铁股份有限公司 Thin-specification oriented silicon steel plate with excellent manufacturability and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180015A (en) * 1986-02-01 1987-08-07 Nippon Steel Corp Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JPS62284014A (en) * 1986-05-31 1987-12-09 Nippon Steel Corp Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0277525A (en) * 1988-04-25 1990-03-16 Nippon Steel Corp Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH06145805A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Manufacture of grin-oriented silicon steel sheet excellent in magnetic characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180015A (en) * 1986-02-01 1987-08-07 Nippon Steel Corp Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JPS62284014A (en) * 1986-05-31 1987-12-09 Nippon Steel Corp Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0277525A (en) * 1988-04-25 1990-03-16 Nippon Steel Corp Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH06145805A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Manufacture of grin-oriented silicon steel sheet excellent in magnetic characteristic

Also Published As

Publication number Publication date
KR20010060646A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR101908045B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR100321044B1 (en) Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
KR100285344B1 (en) Process for preparing high magnetic flux density directional electric steel sheet by low temperature slab heating way
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
KR100340495B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100479996B1 (en) The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
KR100360101B1 (en) A method for manufacturing grain oriented electrical steel sheets having superior glass film
KR100273095B1 (en) The manufacturing method of oriented electric steelsheet with low temperature slab heating
KR100406420B1 (en) A method for manufacturing grain oriented electrical steel sheet with high permeability
KR970007334B1 (en) Method for manufacturing oriented electrical steel sheet having magnetic properties
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263841B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR20020044244A (en) A method for manufacturing grain-oriented electrical steel sheet
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR100345705B1 (en) A method of manufacturing grain oriented electrical steels having stable magnetic properties
KR100501004B1 (en) A method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170530

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee