JPS6021330A - Production of nondirectionally oriented silicon steel sheet having good surface characteristic - Google Patents

Production of nondirectionally oriented silicon steel sheet having good surface characteristic

Info

Publication number
JPS6021330A
JPS6021330A JP58129490A JP12949083A JPS6021330A JP S6021330 A JPS6021330 A JP S6021330A JP 58129490 A JP58129490 A JP 58129490A JP 12949083 A JP12949083 A JP 12949083A JP S6021330 A JPS6021330 A JP S6021330A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
oriented silicon
silicon steel
nondirectionally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58129490A
Other languages
Japanese (ja)
Inventor
Toshihiko Tanaka
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58129490A priority Critical patent/JPS6021330A/en
Publication of JPS6021330A publication Critical patent/JPS6021330A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain a nondirectionally oriented silicon sheet having a good surface characteristic in the stage of producing the steel sheet from a slab for a nondirectionally oriented silicon steel sheet having a specific compsn. by specifying the rolling end temp. and rolling reduction in the final pass in hot finish rolling and succeeding coiling temp. CONSTITUTION:A slab for a nondirectionally oriented silicon steel contg., by wt%, 0.02% C, 1.5-4.0% Si and <=1.0% Al is heated to about 1,000-1,200 deg.C and is then hot rolled and coiled. The coil is annealed and is subjected further to cold rolling and final finish annealing to produce a nondirectionally oriented silicon steel sheet. The steel sheet is subjected to hot finish rolling under the conditions of 800-700 deg.C rolling end temp. and >=15% draft in the final pass and at the same time the coiling temp. is regulated to >=500 deg.C. The steel sheet which obviates generation of ridging in the product is thus obtd.

Description

【発明の詳細な説明】 この発明は、表面性状の良好な無方向性珪素鋼板の製造
方法に191 t、 、とくにこの種供1板において従
来懸念されたりジンクの発生を有利に防止しようとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for producing a non-oriented silicon steel sheet with good surface properties, and particularly to advantageously prevents the occurrence of zinc, which has been a concern in the past, in this type of sheet. It is something.

周知のように無方向性珪素鋼板は、変圧器、安定器など
の静止機器あるいはモーター、発電機などの回転機器の
鉄心として、主に積層して用いら一−−−−壮るご−と
が多い。従って電磁特性に優れることはもちろん、占積
率や層間抵抗に大きな影響を与える表面性状も良好であ
ることが要求されろう電磁特性、については、最近、溶
鋼段階で炭素レベルを極力低減して、焼鈍における脱炭
工程を軽減または省略することにより 一層の改善が達
成されたが、表面性状については未だ以下に述べるよう
な問題を残していた。
As is well known, non-oriented silicon steel sheets are mainly used in laminated form as the iron core of stationary equipment such as transformers and ballasts, or rotating equipment such as motors and generators. There are many. Therefore, in order to improve electromagnetic properties, which require not only excellent electromagnetic properties but also good surface properties that have a large effect on the space factor and interlayer resistance, we have recently reduced the carbon level as much as possible at the molten steel stage. Further improvements were achieved by reducing or omitting the decarburization step during annealing, but the following problems with surface quality still remained.

すなわちSlを1.5重量%(以下単に%で示す)以上
含有する珪素鋼においては、冷間圧延後の製、品にリジ
ングと呼ばれるしわ状の表面欠陥が発生易かったのであ
るが、このリジングは、単に外観を損うだけでな(、積
層した場合には占積率を低下させ、また層間抵抗をも低
下させるため、かようなりジンク発生鋼板を実機に組込
んだモーターや変圧器は、その特性を劣化させる結果に
なっていたのである。
In other words, in silicon steel containing 1.5% by weight or more of Sl (hereinafter simply expressed as %), wrinkle-like surface defects called ridging are likely to occur in products after cold rolling. This not only spoils the appearance, but also reduces the space factor and interlayer resistance when laminated, so motors and transformers incorporating such zinc-generating steel plates are not recommended. This resulted in deterioration of its characteristics.

リジングの発生lr& ntについては、まだ明確には
Itll’明されていないが、おおよそ次のとおりと考
えられる。
The occurrence of ridging has not yet been clearly clarified, but it is thought to be roughly as follows.

すなわちスラブ中の柱状晶が熱間圧延後も伸長粒として
残り、その一部が熱延後の焼鈍でも未再結晶のまま残存
した場合、冷延時には他の再結晶部との変形flBが異
なるため、表面がしわ状になる。
In other words, if the columnar crystals in the slab remain as elongated grains even after hot rolling, and some of them remain unrecrystallized even after annealing after hot rolling, the deformation flB will be different from other recrystallized parts during cold rolling. As a result, the surface becomes wrinkled.

従来、リジングの防止対策としては、 11、) 低温鋳込みや電磁((:9拌の活用などによ
ってスラブの柱状晶率を低減する、 (2)γ→α変態の利用やスラブ段階での圧下により柱
状晶の微細11工結晶化を図る、 (8)熱間粗圧延工程で歪エネルギーを導入する、ブ工
どが提案されている。
Conventional measures to prevent ridging include: (11) reducing the columnar crystallinity of the slab by utilizing low-temperature casting and electromagnetic stirring (2) by utilizing the γ→α transformation and rolling reduction at the slab stage; (8) A rolling process has been proposed in which strain energy is introduced in the rough hot rolling process to achieve fine crystallization of columnar crystals.

しかしながら、上記の方法はいずれも次に述べるような
問題を残していた。
However, all of the above methods still have the following problems.

(11の低温鋳込みはある程度の効果は期待できるもの
の、定常的な操業の確保が難しく、また電磁。
(Although low-temperature casting (No. 11) can be expected to have some effect, it is difficult to ensure steady operation, and it is electromagnetic.

攪拌を利用する方法は、そのための設備投資が必要であ
り、設備費も嵩む。
The method using stirring requires investment in equipment, which increases the equipment cost.

(2)のγ→α変態の利用は、Slを1.5%以上含有
し、しかも最近のような極低炭領域では不可能であり、
またスラブ段階での圧下による方法は、設備投資が必要
なうえ、発明者らの実験によればその効果は認められな
かった。
Utilization of γ→α transformation in (2) is not possible in the current extremely low coal region containing 1.5% or more of Sl.
Further, the method of rolling down the slab at the slab stage requires investment in equipment, and according to experiments conducted by the inventors, no effect was observed.

(8)の熱間粗圧延段階での歪エネルギーの導入は、仕
上げ圧延までにそのエネルギーは高温のために解放され
、蓄積するということはなかった。
The strain energy introduced in the hot rough rolling stage (8) was released by the finish rolling due to the high temperature and was not accumulated.

この発明は、上記の諸問題を有利に解決するもので、た
とえ高い柱状晶率をもつ連続鋳造スラブであっても、熱
間圧延の仕上げ圧延段階における圧延終了温度および圧
下量、さらには後続の巻取り工程における巻取り温度を
併せて制御することKより、引続く熱延板の焼鈍工程に
おいて再結晶しづらい伸長粒をも完全に再結晶させるこ
とができ、従って製品のりジンクを消失させ得るとの新
規知見に立脚する。
The present invention advantageously solves the above-mentioned problems, and even in continuously cast slabs with a high columnar crystal content, the rolling end temperature and reduction amount in the finish rolling stage of hot rolling, as well as the subsequent By controlling the winding temperature in the winding process, it is possible to completely recrystallize elongated grains that are difficult to recrystallize in the subsequent annealing process of the hot-rolled sheet, and thus to eliminate product paste zinc. Based on new knowledge.

すなわちこの発明は、C: 0.1%以下、Sl:、1
.5〜4.0%およびAe: 1.0%以下を含有する
lIl成になる無方向性珪素鋼用スラブに熱間圧延を施
して熱延板としたのち、−たんコイルに巻取ってから焼
鈍し、ついで冷間圧延、最終仕上げ焼鈍を施す一連の工
程からなる無方向性珪素鋼板の製造方法において、熱間
仕上げ圧延を、圧延終了温度=800〜700℃、最終
バス圧下率:15%以上の条件下に行うと共に、500
℃以下の温度範囲で巻取ることをもって上記課題の解決
手段とするものである。
That is, in this invention, C: 0.1% or less, Sl: 1
.. 5 to 4.0% and Ae: 1.0% or less, a non-oriented silicon steel slab containing 1.0% or less is hot-rolled into a hot-rolled plate, and then wound into a -tan coil. In a method for producing a non-oriented silicon steel sheet, which consists of a series of steps of annealing, then cold rolling, and final finish annealing, hot finish rolling is performed, rolling end temperature = 800 to 700 ° C., final bath reduction rate: 15%. Under the above conditions, 500
A means for solving the above problem is to wind the film at a temperature range of 0.degree. C. or lower.

以下この発明を由来するに至った実験結果に基いて具体
的に説明する。
The present invention will be specifically explained below based on the experimental results that led to its origin.

まずこの発明における珪素鋼の基本成分を上記の範囲に
限定した理由を述べる。
First, the reason why the basic components of the silicon steel in this invention are limited to the above range will be described.

Cは、0.02%を超えると最終焼鈍時の脱炭処理の負
荷が大きくなって能率が悪くなるばかりでなく、脱炭処
理時に形成される酸化被膜により電磁特性の劣化を招く
ので0 、0.2%以下に限定した。
If C exceeds 0.02%, the decarburization process during final annealing will not only increase the load and reduce efficiency, but also cause deterioration of electromagnetic properties due to the oxide film formed during the decarburization process. It was limited to 0.2% or less.

Siは、素材の電気抵抗を高めて渦電流損な低減させる
のに有効に寄与するが、含有量が1.5%未満ではその
効果に乏しく、一方4.0%を超える・と冷間加工性が
劣化するので、S1含有量は1.5〜4.0%の範囲に
限定した。
Si increases the electrical resistance of the material and effectively contributes to reducing eddy current loss, but if the content is less than 1.5%, the effect is poor, while if the content exceeds 4.0%, it is difficult to cold process. The S1 content was limited to a range of 1.5% to 4.0% since the properties of the resin deteriorated.

AIは、所定の集合組織を発達させるのに有用な元素で
あるが、含有量が1.0%を超えると81と同様に脆く
なって冷間加工性が劣化し、またコストの上昇も招くの
で、Ae含有量は1%以下に限定した。
AI is an element useful for developing a predetermined texture, but if the content exceeds 1.0%, it becomes brittle like 81, deteriorates cold workability, and also increases cost. Therefore, the Ae content was limited to 1% or less.

さて上記の成分組成範囲に調整したスラブは、1000
〜1200℃で加熱後、熱間粗圧延、仕上り圧延を施し
て所望の熱延板厚とするわけであるが、発明者らは、こ
の熱間仕上げ圧延における圧延終了温度および最終パス
圧下率、さらにはその後の巻取り温度の三点を制御する
ことにより、素材中に歪エネルギーが効果的に蓄積され
、その後の焼鈍段階で再結晶の駆動力として有効に作用
し、かくしてリジングのない表面性状の良好な製品が得
られることを究明し、この発明を完成させるに至ったの
である。。
Now, the slab adjusted to the above component composition range has 1000
After heating at ~1200°C, hot rough rolling and finish rolling are performed to obtain the desired hot-rolled plate thickness. Furthermore, by controlling the subsequent winding temperature, strain energy is effectively stored in the material, which effectively acts as a driving force for recrystallization in the subsequent annealing step, thus achieving a ridging-free surface texture. It was discovered that a good product could be obtained, and this invention was completed. .

第1図に、C: 0.005%、Si : 2.flO
%および、 AJ : 0.805%を含有する連鋳ス
ラブを、加熱後仕上げ圧延終了温度および最終パス圧下
率をU々に変化させて熱間圧延し、ついで450 ℃で
巻取ってから常法に従って焼鈍、冷間圧延、最終仕上げ
焼鈍を施して得た無方向性珪素鋼板の表面性状について
調べた結果を、熱間仕上げ圧延終了温度とJに終パス圧
下率との関係で整理して示す。なお表面性状の評価は次
のようにして行い、():凹凸なしく山高さ0〜7μm
) 0:凹凸小(山高さ8〜l 5 tt7rl )△:凹
凸中(山高さ16〜25μm) X:凹凸大(山高さ26μm以上) このうb((j+、○が合格品である。
In FIG. 1, C: 0.005%, Si: 2. flO
% and AJ: A continuous cast slab containing 0.805% was hot-rolled after heating by changing the finish rolling end temperature and the final pass reduction rate in U, and then coiled at 450 °C and then rolled in a conventional manner. The results of investigating the surface properties of non-oriented silicon steel sheets obtained by annealing, cold rolling, and final annealing according to the above are summarized in terms of the relationship between hot finish rolling end temperature, J, and final pass reduction ratio. . The surface quality was evaluated as follows: (): No unevenness, peak height 0 to 7 μm
) 0: Small unevenness (crest height 8-l5tt7rl) Δ: Medium unevenness (crest height 16-25 μm) X: Large unevenness (crest height 26 μm or more) This b ((j+, ○ is a passed product.

11)1図から明らかなように、仕上げ圧延終了温!1
(が800 ”Cを超えるとりジンクの発生が著しく、
また該温度は800℃以下でも最終パスにおける圧下率
が15%に満たない場合も、やはりリジングはjt了消
されない。これに対し仕上げ圧延終了温度が800 ”
(:以下でがっ最終パス圧下率が15%以上の場合は、
表面凹凸はほとんどない。
11) As is clear from Figure 1, the temperature at the end of finish rolling! 1
(When the temperature exceeds 800"C, the occurrence of zinc is significant.
Further, even if the temperature is 800° C. or less, the rolling reduction in the final pass is less than 15%, the ridging is still not canceled. On the other hand, the finishing rolling temperature is 800"
(: If the final pass reduction rate is 15% or more,
There are almost no surface irregularities.

次に第2図に、第1図と同じ素材の連鋳スラブを、加熱
後、熱間仕上げ圧延の最終パス圧下率は20%と一定に
し、仕上げ圧延終了温度と巻取り温度を種々に変化させ
て製造した無方向性珪素鋼板の表面性状について調べた
結果を、仕上げ圧延終了温度と巻取り温度との関係で示
す。
Next, Fig. 2 shows a continuously cast slab made of the same material as in Fig. 1, after heating, the final pass reduction rate of hot finish rolling was kept constant at 20%, and the finish rolling end temperature and coiling temperature were varied variously. The results of an investigation on the surface properties of the non-oriented silicon steel sheet produced in this manner are shown in terms of the relationship between finish rolling end temperature and coiling temperature.

第2図から明らかなように、仕上げ圧延終了温度が80
0℃を超えるとやはりリジングの発生が著しく、一方該
温度は800℃以下であっても巻取り温度が500℃を
超えると、復熱により回復現象が生じて板に蓄積された
歪エネルギーが駒数されるため、表面性状は悪かった。
As is clear from Fig. 2, the finishing rolling temperature is 80°C.
If the temperature exceeds 0°C, ridging will occur significantly, but even if the temperature is below 800°C, if the winding temperature exceeds 500°C, a recovery phenomenon will occur due to recuperation, and the strain energy accumulated in the plate will be transferred to the piece. The surface quality was poor because of the number of particles.

なお第1図および第2図に示した成績を得たいずれの実
験においても、仕上圧延終了温度が700℃を下回ると
、板形状の悪化を生じた。
In all of the experiments that yielded the results shown in FIGS. 1 and 2, when the final rolling temperature was lower than 700° C., the sheet shape deteriorated.

以上の理由から、この発明では、熱間仕上げ圧延の圧延
終了温度は800〜700℃、最終パス圧下率は15%
以上、そして巻1収り温度は500℃以下の範囲に限定
したのである。
For the above reasons, in this invention, the finishing temperature of hot finish rolling is 800 to 700°C, and the final pass reduction rate is 15%.
As mentioned above, the winding 1 temperature was limited to a range of 500°C or less.

以下この発明の実施例について説明する。Examples of the present invention will be described below.

(? : 0.005%、Si : 2.80%、A/
 : 0.805%、Mn : O,1,7%、P :
 0.015%およびS : 0.001%を含イ1し
、残部は実質的に鉄の組成になる溶鍋を、連続鋳造によ
りスラブとし、ついで構lに示した種々の条件下にスラ
ブ加凸、熱間粗圧延および仕上げ圧延、巻取り、熱延板
焼鈍を順次に行い、その後圧下率=76%の冷間圧延つ
いで850〜(150℃の温度範囲での1m1nにわた
る最終仕上げ焼鈍を施して無方向性珪3<鋼板を製造し
た。:t+iられた製品の表面性状について1.ノベた
結果を表1に併記する。なお次面性状すなわちリジング
についてのBY価は、前掲第1図に示した場合と同じで
ある。
(?: 0.005%, Si: 2.80%, A/
: 0.805%, Mn: O, 1.7%, P:
A molten ladle containing 0.015% and S: 0.001%, with the remainder being essentially iron, was made into a slab by continuous casting, and then slab-processed under various conditions shown in Structure 1. Convex, hot rough rolling, finish rolling, winding, and hot rolled plate annealing were performed in sequence, followed by cold rolling at a reduction rate of 76%, and final finish annealing over 1 m1 in a temperature range of 850 to (150 ° C.). A non-oriented silicon 3 < steel plate was manufactured by using t + i. Same as shown.

表1に示した結果から明らかなように、熱間仕上げ圧延
終了温度、最終パス圧下率および巻取り温度のうち一つ
でもこの発明の適、正範囲を満足しない比較例(スラブ
席1〜B)はいずれも、製品にリジングが発生したのに
対し、この発明に従い得られたスラブ/164 、5は
、リジングの発生はなく、美麗な表面性状が得られた。
As is clear from the results shown in Table 1, it is clear from the comparative examples (slab seats 1 to B ), while ridging occurred in the products, Slab/164, 5 obtained according to the present invention did not have ridging and had a beautiful surface texture.

以上述べたようにこの発明によれば、Slを1.5%以
上官有する無方向性珪素鋼板において従来懸念されたり
ジンクの発生を効果的に防止して、凹凸のない美麗な表
面性状の製品を得ることができる。
As described above, according to the present invention, it is possible to effectively prevent the generation of zinc, which was a concern in the past in non-oriented silicon steel sheets containing 1.5% or more of Sl, and to produce a product with a beautiful surface without unevenness. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、リジングの発生に及ぼす熱間仕上げ圧延終了
温度と最終パス圧下率との影響を示した図、 第2図は同じくリジング発生に及ぼす熱間仕上げ圧延終
了温度と巻取り温度との影響を示した図である。 第1図 1艷終ノ?X圧下卑c%) 第2図 養舅更すミ五崖(τ) O凹凸QLCルI!lp:θ〜塾フ ン0凹凸小仙だθ〜!羽ノ Δ凹凸中c山、1!1ゼlθ〜?ゾ2 x 凹凸’LC小に21ytHJJ (Ooば治#ン
Figure 1 shows the effects of hot finish rolling end temperature and final pass rolling reduction on the occurrence of ridging, and Figure 2 shows the effects of hot finish rolling end temperature and coiling temperature on the occurrence of ridging. It is a diagram showing the influence. Figure 1 1 艷端ノ? X compression base c%) Fig. 2 Yoko Sarasumi five cliffs (τ) O unevenness QLC le I! lp: θ~ It's a cram school fun 0 uneven small immortal θ~! Hano Δ unevenness medium c mountain, 1!1 zel θ~? Zo2 x unevenness 'LC small 21ytHJJ (Oobaji #n

Claims (1)

【特許請求の範囲】 L C: 0.02重景%以下 Si:1.5〜4.0重景%および Ag:1.0重量%以下 を含有する組成になる無方向性珪素鋼用スラブに熱間圧
延を施して熱延板としたのち、−たんコイルに巻取って
から焼鈍し、ついで冷間圧延、最終仕上げ焼鈍を施すこ
とによって無方向性珪素鋼板を製造するに当り、熱間仕
上げ圧延を、圧延終了温度=800〜700℃、ii↓
終パス圧下率:15%以上の条件下に行い、ついで50
0℃以下の温度範囲で巻取ることを特徴とする表面性状
の良好な無方向性珪素鋼板の製造方法。
[Claims] A slab for non-oriented silicon steel having a composition containing L C: 0.02% by weight or less, Si: 1.5 to 4.0% by weight or less, and Ag: 1.0% by weight or less. In producing a non-oriented silicon steel sheet, hot rolling is performed to produce a hot rolled sheet, which is then wound into a -tan coil and annealed, followed by cold rolling and final finish annealing. Finish rolling, rolling end temperature = 800 to 700°C, ii↓
Final pass rolling reduction: Performed under conditions of 15% or more, then 50%
A method for producing a non-oriented silicon steel sheet with good surface properties, characterized by winding at a temperature range of 0° C. or lower.
JP58129490A 1983-07-18 1983-07-18 Production of nondirectionally oriented silicon steel sheet having good surface characteristic Pending JPS6021330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129490A JPS6021330A (en) 1983-07-18 1983-07-18 Production of nondirectionally oriented silicon steel sheet having good surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129490A JPS6021330A (en) 1983-07-18 1983-07-18 Production of nondirectionally oriented silicon steel sheet having good surface characteristic

Publications (1)

Publication Number Publication Date
JPS6021330A true JPS6021330A (en) 1985-02-02

Family

ID=15010764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129490A Pending JPS6021330A (en) 1983-07-18 1983-07-18 Production of nondirectionally oriented silicon steel sheet having good surface characteristic

Country Status (1)

Country Link
JP (1) JPS6021330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002401A (en) * 2003-06-11 2005-01-06 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
WO2020153387A1 (en) * 2019-01-24 2020-07-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002401A (en) * 2003-06-11 2005-01-06 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
WO2020153387A1 (en) * 2019-01-24 2020-07-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same
JP6767687B1 (en) * 2019-01-24 2020-10-14 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
RU2771133C1 (en) * 2019-01-24 2022-04-26 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet of non-textured electrical steel and the method for its production

Similar Documents

Publication Publication Date Title
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JPS59190325A (en) Production of grain-oriented silicon steel plate having excellent iron loss for which continuous casting method is applied
JPS6160895B2 (en)
US5421912A (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
JPS6021330A (en) Production of nondirectionally oriented silicon steel sheet having good surface characteristic
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPS6316445B2 (en)
JPS6169923A (en) Manufacture of non-orientation silicon steel plate of good surface
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH10251752A (en) Production of hot rolled silicon steel plate excellent in magnetic property
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH0353022A (en) Manufacture of low core loss-high magnetic flux density nonoriented silicon steel sheet
JPH08157964A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPS62284017A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss