KR100340495B1 - Method for manufacturing grain oriented electric steel sheet with high magnetic density - Google Patents

Method for manufacturing grain oriented electric steel sheet with high magnetic density Download PDF

Info

Publication number
KR100340495B1
KR100340495B1 KR1019970028305A KR19970028305A KR100340495B1 KR 100340495 B1 KR100340495 B1 KR 100340495B1 KR 1019970028305 A KR1019970028305 A KR 1019970028305A KR 19970028305 A KR19970028305 A KR 19970028305A KR 100340495 B1 KR100340495 B1 KR 100340495B1
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
nitrogen
oriented electrical
electrical steel
Prior art date
Application number
KR1019970028305A
Other languages
Korean (ko)
Other versions
KR19990004252A (en
Inventor
이청산
우종수
최규승
홍병득
한찬희
한규석
김재관
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019970028305A priority Critical patent/KR100340495B1/en
Priority to US09/242,865 priority patent/US6451128B1/en
Priority to CN98800888A priority patent/CN1088760C/en
Priority to JP50846499A priority patent/JP3485188B2/en
Priority to DE19881070T priority patent/DE19881070C2/en
Priority to PCT/KR1998/000184 priority patent/WO1999002742A2/en
Publication of KR19990004252A publication Critical patent/KR19990004252A/en
Application granted granted Critical
Publication of KR100340495B1 publication Critical patent/KR100340495B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing a grain oriented electric steel sheet with high magnetic density is provided, which can stabilize second recrystallization by simultaneously conducting decarburization and nitrogen enrichment. CONSTITUTION: The method includes the steps of heating a steel slab(150 to 350 mm in thickness) comprising C 0.01 to 0.04 wt.%, Si 2.90 to 3.30 wt.%, Mn 0 15 to 0.30 wt.%, sol.Al 0.010 to 0.040 wt.%, N 0.003 to 0.010 wt.%, 0.015 wt.% or less of P, 0.006 wt.% or less of S, Cu 0.30 to 0.70 wt.%, Ni 0.03 to 0.07 wt.%, Cr 0.03 to 0.07 wt.%, a balance of Fe and incidental impurities at 1130 to 1320 deg.C for 1 to 10 hours; hot rolling the steel slab to the thickness of 1.5 to 2.6 mm; annealing the hot rolled steel sheet at 850 to 1150 deg.C for 30 to 600 sec in nitrogen gas; cold rolling the steel sheet to the thickness of 0.23 to 0.35 mm; decarburizing/nitriding the cold rolled steel sheet at 700 to 950 deg.C for 30 to 600 sec in an atmosphere condition containing nitrogen gas of which dew point is 30 to 70 deg.C; and applying an annealing separator mainly comprised of MgO on the steel sheet, followed by final hot annealing. In the method, decarburization is performed until the amount of residual carbon is less than 30 ppm; the atmosphere condition containing nitrogen gas is a mixed gas of ammonia, hydrogen and nitrogen; the nitriding is performed that the total amount of nitrogen is 130-82.9x(1+£Cu wt.%+10x(Ni wt.%+Crwt.%)|2) ppm; and the final hot annealing is characterized in that it is performed in a mixed gas of hydrogen and nitrogen or dry hydrogen at a temperature elevation rate of 10 to 20 deg.C/hr to the temperature range of 1150 to 1250 deg.C, followed by soaking for 1 to 30 hrs.

Description

저온 슬라브 가열 방식의 고자속밀도 방향성전기강판의 제조방법Manufacturing method of high magnetic flux density oriented electrical steel sheet by low temperature slab heating method

본 발명은 변압기, 전동기, 발전기 및 기타 전자 기기 등의 철심재료로 사용되는 방향성 전기강판의 제조방법에 관한 것으로써, 보다 상세하게는 탈탄 및 질소부화를 동시에 수행함으로써 제조공정이 혁신적으로 단축됨과 동시에 2차재결정이 안정화되는 저온 스라브 가열 방식의 고자속밀도 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials for transformers, electric motors, generators and other electronic devices, and more particularly, by simultaneously performing decarburization and nitrogen enrichment, the manufacturing process is innovatively shortened. A method of manufacturing a high magnetic flux density oriented electrical steel sheet of low temperature slab heating method in which secondary recrystallization is stabilized.

일반적으로 방향성 전기강판은 결정립의 방위가 (110)[001]방향으로 정열된 집합조직('고스조직' 이라고도 함)을 가지고 있으며, 냉간압연방향으로 우수한 자기적특성을 갖고 있어 주로 변압기나 발전기의 철심으로 사용되고 있다.In general, oriented electrical steel sheets have an aggregate structure (also called 'goth structure') in which the grain orientation is aligned in the (110) [001] direction, and has excellent magnetic properties in the cold rolling direction. It is used as an iron core.

방향성 전기강판의 자기적특성은 주로 자속밀도와 철손으로 나타내는데, 이중 자속밀도는 통상 1000A/m의 자장에 의해 철심내에 유기되는 자속밀도(B10)를 나타내며, 자속밀도가 높으면 철심재료를 적게 사용하더라도 같은 성능을 발휘할 수 있어 전기 기기를 소형화할 수 있는 장점이 있다. 또한, 철손은 일정한 주파수 50Hz의 교류에 의해 1.7Tesla의 자속밀도가 얻어지도록 할 때 철심내에서 열등으로낭비되는 에너지손실을 의미하는 것으로서, 철손(W17/50)값이 작아지면 전기 기기의 에너지 효율이 높아진다. 따라서, 전기 기기의 소형화 및 에너지 절약차원에서 자속밀도가 높고, 철손이 낮은 방향성 전기강판의 필요성이 커지고 있다.The magnetic properties of oriented electrical steel are mainly represented by magnetic flux density and iron loss. The dual magnetic flux density generally represents the magnetic flux density (B 10 ) induced in the iron core by the magnetic field of 1000 A / m. If the magnetic flux density is high, less iron core material is used. Even if the same performance can be exhibited there is an advantage that can be miniaturized electrical equipment. In addition, the iron loss means the energy loss wasted inferior in the iron core when the magnetic flux density of 1.7 Tesla is obtained by the alternating frequency of 50Hz, the lower the iron loss (W 17/50 ) value of the energy of the electric equipment The efficiency is increased. Therefore, in order to reduce the size and energy saving of electrical equipment, there is an increasing need for a oriented electrical steel sheet having high magnetic flux density and low iron loss.

한편, 방향성 전기강판의 (110)[001]집합조직은 2차재결정 현상을 이용하여 얻어지는 것으로, 보통의 1차재결정에 의해 생긴 미세한 결정립들중에서 특정방위의 결정립, 소위 고스(Goss)방위라 불리는 (110)[001]의 방위를 가진 결정립(통상 '2차재결정의 핵'이라 함)이 강판 전체로 이상 성장한 것이다. 이러한 2차재결정이 완전히 일어나고, 그 방향성이 우수할 때 고자속밀도가 얻어진다고 알려져 있다.On the other hand, the (110) [001] texture of the grain-oriented electrical steel sheet is obtained by using the secondary recrystallization phenomenon. Among the fine grains produced by the normal primary recrystallization, the grain of a specific orientation, called the Goss orientation The grain with the orientation of (110) [001] (commonly referred to as the 'nucleus of secondary recrystallization') is an abnormal growth of the entire steel sheet. It is known that a high magnetic flux density is obtained when such secondary recrystallization takes place completely and its orientation is excellent.

2차재결정을 안정화하기 위해서는 1차재결정립들의 크기가 균일함과 동시에 1차재결정립들의 방위(이하, '1차재결정립 집합조직'이라 함)가 2차재결정의 핵에 잘 잠식될 뿐만 아니라, 2차재결정의 성장과정에서 2차재결정이 이상적인 [001]방향을 고수하여 성장하여야 한다. 즉, 우수한 방향성을 갖는 2차재결정립을 발달시키는데 유리한 것이어야 하는 것으로 알려져 있다.In order to stabilize the secondary recrystallization, not only the primary recrystallized grains are uniform in size, but also the orientation of the primary recrystallized grains (hereinafter referred to as 'primary recrystallized grain structure') is eroded into the core of the secondary recrystallization. In the process of growth of secondary recrystallization, the secondary recrystallization should grow in adherence to the ideal [001] direction. That is, it is known that it should be advantageous to develop secondary recrystallized grains having excellent directionality.

이를 위해서는 적절한 합금설계 및 이에 따른 적절한 공정제어 특히, 2차재결정이 일어나기 전까지 1차재결정립의 성장을 억제하는 것이 필요하다. 즉, 1차 재결정립의 성장 억제제(이하, '입성장 억제제'라 함)로 이용하는 MnS, MnSe, AlN, 및 Cu2S등과 같은 석출물의 양 및 크기 그리고, 분포를 잘 제어하여 수백 내지 2000Å 크기의 미세한 석출물 등이 가능한 많이 균일하게 분포되도록 함으로써 입성장 억제력을 확보하는 것이 필요하다.For this purpose, it is necessary to suppress the growth of primary recrystallized grains before proper alloy design and consequent process control, especially secondary recrystallization. In other words, the amount and size of precipitates, such as MnS, MnSe, AlN, and Cu 2 S, which are used as growth inhibitors of the primary recrystallized grains (hereinafter referred to as 'grain growth inhibitors'), and the distribution thereof are well controlled, and are several hundred to 2000 microns in size. It is necessary to ensure the grain growth inhibiting force by ensuring that the fine precipitates and the like are uniformly distributed as much as possible.

이러한 석출물분포제어를 위해, 제강단계에서 적정량의 석출물 형성원소를 첨가하고 연속주조후 슬라브내에 형성된 조대한 석출물을 고온의 스라브가열에 의해 완전히 고용시킨 다음, 후속되는 열간압연공정에서 석출물들이 미세하고 균일하게 분포되도록 제어하는 재래식 방향성 전기강판의 제조방법이 알려져 있다.In order to control the precipitate distribution, an appropriate amount of precipitate forming element is added in the steelmaking step, and the coarse precipitate formed in the slab after continuous casting is completely dissolved by high temperature slab heating, and the precipitates are fine and uniform in the subsequent hot rolling process. BACKGROUND OF THE INVENTION A method for manufacturing a conventional grain-oriented electrical steel sheet that is controlled so as to be distributed is known.

이러한 재래식 방향성 전기강판의 제조공정은 상기한 바와 같이 석출물의 고용을 위해 열간압연전 1400℃정도의 고온에서 5시간정도의 스라브가열을 실시해야 하기 때문에, 여러 가지 문제가 발생하고 있다. 즉, 고온의 스라브 가열과정중 슬라브 표면에서 공기와의 산화반응으로 Si 및 Fe가 복합된 파이어라이트(fayalite)라는 산화물이 형성되는데, 이 산화물은 융점이 낮아 스라브 표면온도가 1330℃정 도만 되어도 표면에서부터 쇳물(슬래그)로 녹아 내리는 현상이 발생한다. 이때, 녹아 내리는 쇳물은 외측으로 흘러내리도록 설계되어 있지만, 일부는 가열로내의 지지대 등에 축적되어 작업종료시 응고되어 스케일제거 등을 위한 내부보수가 필요하게 되며 연속작업을 특징으로 하는 제철소에서 작업성불량, 생산성감소, 원가상승 등의 상당한 비용부담이 되고 있다. 따라서, 슬라브가 녹지 않는 온도인 1320℃이 하의 온도에서 슬라브를 가열하는 것이 가능하다면 매우 큰 이익을 기대할 수 있다.In the manufacturing process of the conventional grain-oriented electrical steel sheet, as described above, for the solid solution of the precipitate, slab heating for about 5 hours is required at a high temperature of about 1400 ° C. before hot rolling. In other words, during the high temperature slab heating process, an oxide reaction with air is formed on the surface of the slab, and an oxide called fayalite, which is a combination of Si and Fe, is formed, and the oxide has a low melting point. Melting from slag occurs. At this time, the molten water is designed to flow outward, but some of it accumulates in the support in the heating furnace and solidifies at the end of work, which requires internal repair for removing scales. , Cost reduction, productivity reduction, and cost increase. Therefore, a very large benefit can be expected if it is possible to heat the slab at a temperature below 1320 ° C., at which the slab does not melt.

스라브 가열온도를 낮추기 위한 노력은 선진 제조사를 중심으로 총력적으로 경주되고 있으며, 그 주요방법은 크게 두 가지로 대별된다. 즉, 저온스라브 가열시에도 입성장억제제인 석출물의 고용이 가능하도록 강성분계를 조정하는 방법과 스라브 가열시 석출물의 고용을 제하지 않고 후속공정에서 부가적인 석출물 관리를통하면 저온스라브 가열이 가능한 방법들이 알려져 있다.Efforts to lower the slab heating temperature have been vigorously racing around advanced manufacturers, and the main methods are largely divided into two. That is, the method of adjusting the steel component so that the precipitate, which is a grain growth inhibitor, can be employed even in low temperature slab heating, and the low temperature slab heating method through additional precipitate management in the subsequent process without removing the precipitate from the slab heating. Are known.

이러한 종래기술로, 다까하시 노부유기 등의 발명자가 대한민국 특허공개공보 89-8334호에 제안한 기술이 있다. 상기 제안은 제조공정중 강판내에 질소를 부하하여 AlN등의 석출물을 보강함으로써 저온스라브가열이 가능한 고자속밀도 방향성 전기강판을 제조하는 것이다. 그러나, 이 제안에 의하면, 탈탄소둔후 질소부화(또는 침질)소둔을 추가적으로 실시해야 하기 때문에 추가로 설비가 필요하며, 만약 그렇지 않고 기존설비를 이용할 경우 2회의 소둔을 행해야 하는 등 제조공정이 복잡하고 제조원가가 상승하는 문제가 있다.As such a conventional technique, there is a technique proposed by the inventors of Nobu Yugi, et al. In Korean Patent Publication No. 89-8334. The above proposal is to produce high magnetic flux density oriented electrical steel sheet capable of low temperature slab heating by loading nitrogen into the steel sheet during the manufacturing process to reinforce precipitates such as AlN. However, according to this proposal, additional facilities are needed because nitrogen enrichment (or sedimentation) annealing must be additionally performed after decarbonization, and if the existing equipment is used, the manufacturing process is complicated, such as two annealing. There is a problem of rising manufacturing costs.

이에, 본 발명자는 제조공정의 단축과 더불어 제조원가의 상승을 막기 위해 여러 각도로 연구한 결과, 탈탄소둔과 질화소둔을 한꺼번에 행하므로써 상술한 종래문제를 해결할 수 있다는 근거 하에 본 발명을 제안하기에 이르렀다.Accordingly, the present inventors have studied the present invention at various angles in order to shorten the manufacturing process and prevent the increase in manufacturing cost, and thus, the present invention has been proposed on the basis that the above-mentioned conventional problems can be solved by performing decarbonization annealing and annealing at once. .

즉, 본 발명은 저온스라브 재가열이 가능함과 동시에 단축된 제조공정으로 고자속밀도 방향성 전기강판을 안정하게 제조할 수 있는 방법을 제공하는데, 그 목적이 있다.That is, the present invention provides a method capable of stably manufacturing high magnetic flux density oriented electrical steel sheet in a shorter manufacturing process while enabling reheating at low temperature.

상기 목적을 달성하기 위한 본 발명은 고자속밀도 방향성 전기강판의 제조 방법에 있어서,In the present invention for achieving the above object, in the method of manufacturing a high magnetic flux density oriented electrical steel sheet,

중랑%로, C:0.01-0.04%, Si:2.90-3.30%, Mn:0.15-0.30%, 산가용성 Al:0.010-0.040%, N:0.003-0.010%, P:0.015%이하, S:0.006%이하, Cu:0.30-0.70%, Ni:0.03-0.07%, Cr:0.03-0.07% 및 잔부 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 강 스라브를 1130-1320℃의 온도에서 1-10시간 가열하고, 이어 열간압연, 열연판 예비소둔, 1회 냉간압연하여 냉연판을 만든 다음; 이슬점이 30-70℃이고; 함질소 가스분위기에서 700-950℃의 온도로 30초-10분간 탈탄소둔겸 질화처리하고; 이어 MgO를 주성분으로 하는 용착방지제를 도포한 후, 최종 마무리소둔하는 것을 포함하여 구성된다.In mid-range, C: 0.01-0.04%, Si: 2.90-3.30%, Mn: 0.15-0.30%, Acid-soluble Al: 0.010-0.040%, N: 0.003-0.010%, P: 0.015% or less, S: 0.006 Steel slab consisting of% or less, Cu: 0.30-0.70%, Ni: 0.03-0.07%, Cr: 0.03-0.07% and the balance Fe and other unavoidable impurities are heated at a temperature of 1130-1320 ° C. for 1-10 hours. Then, hot rolling, pre-annealed hot rolled, cold rolled once to make a cold rolled plate; Dew point is 30-70 ° C .; Decarbonization and nitriding at a temperature of 700-950 ° C. for 30 seconds to 10 minutes in a nitrogen-containing gas atmosphere; Subsequently, after applying an anti-deposition agent containing MgO as a main component, it is comprised including final finishing annealing.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 탈탄소둔과 질화처리를 동시에 행하(이하, '동시탈탄질솨소둔'이라 함)고, 안정적인 2차재결정을 확보하는 데, 그 특징이 있다.The present invention is characterized in that decarburization and nitriding are performed simultaneously (hereinafter referred to as 'simultaneous decarburization and annealing') to ensure stable secondary recrystallization.

본 발명에 의하면, 통상 0.045-0.065% 정도의 탄소를 함유하는 기존 AlN계 고자속밀도 방향성 전기강판을 동시탈탄질화소둔하면 적정량의 질소부화는 가능하나 단시간내에 충분한 탈탄이 이루어지지 않으므로, 탄소 함량의 제어가 필요하다.According to the present invention, when simultaneous decarbonation annealing of an existing AlN-based high magnetic flux density oriented electrical steel sheet containing about 0.045-0.065% of carbon is possible, an appropriate amount of nitrogen enrichment is possible, but sufficient decarburization is not achieved within a short time. Control is required.

그런데, 탄소의 양을 통상에 비해 적게 첨가하게 되면 열간압연판의 미세조직이 불균일해지게되며, 결과적으로 동시탈탄질화소둔후 1차재결정 미세조직도 불균일해지기 때문에 적정량의 질소부화로 입성장억제력이 확보되더라도 2차재결정 발달이 불안정하게 되어 고자속밀도 특성을 얻지 못하는 문제점이 나타났다.However, if the amount of carbon is added less than usual, the microstructure of the hot rolled plate becomes nonuniform, and as a result, the primary recrystallized microstructure is also non-uniform after co-denitrification annealing. Even if it is secured, the secondary recrystallization development becomes unstable, and high flux density characteristics are not obtained.

본 발명자들은 탄소저감에 따른 1차재결정립의 미세조직이 불균일하게 분포되는 것을 방지하기 위해 수많은 실험을 행한 결과, Cu, Ni, Cr의 적정한 첨가량에 따라 적정량의 질소를 부화하면 균일한 1차재결정조직이 얻어짐을 발견하였다.The present inventors conducted numerous experiments to prevent the non-uniform distribution of the microstructure of the primary recrystallized grains according to the carbon reduction, and when the appropriate amount of nitrogen is hatched according to the appropriate addition amount of Cu, Ni, Cr, uniform primary recrystallization It was found that tissue was obtained.

이하, 본 발명의 강성분을 구체적으로 설명하면 다음과 같다.Hereinafter, the steel component of the present invention will be described in detail.

먼저, 강스라브중의 C는 0.01%미만 함유되는 경우 스라브 가열시 결정립들이 조대 성장하여 최종 고온소둔시 2차재결정의 발달이 불안정해지므로 좋지 않으며, 0.04%를 초과하면 탈탄공정인 동시탈탄질화소둔시 장시간이 소요되어 바람직하지 않다.First, when C is less than 0.01% of steel slabs, grains grow coarsely during slab heating, and the development of secondary recrystallization becomes unstable at the time of the final high temperature annealing. It is not preferable because it takes a long time.

Si는 전기강판의 기본성분으로 소재의 비저항치를 증가시켜 철손을 낮추는 역할을 하지만, 첨가 함량이 2.9%미만에서는 철손특성이 나쁘고, 첨가 함량이 3.3% 초과할 경우에는 냉간압연성이 열화하므로 바람직하다.Si is a basic component of electrical steel sheet, which lowers the iron loss by increasing the resistivity of the material, but it is preferable because the iron loss property is bad at an addition content of less than 2.9%, and the cold rolling property is deteriorated when the addition content is more than 3.3%. .

Mn은 스라브에 오스테나이트를 형성하여 AlN의 고용을 용이하게 하는 원소로 0.15%미만으로 첨가된 경우 오스테나이트의 형성량이 너무 적게 되므로 좋지 않으며, 0.30%을 초과하는 경우 압연시 압연부하가 너무 증가되어 판형상이 불균일해지므로 좋지 않다.Mn is an element that forms austenite on the slab to facilitate the solid solution of AlN. If it is added less than 0.15%, Mn is not good because the amount of austenite is too small. If the content exceeds 0.30%, the rolling load is too high. It is not good because the plate shape becomes uneven.

산가용성Al은 AlN 석출물의 형성에 필요한 원소로서 산가용성Al은 0.010%미만의 경우 2차재결정의 방향성이 열화되어 자속밀도가 저하되며, 0.04%를 초과하면 2차재결정의 발달이 불안정해지므로 좋지 않다.Acid-soluble Al is an element necessary for the formation of AlN precipitates. When acid-soluble Al is less than 0.010%, the direction of secondary recrystallization deteriorates and the magnetic flux density is lowered. When it exceeds 0.04%, the development of secondary recrystallization becomes unstable. not.

N은 0.003%미만의 경우 AlN의 양이 부족하게 되며, 0.010%를 초과하게 되면 제품에 블리스터(Blister) 형태의 결함이 발생하기 쉬워지므로 바람직하지 않다.If N is less than 0.003%, the amount of AlN is insufficient, and if it exceeds 0.010%, it is not preferable because defects in the form of blisters tend to occur in the product.

P는 통상보다 많은 경우 냉간압연시 판파단을 초래할 수 있으므로 제강에서 비용상승을 유발하지 않고 제어할 수 있는 양인 0.015%이하로 제한한다.P is limited to less than 0.015%, which can be controlled without causing an increase in cost in steelmaking, as it may cause plate breakage during cold rolling in more cases than usual.

S은 과도하게 첨가하면 스라브 중심부의 S편석이 심해지며, 이를 균질화하기 위해선 본 발명범위 이상의 온도로 스라브를 가열해야 하므로 0.006%이하로 첨가하도록 하는 것이 바람직하다.When S is excessively added, the S segregation in the center of the slab becomes severe, and in order to homogenize it, it is preferable to add the slab at 0.006% or less since the slab needs to be heated to a temperature of the present invention.

Cu, Ni, Cr은 탄소저감에 따른 열연판의 미세조직을 균질하게 할뿐만 아니라 동시탈탄질화소둔판의 1차재결정 미세조직을 균일하게 하기 위해 첨가하는 중요한 성분이다. 그 첨가량은 각각 0.3-0.7%, 0.03-0.07%, 0.03-0.07%로서, 이중 어느 한 원소라도 그 첨가량의 하한치 미만으로 첨가된 경우는 동시탈탄질화소둔후의 1차재결정 미세조직 균일화 효과가 미약하게 되어 2차재결정이 불안정하게 일어나 자기적 특성이 열화된다. 또한, 각 성분범위의 상한치를 초과하게 되는 경우 그 효과는 크지 않으며 오히려 탈탄을 어렵게 하거나(Cu, Cr), 고가의 합금(Ni) 첨가에 따른 원가상승이 유발되므로 바람직하지 않다.Cu, Ni, and Cr are important components added not only to homogenize the microstructure of the hot rolled sheet due to carbon reduction but also to make the primary recrystallized microstructure of the simultaneous decarbonation annealing plate uniform. The addition amounts are 0.3-0.7%, 0.03-0.07%, and 0.03-0.07%, respectively. If any element is added below the lower limit of the addition amount, the first recrystallization microstructure uniformity effect after co-denitrification annealing is insignificant. As a result, secondary recrystallization becomes unstable, leading to deterioration of magnetic properties. In addition, when the upper limit of each component range is exceeded, the effect is not large and rather it is not preferable because it is difficult to decarburize (Cu, Cr), or cost increase due to the addition of expensive alloy (Ni).

본 발명의 강성분은 이상과 같고, 그 나머지 Fe로 구성되어 있다. 이 외에 제강시 원재료로부터 혼입되는 불가피한 원소(B, Ti, Nb, V)들의 경우 미량(80ppm이하)으로 함유되어도 무방하다. 또한, 상기와 같은 규소강 소재는 통상의 여하한 용해법, 조괴법, 연주법 등을 이용하여 제조한 경우에도 본 발명의 소재로 사용할 수 있다.The steel component of this invention is as above-mentioned, and consists of the remainder Fe. In addition, inevitable elements (B, Ti, Nb, V) mixed from raw materials during steelmaking may be contained in a trace amount (less than 80ppm). In addition, the silicon steel material as described above can be used as the material of the present invention even when manufactured using any conventional melting method, ingot method, performance method, or the like.

이와 같은 강성분으로 조성되는 규소강 스라브의 두께가 너무 얇은 경우 열간압연 생산성이 떨어지고 너무 두꺼우면 스라브 기열시간이 길어져야 하므로 150-350mm로 제어하는 것이 보다 바람직하다.If the thickness of the silicon steel slab made of such a steel component is too thin, hot rolling productivity is lowered, and if the thickness is too thick, the slab heat time should be long, so it is more preferable to control it to 150-350 mm.

상기와 같은 규소강 스라브를 열간압연전 가열하는데, 가열온도가 1130℃ 미만의 경우 열간압연시 롤하중(Roll Force)이 과다하게 되어 판형상제어가 어렵게 되므로 바람직하지 않으며, 1320℃를 초과하는 경우 너무 온도가 높아 산화스케일양이 늘어나게 될 뿐만 아니라, 슬래그의 용융이 일어날 수 도 있으므로 본 발명의 스라브 가열온도 범위에서 제외하였다. 이때의 가열은 스라브 내부까지의 균열과 경제성을 고려하여 1-10시간 가열하는 것이 좋다.When the silicon steel slab is heated before hot rolling, when the heating temperature is less than 1130 ° C., the roll force becomes excessive during hot rolling, which makes it difficult to control the plate shape, and when the temperature exceeds 1320 ° C. Since the temperature is too high to increase the amount of oxidative scale, the slag may be melted and thus excluded from the slab heating temperature range of the present invention. At this time, it is better to heat for 1-10 hours in consideration of cracks and economics to the inside of the slab.

이후 통상의 방법으로 열간압연하는데, 이때의 열연판의 두께는 후속의 최종 냉간압연 두께를 고려하여 1.5-2.6mm로 하는 것이 좋다.After the hot rolling in a conventional manner, the thickness of the hot rolled sheet at this time is preferably set to 1.5-2.6mm in consideration of the final cold rolling thickness.

상기와 같이 열간압연한 후 열연판 예비소둔하는데, 이때의 후속 되는 동시탈탄소둔후 적절한 입도의 1차재결정조직형성과 AlN를 질화석출물의 조대화방지 측면을 고려하여 850-1150℃에서 30초-10분간 실시하며, 이때 상기 석출물의 유실을 억제하기 위해 질소분위기를 사용하는 것이 바람직하다. 만일 본 발명의 열연판 예비소둔범위 미만의 온도 및 시간에서 예비소둔하는 경우 1차재결정입도가 미세 해져 2차재결정을 고온에서 발달시키지 못하게 되는 결과 우수한 자속밀도를 얻을 수 없게 되며, 본 발명범위를 초과하는 온도 및 시간에서 예비소둔하는 경우 AlN의 조대화로 2차재결정이 불안정해지므로 바람직하지 않다.After hot rolling as described above, pre-annealed the hot rolled sheet, which is then followed by simultaneous decarbonization annealing for 30 seconds at 850-1150 ° C. in consideration of the formation of primary recrystallized structures of appropriate particle size and the prevention of coarsening of the AlN nitride precipitates. For 10 minutes, it is preferable to use a nitrogen atmosphere to suppress the loss of the precipitate. If the pre-annealed at a temperature and time less than the pre-annealed range of the hot rolled sheet of the present invention, the primary recrystallized grain size becomes fine, and as a result, the secondary recrystallization cannot be developed at a high temperature, and thus excellent magnetic flux density cannot be obtained. Pre-annealing at excess temperatures and times is undesirable because secondary recrystallization becomes unstable due to coarsening of AlN.

상기 예비소둔판은 1회냉간압연을 하는데, 이때 냉연판의 두께는 0.23-0.35mm 두께로 만드는 것이 좋다. 그 이유는 최종냉연판의 두께가 0.23mm미만의 경우는 2차재결정이 잘 발달되지 않으며, 0.35mm을 초과하는 경우 와류 철손특성이 나빠지므로 바람직하지 않기 때문이다.The preannealed plate is cold rolled once, and the thickness of the cold rolled plate is preferably 0.23-0.35mm. This is because secondary recrystallization is not well developed when the thickness of the final cold rolled plate is less than 0.23 mm, and it is not preferable because the vortex iron loss property becomes worse when it exceeds 0.35 mm.

상기와 같이 냉간압연된 냉연판은 700-950℃ 온도에서 30초-10분간 이슬점이 30-70℃인 함질소의 혼합가스 분위기를 사용하여 동시탈탄질화소둔하는 것이 바람직하다. 그 이유는 소둔온도가 700℃미만이거나 그 시간이 30초미만의 경우 탈탄과질소부화가 불충분하게 되고, 950℃ 초과하는 경우 1차재결정조직이 너무 조대해져 2차재결정이 불안정하게 되어 우수한 자속밀도를 얻을 수 없기 때문이다. 또한, 소둔시간이 10분을 초과하는 경우 소둔시간이 길어 비경제적이므로 좋지 않다.The cold rolled cold rolled plate as described above is preferably subjected to simultaneous decarbonation annealing using a mixed gas atmosphere of nitrogen containing a dew point of 30 to 70 ° C. for 30 seconds to 10 minutes at a temperature of 700 to 950 ° C. The reason is that when the annealing temperature is less than 700 ° C or less than 30 seconds, decarburization and nitrogen enrichment are insufficient. If the annealing temperature is higher than 950 ° C, the primary recrystallization structure is too coarse, which makes the secondary recrystallization unstable and thus excellent magnetic flux density. Because you can't get it. In addition, when the annealing time exceeds 10 minutes, the annealing time is long, which is not good because it is uneconomical.

그리고, 분위기 가스는 질소부화를 위해 함질소 가스 분위기이면 가능하나, 보다 바람직하게는 공업적으로 탈탄량과 질소부화량의 제어가 용이한 암모니아+수소+질소의 혼합가스 분위기를 사용하는 것이 좋다.The atmospheric gas may be a nitrogen-containing gas atmosphere for nitrogen enrichment. More preferably, a mixed gas atmosphere of ammonia + hydrogen + nitrogen, which is industrially easy to control decarburization amount and nitrogen enrichment amount, may be used.

이때 분위기 가스의 이슬점은 너무 낮은 경우 탈탄능 감소로 인해 소둔시간을 늘려야 하므로 좋지 않으며, 지나치게 높은 경우 강판 표면산화층이 불균일하게 형성되어 후속되는 고온소둔시 형성되는 유리질피막(Glass Flim)이 불량하게 형성되므로 30-70℃의 범위로 한정한다.At this time, if the dew point of the atmosphere gas is too low, it is not good to increase the annealing time due to the decarburization. Therefore, it is limited to the range of 30-70 ℃.

상기와 같이 동시탈탄질화소둔을 할 때, 잔류탄소량은 30ppm이하로 낮추는 것이 필요하다. 즉, 잔류탄소량이 30ppm을 초과하는 경우 후속되는 고온소둔시 형성되는 2차재결정의 방향성이 열화되어 우수한 자속밀도를 얻을 수 없으며 변압기들의 제품으로 사용중 자기시효가 일어나 철손특성이 열화되기 때문이다.When performing simultaneous decarbonation annealing as described above, it is necessary to lower the residual carbon amount to 30 ppm or less. That is, if the residual carbon exceeds 30ppm, the secondary recrystallization formed during subsequent high temperature annealing deteriorates, so that excellent magnetic flux density cannot be obtained, and magnetic aging occurs as a product of transformers, resulting in deterioration of iron loss characteristics.

이와 같이 본 발명에서 동시탈탄질화소둔에 의해 부화되는 질소는 후속마무리 고온소둔시 저온영역에서 강중의 잉여 산가용성 Al, Cu, Mn, Si등과 반응하여 추가적인 석출물을 형성하게 되는데, 이들 석출물의 양 및 크기 등 분포상태에 따라 얻어지는 입성장억제력이 변화하게 된다.As described above, nitrogen enriched by co-denitrification annealing reacts with excess acid-soluble Al, Cu, Mn, Si, etc. in the steel in the low temperature region during subsequent high temperature annealing to form additional precipitates. The grain growth inhibitory power obtained varies depending on the distribution state such as size.

따라서, 적절한 입성장억제력을 확보하기 위해서는 강판내 총질소량이130∼82.9 ×(1 + [Cu% + 10 ×(Ni% +Cr%)2)ppm의 범위로 하는 것이 좋다. 즉, 130ppm미만의 경우는 필요한 최소한의 석출물이 형성되지 않아 입성장억제력이 부족하게 되어 2차재결정이 불안정하게 되므로 바람직하지 않다. 또한, 총질소량이 82.9 ×(1 + [Cu% + 10 ×(Ni% +Cr%)]2)ppm을 초과하는 경우 1차재결정조직이 불균일하게 형성될 뿐만 아니라 고온소둔 승온중 석출물의 조대화가 진전되어 고온까지 입성장억제력이 유지되지 않기 때문에 2차재결정 발달이 불안정해지는 결과, 우수한 자속밀도가 얻어지지 않게 되므로 바람직하지 않다. 이때, 총질소량의 상한값이 Cu, Ni, Cr의 함량과 관계되어 결정되는데, 이는 Cu, Ni, Cr이 1차재결정조직을 균일하게 분포시키는 작용을 하기 때문이다.Therefore, in order to secure an appropriate grain growth inhibiting force, the total nitrogen content in the steel sheet is preferably in the range of 130 to 82.9 x (1 + [ Cu % + 10 x ( Ni % + Cr %) 2 ) ppm. That is, less than 130ppm is not preferable because the required minimum precipitates are not formed and the grain growth inhibition is insufficient and the secondary recrystallization becomes unstable. In addition, when the total nitrogen content exceeds 82.9 × (1 + [ Cu % + 10 × ( Ni % + Cr %)] 2 ) ppm, not only the primary recrystallization structure is formed unevenly but also coarsening of precipitates during the high temperature annealing It is not preferable that the growth of secondary recrystallization becomes unstable because the growth of the growth rate is not maintained up to a high temperature, so that excellent magnetic flux density is not obtained. At this time, the upper limit of the total nitrogen amount is determined in relation to the content of Cu, Ni, Cr, because Cu, Ni, Cr acts to uniformly distribute the primary recrystallized structure.

