JPS631371B2 - - Google Patents

Info

Publication number
JPS631371B2
JPS631371B2 JP58062688A JP6268883A JPS631371B2 JP S631371 B2 JPS631371 B2 JP S631371B2 JP 58062688 A JP58062688 A JP 58062688A JP 6268883 A JP6268883 A JP 6268883A JP S631371 B2 JPS631371 B2 JP S631371B2
Authority
JP
Japan
Prior art keywords
hot
slab
annealing
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58062688A
Other languages
Japanese (ja)
Other versions
JPS59190325A (en
Inventor
Yozo Suga
Toyohiko Konno
Keiji Pponma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58062688A priority Critical patent/JPS59190325A/en
Priority to GB08325076A priority patent/GB2130241B/en
Priority to SE8305095A priority patent/SE460482B/en
Priority to CA000437373A priority patent/CA1210670A/en
Priority to IT22974/83A priority patent/IT1167387B/en
Priority to DE3334519A priority patent/DE3334519C2/en
Priority to FR8315933A priority patent/FR2533586B1/en
Priority to KR1019830004473A priority patent/KR890000882B1/en
Publication of JPS59190325A publication Critical patent/JPS59190325A/en
Publication of JPS631371B2 publication Critical patent/JPS631371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は鋼板を構成する体心立方格子の結晶粒
がミラー指数で{110}<001>として表わされる
方位を有する磁性の優れた一方向性珪素鋼板を連
続鋳造と一回の熱延工程とから作つた熱延板(鋼
帯)によつて製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces a unidirectional silicon steel sheet with excellent magnetism in which the body-centered cubic lattice crystal grains constituting the steel sheet have an orientation represented by {110}<001> in Miller index. The present invention relates to a method of manufacturing a hot-rolled sheet (steel strip) made from a single hot-rolling process.

一方向性珪素鋼板は軟磁性材料として変圧器お
よび発電機の鉄心として使用され、磁気特性とし
て磁化特性と鉄損特性が良好でなければならな
い。磁化特性の良否は、かけられた一定の磁場で
鉄心内に誘起される磁束密度(B8で代表)の大
小により決まる。磁束密度の大きい材料は電気機
器を小さく出来るので望ましい。鉄損(W17/50
代表)は鉄心に所定の交流磁場を与えた場合に熱
エネルギーとして消費される電力損失である。鉄
損の良否に対しては磁束密度、板厚、不純物量、
比抵抗、結晶粒大きさの影響が知られている。最
近、省エネルギー動向を反映してこの鉄損の少な
い一方向性珪素鋼板の需要が増加している。
Unidirectional silicon steel sheets are used as soft magnetic materials for the cores of transformers and generators, and must have good magnetic properties such as magnetization properties and iron loss properties. The quality of magnetization characteristics is determined by the magnitude of the magnetic flux density (represented by B8 ) induced within the iron core by a constant applied magnetic field. Materials with high magnetic flux density are desirable because electrical equipment can be made smaller. Iron loss (represented by W 17/50 ) is the power loss consumed as thermal energy when a specified alternating magnetic field is applied to the iron core. The quality of iron loss is determined by magnetic flux density, plate thickness, amount of impurities,
The effects of resistivity and crystal grain size are known. Recently, the demand for unidirectional silicon steel sheets with low iron loss has increased, reflecting trends in energy conservation.

ところで、一方向性珪素鋼板は熱延と冷延によ
り最終板厚になつた鋼板を仕上高温焼鈍すること
により、{110}<001>方位を有する一次再結晶粒
が選択成長する、いわゆる二次再結晶によつて得
られる。二次再結晶を生じさせるには、仕上高温
焼鈍前の鋼板中に微細なMnS、AlN等の析出物
を存在させることにより(インヒビター効果)、
仕上高温焼鈍中の{110}<001>方位以外の一次
再結晶粒成長を抑える必要がある。このような二
次再結晶を制御することにより、正確な{110}<
001>方位粒の割合を高めることによつて磁束密
度を高めることが出来る。磁束密度の高い製品は
電気機器の小型化と同時に鉄損の改善も可能にす
るので、高磁束密度一方向性珪素鋼板の製造条件
の確立が重要である。代表技術として田口悟等に
よる特公昭40−15644号公報および今中拓一等に
よる特公昭51−13469号公報記載の方法がある。
近年、連続鋳造法の工業化が積極的に進められて
おり、一方向性珪素鋼板においても、省力化、歩
留向上による製造コストの低減、そして化学成分
の均一化による成品長手方向の磁性均一化を期待
して連続鋳造工程の適用が進められている。しか
しながら連続鋳造スラブを1280℃以上に加熱後、
熱間圧延により製造した鋼板を出発素材として得
た成品には、しばしば線状二次再結晶不完全部が
発生し、磁性の劣る場合があつた。これらの対策
として、M.F.Littmanは特開昭48−53919号公報
により連続鋳造スラブから二回の熱延工程を経て
熱延板を作る技術を提案している。さらに坂倉昭
等は特公昭50−37009号公報において、高磁束密
度一方向性珪素鋼板の製造に際して連続鋳造した
スラブから二回の熱延工程を経て熱延板を作る技
術を提案している。しかしながら、これら先行技
術は、いずれも二回の熱延工程を経て熱延板を作
る技術であり、連続鋳造による利点を充分に活か
した技術とは言えない。その後、連続鋳造スラブ
を用いた製造法として、塩崎守雄等の特開昭53−
19913号公報、松本文夫等の特開昭54−120214号
公報に示された技術が提案された。しかしなが
ら、これらの技術はいずれも設備の対応措置を新
たに講ずる必要がある。又、これらの対策を行な
つても線状二次再結晶不良の発生を完全に解決す
るには致つていない。すなわち、最近では省エネ
ルギーを目的とした低鉄損一方向性珪素鋼板の要
求が高まつているが、これに応えるためには磁束
密度を高めること、Si含有量を高めることが重要
である。特に特公昭40−15644号公報による技術
は一回圧延法であるため製造コストが安く、高磁
束密度の一方向性珪素鋼板が得られるので、高Si
化が可能になれば、鉄損向上が大である。しかる
にSi含有量を高めると二次再結晶不良の発生が急
激に増加し、特にこのような高Siの場合におい
て、連続鋳造スラブを用いた際に発生する線状二
次再結晶不良は一層増加するため、Si含有量が
3.0%を超えると工業的な安定生産が極めて困難
になつていた。これは、坂倉昭等による特開昭48
−51852号公報に述べられているようにSi含有量
を増やすと二次再結晶の発生に適切なAlNの確
保が難かしくなり、特に連続鋳造スラブを用いた
場合にはこの不適切なAlNによる二次再結晶の
不良がより顕著になるためと考えられる。このよ
うに、一回圧延法による高磁束密度一方向性珪素
鋼板の製造において最大の問題はSi含有量が上が
ると二次再結晶が不安定になることである。この
方法における冶金的基本思想が、焼鈍中のα→γ
変態を利用して適切なAlN状態を作ることにあ
るので、Siを上げると当然ながらα→γ変態挙動
が変ることにより適切なAlN状態に制御するこ
とが困難になると考えられ、高Siになるほど二次
再結晶不良が増加することと対応する。
By the way, unidirectional silicon steel sheets are produced by finishing high-temperature annealing of the steel sheets that have reached their final thickness through hot rolling and cold rolling, resulting in so-called secondary recrystallization, in which primary recrystallized grains with {110}<001> orientation grow selectively. Obtained by recrystallization. In order to cause secondary recrystallization, the presence of fine precipitates such as MnS and AlN in the steel sheet before final high-temperature annealing (inhibitor effect)
It is necessary to suppress the growth of primary recrystallized grains other than the {110}<001> orientation during final high-temperature annealing. By controlling such secondary recrystallization, accurate {110}<
001> Magnetic flux density can be increased by increasing the proportion of oriented grains. Since products with high magnetic flux density make it possible to reduce the size of electrical equipment and improve core loss, it is important to establish manufacturing conditions for high magnetic flux density unidirectional silicon steel sheets. Representative techniques include methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi et al. and Japanese Patent Publication No. 13469-1983 by Takuichi Imanaka et al.
In recent years, the industrialization of the continuous casting method has been actively promoted, and even for unidirectional silicon steel sheets, it is possible to reduce manufacturing costs by saving labor and improving yield, and to make the magnetic properties uniform in the longitudinal direction of the finished product by making the chemical composition uniform. In anticipation of this, continuous casting processes are being applied. However, after heating the continuous casting slab to over 1280℃,
Products obtained using hot-rolled steel sheets as starting materials often have linear secondary recrystallization imperfections, resulting in poor magnetic properties. As a countermeasure to these problems, MFLittman proposed a technique in Japanese Patent Application Laid-Open No. 48-53919, in which hot-rolled sheets are produced from continuously cast slabs through two hot-rolling processes. Furthermore, Akira Sakakura et al., in Japanese Patent Publication No. 50-37009, proposed a technique for producing hot-rolled plates from continuously cast slabs through two hot-rolling processes in the production of high magnetic flux density unidirectional silicon steel plates. However, all of these prior art techniques produce hot-rolled sheets through two hot-rolling steps, and cannot be said to be techniques that fully utilize the advantages of continuous casting. Later, as a manufacturing method using continuous casting slabs, Morio Shiozaki et al.
The techniques disclosed in Japanese Patent Application Laid-open No. 19913 and Japanese Patent Application Laid-open No. 120214/1983 by Fumio Matsumoto et al. were proposed. However, all of these technologies require new measures to be taken for equipment. Further, even if these measures are taken, the occurrence of linear secondary recrystallization defects cannot be completely solved. That is, recently there has been an increasing demand for low core loss unidirectional silicon steel sheets for the purpose of energy saving, and in order to meet this demand, it is important to increase the magnetic flux density and increase the Si content. In particular, the technology disclosed in Japanese Patent Publication No. 40-15644 is a one-time rolling method, so the manufacturing cost is low, and a unidirectional silicon steel sheet with high magnetic flux density can be obtained, so it has high Si
If this becomes possible, the iron loss will be greatly improved. However, when the Si content is increased, the occurrence of secondary recrystallization defects rapidly increases, and especially in the case of such a high Si content, the linear secondary recrystallization defects that occur when continuously cast slabs are used further increase. Therefore, the Si content is
If it exceeds 3.0%, stable industrial production becomes extremely difficult. This was published in 1973 by Akira Sakakura and others.
As stated in Publication No. 51852, increasing the Si content makes it difficult to secure adequate AlN for secondary recrystallization, and especially when continuous casting slabs are used, this inappropriate AlN This is thought to be because defects in secondary recrystallization become more noticeable. As described above, the biggest problem in producing high magnetic flux density unidirectional silicon steel sheets by the single rolling method is that secondary recrystallization becomes unstable as the Si content increases. The basic metallurgical idea of this method is that α → γ during annealing.
Since the purpose is to create an appropriate AlN state using transformation, it is thought that increasing the Si will naturally change the α→γ transformation behavior, making it difficult to control the appropriate AlN state, and the higher the Si, the more difficult it will be to control the appropriate AlN state. This corresponds to an increase in secondary recrystallization defects.

本発明者等は連続鋳造スラブを用いた場合に発
生する二次再結晶不良部を完全に防止し、特にSi
含有量が上がると増加する二次再結晶不良を軽減
した1回圧延法による高磁束密度一方向性珪素鋼
板を安定して製造出来る方法を開発した。そし
て、さらに画期的なことに、この方法によれば従
来から一方向性珪素鋼板の製造において必須であ
るとされていた熱間圧延に先立つて行なわれるス
ラブ加熱温度として1280℃を超える高温加熱を必
ずしも必要としないこと、むしろ低温度でのスラ
ブ加熱温度の場合に、一層良好な鉄損の得られる
ことを見い出した。特公昭40−15644号公報に基
づいた高磁束密度一方向性珪素鋼板の製造法にお
いては、二次再結晶の発生に必要な析出分散相で
あるMnS、AlNを適切な分散状態にする必要か
ら、熱延時のスラブ加熱温度を高くすることが行
なわれていた。特に特公昭40−15644号公報記載
の方法の改良に係る坂倉昭等による特開昭48−
51852号公報記載の方法のように、Si含有量が増
えると熱延中のAlN析出が高温度域から始まる
ためスラブを高温度に加熱する事が必要である。
例えば2.8%Siでは1250℃以上、3.05%Siでは1350
℃である。このように鉄損向上のためSi量を増す
とスラブ加熱温度を高める事が必要となり、スラ
ブ加熱時の使用エネルギーの増大、加熱時のノロ
の発生による歩留り低下および補修費の増大等に
よる製造コスト高の問題があつた。
The present inventors have completely prevented secondary recrystallization defects that occur when using continuous casting slabs, and in particular
We have developed a method that can stably produce high magnetic flux density unidirectional silicon steel sheets using a single rolling method that reduces secondary recrystallization defects that increase as the content increases. What is even more revolutionary is that according to this method, the slab is heated to a high temperature of over 1280℃ prior to hot rolling, which has traditionally been considered essential in the production of unidirectional silicon steel sheets. It has been found that this is not necessarily necessary, and that even better iron loss can be obtained by heating the slab at a lower temperature. In the manufacturing method of high magnetic flux density unidirectional silicon steel sheet based on Japanese Patent Publication No. 40-15644, it is necessary to bring MnS and AlN, which are precipitated dispersed phases necessary for secondary recrystallization, into an appropriate dispersed state. , the heating temperature of the slab during hot rolling was increased. In particular, Japanese Patent Application Laid-Open No. 1973-1564 by Akira Sakakura et al. concerning improvements to the method described in Japanese Patent Publication No. 15644-1973
As in the method described in Publication No. 51852, when the Si content increases, AlN precipitation during hot rolling starts in a high temperature range, so it is necessary to heat the slab to a high temperature.
For example, 1250℃ or higher for 2.8%Si, 1350℃ for 3.05%Si
It is ℃. Increasing the amount of Si in order to improve iron loss requires increasing the slab heating temperature, which increases the energy used when heating the slab, lowers yield due to the generation of slag during heating, and increases repair costs, resulting in manufacturing costs. There was a problem with height.

本発明によれば、Siが3.0%以上と高い場合で
も、スラブ加熱温度が1280℃を超えない低い温度
で二次再結晶が十分に安定して行なわれる。むし
ろ得られる鉄損は高温度スラブ加熱材に比べ良好
であり、その値は現行の最高等級である日本工業
規格(JIS)のG6H(0.30mm板厚でW17/50
1.05w/Kg以下)以上である。
According to the present invention, even when the Si content is as high as 3.0% or more, secondary recrystallization can be performed in a sufficiently stable manner at a low slab heating temperature that does not exceed 1280°C. In fact, the iron loss obtained is better than that of high-temperature slab heating materials, and the value is higher than the current highest grade Japanese Industrial Standard (JIS) G6H (W 17/50 with a thickness of 0.30 mm).
1.05w/Kg or less) or more.

以上に述べてきたように本発明によれば、高Si
含有連続鋳造スラブを用いて最高等級の高磁束密
度一方向性珪素鋼板を熱延時のスラブ加熱温度の
高低に拘らず安定して製造出来る。即ち、本発明
はC:0.025〜0.075%、Si:3.0〜4.5%、酸可溶性
Al:0.010〜0.060%、N:0.0030〜0.0130%、
S:0.007%以下、Mn:0.08〜0.45%、P:0.015
〜0.045%、Cr:0.07〜0.25%残部Feおよび不可
避不純物より成る一方向性珪素鋼板用連続鋳造ス
ラブを予備熱間圧延することなく加熱した後、熱
間圧延により熱延板となし、次いで該熱延板を
850〜1200℃の範囲で短時間連続焼鈍後、圧下率
80%以上の強圧下冷間圧延により最終板厚となし
得られた冷延板を湿水素雰囲気中で連続脱炭焼鈍
し、次いで焼鈍分離剤を塗布して仕上高温焼鈍を
行なうことを特徴とする鉄損の優れた一方向性珪
素鋼板の製造法を要旨とするものである。
As described above, according to the present invention, high Si
The highest grade high magnetic flux density unidirectional silicon steel sheet can be stably manufactured using continuous cast slabs containing the same, regardless of the high or low slab heating temperature during hot rolling. That is, the present invention has C: 0.025-0.075%, Si: 3.0-4.5%, acid-soluble
Al: 0.010~0.060%, N: 0.0030~0.0130%,
S: 0.007% or less, Mn: 0.08-0.45%, P: 0.015
~0.045%, Cr: 0.07~0.25%, balance Fe and unavoidable impurities, a continuously cast slab for unidirectional silicon steel sheet is heated without preliminary hot rolling, then hot rolled to form a hot rolled sheet, and then the slab is heated without preliminary hot rolling. hot rolled plate
After short-term continuous annealing in the range of 850 to 1200℃, reduction rate
The final plate thickness is obtained by cold rolling with a strong reduction of 80% or more, and the obtained cold rolled plate is continuously decarburized and annealed in a wet hydrogen atmosphere, and then an annealing separator is applied and a final high temperature annealing is performed. The main purpose of this paper is to provide a method for manufacturing unidirectional silicon steel sheets with excellent iron loss.

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

まず、本発明の鋼成分の限定理由について述べ
る。本発明で用いる溶鋼は、その溶製方法として
転炉、電気炉、平炉等どのような方法でも良い
が、成分含有量は次の範囲に入る必要がある。
First, the reasons for limiting the steel components of the present invention will be described. The molten steel used in the present invention may be produced by any method such as a converter furnace, an electric furnace, or an open hearth furnace, but the component content must fall within the following range.

Cは0.025%未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でも磁束密度が
悪いので(B10で1.80T以下しか得られない)
0.025%以上でなければならない。一方、Cが多
くなり過ぎると脱炭焼鈍時間が長くなり、経済的
でないので0.075%以下とした。
If C is less than 0.025%, secondary recrystallization becomes unstable, and even if secondary recrystallization occurs, the magnetic flux density is poor (only 1.80T or less can be obtained with B 10 ).
Must be 0.025% or more. On the other hand, if the amount of C is too large, the decarburization annealing time becomes long, which is not economical, so it is set at 0.075% or less.

Siは4.5%を超えると冷延時の割れが著るしく
なるので4.5%以下とした。又、3.0%未満では製
品厚0.30mmでW17/50が1.05w/Kg以下の最高等級
の鉄損が得られないので3.0%以上とした。望ま
しくは3.2%以上である。
If Si exceeds 4.5%, cracking during cold rolling becomes significant, so it was set to 4.5% or less. In addition, if it is less than 3.0%, it is impossible to obtain the highest grade iron loss with W 17/50 of 1.05w/Kg or less at a product thickness of 0.30mm, so it is set to 3.0% or more. It is preferably 3.2% or more.

本発明では二次再結晶に必要な析出物として
AlNを用いる。したがつて必要最低量のAlNを
確保するために酸可溶性Alとして0.010%以上、
Nとして0.0030%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り、二次再結晶が不安定になるので0.060%以下
とした。Nについては0.0130%を超えるとブリス
ターと呼ばれる“鋼板表面のふくれ”が発生する
ので0.0130%以下とした。
In the present invention, as a precipitate necessary for secondary recrystallization,
Use AlN. Therefore, in order to ensure the minimum amount of AlN required, 0.010% or more of acid-soluble Al,
N is required to be 0.0030% or more. acid soluble Al
If it exceeds 0.060%, AlN in the hot rolled sheet becomes inappropriate and secondary recrystallization becomes unstable, so it was set to 0.060% or less. Regarding N, if it exceeds 0.0130%, ``blistering'' on the surface of the steel plate will occur, so it was set to 0.0130% or less.

本発明の特徴の一つはS含有量を0.007%以下
にすることにある。インヒビターとしてAlNを
用いて一回圧延法で高磁束密度一方向性珪素鋼板
を製造するに際し、特公昭40−15644号公報に開
示されているようにSは磁性を得るための必須元
素である。又特公昭47−25250号公報に示される
ように、Sは二次再結晶を生じさせるに有効な析
出物であるMnSを形成させるのに必要である。
これら公知の技術においてSは二次再結晶に有効
であるとして規定されている。しかし、Sの含有
が二次再結晶に有害であるということは知られて
いなかつた。本発明者等は、AlNをインヒビタ
ーとして用いる一回圧延法で高磁束密度一方向性
珪素鋼板を製造するに際し、S含有量を0.007%
以下に少なくすることにより、連続鋳造スラブを
素材とした場合に発生する線状二次再結晶不良お
よび高Si含有スラブを素材とした場合に発生する
二次再結晶不良(これは熱延時のスラブ加熱温度
が低くなると特に著るしく発生するが)が無くな
ることを見い出した。
One of the features of the present invention is to reduce the S content to 0.007% or less. When producing a high magnetic flux density unidirectional silicon steel sheet by a single rolling method using AlN as an inhibitor, S is an essential element for obtaining magnetism, as disclosed in Japanese Patent Publication No. 15644/1983. Furthermore, as shown in Japanese Patent Publication No. 47-25250, S is necessary to form MnS, which is a precipitate effective in causing secondary recrystallization.
In these known techniques, S is defined as being effective for secondary recrystallization. However, it was not known that the inclusion of S was harmful to secondary recrystallization. The present inventors reduced the S content to 0.007% when manufacturing high magnetic flux density unidirectional silicon steel sheets by a single rolling method using AlN as an inhibitor.
By reducing the following, linear secondary recrystallization defects that occur when continuously cast slabs are used as raw materials and secondary recrystallization defects that occur when high Si-containing slabs are used as raw materials (this is It has been found that when the heating temperature is lowered, the phenomenon (which occurs particularly markedly) disappears.

第1図はC:0.058%、Si:3.35%、Mn:0.23
%、P:0.036%、酸可溶性Al:0.033%、N:
0.0085%、Cr:0.13%を含み、さらにSが0.002〜
0.033%である連続鋳造スラブを1410℃に加熱後、
熱延により2.3mmの熱延板とし、1150℃×2minの
連続焼鈍後に冷延により0.30mmとし、湿水素中で
850℃×2minの脱炭焼鈍を行ない、焼鈍分離剤と
してMgOを塗布し、1200℃×20hrの仕上高温焼
鈍を高なつて得られた成品の線状二次再結晶不良
の発生率を示す。S含有量が少なくなるほど線状
二次再結晶不良の発生が少なく、0.007%以下で
は全く発生しなくなることが分る。
Figure 1 shows C: 0.058%, Si: 3.35%, Mn: 0.23
%, P: 0.036%, acid-soluble Al: 0.033%, N:
Contains 0.0085%, Cr: 0.13%, and S is 0.002~
After heating the continuous casting slab which is 0.033% to 1410℃,
A hot-rolled sheet of 2.3 mm was made by hot rolling, and after continuous annealing at 1150°C for 2 min, it was cold rolled to a thickness of 0.30 mm in wet hydrogen.
This figure shows the incidence of linear secondary recrystallization defects in products obtained by performing decarburization annealing at 850°C for 2 minutes, applying MgO as an annealing separator, and increasing the final high temperature annealing at 1200°C for 20 hours. It can be seen that as the S content decreases, the occurrence of linear secondary recrystallization defects decreases, and at 0.007% or less, no linear secondary recrystallization defects occur.

第2図はC:0.050%、Si:3.45%、Mn:0.25
%、P:0.040%、酸可溶性Al:0.027%、N:
0.0080%、Cr:0.18%を含み、さらにSが0.002〜
0.035%を含有した厚さ40mmの小試片を1200℃に
加熱し、スラブ抽出後、大気放冷で1000℃とし、
1000℃の炉中に30sec保持し、その後3パスの熱
延で2.3mmにし、1120℃×2min連続焼鈍し、さら
に0.30mmに冷延し、湿水素雰囲気中で850℃×
2minの脱炭焼鈍し、焼鈍分離剤としてMgOを塗
布後に1200℃×20hrの仕上高温焼鈍を行なつた成
品の二次再結晶不良発生率を示す。第2図から分
るように、S含有量が0.007%以下の場合に二次
再結晶不良の発生は無い。Sが0.007%以下の範
囲ではS量が少ないほど二次再結晶が若干安定す
る。また溶鋼段階でSを下げておけば、仕上高温
焼鈍時の脱S処理が容易になるので望ましい。現
状の溶製技術ではコストを高くせずにSを容易に
下げ得る範囲として0.001%以上が一般的である。
Figure 2 shows C: 0.050%, Si: 3.45%, Mn: 0.25
%, P: 0.040%, acid-soluble Al: 0.027%, N:
Contains 0.0080%, Cr: 0.18%, and S is 0.002~
A small specimen with a thickness of 40 mm containing 0.035% was heated to 1200℃, and after slab extraction, it was cooled to 1000℃ in the atmosphere.
It was held in a furnace at 1000℃ for 30 seconds, then hot-rolled in 3 passes to 2.3mm, continuously annealed at 1120℃ for 2 minutes, further cold-rolled to 0.30mm, and then rolled at 850℃ in a wet hydrogen atmosphere.
This figure shows the incidence of secondary recrystallization defects for products that were decarburized for 2 minutes, coated with MgO as an annealing separator, and then subjected to final high-temperature annealing at 1200°C for 20 hours. As can be seen from FIG. 2, no secondary recrystallization failure occurs when the S content is 0.007% or less. In the range where S is 0.007% or less, the smaller the amount of S, the more stable the secondary recrystallization becomes. Further, it is desirable to lower the S content at the molten steel stage because this facilitates the S removal treatment during final high-temperature annealing. With the current melting technology, the S content can be easily lowered to 0.001% or more without increasing costs.

本発明の第二の特徴はMn、Pにある。本発明
では素材中のS含有量を少なくすることを特徴と
しているのでMnSの存在が無くなり成品の磁束
密度が悪くなる。しかしながら、かかる低S材の
場合でも素材中のMn、P含有量を適切な量にす
ることによつて、磁束密度が向上することを本発
明者等は見い出した。
The second feature of the present invention lies in Mn and P. Since the present invention is characterized by reducing the S content in the material, the presence of MnS is eliminated and the magnetic flux density of the finished product is deteriorated. However, the present inventors have found that even in the case of such a low S material, the magnetic flux density can be improved by adjusting the Mn and P contents in the material to appropriate amounts.

第3図はC:0.060%、Si:3.33%、S:0.004
%、酸可溶性Al:0.032%、N:0.0090%、Cr:
0.15%を含む連続鋳造スラブを1350℃に加熱後、
熱延によつて板厚2.3mmの熱延板とし、1150℃×
2minの連続焼鈍後に冷延により0.30mmとし、湿
水素雰囲気中で850℃×2minの脱炭焼鈍を行な
い、焼鈍分離剤としてMgOを塗布し、1200℃×
20hrの仕上高温焼鈍を行なつて得られた成品の磁
束密度(B10)に及ぼすスラブ中のMn、P含有
量を示す。Mn量が少なくなると二次再結晶が不
安定になり、多くなるとB10が高くなるが、一定
以上添加しても改善効果に差が無く添加合金層が
多くなり不経済である。Pについてはその含有量
が少ないとB10が悪く、他方多くなると冷延時に
割れる頻度が多くなり、又二次再結晶不良の発生
割合が多くなる。以上のことからB10が高く、か
つ二次再結晶が安定しており、割れ問題の少ない
範囲としてMn:0.08〜0.45%、P:0.015〜0.045
%を本発明の範囲とした。(第3図において×は
B10<1.80、△は1.80B10<1.89、〇は1.89B10
<1.92、●は1.92B101.93、○・は1.93<B10
ある。単位Tesla) 第4図はC:0.045%、Si:3.35%、S:0.002
%、酸可溶性Al:0.028%、N:0.0075%、Cr:
0.18%を含む厚40mmの小試片を1150℃に加熱し、
スラブ抽出後に3パスの熱延で2.3mm厚の熱延板
とし、(この時の熱延完了温度は約820℃であつ
た。)1120℃×2min連続焼鈍し、さらに0.30mmに
冷延し、湿水素雰囲気中で脱炭焼鈍し、焼鈍分離
剤としてMgOを塗布後に1200℃×20hrの仕上高
温焼鈍を行なつた成品の磁束密度(B10)に及ぼ
すMn、Pの影響を示す。第3図に示した1410℃
スラブ加熱材に比べ全体としてB10が0.01〜0.03T
だけ低くなつているが、MnとPの影響傾向は第
3図の場合と同じである。(第4図において×は
B10<1.80、△は1.80B10<1.89、〇は1.89B10
1.91、●は1.91<B10である。単位Tesla) 本発明の第三の特徴はCrを適当量だけ含有さ
せることにより、磁性を安定化させることにあ
る。特公昭40−15644号公報に開示されている技
術は高磁束密度が得られるが、鋼中酸可溶性Al
量を狭い範囲に制御する必要があり工業的な安定
生産を行なうためには問題がある。本発明に基づ
く製造法もインヒビターとしてAlNを用いるこ
とから、高磁束密度を得るためには鋼中酸可溶性
Alを厳密に制御する必要がある。本発明者等は
さらに研究した結果、適当量のCrを鋼中に含有
させることにより、高磁束密度の得られる酸可溶
性Al量の範囲が拡がることを見い出した。さら
にCr含有の素材から製造した成品は、同一磁束
密度下での鉄損が優れていることを見い出した。
Figure 3 shows C: 0.060%, Si: 3.33%, S: 0.004
%, acid soluble Al: 0.032%, N: 0.0090%, Cr:
After heating the continuous casting slab containing 0.15% to 1350℃,
A hot-rolled plate with a thickness of 2.3 mm is made by hot rolling at 1150℃
After continuous annealing for 2 min, it was cold rolled to 0.30 mm, decarburized at 850°C for 2 min in a wet hydrogen atmosphere, coated with MgO as an annealing separator, and heated to 1200°C.
The influence of the Mn and P contents in the slab on the magnetic flux density (B 10 ) of a product obtained by finishing high-temperature annealing for 20 hours is shown. When the amount of Mn decreases, secondary recrystallization becomes unstable, and when it increases, B 10 increases, but even if it is added above a certain level, there is no difference in the improvement effect and the number of added alloy layers increases, which is uneconomical. As for P, if the content is low, the B 10 will be bad, while if the content is high, the frequency of cracking during cold rolling will increase, and the incidence of secondary recrystallization failure will increase. From the above, Mn: 0.08-0.45%, P: 0.015-0.045 is a range with high B10 , stable secondary recrystallization, and few cracking problems.
% was defined as the scope of the present invention. (In Figure 3, × means
B 10 <1.80, △ is 1.80B 10 <1.89, 〇 is 1.89B 10
<1.92, ● is 1.92B 10 1.93, ○ is 1.93<B 10 . Unit Tesla) Figure 4 shows C: 0.045%, Si: 3.35%, S: 0.002
%, acid soluble Al: 0.028%, N: 0.0075%, Cr:
A small specimen with a thickness of 40 mm containing 0.18% was heated to 1150℃,
After extracting the slab, it was hot-rolled in 3 passes to form a hot-rolled sheet with a thickness of 2.3 mm (the hot-rolling completion temperature at this time was approximately 820°C), continuously annealed at 1120°C for 2 minutes, and then cold-rolled to 0.30 mm. , shows the influence of Mn and P on the magnetic flux density (B 10 ) of a product that was decarburized annealed in a wet hydrogen atmosphere, coated with MgO as an annealing separator, and then subjected to a final high temperature annealing at 1200°C for 20 hours. 1410℃ shown in Figure 3
Overall B10 is 0.01~0.03T compared to slab heating material
However, the influence trends of Mn and P are the same as in the case of Fig. 3. (In Figure 4, × means
B 10 <1.80, △ is 1.80B 10 <1.89, 〇 is 1.89B 10
1.91, ● is 1.91<B 10 . (Unit: Tesla) The third feature of the present invention is that magnetism is stabilized by containing an appropriate amount of Cr. Although the technology disclosed in Japanese Patent Publication No. 15644/1973 can obtain high magnetic flux density, acid-soluble Al in steel
It is necessary to control the amount within a narrow range, which poses a problem for stable industrial production. Since the production method based on the present invention also uses AlN as an inhibitor, acid-soluble
It is necessary to strictly control Al. As a result of further research, the present inventors have found that by incorporating an appropriate amount of Cr into steel, the range of acid-soluble Al content that can provide high magnetic flux density can be expanded. Furthermore, we found that products manufactured from Cr-containing materials have superior iron loss under the same magnetic flux density.

第5図はC:0.06%、Si:3.33%、Mn:0.30
%、P:0.035%、酸可溶性Al:0.029%、N:
0.0090%を含む連続鋳造スラブを1350℃に加熱
後、熱延によつて板厚2.3mmの熱延板とし、1120
℃×2min連続焼鈍し、さらに0.30mmに冷延し、
湿水素雰囲気中で脱炭焼鈍し、焼鈍分離剤として
MgOを塗布し、1200℃×20hrの仕上焼鈍を行な
つて得られた成品の磁束密度(B10)と鉄損
(W17/50)の関係に及ぼすCrの影響を示す。Cr量
が多くなると同一磁束密度下での鉄損が良くなる
ことが分る。
Figure 5 shows C: 0.06%, Si: 3.33%, Mn: 0.30
%, P: 0.035%, acid-soluble Al: 0.029%, N:
After heating the continuous casting slab containing 0.0090% to 1350℃, it was hot-rolled into a hot-rolled plate with a thickness of 2.3mm.
Continuously annealed at ℃×2min, further cold rolled to 0.30mm,
Decarburized and annealed in a wet hydrogen atmosphere and used as an annealing separator.
The effect of Cr on the relationship between magnetic flux density (B 10 ) and iron loss (W 17/50 ) of a product obtained by applying MgO and finishing annealing at 1200°C for 20 hours is shown. It can be seen that as the amount of Cr increases, the iron loss improves under the same magnetic flux density.

Cr量がさらに多くなつても、特に効果が増加
することもなく、むしろ脱炭焼鈍時の脱炭速度が
遅れるという問題が生じるので0.25%を超えるCr
添加は不適である。
Even if the Cr content is further increased, the effect will not particularly increase, but rather the problem will arise that the decarburization rate during decarburization annealing will be delayed, so if the Cr content exceeds 0.25%
Addition is inappropriate.

以上に述べた範囲の成分を含む溶鋼を連続鋳造
によりスラブとなし、熱間圧延により熱延板とす
る。本発明の一つの目的が連続鋳造スラブを用い
る事による利点の適用にあるので、連続鋳造スラ
ブが限定範囲になる。しかし、連続鋳造設備を持
たない場合に、分塊法によるスラブを用いても特
に問題はない。
Molten steel containing the above-mentioned components is continuously cast into a slab, and hot rolled into a hot-rolled plate. Continuously cast slabs are of limited scope since one of the objects of the present invention is to apply the advantages of using continuously cast slabs. However, if continuous casting equipment is not available, there is no particular problem in using a slab produced by the blooming method.

次にスラブ加熱温度について述べる。本発明で
限定した成分範囲の場合、スラブ加熱温度が高い
ほど磁束密度は高くなる。しかし第6図に示すよ
うに、本発明によれば高磁束密度を得るためにス
ラブ加熱温度として従来においては必須とされて
いた1300℃を超える高温加熱が必ずしも必要でな
くなる事を見い出した。さらに、画期的なことに
同一磁束密度下の比較をした場合に、むしろスラ
ブ加熱温度の低いものほど鉄損が大巾に良いこと
を見い出した。スラブ加熱温度の高い場合、磁束
密度が高く最高等級のG6H以上が得られ、さら
に成品の磁区制御処理(例えばレーザー照射)を
行なえば鉄損は一段と向上する。スラブ加熱温度
が低い場合、同一磁束密度下での鉄損が良く最高
等級のG6H以上が十分に得られるので製造コス
ト減を目的にしてスラブ加熱時にノロ発生の無い
1280℃以下を本発明では採用し得る。
Next, we will discuss the slab heating temperature. In the case of the component range limited in the present invention, the higher the slab heating temperature, the higher the magnetic flux density. However, as shown in FIG. 6, it has been found that according to the present invention, in order to obtain a high magnetic flux density, high-temperature heating exceeding 1300° C., which was conventionally considered essential, is no longer necessary. Furthermore, in a groundbreaking comparison under the same magnetic flux density, we found that the lower the slab heating temperature, the better the iron loss. When the slab heating temperature is high, the magnetic flux density is high and the highest grade G6H or higher can be obtained, and if the finished product is subjected to magnetic domain control treatment (for example, laser irradiation), the iron loss can be further improved. When the slab heating temperature is low, the iron loss under the same magnetic flux density is good and the highest grade G6H or higher can be obtained, so there is no slag generation when heating the slab with the aim of reducing manufacturing costs.
A temperature of 1280°C or lower can be employed in the present invention.

第6図はC:0.050%、Si:3.45%、Mn:0.25
%、S:0.002%、P:0.040%、酸可溶性Al:
0.027%、N:0.0080%、Cr:0.18%を含有した連
続鋳造スラブを加熱後、熱延により2.5mmの熱延
板とし、1120℃×2minの連続焼鈍後に冷延によ
り板厚0.30mmとし、湿水素雰囲気中で850℃×
2minの脱炭焼鈍を行ない、焼鈍分離剤として
MgOを塗布し、1200℃×20hrの仕上焼鈍を行な
つて得られた成品の磁束密度に及ぼすスラブ加熱
温度の影響を示す。この図から、スラブ加熱温度
が高いほど磁束密度が高くなり、1300℃以上で特
に高くなることが分る。しかし、高磁束密度を得
るために従来必須とされていた1300℃を超える温
度は必ずしも必要ではなく、より低温加熱でもよ
いことが分る。他方スラブ加熱温度が高すぎると
加熱炉が設備的に耐えられなくなり、1430℃が工
業生産上では上限になる。スラブ加熱温度の下限
は特に決める必要はないが、1050℃より下ると熱
延時の必要動力が大きくなり、又鋼板形状も悪く
なるので、工業的安定生産のためには1050℃以上
が望ましい。
Figure 6 shows C: 0.050%, Si: 3.45%, Mn: 0.25
%, S: 0.002%, P: 0.040%, acid soluble Al:
After heating a continuously cast slab containing 0.027%, N: 0.0080%, and Cr: 0.18%, it was hot-rolled into a 2.5 mm hot-rolled plate, and after continuous annealing at 1120°C for 2 min, it was cold-rolled to a plate thickness of 0.30 mm. 850℃× in a wet hydrogen atmosphere
Perform decarburization annealing for 2 min and use as an annealing separator.
The effect of slab heating temperature on the magnetic flux density of a product obtained by coating MgO and final annealing at 1200°C for 20 hours is shown. This figure shows that the higher the slab heating temperature, the higher the magnetic flux density, and it becomes especially high at 1300°C or higher. However, it can be seen that the temperature exceeding 1300°C, which was conventionally considered essential, is not necessarily required to obtain a high magnetic flux density, and heating at a lower temperature may be sufficient. On the other hand, if the slab heating temperature is too high, the heating furnace cannot withstand the equipment, and 1430°C is the upper limit for industrial production. There is no particular need to determine the lower limit of the slab heating temperature, but if it falls below 1050°C, the power required during hot rolling will increase and the shape of the steel sheet will deteriorate, so 1050°C or higher is desirable for stable industrial production.

第7図は第3図に示した同一条件で、スラブ加
熱温度のみを1150℃に変更して行なつて得られた
成品にコロイダルシリカを主成分とする張力コー
テイングを行なつた後の磁性を示す。スラブ加熱
温度の低い場合の磁性は高い場合に比べ、同一磁
束密度下での鉄損が良い。この理由は、かならず
しも明確では無いが、低温スラブ加熱による成品
の結晶粒界は不規則であり、又直径2mm前後の微
少結晶粒が混在している事が関係していると考え
られる。
Figure 7 shows the magnetic properties of a product obtained by applying a tension coating mainly composed of colloidal silica to a product obtained by changing only the slab heating temperature to 1150°C under the same conditions as shown in Figure 3. show. When the slab heating temperature is low, the magnetism is better than when it is high, and the core loss is better under the same magnetic flux density. The reason for this is not necessarily clear, but it is thought to be related to the fact that the grain boundaries of the product produced by low-temperature slab heating are irregular and that microcrystal grains with a diameter of about 2 mm are mixed.

以上のように低温スラブ加熱で最高等級の鉄損
を可能にした本発明では、次のような利点のある
熱延方法を容易に用い得る。
As described above, in the present invention, which enables the highest grade of iron loss by heating the slab at low temperature, a hot rolling method having the following advantages can be easily used.

最近の連続鋳造技術の進歩により連続鋳造の生
産性が連続熱延機の能力に匹敵するほど大きくな
つたため、連続鋳造機と連続熱延機を直結して材
料を流しても、連続熱延材の材料待ち時間が無く
なつた。そこで、連続鋳造後にスラブを冷却する
ことなく、スラブ顕熱を利用して直接に熱延する
方法、あるいはスラブ温度特に表面温度が若干下
がつた場合には復熱炉に装入するか、ごく簡単な
普通鋼用の加熱炉で短時間加熱した後、熱延する
方法である。このような熱延方法は省エネルギー
を目的に普通鋼の製造において、盛んに行なわれ
つつある。しかしながら、一方向性電磁鋼板にお
いては高温度、長時間のスラブ加熱が必要であつ
たため、一方向性電磁鋼板専用の高温スラブ加熱
炉を設置する必要があり、連続鋳造と連続熱延の
直結工程の採用が出来なかつた。本発明のように
低温スラブ加熱でも良いということになると、直
結工程の採用が容易になり、普通鋼なみの効率的
な熱延が可能になる。さらに、鋳造後に冷却しな
い直結工程になると珪素鋼特有の次のような利点
がある。すなわち、Siを含有するスラブは熱伝導
が悪いため、スラブ冷却中に表層部と中心部との
温度差が大きくなり、熱応力が発生し、スラブ内
部割れが生じ、歩留り低下になるが、直結工程の
ようにスラブ冷却をしない場合にはこのスラブ内
部割れの問題が解消する。
Due to recent advances in continuous casting technology, the productivity of continuous casting has become so great that it rivals the capacity of continuous hot rolling mills. No more waiting time for materials. Therefore, we have developed a method of directly hot-rolling the slab using sensible heat without cooling the slab after continuous casting, or charging the slab into a recuperation furnace if the slab temperature, especially the surface temperature, has dropped slightly. This is a method of heating the steel for a short time in a simple heating furnace for ordinary steel, and then hot rolling it. Such hot rolling methods are increasingly being used in the production of ordinary steel for the purpose of energy saving. However, since unidirectional electrical steel sheets require slab heating at high temperatures and for long periods of time, it is necessary to install a high-temperature slab heating furnace exclusively for unidirectional electrical steel sheets, and a direct connection process of continuous casting and continuous hot rolling is required. It was not possible to hire. If low-temperature slab heating can be used as in the present invention, a direct connection process can be easily adopted, and hot rolling can be carried out as efficiently as ordinary steel. Furthermore, in a direct connection process that does not require cooling after casting, silicon steel has the following advantages. In other words, because slabs containing Si have poor thermal conductivity, the temperature difference between the surface layer and the center increases during cooling of the slab, generating thermal stress, causing internal cracks in the slab, and reducing yield. If the slab is not cooled as in the process, this problem of internal cracking of the slab will be resolved.

以上のようにして得た熱延板は850〜1200℃の
範囲で短時間の連続焼鈍を行なう。焼鈍温度が
850℃未満では高磁束密度が得られず、1200℃を
超えると二次再結晶が不完全となる。焼鈍時間と
して30分を超えると生産能率が極めて悪くなり、
30sec未満では熱処理の効果がほとんど無くなる。
The hot-rolled sheet obtained as described above is subjected to continuous annealing for a short period of time in the range of 850 to 1200°C. The annealing temperature is
If it is less than 850°C, high magnetic flux density cannot be obtained, and if it exceeds 1200°C, secondary recrystallization will be incomplete. If the annealing time exceeds 30 minutes, production efficiency will be extremely poor.
If the time is less than 30 seconds, the effect of heat treatment is almost lost.

熱延板の連続焼鈍後、冷延により最終板厚とす
る。本発明では高磁束密度一方向性珪素鋼板を得
ることを目的としているので冷延圧下率として80
%以上の強圧下が必要である。次に湿水素雰囲気
中で脱炭焼鈍を行なう。脱炭焼鈍は脱炭及び一次
再結晶を行なわせると同時に成品表面の絶縁皮膜
の形成に必要な酸化層を生成させる役割を持つて
いる。脱炭焼鈍後の鋼板表面には仕上高温焼鈍時
における焼付防止及び成品表面の絶縁皮膜形成の
ために焼鈍分離剤を塗布する。焼鈍分離剤として
はMgOを主成分としその他目的に応じてTiO2
Al2O3、CaO、B化合物、S化合物、N化合物を
添加したものを用いることが出来る。引続いて仕
上高温焼鈍を行なう。この焼鈍は二次再結晶、純
化および成品表面にMgOとSiO2の混合物である
フオルステライトを主成分とする絶縁皮膜を形成
させることを目的としており、通常1100℃以上で
5hr以上水素又は水素を含んだ混合雰気囲気中で
行なう。本発明において採用する前記の仕上高温
焼鈍条件として、二次再結晶の行なわれる温度範
囲を徐加熱することが高い磁束密度を安定して得
るために特に効果的である。この二次再結晶温度
範囲を徐加熱する操作の冶金的考え方は、従来か
ら知られているように{110}<001>方位からの
傾きの小さい二次再結晶粒ほど低い温度で発生す
るという事実から、徐加熱で行なうことによつ
て、低い温度で発生した{110}<001>方位に近
い二次再結晶粒の成品に占める体積割合を増やし
磁束密度を高めようとするものである。S含有量
の少ない本発明の場合、すなわち微細MnSによ
る結晶粒成長に対する抑制機能の小さい場合に
は、低い温度範囲での粒成長が比較的大きいの
で、徐加熱することにより{110}<001>方位に
近い低温度で発生した二次再結晶粒の成品に占め
る体積割合を増やし、磁束密度を高めることが特
に効果的に行なえる。
After continuous annealing of the hot-rolled sheet, the final thickness is obtained by cold rolling. Since the present invention aims to obtain a high magnetic flux density unidirectional silicon steel sheet, the cold rolling reduction ratio is 80
% or more of pressure is required. Next, decarburization annealing is performed in a wet hydrogen atmosphere. Decarburization annealing has the role of decarburizing and primary recrystallization and at the same time generating an oxide layer necessary for forming an insulating film on the surface of the product. An annealing separator is applied to the surface of the steel sheet after decarburization annealing to prevent seizure during final high-temperature annealing and to form an insulating film on the surface of the product. The main component of the annealing separator is MgO, and TiO 2 , depending on the purpose.
It is possible to use a material to which Al 2 O 3 , CaO, a B compound, an S compound, and an N compound are added. Subsequently, final high temperature annealing is performed. The purpose of this annealing is secondary recrystallization, purification, and the formation of an insulating film mainly composed of forsterite, a mixture of MgO and SiO 2 , on the surface of the product, and is usually performed at temperatures of 1100°C or higher.
The test is carried out in hydrogen or a mixed atmosphere containing hydrogen for 5 hours or more. As the finishing high-temperature annealing conditions employed in the present invention, gradual heating within the temperature range in which secondary recrystallization is performed is particularly effective for stably obtaining a high magnetic flux density. The metallurgical idea behind this gradual heating operation in the secondary recrystallization temperature range is that secondary recrystallized grains with a smaller inclination from the {110} <001> orientation will occur at a lower temperature, as is conventionally known. In fact, by performing slow heating, the volume ratio of secondary recrystallized grains close to the {110} <001> orientation generated at low temperatures in the product is increased, and the magnetic flux density is increased. In the case of the present invention where the S content is low, that is, when the suppressing function against crystal grain growth by fine MnS is small, grain growth is relatively large in a low temperature range, so slow heating can reduce {110}<001> It is particularly effective to increase the volume ratio of secondary recrystallized grains generated at a low temperature close to the orientation of the product to increase the magnetic flux density.

第8図はC:0.060%、Si:3.42%、Mn:0.25
%、S:0.002%、P:0.040%、酸可溶性Al:
0.032%、N:0.009%、Cr:0.15%を含む連続鋳
造スラブを1410℃に加熱後、熱延によつて板厚
2.3mmの熱延板とし、1150℃×2minの連続焼鈍後
に冷延により0.30mmとし、湿水素雰囲気中で850
℃×2minの脱炭焼鈍を行ない、焼鈍分離剤とし
てMgOを塗布し、1200℃×20hrの仕上高温焼鈍
を行なつて得られた成品の磁束密度(B10)と仕
上高温焼鈍時の700〜1100℃の温度範囲における
加熱速度の関係を示す図である。この図より加熱
速度が遅いほど磁束密度が高くなり、特に15℃/
hr以下で顕著に高くなることがわかる。加熱速度
が15℃/hr以下の範囲内では、磁束密度は大きく
変らないが、磁束密度のバラツキは加熱速度が小
さいほど少なくなる。しかしながら経済的効率を
考えると7℃/hr程度が下限となる。この700〜
1100℃範囲の徐加熱を行ない二次再結晶が完了し
た後は、鋼中のN、Sを出来るだけ少なくするた
め1200℃前後の高温で純H2中において純化焼鈍
を行なうのが一般的である。
Figure 8 shows C: 0.060%, Si: 3.42%, Mn: 0.25
%, S: 0.002%, P: 0.040%, acid soluble Al:
After heating a continuously cast slab containing 0.032%, N: 0.009%, and Cr: 0.15% to 1410℃, the plate thickness is reduced by hot rolling.
A hot-rolled sheet of 2.3 mm was made, and after continuous annealing at 1150°C for 2 min, it was cold-rolled to 0.30 mm and heated to 850 mm in a wet hydrogen atmosphere.
Magnetic flux density (B 10 ) of the product obtained by performing decarburization annealing at ℃×2 min, applying MgO as an annealing separator, and performing final high temperature annealing at 1200℃×20 hr, and 700 ~ at the time of final high temperature annealing. FIG. 3 is a diagram showing the relationship between heating rates in a temperature range of 1100°C. This figure shows that the slower the heating rate, the higher the magnetic flux density, especially at 15℃/
It can be seen that it becomes significantly higher below hr. When the heating rate is within a range of 15° C./hr or less, the magnetic flux density does not change significantly, but the variation in the magnetic flux density decreases as the heating rate decreases. However, considering economic efficiency, the lower limit is about 7°C/hr. This 700~
After secondary recrystallization is completed by slow heating in the 1100°C range, purification annealing is generally performed in pure H 2 at a high temperature of around 1200°C to reduce N and S in the steel as much as possible. be.

以上、詳述したように、本発明は安価に製造出
来、かつ成品長手方向の成分均一による磁性均一
という工業的安定生産が可能である連続鋳造スラ
ブを出発素材とするに際し、熱延時のスラブ加熱
温度が高い場合には線状二次再結晶不良の発生を
防止、(特に高Si材で一層顕著になるが)して高
磁束密度成品でかつ高級鉄損を可能にした。又熱
延時のスラブ加熱温度が低い場合には高Si材でも
二次再結晶不良を発生させず、かつ低温スラブ加
熱温度特有の成品結晶粒の特徴から高級鉄損を可
能にした。そして、従来の一回圧延法の製造にお
いて鋼中Al制御に極めて困難な制約があつたの
を解決し、工業的安定生産を可能にしたものであ
る。
As described above in detail, the present invention uses continuous casting slabs as a starting material, which can be manufactured at low cost and can be industrially stably produced with uniform magnetic properties due to uniform composition in the longitudinal direction of the finished product, by heating the slab during hot rolling. This prevents the occurrence of linear secondary recrystallization defects at high temperatures (this is especially noticeable in high-Si materials), making it possible to produce products with high magnetic flux density and high iron loss. Furthermore, when the slab heating temperature during hot rolling is low, secondary recrystallization defects do not occur even in high-Si materials, and high iron loss is possible due to the characteristics of the product crystal grains unique to the low temperature slab heating temperature. This also solves the extremely difficult restrictions on controlling Al in steel in the conventional single-rolling process, making stable industrial production possible.

実施例 1 C:0.060%、Si:3.38%、Mn0.20%、P:
0.040%、S:0.005%、酸可溶性Al:0.033%、
N:0.0085%、Cr:0.16%を含有し、残部Feおよ
び不可避的不純物からなる溶鋼を連続鋳造により
スラブとなし、1400℃の温度で加熱後、熱延によ
り2.3mmの熱延板を作つた。熱延板を1120℃×
2min焼鈍後、0.30mmの最終板厚まで冷延し、湿
水素雰囲気中で850℃×2minの脱炭焼鈍を行なつ
た。さらにMgOを塗布後、1200℃×20hrの仕上
高温焼鈍を行なつた。この仕上高温焼鈍の700〜
1100℃の範囲の加熱速度は10℃/hrで行なつた。
さらに無水クロム酸を主成分とする皮膜を鋼板表
面に焼付けた。成品の圧延方向の磁性はB10
1.93Tesla、W17/50=0.99w/Kgであつた。この成
品表面にC方向に点状のレーザ照射を行なつた結
果、B10=1.93Tesla、W17/50=0.88w/Kgと極め
て優れた磁性を得た。
Example 1 C: 0.060%, Si: 3.38%, Mn 0.20%, P:
0.040%, S: 0.005%, acid-soluble Al: 0.033%,
Molten steel containing 0.0085% N, 0.16% Cr, and the balance consisting of Fe and unavoidable impurities was made into a slab by continuous casting, heated at a temperature of 1400°C, and then hot rolled to make a 2.3 mm hot rolled plate. . Hot-rolled plate at 1120℃
After annealing for 2 minutes, it was cold rolled to a final thickness of 0.30 mm, and decarburized annealed at 850°C for 2 minutes in a wet hydrogen atmosphere. After coating with MgO, final high-temperature annealing was performed at 1200°C for 20 hours. This finish high temperature annealing is 700 ~
The heating rate in the range of 1100°C was 10°C/hr.
Furthermore, a film containing chromic anhydride as the main component was baked onto the surface of the steel plate. The magnetic property of the finished product in the rolling direction is B 10 =
1.93Tesla, W 17/50 = 0.99w/Kg. As a result of dotted laser irradiation in the C direction on the surface of this product, extremely excellent magnetism was obtained with B 10 =1.93 Tesla and W 17/50 =0.88 w/Kg.

実施例 2 C:0.053%、Si:3.35%、Mn:0.25%、P:
0.035%、S:0.003%、酸可溶性Al:0.029%、
N:0.0080%、Cr:0.15%を含有し、残部Feおよ
び不可避的不純物からなる連続鋳造スラブを1150
℃の温度に加熱した後、熱延して2.3mmの熱延板
を作つた。熱延板を1080℃×2min焼鈍後、0.30
mmの最終板厚まで冷延し、湿水素雰囲気中で850
℃×2minの脱炭焼鈍を行なつた。さらにMgOを
塗布後、1200℃×20hrの仕上高温焼鈍を行なつ
た。この仕上高温焼鈍の700〜1100℃の範囲の加
熱速度は20℃/hrで行なつた。さらに無水クロム
酸を主成分とする皮膜を鋼板表面に焼付けた。こ
の成品の圧延方向の磁性はB10=1.91Tesla、
W17/50=0.97w/Kgであつた。熱延時のスラブ加
熱温度の低い場合、磁束密度の割に鉄損が優れて
いることが分る。
Example 2 C: 0.053%, Si: 3.35%, Mn: 0.25%, P:
0.035%, S: 0.003%, acid-soluble Al: 0.029%,
Continuously cast slab containing N: 0.0080%, Cr: 0.15%, balance Fe and unavoidable impurities.
After heating to a temperature of °C, it was hot rolled to make a 2.3 mm hot rolled sheet. After annealing hot rolled plate at 1080℃×2min, 0.30
Cold rolled to a final thickness of 850 mm in a wet hydrogen atmosphere.
Decarburization annealing was performed at ℃×2 min. After coating with MgO, final high-temperature annealing was performed at 1200°C for 20 hours. The heating rate of this final high temperature annealing in the range of 700 to 1100°C was 20°C/hr. Furthermore, a film containing chromic anhydride as the main component was baked onto the surface of the steel plate. The magnetic properties of this product in the rolling direction are B 10 = 1.91Tesla,
W 17/50 = 0.97w/Kg. It can be seen that when the slab heating temperature during hot rolling is low, the iron loss is excellent compared to the magnetic flux density.

実施例 3 C:0.053%、Si:3.45%、Mn:0.23%、P:
0.037%、S:0.003%、酸可溶性Al:0.027%、
N:0.0090%、Cr:0.20%を含有し、残部Feおよ
び不可避的不純物からなる溶鋼を250mm厚の鋳型
で連続鋳造により鋳造した。溶鋼の凝固後に冷却
することなく速かに台車式の保熱炉に装入し、平
均スラブ温度が約1130℃になつた時点で熱延し、
2.3mmの熱延板を作つた。この熱延板を1080℃×
2min焼鈍後、0.30mmの最終板厚まで冷延し、湿
水素雰囲気中で850℃×2minの脱炭焼鈍を行なつ
た。さらにMgOを塗布後、1200℃×20hrの仕上
高温焼鈍を行なつた。この仕上高温焼鈍の700−
1100℃の範囲の加熱速度は10℃/hrで行なつた。
さらに無水クロム酸を主成分とする皮膜を鋼板表
面に焼付けた。この成品の圧延方向の磁性はB10
=1.90Tesla、W17/50=1.01w/Kgであつた。二次
再結晶不良の発生は皆無であつた。
Example 3 C: 0.053%, Si: 3.45%, Mn: 0.23%, P:
0.037%, S: 0.003%, acid-soluble Al: 0.027%,
Molten steel containing 0.0090% N, 0.20% Cr, and the remainder Fe and unavoidable impurities was cast by continuous casting in a 250 mm thick mold. After the molten steel solidifies, it is immediately charged into a trolley-type heat retention furnace without cooling, and when the average slab temperature reaches approximately 1130℃, it is hot rolled.
A 2.3mm hot-rolled plate was made. This hot-rolled plate is heated to 1080℃×
After annealing for 2 minutes, it was cold rolled to a final thickness of 0.30 mm, and decarburized annealed at 850°C for 2 minutes in a wet hydrogen atmosphere. After coating with MgO, final high-temperature annealing was performed at 1200°C for 20 hours. This finishing high temperature annealing is 700−
The heating rate in the range of 1100°C was 10°C/hr.
Furthermore, a film containing chromic anhydride as the main component was baked onto the surface of the steel plate. The magnetic property of this product in the rolling direction is B 10
= 1.90 Tesla, W 17/50 = 1.01w/Kg. There was no occurrence of secondary recrystallization defects.

実施例 4 C:0.053%、Si:3.45%、Mn:0.23%、P:
0.037%、S:0.003%、酸可溶性Al:0.027%、
N:0.0090%、Cr:0.20%を含有する溶鋼を250
mm厚の鋳型で連続鋳造により鋳造した。溶鋼の凝
固後に冷却を出来るだけ少なくする配慮として、
連続鋳造機内の保温及び冷えやすいスラブ端面の
短時間ガス加熱を行なつた。速かに熱延機入口に
スラブを移動し、スラブ断面中心が約1200℃、そ
して表層部が約1050℃の時点で熱延を開始し、板
厚2.3mmの熱延板とした。この熱延板を1080℃×
2min焼鈍後、0.30mmの最終板厚まで冷延し、湿
水素雰囲気中で850℃×2minの脱炭焼鈍を行なつ
た。さらにMgOを塗布後、1200℃×20hrの仕上
高温焼鈍を行なつた。この成品の圧延方向の磁性
はB10=1.90Tesla、W17/50=1.03w/Kgであつた。
Example 4 C: 0.053%, Si: 3.45%, Mn: 0.23%, P:
0.037%, S: 0.003%, acid-soluble Al: 0.027%,
250% of molten steel containing N: 0.0090% and Cr: 0.20%
It was cast by continuous casting in a mm thick mold. As a consideration to minimize cooling after solidification of molten steel,
We carried out heat insulation inside the continuous casting machine and short-term gas heating of the end face of the slab, which tends to get cold. The slab was quickly moved to the entrance of the hot rolling mill, and hot rolling was started when the center of the cross section of the slab was approximately 1200°C and the surface layer was approximately 1050°C, resulting in a hot rolled sheet with a thickness of 2.3 mm. This hot-rolled plate is heated to 1080℃×
After annealing for 2 minutes, it was cold rolled to a final thickness of 0.30 mm, and decarburized annealed at 850°C for 2 minutes in a wet hydrogen atmosphere. After coating with MgO, final high-temperature annealing was performed at 1200°C for 20 hours. The magnetic properties of this product in the rolling direction were B 10 = 1.90 Tesla and W 17/50 = 1.03 w/Kg.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC:0.058%、Si:3.35%、Mn:0.23
%、P:0.036%、酸可溶性Al:0.033%、N:
0.0085%、Cr:0.13%を含み、さらにSが0.002〜
0.033%である連続鋳造スラブを1410℃に加熱後、
熱延により2.3mmの熱延板とし、1150℃×2minの
連続焼鈍後に冷延により0.30mmとし、湿水素中で
850℃×2minの脱炭焼鈍を行ない、焼鈍分離剤と
してMgOを塗布し、1200℃×20hrの仕上高温焼
鈍を行なつて得られた成品の線状二次再結晶不良
の発生率を示す図、第2図はC:0.050%、Si:
3.45%、Mn:0.25%、P:0.040%、酸可溶性
Al:0.027%、N:0.0080%、Cr:0.18%を含み、
さらにSが0.002〜0.035%を含有した厚さ40mmの
小試片を1200℃に加熱し、スラブ抽出後、大気放
冷で1000℃とし、1000℃の炉中に30sec保持し、
その後3パスの熱延で2.3mmにし、1120℃×2min
連続焼鈍し、さらに0.30mmに冷延し、湿水素雰囲
気中で850℃×2min脱炭焼鈍し、焼鈍分離剤とし
てMgOを塗布後に1200℃×20hrの仕上高温焼鈍
を行なつた成品の二次再結晶不良発生率を示す
図、第3図はC:0.060%、Si:3.33%、S:
0.004%、酸可溶性Al:0.032%、N:0.0090%、
Cr:0.15%を含む連続鋳造スラブを1350℃に加熱
後、熱延によつて板厚2.3mmの熱延板とし、1150
℃×2minの連続焼鈍後に冷延により0.30mmとし、
湿水素雰囲気中で850℃×2minの脱炭焼鈍を行な
い、焼鈍分離剤としてMgOを塗布し、1200℃×
20hrの仕上高温焼鈍を行なつて得られた成品の磁
束密度(B10)に及ぼすスラブ中のMn、P含有
量を示す図、第4図はC:0.045%、Si:3.35%、
S:0.002%、酸可溶性Al:0.028%、N:0.0075
%、Cr:0.18%を含む厚40mmの小試片を1150℃に
加熱し、スラブ抽出後に3パスの熱延で2.3mm厚
の熱延板とし、1120℃×2min連続焼鈍し、さら
に0.30mmに冷延し、湿水素雰囲気中で脱炭焼鈍
し、焼鈍分離剤としてMgOを塗布後に1200℃×
20hrの仕上高温焼鈍を行なつた成品の磁束密度
(B10)に及ぼすMn、Pの影響を示す図、第5図
はC:0.06%、Si:3.33%、Mn:0.30%、P:
0.035%、酸可溶性Al:0.029%、N:0.0090%を
含む連続鋳造スラブを1350℃に加熱後、熱延によ
つて板厚2.3mmの熱延板とし、1120℃×2min連続
焼鈍し、さらに0.30mmに冷延し、湿水素雰囲気中
で脱炭焼鈍し、焼鈍分離剤としてMgOを塗布し、
1200℃×20hrの仕上焼鈍を行なつて得られた成品
の磁束密度(B10)と鉄損(W17/50)の関係に及
ぼすCrの影響を示す図、第6図はC:0.050%、
Si:3.45%、Mn:0.25%、S:0.002%、P:
0.040%、酸可溶性Al:0.027%、N:0.0080%、
Cr:0.18%を含有した連続鋳造スラブを加熱後、
熱延により2.5mmの熱延板とし、1120℃×2minの
連続焼鈍後に冷延により板厚0.30mmとし、湿水素
雰囲気中で850℃×2minの脱炭焼鈍を行ない、焼
鈍分離剤としてMgOを塗布し、1200℃×20hrの
仕上焼鈍を行なつて得られた成品の磁束密度に及
ぼすスラブ加熱温度の影響を示す図、第7図は第
3図に示した同一条件で、スラブ加熱温度のみを
1150℃に変更して行なつて得られた成品にコロイ
ダルシリカを主成分とする張力コーテイングを行
なつた後の磁性を示す図、第8図はC:0.060%、
Si:3.42%、Mn:0.25%、S:0.002%、P:
0.040%、酸可溶性Al:0.032%、N:0.0090%、
Cr:0.15%を含む連続鋳造スラブを1410℃に加熱
後、熱延によつて板厚2.3mmの熱延板とし、1150
℃×2minの連続焼鈍後に冷延により0.30mmとし、
湿水素雰囲気中で850℃×2minの脱炭焼鈍を行な
い、焼鈍分離剤としてMgOを塗布し、1200℃×
20hrの仕上高温焼鈍を行なつて得られた成品の磁
束密度(B10)と仕上高温焼鈍時の700〜1100℃
の温度範囲における加熱速度の関係を示す図であ
る。
Figure 1 shows C: 0.058%, Si: 3.35%, Mn: 0.23
%, P: 0.036%, acid-soluble Al: 0.033%, N:
Contains 0.0085%, Cr: 0.13%, and S is 0.002~
After heating the continuous casting slab which is 0.033% to 1410℃,
A hot-rolled sheet of 2.3 mm was made by hot rolling, and after continuous annealing at 1150°C for 2 min, it was cold rolled to a thickness of 0.30 mm in wet hydrogen.
Diagram showing the incidence of linear secondary recrystallization defects in products obtained by performing decarburization annealing at 850°C for 2 minutes, applying MgO as an annealing separator, and performing final high-temperature annealing at 1200°C for 20 hours. , Figure 2 shows C: 0.050%, Si:
3.45%, Mn: 0.25%, P: 0.040%, acid soluble
Contains Al: 0.027%, N: 0.0080%, Cr: 0.18%,
Furthermore, a small specimen with a thickness of 40 mm containing 0.002 to 0.035% S was heated to 1200 °C, and after slab extraction, it was cooled to 1000 °C in the air, and kept in a furnace at 1000 °C for 30 seconds.
Then hot rolled in 3 passes to 2.3mm, 1120℃×2min
Secondary product that is continuously annealed, further cold rolled to 0.30 mm, decarburized in a wet hydrogen atmosphere at 850℃ for 2 minutes, coated with MgO as an annealing separator, and then subjected to final high-temperature annealing at 1200℃ for 20 hours. A diagram showing the recrystallization defect incidence rate, Figure 3 shows C: 0.060%, Si: 3.33%, S:
0.004%, acid-soluble Al: 0.032%, N: 0.0090%,
After heating the continuous casting slab containing 0.15% Cr to 1350℃, it was hot-rolled into a hot-rolled plate with a thickness of 2.3mm.
After continuous annealing at ℃×2min, it is cold rolled to 0.30mm.
Decarburization annealing was performed at 850°C for 2 min in a wet hydrogen atmosphere, MgO was applied as an annealing separator, and annealing was performed at 1200°C for 2 min.
A diagram showing the effect of Mn and P contents in the slab on the magnetic flux density (B 10 ) of the finished product obtained by finishing high temperature annealing for 20 hours. Figure 4 shows C: 0.045%, Si: 3.35%,
S: 0.002%, acid-soluble Al: 0.028%, N: 0.0075
%, Cr: A small specimen with a thickness of 40 mm containing 0.18% was heated to 1150°C, and after slab extraction, it was hot-rolled in 3 passes to form a hot-rolled plate with a thickness of 2.3 mm, and then continuously annealed at 1120°C for 2 min, and then further heated to 0.30 mm. cold rolled, decarburized annealed in a wet hydrogen atmosphere, coated with MgO as an annealing separator, and then heated at 1200℃
A diagram showing the influence of Mn and P on the magnetic flux density (B 10 ) of a product that has been subjected to high temperature finishing annealing for 20 hours. Figure 5 shows C: 0.06%, Si: 3.33%, Mn: 0.30%, P:
A continuously cast slab containing 0.035%, acid-soluble Al: 0.029%, and N: 0.0090% was heated to 1350°C, then hot-rolled into a hot-rolled plate with a thickness of 2.3mm, continuously annealed at 1120°C for 2 minutes, and then Cold rolled to 0.30mm, decarburized annealed in a wet hydrogen atmosphere, coated with MgO as an annealing separator,
A diagram showing the influence of Cr on the relationship between magnetic flux density (B 10 ) and iron loss (W 17/50 ) of a product obtained by final annealing at 1200°C x 20 hours. Figure 6 shows C: 0.050%. ,
Si: 3.45%, Mn: 0.25%, S: 0.002%, P:
0.040%, acid-soluble Al: 0.027%, N: 0.0080%,
After heating a continuous casting slab containing Cr: 0.18%,
A hot-rolled sheet of 2.5 mm was made by hot rolling, and after continuous annealing at 1120°C for 2 min, the plate thickness was reduced to 0.30 mm by cold rolling, and decarburization annealed at 850°C for 2 min in a wet hydrogen atmosphere, and MgO was added as an annealing separator. Figure 7 shows the effect of slab heating temperature on the magnetic flux density of a product obtained by coating and final annealing at 1200℃ x 20 hours. of
A diagram showing the magnetism after applying a tension coating mainly composed of colloidal silica to a product obtained by changing the temperature to 1150°C. Figure 8 shows C: 0.060%.
Si: 3.42%, Mn: 0.25%, S: 0.002%, P:
0.040%, acid-soluble Al: 0.032%, N: 0.0090%,
A continuous cast slab containing 0.15% Cr was heated to 1410℃ and then hot-rolled into a hot-rolled plate with a thickness of 2.3mm.
After continuous annealing at ℃×2min, it was cold rolled to 0.30mm.
Decarburization annealing was performed at 850°C for 2 min in a wet hydrogen atmosphere, MgO was applied as an annealing separator, and annealing was performed at 1200°C for 2 min.
Magnetic flux density (B 10 ) of the product obtained by finishing high-temperature annealing for 20 hours and 700 to 1100℃ during finishing high-temperature annealing
It is a figure showing the relationship of heating rate in the temperature range of.

Claims (1)

【特許請求の範囲】 1 C:0.025〜0.075%、Si:3.0〜4.5%、酸可溶
性Al:0.010〜0.060%、N:0.0030〜0.0130%、
S:0.007%以下、Mn:0.08〜0.45%、P:0.015
〜0.045%、Cr:0.07〜0.25%、残部Feおよび不
可避不純物より成る一方向性珪素鋼板用連続鋳造
スラブを加熱し熱間圧延により熱延板となし、次
いで該熱延板を850〜1200℃の範囲で短時間連続
焼鈍後、圧下率80%以上の強圧下冷間圧延により
最終板厚となし、得られた冷延板を湿水素雰囲気
中で連続脱炭焼鈍し、次いで焼鈍分離剤を塗布し
て仕上高温焼鈍を行なうことを特徴とする鉄損の
優れた一方向性珪素鋼板の製造法。 2 仕上高温焼鈍に際しての加熱時に700〜1100
℃の範囲を15℃/hr以下の加熱速度で加熱昇温す
ることを特徴とする特許請求の範囲第1項記載の
方法。 3 一方向性珪素鋼板用連続鋳造スラブを1280℃
を越えない温度に加熱した後、熱間圧延により熱
延板とする特許請求の範囲第1項記載の方法。 4 一方向性珪素鋼板用連続鋳造スラブを1280℃
以上の温度に加熱した後、熱間圧延により熱延板
とする特許請求の範囲第1項記載の方法。 5 連続鋳造スラブを冷却することなく、スラブ
顕熱を利用して連続鋳造後に直接熱間圧延するこ
とを特徴とする特許請求の範囲第1項記載の方
法。
[Claims] 1 C: 0.025-0.075%, Si: 3.0-4.5%, acid-soluble Al: 0.010-0.060%, N: 0.0030-0.0130%,
S: 0.007% or less, Mn: 0.08-0.45%, P: 0.015
A continuously cast slab for unidirectional silicon steel sheet consisting of ~0.045%, Cr: 0.07~0.25%, balance Fe and unavoidable impurities is heated and hot rolled into a hot rolled sheet, and then the hot rolled sheet is heated at 850~1200°C. After continuous annealing for a short time in the range of A method for producing a unidirectional silicon steel sheet with excellent iron loss, which is characterized by coating and finishing high-temperature annealing. 2 700 to 1100 during heating during final high temperature annealing
2. The method according to claim 1, wherein the temperature is increased within a temperature range of 15° C./hr or less at a heating rate of 15° C./hr or less. 3 Continuous casting slab for unidirectional silicon steel plate at 1280℃
The method according to claim 1, wherein the hot-rolled sheet is obtained by hot rolling after heating to a temperature not exceeding . 4 Continuously cast slab for unidirectional silicon steel plate at 1280℃
The method according to claim 1, wherein after heating to the above temperature, a hot rolled sheet is obtained by hot rolling. 5. The method according to claim 1, wherein hot rolling is carried out directly after continuous casting using slab sensible heat without cooling the continuous casting slab.
JP58062688A 1982-09-24 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied Granted JPS59190325A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58062688A JPS59190325A (en) 1983-04-09 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied
GB08325076A GB2130241B (en) 1982-09-24 1983-09-20 Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
SE8305095A SE460482B (en) 1982-09-24 1983-09-21 CORN-ORIENTED ELECTRICAL TUB
CA000437373A CA1210670A (en) 1982-09-24 1983-09-22 Grain-oriented electrical steel sheet having a high magnetic flux density
IT22974/83A IT1167387B (en) 1982-09-24 1983-09-23 PROCEDURE TO PRODUCE AN ORIENTED GRAIN STEEL ELECTRIC TAPE EQUIPPED WITH A HIGH DENSITY OF THE MAGNETIC FLOW
DE3334519A DE3334519C2 (en) 1982-09-24 1983-09-23 Process for producing grain-oriented electrical steel with high magnetic induction
FR8315933A FR2533586B1 (en) 1982-09-24 1983-09-23 METHOD FOR MANUFACTURING ORIENTED GRAIN ELECTRIC STEEL SHEET HAVING HIGH MAGNETIC FLOW DENSITY
KR1019830004473A KR890000882B1 (en) 1982-09-24 1983-09-24 Manufacturing method of oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062688A JPS59190325A (en) 1983-04-09 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied

Publications (2)

Publication Number Publication Date
JPS59190325A JPS59190325A (en) 1984-10-29
JPS631371B2 true JPS631371B2 (en) 1988-01-12

Family

ID=13207469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062688A Granted JPS59190325A (en) 1982-09-24 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied

Country Status (1)

Country Link
JP (1) JPS59190325A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190017A (en) * 1985-02-20 1986-08-23 Nippon Steel Corp Manufacturing method of unidirectional silicon steel plate with low iron loss
JPS6270521A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS6270525A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Method for manufacturing unidirectional electrical steel sheet with good forsterite film
JPS62156226A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Method for manufacturing grain-oriented electrical steel sheet with uniform glass coating and excellent magnetic properties
JPH0717960B2 (en) * 1989-03-31 1995-03-01 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
CN1153227C (en) * 1996-10-21 2004-06-09 杰富意钢铁株式会社 Grain-oriented electrical steel sheet and production method thereof
KR100711470B1 (en) 2005-12-24 2007-04-24 주식회사 포스코 Manufacturing method of high silicon oriented electrical steel with excellent high frequency iron loss characteristics
KR100797997B1 (en) 2006-12-27 2008-01-28 주식회사 포스코 Manufacturing method of oriented electrical steel with excellent magnetic and productivity
WO2008078915A1 (en) * 2006-12-27 2008-07-03 Posco Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
CN104726667B (en) * 2013-12-23 2017-04-26 鞍钢股份有限公司 Production method of medium and thin slab continuous casting and rolling low-temperature oriented silicon steel
WO2022210504A1 (en) * 2021-03-31 2022-10-06 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976719A (en) * 1972-11-28 1974-07-24
JPS526329A (en) * 1975-07-04 1977-01-18 Nippon Steel Corp Production process of grain oriented electrical steel sheet
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS5440227A (en) * 1977-09-07 1979-03-29 Nippon Steel Corp Manufacture of oriented silicon steel sheet with very high magnetic flux density
JPS5618045A (en) * 1979-07-24 1981-02-20 Ntn Toyo Bearing Co Ltd Fuel injection device

Also Published As

Publication number Publication date
JPS59190325A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP4272557B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPS631371B2 (en)
JPS6160895B2 (en)
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
CN118638996A (en) Preparation method of non-oriented silicon steel with improved magnetic properties and non-oriented silicon steel
JP3081118B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2001049351A (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH06256847A (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH02259016A (en) Manufacturing method of unidirectional electrical steel sheet without surface swelling defects
JPH10273727A (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH07305116A (en) High magnetic flux density grain-oriented electrical steel sheet manufacturing method
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JP4163773B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH09118920A (en) Stable manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPH0257125B2 (en)
KR19980014707A (en) Method for manufacturing low temperature reheating directional electric steel sheet excellent in magnetic and decarburization characteristics