JPS59190325A - Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied - Google Patents

Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied

Info

Publication number
JPS59190325A
JPS59190325A JP58062688A JP6268883A JPS59190325A JP S59190325 A JPS59190325 A JP S59190325A JP 58062688 A JP58062688 A JP 58062688A JP 6268883 A JP6268883 A JP 6268883A JP S59190325 A JPS59190325 A JP S59190325A
Authority
JP
Japan
Prior art keywords
hot
rolled
annealing
slab
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58062688A
Other languages
Japanese (ja)
Other versions
JPS631371B2 (en
Inventor
Yozo Suga
菅 洋三
Toyohiko Konno
今野 豊彦
Keiji Honma
本間 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58062688A priority Critical patent/JPS59190325A/en
Priority to GB08325076A priority patent/GB2130241B/en
Priority to SE8305095A priority patent/SE460482B/en
Priority to CA000437373A priority patent/CA1210670A/en
Priority to FR8315933A priority patent/FR2533586B1/en
Priority to IT22974/83A priority patent/IT1167387B/en
Priority to DE19833334519 priority patent/DE3334519A1/en
Priority to KR1019830004473A priority patent/KR890000882B1/en
Publication of JPS59190325A publication Critical patent/JPS59190325A/en
Publication of JPS631371B2 publication Critical patent/JPS631371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Abstract

PURPOSE:To produce a grain-oriented silicon steel plate having an excellent magnetic characteristic by subjecting a continuous casting slag for a grain-oriented silicon steel plate contg. a small amt. of S and an adequate amt. of Mn, P and Cr to hot rolling, continuous annealing for a short time, cold rolling and continuous decarburization annealing then to high temp. finish annealing under specific conditions. CONSTITUTION:A continuous casting slag for a grain-oriented silicon steel plate contg. 0.025-0.075% C, 3.0-4.5% Si and 0.010-0.060 SolAl, contg. S as little as <0.007% and contg. 0.08-0.45% Mn, 0.015-0.045% P and 0.07-0.25% Cr is heated to <=1,280 deg.C without cooling or to >=1,280 deg.C in the case of requiring a high magnetic flux density and is hot rolled to a plate material. The plate material is continuously annealed for a short time at 850-1,200 deg.C and is cold rolled under strong rolling down of >=80% draft to a final plate thickness. The plate material is subjected to continuous decarburization annealing in a wet hydrogen atmosphere and finally an annealing releasing agent is coated thereon and is heated at a heating rate of <=15 deg.C/hr between 700-1,100 deg.C, by which the high temp. finish annealing is accomplished.

Description

【発明の詳細な説明】 本発明は鋼板kFJ成する体心立方格子の結晶粒がミラ
ー指数で(110)〈001〉として衷わされる方位を
有する磁性の優れた一方向性珪素鉛板を連続鋳造と一回
の熱延工程とから作った熱延板(jN帯)によって製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a unidirectional silicon-lead plate with excellent magnetic properties, in which crystal grains in a body-centered cubic lattice constituting a steel plate kFJ are oriented as (110)〈001〉 in terms of Miller index. The present invention relates to a manufacturing method using a hot rolled sheet (jN band) made by continuous casting and one hot rolling process.

一方向性珪素鋼板は軟磁性材料として変圧器および発電
機の鉄心として使用され、磁気特性として磁化特性と鉄
損特性が良好でなければならない。
Unidirectional silicon steel sheets are used as soft magnetic materials for the cores of transformers and generators, and must have good magnetic properties such as magnetization properties and iron loss properties.

磁化特性の良否は、かけられた一定の磁場で鉄心内に誘
起される磁束密If(B8で代表)の大小によシ決まる
。磁束密度の大きい材料は電気機器を小さく出来るので
望ましい。鉄損(W1715oで代表)゛は鉄心に所定
の交流磁場を与えた場合に熱エネルギーとして消費され
る電力損失である。鉄損の良否に対しては磁束密度、板
厚、不純物量、比抵抗、結晶粒大きさの影響が知られて
いる。最近、省エネルギー動向全反映してこの鉄損の少
々い一方向性珪素鋼板の需要が増加している。
The quality of the magnetization characteristics is determined by the magnitude of the magnetic flux density If (represented by B8) induced within the iron core by a constant applied magnetic field. Materials with high magnetic flux density are desirable because electrical equipment can be made smaller. Iron loss (represented by W1715o) is the power loss consumed as thermal energy when a predetermined alternating current magnetic field is applied to the iron core. It is known that the quality of iron loss is influenced by magnetic flux density, plate thickness, amount of impurities, resistivity, and crystal grain size. Recently, the demand for unidirectional silicon steel sheets with low iron loss has been increasing, reflecting the energy saving trend.

ところで、一方向性珪素鋼板は熱延と冷延によシ最終板
厚になった炉板を仕上高温焼鈍することによシ、(11
0) <001)方位を有する一次再結晶粒が選択成長
する、いわゆる二次再結晶によって得られる。二次再結
晶を生じさせるには、仕上高温焼鈍前の銅板中に微細な
MnS 、 ALN等の析出物を存在さぜることによシ
(インヒビター効果)、仕上高温焼鈍中の(110)(
001)方位以外の一次再結晶粒成長を抑える必要があ
る。このような二次再結晶を制御することによシ、正確
な(110)(001)方位粒の割合′ff:高めるこ
とによって磁束密度を高めることが出来る。磁束密度の
高い製品は電気機器の小型什と同時に鉄損の改善も可能
にするので、高磁束密匹−・方向性珪素鋼板の製造条件
の確立が1孜である。代表技術として田口悟等による特
公昭40−15644号公報および今中拓−等による特
公昭5]−13469号公報記載の方法がある。近年、
連続銃進法の工業化が稍極的に進められておシ、一方向
性珪素鋼板においても、省力化、歩留向上による製造コ
ストの低減、そして化学成分の均一化による成品長手方
向の磁性均一化を期待I7て連続鋳造工程の適用が進め
られている。
By the way, unidirectional silicon steel sheets are produced by finishing high-temperature annealing of furnace plates that have reached their final thickness through hot rolling and cold rolling.
It is obtained by so-called secondary recrystallization, in which primary recrystallized grains having a 0) <001) orientation selectively grow. In order to cause secondary recrystallization, fine precipitates such as MnS and ALN must be present in the copper plate before final high temperature annealing (inhibitor effect), and (110) during final high temperature annealing.
001) It is necessary to suppress primary recrystallized grain growth other than orientation. By controlling such secondary recrystallization, the magnetic flux density can be increased by increasing the proportion of grains with accurate (110) (001) orientation. Since products with high magnetic flux density can reduce the size of electrical equipment and improve core loss, it is important to establish manufacturing conditions for grain-oriented silicon steel sheets with high magnetic flux density. Representative techniques include methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi et al. and Japanese Patent Publication No. 5]-13469 by Taku Imanaka et al. recent years,
The industrialization of the continuous gun method is progressing at a rapid pace, and even for unidirectional silicon steel sheets, it is possible to reduce manufacturing costs by saving labor and improving yields, and to achieve uniform magnetic properties in the longitudinal direction of the finished product by making the chemical composition uniform. The continuous casting process is being applied with the expectation that it will become more effective.

しかしながら連続鋳造スラブを1280℃以上に加熱後
、熱間圧延によシ製造した銅板を出発素材として得た成
品には、しばしば線状二次再結晶不完全部が発生し、磁
性の劣る場合があった。これらの対策として、M、F、
Li ttmanは特開昭48−53919号公報によ
多連続鋳造スラブから7回の熱延工程を経て熱延板を作
る技術を提案している。さらに坂倉昭等は特公昭50−
370’09号公報において、高磁束密度一方向性珪素
炉板の製造に際して連続鋳造したスラブから7回の熱延
工程を経て熱延板を作る技術を提案している。しかし力
から、これら先行技術は、いずれも7回の熱延工程を経
て熱延板を作る技術であシ、連続鋳造による利点を充分
に活かした技術とは言え彦い。その後、連続鋳造スラブ
を用いた製造法として、塩崎守雄等の特開昭53−19
913号公報、松本丈夫等の特開昭54−120214
号公報に示された技術が提案された。
However, products obtained using a copper plate manufactured by hot rolling after heating a continuously cast slab to 1280°C or higher as a starting material often have linear secondary recrystallization imperfections and may have poor magnetic properties. there were. As these countermeasures, M, F,
Littman, in Japanese Patent Application Laid-Open No. 48-53919, proposes a technique for producing a hot-rolled sheet from a multi-continuously cast slab through seven hot rolling steps. Furthermore, Akira Sakakura and others
No. 370'09 proposes a technique for producing a hot-rolled plate through seven hot-rolling steps from a continuously cast slab during the production of a high magnetic flux density unidirectional silicon furnace plate. However, due to technical limitations, all of these prior art techniques produce hot-rolled sheets through seven hot-rolling processes, and cannot be said to be technologies that fully utilize the advantages of continuous casting. Later, as a manufacturing method using continuous casting slabs, Morio Shiozaki et al.
Publication No. 913, Japanese Patent Publication No. 54-120214 by Tsuyoshi Matsumoto et al.
The technology shown in the publication was proposed.

しかしながら、これらの技術はいずれも設備の対応措置
を新たに講する必要がある。又、これらの対策を打力っ
ても線状二次再結晶不良の発生を完全に解決するには致
っていない。すなわち、最近では名工えルギーを目的と
した低鉄損一方向性珪素鋼板の要求が甚まっているが、
これに応えるためには磁束密度を高めること、Si含有
量を高めることが重要である。特に特公昭40−156
44号公報による技術は一回圧延法であるため製造コス
トが安く、高磁束密度の一方向性珪素鋼板が得られるの
で、高St化が可能になれば、鉄損向上が大である。し
かるにSi含有量を高めると二次再結晶不良の発生が急
激に増加し、特にこのような高81の場合において、連
続鋳造スラブを用いた際に発生する線状二次再結晶不良
は一層増加するため、St含有當が30%を超えると工
業的な安定生産が極めて困難になっていた。これは、坂
倉昭等による特開昭48−51852号公報に述べられ
ているようにSi含有量を増やすと二次再結晶の発生に
適切なAtNの確保が難かしくなシ、特に連続鋳造スラ
ブを用いた場合にはこの不適切fi AIHによる二次
再結晶の不良がよシ顕著になるためと考えられる。
However, all of these technologies require new measures to be taken for equipment. Furthermore, even with these countermeasures, the occurrence of linear secondary recrystallization defects has not been completely solved. In other words, recently there has been an increasing demand for low core loss unidirectional silicon steel sheets for the purpose of high-quality craftsmanship.
In order to meet this demand, it is important to increase the magnetic flux density and increase the Si content. In particular, special public relations
Since the technology disclosed in Publication No. 44 is a one-time rolling method, the manufacturing cost is low and a unidirectional silicon steel sheet with a high magnetic flux density can be obtained. Therefore, if it becomes possible to increase the St, the iron loss can be greatly improved. However, when the Si content is increased, the occurrence of secondary recrystallization defects rapidly increases, and especially in the case of such a height of 81, the linear secondary recrystallization defects that occur when using a continuous casting slab further increase. Therefore, if the St content exceeds 30%, stable industrial production becomes extremely difficult. This is because, as stated in Japanese Unexamined Patent Publication No. 48-51852 by Akira Sakakura et al., increasing the Si content makes it difficult to secure AtN suitable for secondary recrystallization, especially in continuous casting slabs. It is thought that this is because the failure of secondary recrystallization due to this inappropriate fi AIH becomes more noticeable when using .

このように、−回圧延法による高磁束密度一方向性珪素
鋼板の製造において最大の問題はS1含有量が上がると
二次再結晶が不安定になることでおる。
As described above, the biggest problem in producing high magnetic flux density unidirectional silicon steel sheets by the -rolling method is that secondary recrystallization becomes unstable as the S1 content increases.

この方法における冶金的基本思想が、焼鈍中のα→T変
1e利用して適切なAIN状態を作ることにあるので、
Siを上げると轟然ながらα→γ変態挙動が変るため適
切なAIN状態に制御することが困難になると考えられ
、高Stになるほど二次再結晶不良が増加することと対
応する。
The basic metallurgical idea of this method is to create an appropriate AIN state by utilizing the α→T transformation 1e during annealing.
It is thought that increasing the Si dramatically changes the α→γ transformation behavior, making it difficult to control it to an appropriate AIN state, and this corresponds to the fact that the higher the St, the more secondary recrystallization defects occur.

本発明者等は連続鋳造スラブを用いた場合に発生する二
次再結晶不良部を完全に防止し、特にSt含有量が上が
ると増加する二次再結晶不良全軽減した1回圧延法によ
る高磁束密度一方向性珪素鍔板を安定して製造出来る方
法を開発した。そして、さらに画期的々ことに、この方
法によれば従来から一方向性珪素鉛板の製造において必
須であるとされていた熱間圧延に先立って行なわれるス
ラブ加熱温度として1280℃を超える高温加熱を必ず
しも必要としないこと、むしろ低温度でのスラブ加熱温
度の域、合に、一層良好な鉄損の得られることを見い出
した。特公昭40−1564.4号公報に基づいた高磁
束密度一方向性珪紫儒板の製造法においては、二次再結
晶の発生に必要な析出分散相であるMnS 、 AAN
 f適切な分散状態にする必要から、熱延時のスラブ加
熱温度を筒くすることが行なわれていた。特に特公昭4
0−15’644号公報記載の方法の改良に係る坂倉昭
等による特開昭48−51’852号公報記載の方法の
ように、si含有量が増えると熱延中のA7N析出が高
温度域から始壕るためスラブを高温度に加熱する皇が必
要である。
The inventors of the present invention have completely prevented the secondary recrystallization defects that occur when using continuous casting slabs, and in particular, have achieved high yielding by a single rolling method that completely reduces the secondary recrystallization defects that increase as the St content increases. We have developed a method for stably manufacturing silicon flanges with unidirectional magnetic flux density. What is even more revolutionary is that, according to this method, the slab heating temperature exceeds 1280°C prior to hot rolling, which has traditionally been considered essential in the production of unidirectional silicon-lead sheets. It has been discovered that heating is not necessarily necessary, and that even better core loss can be obtained by heating the slab at a lower temperature. In the method for producing a high magnetic flux density unidirectional silica plate based on Japanese Patent Publication No. 40-1564.4, MnS and AAN, which are precipitated dispersed phases necessary for the occurrence of secondary recrystallization, are used.
f Because of the need to achieve an appropriate dispersion state, the heating temperature of the slab during hot rolling has been varied. Especially in the 4th year of special public service
As in the method described in JP-A No. 48-51'852 by Akira Sakakura et al., which is an improvement of the method described in No. 0-15'644, when the Si content increases, A7N precipitation during hot rolling occurs at a high temperature. In order to start trenching from the ground, it is necessary to heat the slab to a high temperature.

例えば2.8チSlでは1250℃以上、3.05チS
tでは1350℃である。このように鉄損向上のため8
1量を増すとスラブ加熱温度を高める事が必要となシ、
スラブ加熱時の使用エネルギーの増大、加熱時のノロの
発生による歩留シ低下および補修費の増大等による製造
コスト高の問題があった。
For example, for 2.8 inch SL, 1250℃ or more, 3.05 inch S
At t, the temperature is 1350°C. In this way, 8
If the amount is increased by 1, it will be necessary to increase the slab heating temperature.
There have been problems with high manufacturing costs due to increased energy used when heating the slab, decreased yield due to the generation of slag during heating, and increased repair costs.

本発明によれば、Siが3.0チ以上と高い場合でも、
スラブ加熱温度が1280℃を超えない低い温度で二次
再結晶が十分に安定して行なわれる。
According to the present invention, even when Si is as high as 3.0 or more,
Secondary recrystallization is carried out in a sufficiently stable manner at a low slab heating temperature that does not exceed 1280°C.

むしろ得られる鉄損は高温度スラブ加熱材に比べ良好で
芝・シ、その値は現行の最高等級である日本工業規格(
、JIS )のG6 H(0,30−叫板厚で    
 1W17150が1.05 w/kg以下)以上テア
ル。
In fact, the obtained iron loss is better than that of high-temperature slab heating materials, and its value is the current highest grade Japanese Industrial Standard (
, JIS) G6 H (0,30-thickness
1W17150 is 1.05 w/kg or less) or more.

以上に述べてきたように本発明によれば、高St含有連
続鋳造スラブを用いて最高等級の高磁束密度一方向性珪
素鋼板を熱延時のスラブ加熱温度の高低に拘らず安定し
て製造出来る。即ち、本発明はC:0.025〜0.0
75%、Si:3.0〜4.5%、酸可溶性At:0.
010〜0.06’O係、N : 0.0030〜0.
0130%、S:0.007%以下、Mn :0.08
〜0.45%、P : 0.015〜0.045%、C
r:007〜0.25%残部Feおよび不可避不純物よ
シ成る一方向性珪素鍔板用連続鋳造スラブを予備熱間圧
延することなく加熱した後、熱間圧延によシ熱延板とな
し、次いで該熱延板を850〜1200℃の範囲で短時
間連続焼鈍後、圧下率80%以上の強圧下冷間圧延によ
シ最終板厚となし得られた冷延板を湿水素雰囲気中で連
続脱炭焼鈍し、次いで焼鈍分離剤を塗布して仕上高温焼
鈍を行なうことを特徴とする鉄損の優れた一方向性珪素
鉛板の製造法を要旨とするものである。
As described above, according to the present invention, the highest grade high magnetic flux density unidirectional silicon steel sheet can be stably manufactured using a high St-containing continuously cast slab regardless of the high or low slab heating temperature during hot rolling. . That is, in the present invention, C: 0.025 to 0.0
75%, Si: 3.0-4.5%, acid-soluble At: 0.
010-0.06'O section, N: 0.0030-0.
0130%, S: 0.007% or less, Mn: 0.08
~0.45%, P: 0.015~0.045%, C
r: 007 to 0.25% A continuously cast slab for a unidirectional silicon flange plate consisting of the balance Fe and unavoidable impurities is heated without preliminary hot rolling, and then hot rolled to form a hot rolled plate; The hot-rolled sheet was then continuously annealed for a short period of time in the range of 850 to 1200°C, and then subjected to strong reduction cold rolling at a reduction rate of 80% or more to obtain the final thickness. The gist of this invention is a method for producing a unidirectional silicon-lead plate with excellent iron loss, which is characterized by continuous decarburization annealing, followed by coating with an annealing separator and final high-temperature annealing.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

まず、本発明の鏑成分の限定理由について述べる。本発
明で用いる溶鉛は、その溶製方法として転炉、電気炉、
平炉等どのような方法でも良いが、成分含有量は次の範
囲に入る必要がある。
First, the reasons for limiting the number of ingredients used in the present invention will be described. The molten lead used in the present invention can be produced using a converter furnace, an electric furnace,
Any method such as open hearth may be used, but the component content must fall within the following range.

Cは0.025%未満になると二次、再結晶が不安定に
なシ、かつ二次再結晶した場合でも磁束密度が悪いので
(Bloで1.80 T以下しか得られない)0.02
5%以上で々ければ女らない。一方、Cが多くなり過ぎ
ると脱炭焼鈍時間が長くなシ、経済的でないので0.0
75%以下とした。
If C is less than 0.025%, secondary recrystallization becomes unstable, and even if secondary recrystallization occurs, the magnetic flux density is poor (only 1.80 T or less can be obtained with Blo), so 0.02
If it's more than 5%, it's not a woman. On the other hand, if C is too large, the decarburization annealing time will be long and it is not economical, so 0.0
It was set to 75% or less.

Stは4.5%を超えると冷延時の割れが著るしくなる
ので4.5’fi以下とした。又、3.0%未満でゆ粂
品厚0.30mmでW1715oが1.05 WA9以
下の最高等級の鉄損が得られないので3.0%以上とし
た。
If St exceeds 4.5%, cracking during cold rolling becomes significant, so it was set to 4.5'fi or less. In addition, if it is less than 3.0%, the highest grade iron loss of W1715o of 1.05 WA9 or less cannot be obtained when the thickness of the oyster is 0.30 mm, so it is set to be 3.0% or more.

望ましくは32%以上である。Desirably it is 32% or more.

本発明では二次再結晶に必要な析出物としてAtNを用
いる。したがって必要最低量のAINを確保するために
酸可溶性Atとして0.010%以上、Nとして0.0
030%以上が必要である。酸可溶性AAが0.060
%を超えると熱延板のAINが不適切となシ、二次再結
晶が不安定になるので0.060係以下とした。Nにつ
いてはOlo 130qbを超えるとテリスターと呼ば
れる“鋼板表面のふくれ″が発生するので(1,013
0°チ以下とした。
In the present invention, AtN is used as a precipitate necessary for secondary recrystallization. Therefore, in order to secure the minimum necessary amount of AIN, acid-soluble At is 0.010% or more and N is 0.0%.
0.030% or more is required. Acid soluble AA is 0.060
If it exceeds 0.060%, the AIN of the hot rolled sheet will be inappropriate and the secondary recrystallization will become unstable. Regarding N, if Olo exceeds 130 qb, a "bulge on the surface of the steel plate" called Telister will occur (1,013 qb).
It was set to 0° or less.

本発明の特徴の一つはS含有量を0.007係以下にす
ることにある。インヒビターとしてAtNを用いて一回
圧延法で高磁束密度一方向性珪素鋼板を製造するに際し
、特公昭40−156.44号公報に開示されているよ
うにSは磁性を得るだめの必須元素である。又特公昭4
7−25250号公報に示されるように、Sは二次再結
晶を生じさせるに有効な析出物であるMnSを形成させ
るのに必要である。これら公知の技術においてSは二次
再結晶に有効であるとして規定されている。
One of the features of the present invention is to reduce the S content to 0.007 or less. When manufacturing a high magnetic flux density unidirectional silicon steel sheet by a single rolling method using AtN as an inhibitor, S is an essential element to obtain magnetism, as disclosed in Japanese Patent Publication No. 156.44/1983. be. Mata Tokko Sho 4
As shown in Japanese Patent No. 7-25250, S is necessary to form MnS, which is a precipitate effective in causing secondary recrystallization. In these known techniques, S is defined as being effective for secondary recrystallization.

しかし、Sの含有が二次再結晶に有害であるということ
は知られていなかった。本発明者等は、AtNをインヒ
ビターとして用いる一回圧延法で高磁束密度一方向性珪
素銅板を製造するに際し、S含有量を0.007係以下
に少なくすることによシ、連続鋳造スラブを素材とした
場合に発生する線状二次再結晶不良および高SL含有ス
ラブを素相とした場合に発生する二次再結晶不良(これ
は熱延時のスラブ加熱温度が低くなると特に著るしく発
生するが)が無くなることを見い出した。
However, it was not known that the inclusion of S was harmful to secondary recrystallization. The present inventors have discovered that when producing a high magnetic flux density unidirectional silicon copper plate by a single rolling method using AtN as an inhibitor, continuous casting slabs can be produced by reducing the S content to 0.007 or less. Linear secondary recrystallization defects that occur when used as a raw material and secondary recrystallization defects that occur when a high SL content slab is used as a prime phase (this occurs particularly when the slab heating temperature during hot rolling is low) However, we found that

第1図はC:0.058%、81 :3.35%、Mn
:0.23係、P:0.036チ、酸可溶性At:0.
03]%、N:O,(1085%、Cr:0.13%’
r含み、さらにSが0.002〜0.033係である連
a&#J造スラブ11410℃に加熱後、熱延によシ2
、3 mynの熱延板とし、1150℃X2m1nの連
続焼鈍後に冷延により0.30 mmとし、湿水素中で
850℃X 2 m1nO脱炭焼鈍を行表い、焼鈍分離
剤としてMg0i?布12.1200℃X20hrの仕
上高温焼鈍を行々って得られた成品の憩状二次再結r・
不良の発生率を示す。S含有量が少なくなるほど紛状二
次再結晶不良の発生が少なく、0.007係以下では全
く発生しなくなることが分る。
Figure 1 shows C: 0.058%, 81: 3.35%, Mn
: 0.23, P: 0.036, acid-soluble At: 0.
03]%, N:O, (1085%, Cr:0.13%'
After heating to 11410°C, a continuous a &# J slab containing r and S of 0.002 to 0.033 is hot-rolled.
, 3 myn, was continuously annealed at 1150°C x 2ml, then cold rolled to a thickness of 0.30mm, decarburized at 850°C x 2ml in wet hydrogen, and the annealing separator was Mg0i? Cloth 12. Secondary rectification of diverticulate product obtained by finishing high-temperature annealing at 1200°C for 20 hours.
Indicates the incidence of defects. It can be seen that as the S content decreases, the occurrence of powdery secondary recrystallization defects decreases, and when the S content is less than 0.007, no defects occur at all.

121gはC: 0.050 %、Si : 3.45
 %、Mn :0.25つ、P:0.040係、酸可溶
性At : 0.027係、N:0.0080%、Cr
 : 0.1.8 %を含み、さらにSが0.002〜
0.035%を含有した厚さ40關の小試片−1120
0℃に加熱し、スラブ抽出徒、大気放冷で1000℃と
し、1000℃の炉中に30 sec保持し、その後3
Aスの熱延で2.3mにし、1120℃×2m1n連続
焼鈍し、さらに0.30mmに冷延し、湿水素雰囲気中
で850℃X 2 minの膜炭焼鋪し、炉針1分離剤
とじ−でMgOを塗布後に]200℃X20hrの仕上
高温焼鈍を行なった成品の二次再結晶不良発生率を示す
。第2図から分るように、S含有量が0.007係以下
の」5合に二次P結晶不良の発ケは熱い。Sが0007
φ以下(・範囲では3fが少ないに、ど二次再結晶が若
干安定する。また澄釘段階でSを下げておけば、仕上高
い焼jaP時の113.8処理が容易になるので望まし
い。現状の溶ル11技術ではコストi高くせずにSを若
易に下げ得る範囲として0001チ以上が一般的である
121g is C: 0.050%, Si: 3.45
%, Mn: 0.25, P: 0.040, acid-soluble At: 0.027, N: 0.0080%, Cr
: Contains 0.1.8%, and S is 0.002~
Small specimen 40mm thick containing 0.035%-1120
The slab was heated to 0°C, then cooled to 1000°C in the air, kept in a 1000°C furnace for 30 sec, and then heated to 1000°C for 30 seconds.
It was hot-rolled to 2.3 m with A steel, continuously annealed at 1120°C x 2 m1n, further cold-rolled to 0.30 mm, film charcoal annealed at 850°C x 2 min in a wet hydrogen atmosphere, and sealed with a furnace needle 1 separating agent. - shows the incidence of secondary recrystallization failures of products subjected to finishing high-temperature annealing at 200° C. for 20 hours after coating with MgO. As can be seen from Fig. 2, secondary P crystal defects are most likely to occur in cases where the S content is 0.007% or less. S is 0007
If 3f is less in the range of φ or less, the secondary recrystallization is somewhat stabilized.Also, lowering S at the clear nail stage is desirable because it facilitates the 113.8 treatment during high-finish firing. In the current Melt 11 technology, the range in which S can be easily lowered without increasing the cost i is generally 0001 or more.

本発明の第二の特徴はMn、Pにある。本発明では素材
中のS含有りを少なくすることを4ぐぞtとし7ている
のでMnSの存在が無く外シ成品の磁束密度が悪くなる
。しかしながら、かかるPS材の場合でも素材中のり、
in、P含有量を適切な分にすることによって、磁束密
度が向上することを本発明者等は見い出した。
The second feature of the present invention lies in Mn and P. In the present invention, the fourth goal is to reduce the S content in the material, so there is no MnS and the magnetic flux density of the external product is poor. However, even in the case of such PS materials, the glue in the material,
The present inventors have found that the magnetic flux density can be improved by adjusting the in and P content to an appropriate amount.

第3図はC:0,060チ、Si:3.33%、S:0
.004係、酸可溶性At:0.032%、N:0.0
090%、Cr : 0.15qbを含む連続鋳造スラ
ブを1350℃に加熱後、熱延によって板厚2.3団の
熱延板とし、1150℃×2m1nの連続焼鈍後に冷延
によI) 0.30 mとし、湿水素雰囲気中で850
℃X2m1nO脱炭焼鈍を行ない、焼鈍分離剤としてM
gOを塗布し、1200℃X20hrの仕上高温焼鈍を
行たって得られた成品の磁束密度(B、。)に及ぼすス
ラブ中のMn、P含有量を示す。
Figure 3 shows C: 0,060chi, Si: 3.33%, S: 0
.. Section 004, acid-soluble At: 0.032%, N: 0.0
A continuously cast slab containing 090% Cr: 0.15qb was heated to 1350°C, then hot-rolled into a hot-rolled plate with a thickness of 2.3 mm, and after continuous annealing at 1150°C x 2m1n, it was cold-rolled. .30 m and 850 m in a wet hydrogen atmosphere.
℃×2mlnO decarburization annealing, M was used as an annealing separator
The effects of the Mn and P contents in the slab on the magnetic flux density (B, .) of the product obtained by applying gO and performing final high-temperature annealing at 1200° C. for 20 hours are shown.

Mn量が少なくなると二次再結晶が不宏定になシ、多く
なるとB10が高くなるが、一定以上添加しても改善効
果に差が無く添加合金量が多くなシネ経済である。Pに
ついてはその含有量が少ないとB10が悪く、他方多く
な゛ると冷延時に割れる頻度が多くなシ、又二次再結晶
不良の発生割合が多くなる。以上のことがらBloが高
く、かつ二次再結晶が安定し、ておシ、割れ問題の少な
い範囲と17てMn : 0.08〜0.45 %、P
 : 0.015〜0.045係を本発明の範囲とした
。(第3図において×はB、。<1.80、△は1.8
0≦B、。(1,89、○は]、、 89≦B1o< 
L 92.0は1.”92 <、、Bloり193、■
は1.93〈Bloである。単位Teala)M4図は
C: 0.045%、St : 3.35%、s二〇、
002’%、酸可溶性At:0.028%、N:0.0
075%、cr:o、is%を含む厚4o笥の小試片を
1150℃に加熱し、スラブ抽出後に3パスの熱延で2
.3關厚の熱延板とし、(この時の熱延完了温度は約8
20℃であった。)11”20℃X 2 min連続焼
鈍し、さらに0.30圏に冷延し、湿水素雰囲気中で脱
炭焼鈍し、焼鈍分離剤としてMgOi塗布後に1200
℃X20hrの仕上高温焼鈍を行なった成品の磁束密度
(Blo)に及ぼすMn、Pの影響を示す。第3図に示
した1410℃スラブ加熱材に比べ全体としてB10が
0:01〜0.03Tだけ但くなっているが、MnとP
の影響傾向は第3図の場合と同じである。(第4図にお
いて×はBlo<1.80、Δは1.80≦B1o <
 iys g、○ハ1.89<B、。<1.91. Q
は1.91<B、。テある。単位Teala ) 本発明の第三の特徴はCrを適尚月だけ含有させること
により、磁性を安定化させることにある。
When the amount of Mn decreases, secondary recrystallization becomes unstable, and when it increases, B10 increases, but there is no difference in the improvement effect even if it is added above a certain level, and the amount of added alloy is large. As for P, if the content is low, the B10 will be poor, while if the content is high, the frequency of cracking during cold rolling will increase, and the incidence of secondary recrystallization failure will increase. The above results indicate a range in which Blo is high, secondary recrystallization is stable, and there are few cracking problems.Mn: 0.08 to 0.45%, P
: The range of the present invention is 0.015 to 0.045. (In Figure 3, × is B, .<1.80, △ is 1.8
0≦B. (1, 89, ○ is],, 89≦B1o<
L 92.0 is 1. "92 <,,Blori193,■
is 1.93〈Blo. Unit Teala) M4 diagram is C: 0.045%, St: 3.35%, s20,
002'%, acid-soluble At: 0.028%, N: 0.0
A small specimen with a thickness of 4 o, containing 075%, cr:o, is%, was heated to 1150°C, and after slab extraction, it was hot-rolled in 3 passes.
.. A hot-rolled plate with a thickness of 3 mm (the hot-rolling completion temperature at this time is approximately 8
The temperature was 20°C. ) 11" Continuously annealed at 20°C for 2 min, further cold rolled to 0.30°C, decarburized annealed in a wet hydrogen atmosphere, and coated with MgOi as an annealing separator.
The influence of Mn and P on the magnetic flux density (Blo) of a product subjected to final high-temperature annealing at ℃×20 hr is shown. Compared to the 1410℃ slab heating material shown in Figure 3, B10 is lower by 0:01~0.03T overall, but Mn and P
The influence trend is the same as in Figure 3. (In Figure 4, × is Blo<1.80, Δ is 1.80≦B1o<
iys g,○ha1.89<B,. <1.91. Q
is 1.91<B. There is. The third feature of the present invention is that magnetism is stabilized by containing Cr only in an appropriate amount.

特公昭4045644号公報に開示されている技術は高
磁束密度が得られるが、鋼中酸可溶性11号を狭い範囲
に制御する必要がちり工業釣力安定生産を行なうだめに
は問題がある。本発明に基づく製造法もインヒビターと
してAノNを用いることから、高磁束密度を得るために
は鋼中酸可溶性Aノを厳密に制御する必要がある。本発
明者等はさらに研究した結果、適当量のCrを鋼中に含
有させることにより、高磁束密度の得られる酸可溶性A
、!量の範囲が拡がることを見い出した。さらにCr含
有の素材から製造した成品は、同−磁束密度下での鉄損
が456れていることを見い出した。
Although the technique disclosed in Japanese Patent Publication No. 4,045,644 can obtain a high magnetic flux density, it is necessary to control the acid-soluble No. 11 in steel within a narrow range, which poses a problem for stable industrial production. Since the production method based on the present invention also uses ANO as an inhibitor, it is necessary to strictly control the acid-soluble ANO in the steel in order to obtain a high magnetic flux density. As a result of further research, the present inventors found that by containing an appropriate amount of Cr in steel, acid-soluble A
,! It was found that the range of quantities can be expanded. Furthermore, it has been found that a product manufactured from a Cr-containing material has an iron loss of 456 at the same magnetic flux density.

第5図はC: 0.06 %、Si : 3.33 %
、Mn :0.30チ、P:0.035%、酸可溶性A
l: 0.029係、N:(10090チ金含む連続@
造スラブ全1350℃に加熱板、熱延によって板厚2.
3關の熱延板とし、1120℃X 2 min連続焼鈍
し、さらに0.30mgに冷延し、湿水素雰囲気中で脱
炭焼鈍し、焼鈍分離剤としてMgO’i塗布し、120
0℃X20hrの仕上焼鈍を行なって得られた成品の磁
束密度(Blo)と鉄損(W17150 )の関係に及
ぼすCrの影響を示す。Cr量が多くなると同−磁束密
度下での鉄損が良くなることが分る。
Figure 5 shows C: 0.06%, Si: 3.33%
, Mn: 0.30%, P: 0.035%, acid soluble A
l: 0.029 section, N: (continuous @ including 10090 chi gold)
The whole slab was heated to 1350°C with a heating plate and hot rolled to a thickness of 2.
It was made into a hot rolled sheet of 3 parts, continuously annealed at 1120°C for 2 min, further cold rolled to 0.30mg, decarburized annealed in a wet hydrogen atmosphere, coated with MgO'i as an annealing separator,
The influence of Cr on the relationship between magnetic flux density (Blo) and iron loss (W17150) of a product obtained by final annealing at 0°C for 20 hours is shown. It can be seen that as the amount of Cr increases, the iron loss improves under the same magnetic flux density.

Cr量がさらに多くなっても、特に効果が増加すること
もなく、むしろ脱炭焼鈍時の脱炭速度が遅れるという問
題が生じるので0,25%を超えるCr添加は不適であ
る。
Even if the amount of Cr is further increased, the effect will not particularly increase, but rather the problem will arise that the decarburization rate during decarburization annealing will be delayed, so it is unsuitable to add more than 0.25% of Cr.

以上に述べた範囲の成分を含む溶鋼を連続鋳造によりス
ラブとなし7、熱間圧延によシ熱延板とする。本発明の
一つの目的が連続鋳造スラブを用いる事による利点の適
用にあるので、連続鋳造スラブが限定範囲になる。しか
し、連続鋳造設備金持た左い場合に、分塊法によるスラ
ブを用いても特に問題はカい。
Molten steel containing the above-mentioned components is continuously cast to form a slab 7, and hot rolled to form a hot-rolled plate. Continuously cast slabs are of limited scope since one of the objects of the present invention is to apply the advantages of using continuously cast slabs. However, if continuous casting equipment is not available, there are no particular problems when using slabs produced by the blooming method.

次にスラブ加熱温度について述べる。本発明で限定した
成分範囲の場合、スラブ加熱温度が高いほど磁束密度は
高くなる。しかし第6図に示すように、本発明によれば
高磁束密度を得るためにスラブ加熱温度として従来にお
いては必須とされていた1300℃を超える高温加熱が
必ずしも必要でたくなる事を見い出した。さらに、画期
的なことに同−磁束密度下の比較ヲした場合に、むしろ
スラブ加熱温度の借いものほど鉄損が大巾に良いことを
見い出した。スラブ加熱温度の高い場合、磁束密度が高
く最高等級のG6H以上が得られ、さらに成品の磁区制
御処理(例えばレーザー照射)を行ガえは鉄損は一段と
向上する。スラブ加熱温度が低い場合、同−磁束密度下
での鉄損が良く最高等級のG6H以上が十分に得られる
ので製造コスト減を目的にしてスラブ加熱時にノロ発生
の無い1280℃以下全本発明では採用し、得る。
Next, we will discuss the slab heating temperature. In the case of the component range limited in the present invention, the higher the slab heating temperature, the higher the magnetic flux density. However, as shown in FIG. 6, it has been found that according to the present invention, in order to obtain a high magnetic flux density, it is no longer necessary to heat the slab at a high temperature exceeding 1300° C., which was conventionally considered essential. Moreover, when compared under the same magnetic flux density, it was found that the iron loss was significantly better when the slab heating temperature was changed. When the slab heating temperature is high, the magnetic flux density is high and the highest grade G6H or higher can be obtained, and if the finished product is subjected to magnetic domain control treatment (for example, laser irradiation), the iron loss is further improved. When the slab heating temperature is low, the iron loss under the same magnetic flux density is good and the highest grade G6H or higher can be obtained, so for the purpose of reducing manufacturing costs, the present invention is heated to a temperature of 1280°C or lower without generating slag during slab heating. Adopt and get.

第6図はC:0.050%、Si:3.45%、Mn:
025係、S:0.002%、P:0.040チ、酸可
溶性At : OO27%、N:0.0080%、Cr
二〇、18%を含有した連続鋳造スラブを加熱後、熱延
によシ2.5mの熱延板とし、1120℃×2m1nの
連続焼鈍後に冷延により板厚0.30晒とし、湿水素雰
囲気中で850℃X 2 minの脱炭焼鈍を行ない、
焼鈍分離剤としてMgOi塗布し、1200℃×20h
rの仕上焼鈍1養って得られた成品のvj重密度に及は
すスラブ加熱温度の影響を示す。
Figure 6 shows C: 0.050%, Si: 3.45%, Mn:
025, S: 0.002%, P: 0.040%, acid-soluble At: OO27%, N: 0.0080%, Cr
20. After heating a continuous cast slab containing 18%, it was hot-rolled to form a 2.5 m hot-rolled plate, and after continuous annealing at 1120°C Perform decarburization annealing at 850°C for 2 min in an atmosphere,
Apply MgOi as an annealing separator and heat at 1200°C for 20h.
The influence of the slab heating temperature on the vj density of the product obtained by final annealing of r is shown.

この図から、スラブ加熱温度が高いほど磁束密度が高く
なシ、1300℃以上で特に高くなるととが分る。しか
し、高磁束密度を得るために従来必須とされていた13
00℃を超える湯度は必ずしも必要ではなく、よシ低添
加熱でもよいことが分る。他方スラブ加熱温度が高すぎ
ると加熱炉が設備的に耐えられ々〈なシ、1430℃が
工業生産上では上限になる。スラブ加熱温度の下限は特
に決める必要はないが、1050℃よシ下ると熱延時の
必要動力が大きくなシ、又鋼板形状も悪くなるので、工
業的安定生産のためには1050℃以上が望ましい。
From this figure, it can be seen that the higher the slab heating temperature, the higher the magnetic flux density, and that it becomes particularly high at 1300° C. or higher. However, in order to obtain high magnetic flux density, 13
It can be seen that a hot water temperature exceeding 00°C is not necessarily necessary, and that a relatively low amount of added heat may be sufficient. On the other hand, if the slab heating temperature is too high, the heating furnace cannot withstand the equipment, and 1430° C. is the upper limit for industrial production. There is no particular need to determine the lower limit of the slab heating temperature, but if the temperature drops below 1050°C, the power required during hot rolling will increase and the shape of the steel sheet will deteriorate, so for stable industrial production, a temperature of 1050°C or higher is desirable. .

第7図は第3図に示した同一条件で、スラブ加熱温度の
み全1150℃に変更して行なって得られた成品にコロ
イダルシリカを主成分とする張力コーティングを行なっ
た後の磁性を示す。スラブ加熱温度の低い場合の磁性は
高い場合に比べ、同一磁束密度下での鉄損が良い。この
理由は、がならずしも明確では無いが、低温スラブ加熱
による成品の結晶粒界は不規則であり、又直径2闘前後
の微少結晶粒が混在し、ている事が関係していると考え
られる。
FIG. 7 shows the magnetism after applying a tension coating containing colloidal silica as a main component to a product obtained under the same conditions as shown in FIG. 3 but with only the slab heating temperature changed to 1150°C. When the slab heating temperature is low, the magnetism is better than when it is high, and the core loss is better under the same magnetic flux density. The reason for this is not clear at all, but it is related to the fact that the grain boundaries of products produced by low-temperature slab heating are irregular, and that microcrystal grains with a diameter of about 2 mm are mixed. it is conceivable that.

以上のように低温スラブ加熱で最高等恕の鉄損を可能に
した本発明では、次のよう左利点のある熱延方法を容易
に用いイSる。
As described above, in the present invention, which enables the highest uniform iron loss by heating the slab at a low temperature, a hot rolling method having the following advantages can be easily used.

最近の連続鋳造技術の進歩によ多連続鋳造の生産性が連
続熱延様の能力に匹敵するほど大きくなったため、連続
応5造機と連続熱延機を直結して材料を流しても、連続
熱延材の材料待ち時間が無くなった。そこで、連続鋳造
後にスラブを冷却することなく、スラブ顕熱を利用して
直接に熱延する方法、あるいはスラブ湿度特に表面温度
が若干下がった場合には伎熱炉に装入するか、ごく簡単
な普通値用の加熱炉で炉時間加熱した後、熱延する方法
である。このよう々熱延方法は省エネルギーを目的に普
通鋼の製造において、盛んに行なわれつつある。しかし
ながら、一方向性電磁鋼板においては高温度、長時間の
スラブ加熱が必要であったため、一方向性電磁鉛板専用
の高温スラブ加熱炉全設置する必要がちシ、連続鋳造と
連M熱延の直結工程の採用が出来なかった。本発明のよ
うに低温スラブ加熱でも良いということになると、直結
工程の採用が容易になシ、普通鋼なみの効率的な熱延が
可能になる。さらに、鋳造後に冷却しない直結工程にな
ると珪素鋼特有の次のような利点がある。すなわち、S
iを含有するスラブは熱伝導が悪いため、スラブ冷却中
に表層部と中心部との温度差が大きくなり、熱応力が発
生し、スラブ内部割れが生じ、歩留シ侭下になるが、直
結工程のようにスラブ冷却をしない場合にはこのスラブ
内部割れの問題が解消する。
Due to recent advances in continuous casting technology, the productivity of multi-continuous casting has become comparable to the capacity of continuous hot rolling. The waiting time for hot-rolled materials has been eliminated. Therefore, we have developed a method of directly hot-rolling the slab using the sensible heat of the slab without cooling it after continuous casting, or charging it into a heating furnace if the slab humidity, especially the surface temperature, has dropped slightly. This is a method in which the material is heated in a normal value heating furnace for a period of time and then hot rolled. As described above, hot rolling methods are increasingly being used in the production of ordinary steel for the purpose of saving energy. However, since unidirectional electromagnetic steel sheets require slab heating at high temperatures and for long periods of time, it is necessary to install a high-temperature slab heating furnace exclusively for unidirectional electromagnetic lead plates, and continuous casting and continuous M hot rolling are required. It was not possible to adopt a direct connection process. If it is possible to heat the slab at a low temperature as in the present invention, it becomes easy to adopt a direct connection process, and it becomes possible to hot-roll as efficiently as ordinary steel. Furthermore, in a direct connection process that does not require cooling after casting, silicon steel has the following advantages. That is, S
Since slabs containing i have poor thermal conductivity, the temperature difference between the surface layer and the center increases during cooling of the slab, generating thermal stress, causing internal cracks in the slab, and reducing yield. If the slab is not cooled as in the direct connection process, this problem of internal cracking of the slab will be resolved.

以上のようにして得た熱延板は850〜1200℃の範
囲で短時間の連続焼鈍を行なう。焼鈍温度が850℃未
満では高磁束密度が得られず、1200℃を超えると二
次再結晶が不完全となる。
The hot-rolled sheet obtained as described above is subjected to continuous annealing for a short time in the range of 850 to 1200°C. If the annealing temperature is less than 850°C, high magnetic flux density cannot be obtained, and if it exceeds 1200°C, secondary recrystallization will be incomplete.

焼鈍時間として30分を超えると生産能率が極めて悪く
なシ、30 gee未満では熱処理の効果がほとんど無
くなる。
If the annealing time exceeds 30 minutes, the production efficiency is extremely poor, and if the annealing time is less than 30 gee, the effect of the heat treatment is almost lost.

熱延板の連続焼鈍後、冷延により最終板厚とする。本発
明では高磁束密度一方向性珪素鋼板を得ることを目的と
しているので冷延圧下率として80係以上の強圧下が必
要である。次に湿水累算囲気中で脱炭焼鈍を行なう。脱
炭焼鈍は脱炭及び−次男結晶を行なわせると同時に成品
表面の絶縁皮膜の形成に必要な酸化層を生成させる役割
を持っている。脱炭焼鈍後の鋼板狭面には仕上高温焼鈍
時における焼付防止及び成品表面の絶縁皮膜形成のため
に焼鈍分離剤を塗布する。焼鈍分離剤としてはMgOを
主成分としその他目的に応じてTlO2#At20. 
# CaOr S化合物、S化合物、N化合物を添加し
たものを用いることが出来る。引続いて仕上高温焼鈍を
行なう。この焼鈍は二次再結晶、純化および成品表面に
MgOと5IO2の混合物であるフォルステライトを主
成分とする絶縁皮膜を形成させることを目的としておシ
、通常1100℃以上で5 hr以上水素又は水素を含
んだ混合雰囲気中で行なう。本発明において採用する前
記の仕上高温焼鈍条件として、二次再結晶の行なわnる
温度範囲を徐加熱することが高い磁束密度を安定して得
るため(C%に効果的である。この二次再結晶温度範囲
を徐加熱する操作の冶金的考え方は、従来力・ら知られ
ているように(110)(001)方位からの傾きの小
さい二次再結晶粒はど低い温度で発生するという事実か
ら、徐加熱で行なうことによって、低い温度で発生した
(110)<001)方位に近い二次再結晶粒の成品に
占める体積割合を増やし磁束密度を高めようとするもの
でちる@S含有量の少ない本発明の場合、すなわち微a
 MnSによる結晶粒成長に対する抑制機能の小さい場
合には、低い温度範囲での粒成長が比較的大きいので、
徐加熱することによ!D (110)<001)方位に
近い低温度で発生した二次再結晶粒の成品に占める体積
割合を増やし、磁束密度を高めることが特に効果的に行
なえる。
After continuous annealing of the hot-rolled sheet, the final thickness is obtained by cold rolling. Since the present invention aims to obtain a high magnetic flux density unidirectional silicon steel sheet, a strong cold rolling reduction of 80 coefficients or more is required. Next, decarburization annealing is performed in a humid atmosphere. Decarburization annealing has the role of decarburizing and -second crystallization, and at the same time generating an oxide layer necessary for forming an insulating film on the surface of the product. An annealing separator is applied to the narrow side of the steel plate after decarburization annealing to prevent seizure during final high-temperature annealing and to form an insulating film on the surface of the product. As the annealing separator, MgO is the main component, and other materials such as TlO2#At20.
#CaOr A compound containing an S compound, an S compound, or an N compound can be used. Subsequently, final high-temperature annealing is performed. This annealing is performed for the purpose of secondary recrystallization, purification, and forming an insulating film mainly composed of forsterite, which is a mixture of MgO and 5IO2, on the surface of the product. The test is carried out in a mixed atmosphere containing As the finishing high temperature annealing conditions employed in the present invention, gradual heating in the temperature range where secondary recrystallization is performed is effective for stably obtaining a high magnetic flux density (effective for C%. The metallurgical idea behind the gradual heating operation in the recrystallization temperature range is that secondary recrystallized grains with a small inclination from the (110) (001) orientation occur at a low temperature, as is conventionally known from Chikara et al. In fact, by performing slow heating, the volume ratio of secondary recrystallized grains close to the (110)<001) orientation generated at low temperatures in the product is increased, and the magnetic flux density is increased. In the case of the present invention where the amount is small, i.e.
When MnS has a small inhibitory function on grain growth, grain growth in a low temperature range is relatively large.
By heating slowly! It is particularly effective to increase the volume ratio of secondary recrystallized grains generated at low temperatures close to the D (110)<001) orientation in the product to increase the magnetic flux density.

第8図はC: 0.060% 、 Si : 3.42
%、 Mn :0.25係、 S : 0.002f)
、 P : 0.040係、酸可溶性ht:0.032
%、 N : 0.009%、cr:o、t5%を含む
連続鋳造スラブを1410℃に加熱後、熱延ににって板
厚2.3mmの熱延板とし、1150℃×2rnlnの
連続焼鈍後に冷延によシ0.30閣とし、湿水素雰囲気
中で850℃X 2m1nO脱炭焼鈍を行ない、焼鈍分
離剤としてMgOを塗布し、1200℃X 20 hr
の仕上高温焼鈍を行なって得られた成品の磁束密度(B
lo)と仕上高温焼鈍時の700〜1100℃の温度範
囲における加熱速度の関係を示す図である。この図より
加熱速度が遅いほど磁束密度が高くなり、特に15 u
/hr以下で顕著に高くなることがわかる。加熱速度が
15℃/hr以下の  □範囲内では、磁束密度は大き
く変らない。この700〜1100℃範囲の徐加熱を行
ない二次再結晶が完了した後は、鋼中のN、Sを出来る
だけ少なくするため1200℃前後の高温で純H2中に
おいて純化焼鈍を行なうのが一般的である。
Figure 8 shows C: 0.060%, Si: 3.42
%, Mn: 0.25, S: 0.002f)
, P: 0.040 ratio, acid soluble ht: 0.032
%, N: 0.009%, CR: O, T5% was heated to 1410°C, then hot-rolled into a hot-rolled plate with a thickness of 2.3 mm, and then continuously cast at 1150°C x 2rnln. After annealing, it was cold-rolled to a thickness of 0.30 mm, decarburized at 850°C in a wet hydrogen atmosphere at 2mlnO, coated with MgO as an annealing separator, and heated at 1200°C for 20 hours.
The magnetic flux density (B
It is a figure which shows the relationship between heating rate in the temperature range of 700-1100 degreeC at the time of finishing high-temperature annealing. This figure shows that the slower the heating rate, the higher the magnetic flux density, especially at 15 u
It can be seen that the value increases significantly below /hr. When the heating rate is within the □ range of 15°C/hr or less, the magnetic flux density does not change significantly. After completing secondary recrystallization through slow heating in the range of 700 to 1100°C, purification annealing is generally performed in pure H2 at a high temperature of around 1200°C to reduce N and S in the steel as much as possible. It is true.

以上、詳述したように、本発明は安価に製造出来、かつ
成品長手方向の成分均一による磁性均一という工業的安
定生産が可能でおる連続鋳造スラブを出発素材とするに
際し、熱延時のスラブ加熱温度が高い場合には線状二次
再結晶不良の発生を防止、(特に高si材で一層顕著に
なるが)して高磁束密度成品でかつ高級鉄損を可能にし
た。又熱延時のスラブ加熱温度が低い場合には高81材
でも二次再結晶不良を発生させず、かつ低温スラブ加熱
温度特有の成品結晶粒の特徴から高級鉄損を可能にした
。そして、従来の一回圧延法の製造において鋼中At制
御に極めて困難な制約がありたのを解決し、工業的安定
生産を可能にしたものである。
As described in detail above, the present invention utilizes continuous casting slabs as a starting material, which can be manufactured at low cost and which can be industrially stably produced with uniform magnetic properties due to uniform composition in the longitudinal direction of the finished product. At high temperatures, the occurrence of linear secondary recrystallization defects is prevented (this becomes more noticeable especially in high-Si materials), making it possible to produce products with high magnetic flux density and high core loss. In addition, when the slab heating temperature during hot rolling is low, secondary recrystallization defects do not occur even with the high 81 material, and high iron loss is possible due to the characteristics of the product crystal grains unique to the low temperature slab heating temperature. This solves the extremely difficult restrictions on controlling Atnium in steel in the conventional single-rolling method, and enables stable industrial production.

実施例I C: 0.060% 、 St : 3.38%、 M
n 0.20t16. P:0.040チ、S : 0
.005チ、酸可溶性At:0.033% 、 N、:
 0.0085%、Cr二0.16%を含有する溶鋼を
連続鋳造によりスラブとなし、1400℃の温度で加熱
後、熱延によシ2,3欄の熱延板を作った。
Example I C: 0.060%, St: 3.38%, M
n 0.20t16. P: 0.040chi, S: 0
.. 005, acid-soluble At: 0.033%, N:
Molten steel containing 0.0085% of Cr and 0.16% of Cr was made into a slab by continuous casting, heated at a temperature of 1400°C, and then hot-rolled to produce hot-rolled sheets of columns 2 and 3.

熱延板を1120℃X 2 mlH焼鈍後、0.30+
+anの最終板厚まで冷延し、湿水素雰囲気中で850
℃X 2m1nO脱炭焼鈍を行なった。さらにMgOを
塗布後、1200℃X 20 hrの仕上高温焼鈍を行
なりた。この仕上高温焼鈍の700〜1100℃の範囲
の加熱速度は10℃/h rで行なった。さらに無水ク
ロム酸を主成分とする皮膜を鋼板表面に焼付けた。成品
の圧延方向の磁性はB、。= 1.93 Teaム。
After annealing the hot rolled plate at 1120°C x 2 mlH, 0.30+
Cold rolled to a final thickness of 850 mm in a wet hydrogen atmosphere.
Decarburization annealing was performed at 2 ml of °C. Furthermore, after applying MgO, finishing high-temperature annealing was performed at 1200°C for 20 hours. The heating rate of this final high-temperature annealing in the range of 700 to 1100°C was 10°C/hr. Furthermore, a film containing chromic anhydride as the main component was baked onto the surface of the steel plate. The magnetism of the finished product in the rolling direction is B. = 1.93 Team.

Wl、15o= 0.99 wA9であった。この成品
表面にC方向に点状のレーザ照射を行なった結果、B、
Wl, 15o = 0.99 wA9. As a result of dotted laser irradiation in the C direction on the surface of this product, B,
.

=1.93 Te5ta 、 Wl、15o= 0.8
8 W/に9と極めて優れた磁性を得た。
= 1.93 Te5ta, Wl, 15o = 0.8
Extremely excellent magnetism of 8 W/9 was obtained.

実施例2 C:0.053%、St :3.35%、 Mn : 
0.25% 。
Example 2 C: 0.053%, St: 3.35%, Mn:
0.25%.

P:0.035%、S:0.003チ、酸可溶性kt:
0.029  % 、N:0.008096.Cr  
:0.15%を含有する連続鋳造スラブを1150℃の
温度に加熱した後、熱延して2.3amの熱延板を作っ
た。熱延板を1080℃X 2 min焼鈍後、0.3
0調の最終板厚まで冷延し、湿水素雰囲気中で850℃
X 2 m1nQ脱炭焼鈍を行なった。さらにMgOを
塗布後、1200℃X20hrの仕上高温焼鈍を行なっ
た。この仕上高温焼鈍の700〜1100℃の範囲の加
熱速度は20℃/h rで行なりた。さらに無水クロム
酸を主成分とする皮膜を鋼板表面に焼付けた。この成品
の圧延方向の磁性はB、。=1、91 Te5ta p
 Wl 775o” 0.97 W/に9であった。
P: 0.035%, S: 0.003%, acid soluble kt:
0.029%, N: 0.008096. Cr
: A continuous cast slab containing 0.15% was heated to a temperature of 1150° C. and then hot rolled to make a 2.3 am hot rolled sheet. After annealing the hot-rolled plate at 1080°C for 2 min, 0.3
Cold rolled to the final thickness of 0 tone and heated at 850℃ in a wet hydrogen atmosphere.
X 2 m1nQ decarburization annealing was performed. Furthermore, after coating MgO, finishing high-temperature annealing was performed at 1200° C. for 20 hours. The heating rate of this final high temperature annealing in the range of 700 to 1100°C was 20°C/hr. Furthermore, a film containing chromic anhydride as the main component was baked onto the surface of the steel plate. The magnetism of this product in the rolling direction is B. =1,91 Te5ta p
Wl 775o” 0.97 W/9.

熱延時のスラブ加熱温度の低い場合、磁束密度の割に鉄
損が優れていることが分る。
It can be seen that when the slab heating temperature during hot rolling is low, the iron loss is excellent compared to the magnetic flux density.

実施例3 C: 0.053% 、 Si : 3.45%、 M
n : 0.23% 。
Example 3 C: 0.053%, Si: 3.45%, M
n: 0.23%.

P:0.037チ、S : 0.003チ、酸可溶性A
t:0.027% 、N : 0.0090%、 Cr
 : 0.20%を含有する溶鋼を250W厚の鋳型で
連続鋳造により鋳造した。溶鋼の凝固後に冷却すること
なく速かに台車式の保熱炉に装入し、平均スラブ温度が
約1130℃になった時点で熱延し、2.3mmの熱延
板を作った。この熱延板を1080℃X 2m1n焼鈍
後、0.30maの最終板厚まで冷延し、湿水素雰囲気
中で850℃X 2 m1nO脱炭焼鈍を行なった。さ
らにMgOを塗布後、1200℃X 20hrの仕上高
温焼鈍を行なった。この仕上高温焼鈍の700−110
0℃の範囲の加熱速度は10℃/h rで行なった。さ
らに無水クロム酸を主成分とする皮膜を鋼板表面に焼付
けた。この成品の圧延方向の磁性はB1o=1、90 
Teala 、 W2,75o= 1.01 vr/k
gであった。
P: 0.037th, S: 0.003th, acid soluble A
T: 0.027%, N: 0.0090%, Cr
: Molten steel containing 0.20% was cast by continuous casting in a 250W thick mold. After the molten steel solidified, it was immediately charged into a trolley-type heat retention furnace without cooling, and when the average slab temperature reached about 1130° C., it was hot rolled to produce a 2.3 mm hot rolled sheet. This hot-rolled sheet was annealed at 1080° C. x 2 ml, then cold rolled to a final thickness of 0.30 ma, and decarburized annealed at 850° C. x 2 ml in a wet hydrogen atmosphere. Furthermore, after applying MgO, finishing high-temperature annealing was performed at 1200° C. for 20 hours. This finishing high temperature annealing is 700-110
The heating rate in the 0°C range was 10°C/hr. Furthermore, a film containing chromic anhydride as the main component was baked onto the surface of the steel plate. The magnetic property of this product in the rolling direction is B1o=1,90
Teala, W2, 75o= 1.01 vr/k
It was g.

二次再結晶不良の発生は皆無であった。There was no occurrence of secondary recrystallization defects.

実施例4 C:0.053q6.Si :3.45%、Mn:0.
23%。
Example 4 C: 0.053q6. Si: 3.45%, Mn: 0.
23%.

P:0.037チ、 Sl: 0.003%、酸可溶性
At:0.027%、N+: 0.0090%、 Cr
 : 0.20%を含有する溶鋼を250W厚の鋳型で
連続鋳造によシ鋳造した。溶鋼の凝固後に冷却を出来る
だけ少なくする配慮として、連続鋳造機内の保温及び冷
えやすいスラブ端面の短時間ガス加熱を行なった。速か
に熱延機入口にスラブを移動し、スラブ断面中心が約1
200℃、そして表層部が約1050℃の時点で熱延を
開始し、板厚2.3澗の熱延板とした。
P: 0.037%, Sl: 0.003%, acid-soluble At: 0.027%, N+: 0.0090%, Cr
: Molten steel containing 0.20% was cast by continuous casting in a 250W thick mold. In order to minimize the amount of cooling required after solidification of the molten steel, we kept the continuous casting machine warm and heated the slab end face, which easily gets cold, with gas for a short time. Quickly move the slab to the hot rolling mill entrance until the center of the slab cross section is about 1
Hot rolling was started when the temperature was 200° C. and the surface layer was about 1050° C., and a hot rolled sheet having a thickness of 2.3 mm was obtained.

この熱延板を1080℃X 2 mll焼鈍後、0.3
0mの最終板厚まで冷延し、湿水素雰囲気中で850℃
X 2 midの脱炭焼鈍を行なった。さらにMgOを
塗布後、1200℃X 20 hrの仕上高温焼鈍を行
なった。この成品の圧延方向の磁性はB、。= 1.9
0Testa J W17150 = i、 o 3w
/kgでhつだ。
After annealing this hot-rolled plate at 1080°C
Cold rolled to a final thickness of 0m and heated at 850°C in a wet hydrogen atmosphere.
X 2 mid decarburization annealing was performed. Furthermore, after applying MgO, finishing high temperature annealing was performed at 1200°C for 20 hours. The magnetism of this product in the rolling direction is B. = 1.9
0Testa J W17150 = i, o 3w
/kg is h.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC:0.058%、81 : 3.35%、M
n: 0.23チ、P : 0.036%、酸可溶性A
t: 0.033%、N:0.0085係、Cr : 
0.13%を含み、さらにSが0.002〜0.033
チである連続鋳造スラブを1410℃に加熱後、熱延に
よ1)2.3M@の熱延板とし、1150℃X2m1n
の連続焼鈍後に冷延によ′り0.30m+aとし、湿水
素中で850′cX2minO脱炭焼鈍を行ない、焼鈍
分離剤としてMgOを塗布し、1200℃X20hrの
仕上高温焼鈍を行なって得られた成品の線状二次再結晶
不良の発生率を示す図、第2図はC:0.050%、S
l:3.45チ、Mn : 0.25%、P:0.04
0%、酸可溶性kA:0.027%、N:0.0080
%、Cr:0.18%を含み、さらにSが0.002〜
0.035係を含有した厚さ40■の小試片を1200
℃に加熱し、スラブ抽出後、大気放冷で1ooo℃とし
、1000℃の炉中に30 sec保持し、その後3パ
スの熱延で2.31にし、1126℃X2m1n連続焼
鈍し、さらに0.30w++に冷延し、湿水素雰囲気中
で850℃X 2 min脱炭焼鈍し、焼鈍分離剤とし
てMgOを塗布後に1200℃X20hrの仕上高温焼
鈍を行にった成品の二次再結晶不良発生率を示す図、第
3図はC:0.060%、Si:3.33%、S:0.
004%、酸可溶性M:0.032%、N:0.009
0%、Cr’ : 0.15%を含む連続鋳造スラブを
1350℃に加熱後、熱延によって板厚2.3簡の熱延
板とし、1150CX2minの連続焼鈍後に冷延によ
p 0.30 tmaとし、湿水素雰囲気中で850℃
X 2 m1nO脱炭焼鈍を行ない、焼鈍分離剤として
MgOを塗布し、1200℃X20hrの仕上高温焼鈍
を行なって得られた成品の磁束密度(B1o’)に及ぼ
すスラブ中のMn 、 P含有景を示す図、第4図はC
:0.045%、81 : 3.35%、S:0.00
2%、酸可溶性At:0.028%、N:0.0075
%、Cr : 0.18チを含む厚40間の小試片を1
1.50’CK加熱し、スラブ抽出後K 3 /4スの
熱延で2.3閣厚の熱延板とし、1120℃X2m1n
連続焼鈍し、さらに0.30閣に冷延し、湿水素雰囲気
中で脱炭焼鈍し、焼鈍分離剤としてMgOを塗布後に1
200’CX20hrの仕上高温焼鈍を行なった成品の
磁束密度(Blo)に及ぼすMn、Pの影響を示す図、
第5図はC: 0.06係、Si:3.33%、Mn 
: 0.30%、P:0.035%、酸可溶性At:O
,929%、N:0.0090%を含む連続鋳造スラブ
を1350℃に加熱後、熱延によって板厚2.3簡の熱
延板とし、1120℃X2m1n連続焼鈍し、さらに0
.30 mに冷延し、湿水素雰囲気中で脱炭焼鈍し、焼
鈍分離剤としてMgOを塗布し、1000℃×20hr
の仕上焼鈍を行なって得られた成品の磁束密度(Blo
)と鉄損(W17150)の関係に及ぼすCrの影響を
示す図、第6図はC:0.050%、Si:3.45チ
、Mn : 0.25 %、S:0.002%、P:0
.040%、酸可溶性At:0.027%、N:0.0
080%、Cr : 0.18%を含有した連続鋳造ス
ラブを加熱後、熱延によ、!72.5 wnO熱延板と
し、1120℃X2m1nの連続焼鈍後に冷延により板
厚0.30mmとし、湿水素雰囲気中で850℃X 2
 m1dO脱炭焼鈍を行ない、焼鈍分離剤としてMgO
を塗布し、1200℃X20hrの仕上焼鈍を行なって
得られた成品の磁束密度に及ぼすスラブ加熱温度の影響
を示す図、第7図は第3図に示した同一条件で、スラブ
加熱温度のみを1150℃に変更して行なって得られた
成品にコロイダルシリカを主成分とする張力コーティン
グを行なった後の磁性を示す図、第8図はC: 0.0
60%、sl:3.42 %XMn : 0.25%、
S:0.002%、P:0.040%、酸可溶性ht:
o、032%、N:0.0090%、Cr : 0.1
5チを含む連続鋳造スラブを1410℃に加熱後、熱延
によって板厚2.3腸の熱延板とし、1150 ℃X2
m1nの連続焼鈍後に冷延によ、j:l 0.30 t
ranとし、湿水素雰囲気中で850℃X 2 min
の脱炭焼鈍を行ない、焼鈍分離剤としてMgOを塗布し
、1200℃X20hrの仕上高温焼鈍を行々って得ら
れた成品の磁束密度(Blo)と仕上高温焼鈍時の7o
o〜11oo℃の温度範囲における加熱速度の関係を示
す図である。 $/図 S倉*蓋(’/=) 第2図 S倉有量 6%) 第3図 Mn (7,) 第4図 第5図 球求’2g  Br6 (Te5la )第6図 スラフパ力0熱湿度(r) 第7図 第8図 5   10   15   2θ   25カロ犬鵞
速席 (か/At−) 手続補正書 (自発) 昭和58年6月20日 特許庁長官 若 杉 和 夫 殿 ■、 事件の表示 昭和58年特許願第062688号 2、 発明の名称 連続鋳造法を適用した鉄損の優れた一方向性珪素鋼板の
製造法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式會社 代表者 武  1)   豊 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 6、補正の対象 (1)明細書7頁2行「が変るため」を「が変ることに
より」に補正する。 (2)同24頁下から3行「大きく変らない。」を「大
きく変らないが、磁束密度のノくラツキは加熱速度が小
さいほど少なくなる。しかしながら経済的効率を考える
と7℃/h r程度が下限となる。」に補正する。
Figure 1 shows C: 0.058%, 81: 3.35%, M
n: 0.23%, P: 0.036%, acid soluble A
t: 0.033%, N: 0.0085%, Cr:
Contains 0.13%, and further S is 0.002 to 0.033
After heating the continuously cast slab to 1410°C, it was hot-rolled into a 1) 2.3M@ hot-rolled plate at 1150°C x 2m1n.
After continuous annealing, it was cold rolled to 0.30m+a, decarburized annealed in wet hydrogen for 850cm x 2min, coated with MgO as an annealing separator, and subjected to final high-temperature annealing at 1200℃ x 20hr. A diagram showing the incidence of linear secondary recrystallization defects in products, Figure 2 shows C: 0.050%, S
l: 3.45chi, Mn: 0.25%, P: 0.04
0%, acid soluble kA: 0.027%, N: 0.0080
%, Cr: 0.18%, and S is 0.002~
1200 small specimens with a thickness of 40cm containing 0.035%
After extracting the slab, it was cooled to 100°C by air cooling, held in a furnace at 1000°C for 30 seconds, then hot-rolled for 3 passes to 2.31 mm, continuously annealed at 1126°C x 2 m1n, and then further annealed at 1000°C. Incidence of secondary recrystallization defects in products cold rolled to 30W++, decarburized annealed at 850°C for 2 min in a wet hydrogen atmosphere, coated with MgO as an annealing separator, and then subjected to final high temperature annealing at 1200°C for 20 hours. Figure 3 shows C: 0.060%, Si: 3.33%, S: 0.
004%, acid soluble M: 0.032%, N: 0.009
A continuous cast slab containing 0%, Cr': 0.15% was heated to 1350°C, then hot rolled into a hot rolled plate with a thickness of 2.3 mm, continuously annealed at 1150C x 2 min, and then cold rolled to p 0.30. tma at 850°C in a wet hydrogen atmosphere.
The influence of Mn and P content in the slab on the magnetic flux density (B1o') of the product obtained by performing X 2 m1nO decarburization annealing, applying MgO as an annealing separator, and performing finishing high temperature annealing at 1200 ° C. The figure shown in Figure 4 is C.
: 0.045%, 81: 3.35%, S: 0.00
2%, acid soluble At: 0.028%, N: 0.0075
%, Cr: 1 small specimen with a thickness of 40 mm containing 0.18 inch
The slab was heated to 1.50'CK, and after the slab was extracted, it was hot-rolled to a thickness of 2.3mm thick at 1120°C x 2m1n.
Continuously annealed, further cold-rolled to 0.30 mm, decarburized annealed in a wet hydrogen atmosphere, and coated with MgO as an annealing separator.
A diagram showing the influence of Mn and P on the magnetic flux density (Blo) of a product subjected to 200'CX20hr final high temperature annealing,
Figure 5 shows C: 0.06%, Si: 3.33%, Mn
: 0.30%, P: 0.035%, acid soluble At:O
, 929%, N: 0.0090% was heated to 1350°C, hot-rolled into a hot-rolled plate with a thickness of 2.3 mm, continuously annealed at 1120°C
.. Cold rolled to a length of 30 m, decarburized annealed in a wet hydrogen atmosphere, coated with MgO as an annealing separator, and heated at 1000°C x 20 hours.
The magnetic flux density (Blo
) and iron loss (W17150), Figure 6 shows the influence of Cr on the relationship between C: 0.050%, Si: 3.45%, Mn: 0.25%, S: 0.002%, P:0
.. 040%, acid soluble At: 0.027%, N: 0.0
After heating a continuous casting slab containing 0.080% and Cr: 0.18%, it is hot-rolled! A 72.5 wnO hot-rolled plate was continuously annealed at 1120°C x 2ml, then cold rolled to a plate thickness of 0.30mm, and then heated at 850°C x 2mm in a wet hydrogen atmosphere.
M1dO decarburization annealing is performed, and MgO is used as an annealing separator.
Figure 7 shows the effect of slab heating temperature on the magnetic flux density of a product obtained by coating and finishing annealing at 1200°C for 20 hours. Figure 8 shows the magnetism after applying a tension coating mainly composed of colloidal silica to the product obtained by changing the temperature to 1150°C.
60%, sl: 3.42%XMn: 0.25%,
S: 0.002%, P: 0.040%, acid soluble ht:
o, 032%, N: 0.0090%, Cr: 0.1
After heating the continuous casting slab containing 5 mm to 1410°C, it was hot-rolled into a hot-rolled plate with a thickness of 2.3 mm, and was heated to 1150°C x 2.
By cold rolling after continuous annealing of m1n, j:l 0.30 t
ran at 850°C for 2 min in a wet hydrogen atmosphere.
The magnetic flux density (Blo) of the product obtained by applying MgO as an annealing separator and finishing high-temperature annealing at 1200°C for 20 hours and the 7o at the time of finishing high-temperature annealing were
It is a figure which shows the relationship of the heating rate in the temperature range of o-1100 degreeC. $/Figure S warehouse * Lid ('/=) Figure 2 S warehouse quantity 6%) Figure 3 Mn (7,) Figure 4 Figure 5 Ball requirement '2g Br6 (Te5la) Figure 6 Slough power 0 Thermal Humidity (r) Figure 7 Figure 8 5 10 15 2θ 25 Karo Inugo Speed Seat (Ka/At-) Procedural Amendment (Voluntary) June 20, 1981 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, Display of the case 1982 Patent Application No. 062688 2 Title of the invention Method for manufacturing unidirectional silicon steel sheet with excellent iron loss applying continuous casting method 3 Relationship with the amended party Patent applicant Tokyo Metropolitan Government 2-6-3 Otemachi, Chiyoda-ku (665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, agent 2-4-1-6 Marunouchi 2-4-1 Chiyoda-ku, Tokyo 100, subject to amendment (1) On page 7 of the specification, line 2, "because of a change in" is amended to "by a change in." (2) The third line from the bottom of page 24, "No big change." was replaced with "No big change, but the fluctuation in magnetic flux density decreases as the heating rate decreases. However, considering economic efficiency, 7℃/hr The degree is the lower limit.''

Claims (5)

【特許請求の範囲】[Claims] (1)   C二 0.0 2 5−70.0 7 5
  %、Si   :  3.0 〜4.5チ、酸可溶
性At:0.010〜0.060受、N:0.0030
 〜 O,0130%  、  S 二 0.00’7
  チ 以下、Mn : 0.08〜0.45%、p:
0.015〜0、04.5%、Cr : 0.07〜0
.25%、残部Feおよび不可避不純物よシ成る一方向
性珪素銅板用連続鋳造スラブを熱間圧延によシ熱延板と
なし、次いで該熱延板を850〜1200℃の範囲で短
時間連続焼鈍後、圧下率80チ以上の強圧下冷間圧延に
よシ最終板厚となし、得られた冷延板を湿水素雰囲気中
で連続脱炭焼鈍し、次いで焼鈍分離剤を塗布して仕上高
温焼鈍を行なうことを特徴とする鉄損の優れた一方向性
珪素鋼板の製造法。
(1) C2 0.0 2 5-70.0 7 5
%, Si: 3.0 to 4.5%, Acid soluble At: 0.010 to 0.060, N: 0.0030
~ O,0130%, S2 0.00'7
Below, Mn: 0.08-0.45%, p:
0.015~0, 04.5%, Cr: 0.07~0
.. A continuously cast slab for a unidirectional silicon copper plate consisting of 25% Fe and unavoidable impurities is hot-rolled to form a hot-rolled plate, and then the hot-rolled plate is continuously annealed for a short time in the range of 850 to 1200°C. After that, the final plate thickness is obtained by cold rolling with a reduction rate of 80 inches or more, and the obtained cold rolled plate is continuously decarburized annealed in a wet hydrogen atmosphere, and then an annealing separator is applied and finished at a high temperature. A method for manufacturing a unidirectional silicon steel sheet with excellent iron loss, which is characterized by performing annealing.
(2)仕上高温焼鈍に際しての加熱時に700〜110
0℃の範囲を15℃/hr以下の加熱速度で加熱外淵す
ることを特徴とする特許請求の範囲部1項記載の方法。
(2) 700 to 110 when heated during finishing high temperature annealing
The method according to claim 1, characterized in that heating is carried out in a range of 0°C at a heating rate of 15°C/hr or less.
(3)一方向性珪累州1板用連続銑造スラブを1280
℃を超えない温度に加熱した後、熱間圧延によシ熱延板
とする特許請求の範囲第1項記載の方法。
(3) Continuous iron making slab for unidirectional silica plate 1280
The method according to claim 1, wherein the method is heated to a temperature not exceeding .degree. C. and then hot-rolled into a hot-rolled sheet.
(4)  一方向性珪素銅板用連続鋳造スラブを128
0℃以上の温度に加熱した後、熱間圧延によシ熱延板と
する特許請求の範囲第1項配りの方法0
(4) 128 continuous casting slabs for unidirectional silicon copper plates
Claim 1. Distributing method 0, which is heated to a temperature of 0° C. or higher and then hot-rolled to obtain a hot-rolled sheet.
(5)連続鋳造スラブを冷却することなく、スラブ顕熱
を利用して連続鋳造彼に直接熱間圧延すること全特徴と
する特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, characterized in that the continuously cast slab is hot rolled directly onto the continuous cast slab by utilizing sensible heat of the slab without cooling the continuous cast slab.
JP58062688A 1982-09-24 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied Granted JPS59190325A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58062688A JPS59190325A (en) 1983-04-09 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied
GB08325076A GB2130241B (en) 1982-09-24 1983-09-20 Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
SE8305095A SE460482B (en) 1982-09-24 1983-09-21 CORN-ORIENTED ELECTRICAL TUB
CA000437373A CA1210670A (en) 1982-09-24 1983-09-22 Grain-oriented electrical steel sheet having a high magnetic flux density
FR8315933A FR2533586B1 (en) 1982-09-24 1983-09-23 METHOD FOR MANUFACTURING ORIENTED GRAIN ELECTRIC STEEL SHEET HAVING HIGH MAGNETIC FLOW DENSITY
IT22974/83A IT1167387B (en) 1982-09-24 1983-09-23 PROCEDURE TO PRODUCE AN ORIENTED GRAIN STEEL ELECTRIC TAPE EQUIPPED WITH A HIGH DENSITY OF THE MAGNETIC FLOW
DE19833334519 DE3334519A1 (en) 1982-09-24 1983-09-23 METHOD FOR PRODUCING CORNORIENTED ELECTROPLATE WITH HIGH MAGNETIC INDUCTION
KR1019830004473A KR890000882B1 (en) 1982-09-24 1983-09-24 Method for producing a grain oriented electrical steel sheet having a high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062688A JPS59190325A (en) 1983-04-09 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied

Publications (2)

Publication Number Publication Date
JPS59190325A true JPS59190325A (en) 1984-10-29
JPS631371B2 JPS631371B2 (en) 1988-01-12

Family

ID=13207469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062688A Granted JPS59190325A (en) 1982-09-24 1983-04-09 Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied

Country Status (1)

Country Link
JP (1) JPS59190325A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190017A (en) * 1985-02-20 1986-08-23 Nippon Steel Corp Production of grain oriented silicon steel sheet having low iron loss
JPS6270525A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacture of grain oriented electrical sheet having good forsterite film
JPS6270521A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacture of high flux density grain oriented electrical sheet
JPS62156226A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
US5145533A (en) * 1989-03-31 1992-09-08 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having excellent magnetic characteristic
EP0837149A3 (en) * 1996-10-21 1998-07-15 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
KR100711470B1 (en) 2005-12-24 2007-04-24 주식회사 포스코 Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
KR100797997B1 (en) 2006-12-27 2008-01-28 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
WO2008078915A1 (en) * 2006-12-27 2008-07-03 Posco Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
CN104726667A (en) * 2013-12-23 2015-06-24 鞍钢股份有限公司 Production method of medium thin slab continuous casting and continuous rolling low-temperature oriented silicon steel
WO2022210504A1 (en) * 2021-03-31 2022-10-06 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976719A (en) * 1972-11-28 1974-07-24
JPS526329A (en) * 1975-07-04 1977-01-18 Nippon Steel Corp Production process of grain oriented electrical steel sheet
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS5440227A (en) * 1977-09-07 1979-03-29 Nippon Steel Corp Manufacture of oriented silicon steel sheet with very high magnetic flux density
JPS5618045A (en) * 1979-07-24 1981-02-20 Ntn Toyo Bearing Co Ltd Fuel injection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976719A (en) * 1972-11-28 1974-07-24
JPS526329A (en) * 1975-07-04 1977-01-18 Nippon Steel Corp Production process of grain oriented electrical steel sheet
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS5440227A (en) * 1977-09-07 1979-03-29 Nippon Steel Corp Manufacture of oriented silicon steel sheet with very high magnetic flux density
JPS5618045A (en) * 1979-07-24 1981-02-20 Ntn Toyo Bearing Co Ltd Fuel injection device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190017A (en) * 1985-02-20 1986-08-23 Nippon Steel Corp Production of grain oriented silicon steel sheet having low iron loss
JPS6270525A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacture of grain oriented electrical sheet having good forsterite film
JPS6270521A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacture of high flux density grain oriented electrical sheet
JPS633008B2 (en) * 1985-09-21 1988-01-21 Nippon Steel Corp
JPS633009B2 (en) * 1985-09-21 1988-01-21 Nippon Steel Corp
JPH0459370B2 (en) * 1985-12-27 1992-09-22 Nippon Steel Corp
JPS62156226A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
US5145533A (en) * 1989-03-31 1992-09-08 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having excellent magnetic characteristic
EP0837149A3 (en) * 1996-10-21 1998-07-15 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
KR100711470B1 (en) 2005-12-24 2007-04-24 주식회사 포스코 Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
KR100797997B1 (en) 2006-12-27 2008-01-28 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
WO2008078915A1 (en) * 2006-12-27 2008-07-03 Posco Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
CN104726667A (en) * 2013-12-23 2015-06-24 鞍钢股份有限公司 Production method of medium thin slab continuous casting and continuous rolling low-temperature oriented silicon steel
CN104726667B (en) * 2013-12-23 2017-04-26 鞍钢股份有限公司 Production method of medium thin slab continuous casting and continuous rolling low-temperature oriented silicon steel
WO2022210504A1 (en) * 2021-03-31 2022-10-06 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPS631371B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JPS6240315A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2607869B2 (en) Method for manufacturing grain-oriented electrical steel sheet by low-temperature slab heating
JPS59190325A (en) Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied
JPH01230721A (en) Manufacture of grain-oriented silicon steel sheet having high saturation magnetic flux density
JPS6160895B2 (en)
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPS602624A (en) Manufacture of grain-oriented silicon steel sheet having superior surface property and magnetic characteristic
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
KR970007161B1 (en) Making method of oriented electrical steel sheet having low iron loss
JPH02259016A (en) Production of grain-oriented silicon steel sheet free from surface blister defect
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPS62284017A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
KR19990004252A (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by low temperature slab heating method
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH0742504B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPS6254846B2 (en)
JPH0257125B2 (en)
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JPS6021330A (en) Production of nondirectionally oriented silicon steel sheet having good surface characteristic