상기와 같이 동시탈탄질화소둔한 후, 최종 마무리소둔을 하는데, 이때 승온율은 2차재결정을 완전히 일으키고, 방향성을 향상시키기 위해 10-20℃/hr의 범위로 제어하여 1150-1250℃까지 승온하고, 이 온도에서 1-30시간 균열하는 것이 필요하다. 이때, 마무리 고온소둔의 온도가 1150℃ 미만이거나 균열시간이 1시간미만의 경우는 양호한 유리질피막형성과 불순물제거가 어려워지며, 1250℃를 초과하는 온도나 30시간을 초과하는 시간의 경우는 비경제적이므로 본 발명의 범위에서 제외하였다.After the simultaneous decarbonation annealing as described above, the final finishing annealing, the temperature rise rate is raised to 1150-1250 ℃ by controlling in the range of 10-20 ℃ / hr to fully improve the secondary recrystallization, the orientation It is necessary to crack at this temperature for 1-30 hours. At this time, when the temperature of finishing high temperature annealing is less than 1150 ° C. or the cracking time is less than 1 hour, it is difficult to form a good glass film and remove impurities, and it is uneconomical when the temperature exceeds 1250 ° C. or the time exceeds 30 hours. Since it was excluded from the scope of the present invention.

그리고, 고온소둔의 분위기 가스로는 유리질피막 형성과 2차재결정 완료후 N, S 등 잔류불순물을 제거하기 위해 건조한 수소 또는 수소 및 질소의 혼합가스를 사용하는 것이 바람직하다.As the atmospheric gas for high temperature annealing, it is preferable to use dry hydrogen or a mixed gas of hydrogen and nitrogen to remove residual impurities such as N and S after the formation of the glass coating and the completion of the secondary recrystallization.

상기 고온소둔에 의해 무기질의 유리질피막이 형성된 강판표면에는 절연성향상과 자구미세화에 의한 철손개선의 목적으로 고온소둔후 통상의 장력부여 코팅을 하여도 좋다.On the surface of the steel sheet on which the inorganic glass coating is formed by the high temperature annealing, a normal tension coating may be applied after the high temperature annealing for the purpose of improving the insulation property and improving the iron loss by the micronization.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

중량비로 C:0.019%, Si:3.20%, Mn:0.24%, 산가용성Al:0.018%, N:0.0055%, S:0.005%, P:0.015% 밌 Cu, Ni, Cr은 하기표 1과 같이 첨가량을 달리하고, 나머지 Fe로 조성된 250mm두께의 스라브를 제조하였다. 이 스라브를 1150℃의 온도에서 4시간 30분동안 가열한 후 열간압연을 행하여 2.0mm 두께의 열연판을 만들었다. 이어 950℃ 에서 3분간 질소가스분위기 중에서 열연판 예비소둔한 후 산세하고, 1회 압연으로 0.285mm두께의 최종냉연판을 만들었다. 이 후 900℃에서 3분간 이슬점이 45℃인 습윤 암모니아+수소+질소 혼합가스 분위기를 사용하여 탈탄 및 질소부화 그리고, 1차재결정 조직을 형성시키기 위한 동시탈탄질화소둔을 실시하였다.C: 0.019%, Si: 3.20%, Mn: 0.24%, Acid Soluble Al: 0.018%, N: 0.0055%, S: 0.005%, P: 0.015% By weight ratio Cu, Ni, Cr are as shown in Table 1 below. The addition amount was varied, and a slab of 250 mm thickness composed of the remaining Fe was prepared. The slab was heated at a temperature of 1150 ° C. for 4 hours 30 minutes and then hot rolled to form a 2.0 mm thick hot rolled sheet. Subsequently, the hot rolled sheet was preannealed in a nitrogen gas atmosphere at 950 ° C. for 3 minutes, followed by pickling. A final cold rolled sheet having a thickness of 0.285 mm was obtained by one rolling. Thereafter, decarburization and nitrogen enrichment were carried out using a wet ammonia + hydrogen + nitrogen mixed gas atmosphere having a dew point of 45 ° C. for 3 minutes at 900 ° C., and co-denitrification annealing was carried out to form a primary recrystallized structure.

이때, 강판의 총질소량을 하기표 1과 같이 변화시키기 위해 분위기 가스로는 부피%로 0.005-10%의 범위에서 농도를 달리한 암모니아(NH3) 및 5-80%의 범위에서 농도를 달리한 수소(H2)와 나머지 질소(N2)로 이루어진 혼합가스를 사용하였다. 이어서 MgO를 주성분으로 하는 융착방지제를 강판표면에 도포한 다음 마무리 고온소둔 하였다. 이때, 상기 마무리 고온소둔은 2차재결정을 일으키기 위해 20℃/hr의 승온속도로 1200℃까지 승온하고 15시간 균열후 냉각하는 열처리 사이클로 행하였으며 승온중 분위기가스로는 25%N2+ 75H2를 사용하였다. 1200℃로 승온한 이후에는 순수소 가스를 사용하였다.At this time, in order to change the total nitrogen amount of the steel sheet as shown in Table 1 as the atmosphere gas, ammonia (NH 3 ) having a different concentration in the range of 0.005-10% by volume and hydrogen having a different concentration in the range of 5-80% A mixed gas consisting of (H 2 ) and the remaining nitrogen (N 2 ) was used. Subsequently, a fusion inhibitor containing MgO as a main component was applied to the surface of the steel sheet, followed by finishing high temperature annealing. At this time, the finishing high temperature annealing was performed by a heat treatment cycle of heating up to 1200 ° C. at a temperature rising rate of 20 ° C./hr at 15 ° C. to raise secondary recrystallization, and cooling after cracking for 15 hours. 25% N 2 + 75 H 2 was used as an atmospheric gas during temperature rising. It was. After the temperature was raised to 1200 ° C., pure hydrogen gas was used.

상기와 같이 Cu, Ni, Cr의 첨가량 및 총질소랑을 변화한 시편들에 대하여 강판의 잔류탄소량, 총질량, 동시탈탄질화소둔 후의 1차재결정 미세조직의 균일성여부, 2차재결정 발달율, 그리고, 자속밀도를 조사하여 하기표 1에 나타내었다.Residual carbon content, total mass, uniformity of primary recrystallized microstructure after co-denitrification annealing, and secondary recrystallization rate, , And the magnetic flux density is shown in Table 1 below.

여기서, 1차재결정 미세조직의 균일성 여부는 동시탈탄질화소둔한 시편의 단면을 연마후 3%의 나이탈(Nital)로 에칭하여 광학현미경으로 관찰함으로써 판정하였다. 이때의 판정방법은 시편 1㎟당 등방정의 결정립과 두께방향으로 성장된 결정립의 면적을 비교하여 등방정의 결정립의 면적이 크면 균일, 그렇지 않으면 불균일로 하였다. 그리고, 2차재결정발달율은 마무리 고온소둔한 강판의 표면을 약 80℃로 데운 20%염산용액으로 부식하여 노출한 매크로(Macro)조직을 관찰하여 측정하였다. 또한, 자속밀도는 단판자성측정기로 B10(1000A/m의 여자력에서 유기되는 자속밀도)을 측정한 값이다.Here, the uniformity of the primary recrystallized microstructure was determined by observing the cross section of the specimen subjected to simultaneous decarbonation annealing with an optical microscope by etching with 3% nital after polishing. The determination method at this time compared the area of grains grown in the thickness direction with the grains of isotropic crystals per 1 mm 2 of the specimen and made uniform if the area of the grains of the isotropic crystals was large, or nonuniform. The secondary recrystallization rate was measured by observing the macrostructure exposed by corrosion of the surface of the finished hot-annealed steel sheet with 20% hydrochloric acid solution warmed to about 80 ° C. In addition, the magnetic flux density is a value obtained by measuring B 10 (magnetic flux density induced at an excitation force of 1000 A / m) with a single-plate magnetometer.

Figure pat00001
Figure pat00001

상기표 1에 나타나 있듯이, Cu, Ni, Cr의 첨가량을 본 발명범위내로 하고, 또한, 동시탈탄질화소둔후 총질소량을 130∼82.9 ×(1+ [Cu% + 10×(Ni% +Cr%)]2)의 범위 내로 제어한 발명재(1-8)의 경우는 균일한 1차재결정 조직 및 적절한 크기와 양으로 분포된 AlN 등의 석출물이 얻어져, 2차재결정이 완전히 일어날 뿐만 아니라, 그 방향성도 향상되어 우수한 자속밀도값을 나타냈다.As shown in Table 1, the addition amount of Cu, Ni, and Cr is within the scope of the present invention, and the total nitrogen after simultaneous decarbonation annealing is 130 to 82.9 x (1 + [ Cu % + 10 x ( Ni % + Cr %). In the case of the invention material (1-8) controlled in the range of 2 ), a uniform primary recrystallization structure and precipitates such as AlN distributed in appropriate sizes and amounts are obtained, and not only secondary recrystallization occurs completely. The directionality was also improved, showing an excellent magnetic flux density value.

반면, 동시탈탄질화소둔 후 총 질소량이 130ppm미만인 비교재(1,3,5)의 경우 적절한 양으로 입성장억제력이 얻어지지 않아 2차재결정이 불안정하게 일어나게 되어 열등한 자속밀도 값이 얻어졌다.On the other hand, in the case of the comparative material (1,3,5) having a total nitrogen content of less than 130 ppm after co-denitrification annealing, the secondary recrystallization was unstable because an appropriate amount of grain growth inhibition was not obtained.

또한, 총질소량을 본 발명범위내로 제어한 경우라도 Cu, Ni, Cr의 3원소중 어느 하나라도 본 발명범위 미만으로 첨가한 비교재(7-9)는 1차재결정조직이 불균일하게 형성되어 2차재결정이 불안정하게 일어나는 결과, 저조한 자속밀도값을 나타내었다.Further, even when the total nitrogen amount was controlled within the scope of the present invention, the comparative material (7-9) added with any one of the three elements of Cu, Ni, and Cr below the scope of the present invention had uneven primary recrystallization structure. As the result of the in-vehicle crystallization unstable, the low magnetic flux density was shown.

또한, Cu, Cr의 첨가량이 본 발명범위를 초과하는 비교재(10-11)은 2차재결정이 완전히 일어나지만, 탈탄성이 열화되고(잔류탄소량 30ppm초과) 그 방향성이 열확되어 우수한 자속밀도를 얻을 수 없었다.In addition, although the secondary material crystallization completely occurs in the comparative material (10-11) in which the addition amount of Cu and Cr exceeds the scope of the present invention, decarburization deteriorates (more than 30 ppm of residual carbon), and its orientation is thermally decomposed, thus excellent magnetic flux density Couldn't get it.

상술한 바와같이, 본 발명에 의하면 저온스라브 가열이 가능하고, 우수한 자속밀도를 얻을 수 있으며 특히, 종래기술과 비교하여 제조공정이 단축되는 유용한 효과가 있는 것이다 .As described above, according to the present invention, low temperature slab heating is possible, excellent magnetic flux density can be obtained, and in particular, there is a useful effect of shortening the manufacturing process compared with the prior art.

Claims (9)

고자밀도 방향성 전기강판의 제조 방법에 있어서,In the manufacturing method of high magnetic density oriented electrical steel sheet, 중량%, C:0.01-0.04%, Si:2.90-3.30%, Mn:0 15-0.30%, 산가용성 Al:0.010-0.040%, N:0.003-0.010%, P:0.015%이하, S:0.006%이하, Cu:0.30-0.70%, Ni:0.03-0.07%, Cr:0.03-0.07% 및 잔부 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 강 스라브를 1130-1320℃의 온도에서 1-10시간 가열하고, 이어 열간압연, 열연판 열연판소둔한 후, 1회 냉간압연하여 냉연판을 만든 다음; 이슬점이 30-70℃이고 함질소 가스 분위기에서 700-950℃의 온도로 30초-10분간 탈탄소둔겸질화처리하고; 이어 MgO를 주성분으로 하는 용착방지제를 도포한 후, 마무리 고온 소둔하는 것을 포함하여 이루어짐을 특징으로 하는 저온 스라브 가열 방식의 고자속밀도 방향성 전기강판의 제조방법.Weight%, C: 0.01-0.04%, Si: 2.90-3.30%, Mn: 0 15-0.30%, acid soluble Al: 0.010-0.040%, N: 0.003-0.010%, P: 0.015% or less, S: 0.006 Steel slab consisting of% or less, Cu: 0.30-0.70%, Ni: 0.03-0.07%, Cr: 0.03-0.07% and the balance Fe and other unavoidable impurities are heated at a temperature of 1130-1320 ° C. for 1-10 hours. And then, hot rolled, hot rolled plate hot rolled annealing, and then cold rolled once to make a cold rolled plate; Decarbonization annealing at 30-70 ° C. for 30 seconds to 10 minutes at a temperature of 700-950 ° C. in a nitrogen-containing gas atmosphere; Subsequently, after applying an anti-deposition agent containing MgO as a main component, a high temperature-density oriented electrical steel sheet of a low-temperature slab heating method comprising a high temperature finish annealing. 제 1항에 있어서, 상기 강 스라브의 두께는 150-350mm임을 특징으로 하는 저온 스라브 가열 방식의 고자속밀도 방향성 전기강판의 제조방법.The method of manufacturing a high magnetic flux density oriented electrical steel sheet according to claim 1, wherein the steel slab has a thickness of 150-350 mm. 제 1항에 있어서, 상기 열간압연은 열연판의 두께가 1:5-2.6mm가 되도록 행함을 특징으로 하는 저온 스라브 가열 방식의 고자속밀도 방향성 전기강판의 제조방법.The method of manufacturing a high magnetic flux density oriented electrical steel sheet according to claim 1, wherein the hot rolling is performed such that the thickness of the hot rolled sheet is 1: 5-2.6 mm. 제 1항에 있어서, 상기 열연판 예비소둔은 850-1150℃의 온도에서 30초-10분간 질소가스 분위기에서 행함을 특징으로 하는 저온 스라브 가열 방식의 고자속밀도 방향성 전기강판의 제조방법.The method of claim 1, wherein the pre-annealing of the hot rolled sheet is performed in a nitrogen gas atmosphere at a temperature of 850-1150 ° C. for 30 seconds to 10 minutes. 제 1항에 있어서, 상기 냉연판의 두께는 0.23-0.35mm임을 특징으로 하는 저온 스라브 가열 방식의 고자속밀도 방향성 전기강판의 제조방법.The method of manufacturing a high magnetic flux density oriented electrical steel sheet according to claim 1, wherein the cold rolled sheet has a thickness of 0.23-0.35 mm. 제 1항에 있어서, 상기 탈탄소둔은 잔류탄소량이 30ppm이하가 되도륵 행함을 특징으로 하는 저온슬라브 가열방식의 고자속밀도 방향성전기강판의 제조방법.The method of manufacturing a high magnetic flux density oriented electrical steel sheet according to claim 1, wherein the decarbonization annealing is performed even if the residual carbon content is 30 ppm or less. 제 1항에 있어서, 상기 함질소 분위기 가스는 암모니아+수소+질소의 혼합가스임을 특징으로 하는 저온스라브 가열방식의 고자속밀도 방향성전기강판의 제조방법.The method of manufacturing a high magnetic flux density oriented electrical steel sheet according to claim 1, wherein the nitrogen-containing atmosphere gas is a mixed gas of ammonia + hydrogen + nitrogen. 제 7항에 있어서, 상기 질화처리는 총질소량이 130∼82.9 ×(1+ [Cu% + 10 ×(Ni% +Cr%)]2)ppm이 되도록 행함을 특징으로 하는 저온슬라브 가열방식의 고자속밀도 방향성전기강판의 제조방법.The low temperature slab heating method according to claim 7, wherein the nitriding treatment is performed so that the total nitrogen amount is 130 to 82.9 × (1+ [Cu% + 10 × ( Ni % + Cr %)] 2 ) ppm. Method for producing fast density oriented electrical steel sheet. 제 1항에 있어서, 상기 마무리 고온소둔은 건조한 수소 또는 수소 및 질소의혼합 가스 분위기에서 10-20℃/hr의 속도로 1150-1250℃까지 승온하고, 1-30시간 균열함을 특징으로 하는 저온슬라브 가열방식의 고자속밀도 방향성전기강판의 제조방법.The method of claim 1, wherein the finishing high temperature annealing is heated to 1150-1250 ℃ at a rate of 10-20 ℃ / hr in dry hydrogen or a mixed gas atmosphere of hydrogen and nitrogen, and the low temperature characterized in that cracking for 1-30 hours Method for manufacturing high magnetic flux density oriented electrical steel sheet of slab heating method.
KR1019970028305A 1997-06-27 1997-06-27 Method for manufacturing grain oriented electric steel sheet with high magnetic density KR100340495B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019970028305A KR100340495B1 (en) 1997-06-27 1997-06-27 Method for manufacturing grain oriented electric steel sheet with high magnetic density
US09/242,865 US6451128B1 (en) 1997-06-27 1998-06-26 Method for manufacturing high magnetic flux denshy grain oriented electrical steel sheet based on low temperature slab heating method
CN98800888A CN1088760C (en) 1997-06-27 1998-06-26 Method for manufacturing high magnetic flux density grain oriented electrical steel sheet based on low temperature slab heating method
JP50846499A JP3485188B2 (en) 1997-06-27 1998-06-26 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density based on low-temperature slab heating method
DE19881070T DE19881070C2 (en) 1997-06-27 1998-06-26 Method for producing a steel sheet with a preferred magnetic direction with a high magnetic flux density based on a low-temperature plate heating method
PCT/KR1998/000184 WO1999002742A2 (en) 1997-06-27 1998-06-26 Method for manufacturing high magnetic flux density grain oriented electrical steel sheet based on low temperature slab heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970028305A KR100340495B1 (en) 1997-06-27 1997-06-27 Method for manufacturing grain oriented electric steel sheet with high magnetic density

Publications (2)

Publication Number Publication Date
KR19990004252A KR19990004252A (en) 1999-01-15
KR100340495B1 true KR100340495B1 (en) 2002-11-22

Family

ID=37480258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970028305A KR100340495B1 (en) 1997-06-27 1997-06-27 Method for manufacturing grain oriented electric steel sheet with high magnetic density

Country Status (1)

Country Link
KR (1) KR100340495B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695619A (en) * 2012-09-27 2014-04-02 宝山钢铁股份有限公司 Manufacturing method of high-magnetic-induction common-oriented silicon steel
WO2021239057A1 (en) * 2020-05-28 2021-12-02 宝山钢铁股份有限公司 Thin-gauge oriented silicon steel plate having excellent manufacturability, and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990088437A (en) * 1998-05-21 1999-12-27 에모또 간지 Grain oriented electromagnetic steel sheet and manufacturing method thereof
KR100544637B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 A method for grain-oriented electrical steel sheet with good magnetic properties

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283324A (en) * 1988-05-11 1989-11-14 Nippon Steel Corp Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH02228425A (en) * 1989-02-28 1990-09-11 Nippon Steel Corp Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283324A (en) * 1988-05-11 1989-11-14 Nippon Steel Corp Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH02228425A (en) * 1989-02-28 1990-09-11 Nippon Steel Corp Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695619A (en) * 2012-09-27 2014-04-02 宝山钢铁股份有限公司 Manufacturing method of high-magnetic-induction common-oriented silicon steel
CN103695619B (en) * 2012-09-27 2016-02-24 宝山钢铁股份有限公司 A kind of manufacture method of high magnetic strength common orientation silicon steel
WO2021239057A1 (en) * 2020-05-28 2021-12-02 宝山钢铁股份有限公司 Thin-gauge oriented silicon steel plate having excellent manufacturability, and manufacturing method therefor

Also Published As

Publication number Publication date
KR19990004252A (en) 1999-01-15

Similar Documents

Publication Publication Date Title
KR100721822B1 (en) The grain-oriented electrical steel sheet manufacturing method with low iron core loss, high magnetic induction
JP2011517732A (en) Method for producing directional silicon steel with high electromagnetic performance
EP3561103A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
EP3859019A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
KR100340495B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100321044B1 (en) Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
CN114829657B (en) Oriented electrical steel sheet and method for manufacturing same
KR100285344B1 (en) Process for preparing high magnetic flux density directional electric steel sheet by low temperature slab heating way
KR100817168B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR101059213B1 (en) Stable manufacturing method of oriented electrical steel sheet with excellent magnetic properties
KR100360101B1 (en) A method for manufacturing grain oriented electrical steel sheets having superior glass film
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100399222B1 (en) Manufacturing method of oriented electrical steel sheet by slab low temperature heating
KR970007334B1 (en) Method for manufacturing oriented electrical steel sheet having magnetic properties
KR102319831B1 (en) Method of grain oriented electrical steel sheet
KR100237158B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
CN113166874B (en) Oriented electrical steel sheet and method for manufacturing the same
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR970007333B1 (en) Method for manufacturing oriented electrical steel sheet having high magnetic density
KR20010055101A (en) A method for manufacturing the high permeability grain-oriented electrical steel sheet with low core loss
KR100340575B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet of low temperature slab heating method with excellent glass coating properties
KR100360097B1 (en) The method of manufacturing grain oriented electrical steel sheet by low heating of slab
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee