JPH032323A - Manufacture of nonoriented silicon steel sheet having high magnetic flux density - Google Patents

Manufacture of nonoriented silicon steel sheet having high magnetic flux density

Info

Publication number
JPH032323A
JPH032323A JP13296089A JP13296089A JPH032323A JP H032323 A JPH032323 A JP H032323A JP 13296089 A JP13296089 A JP 13296089A JP 13296089 A JP13296089 A JP 13296089A JP H032323 A JPH032323 A JP H032323A
Authority
JP
Japan
Prior art keywords
annealing
flux density
magnetic flux
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13296089A
Other languages
Japanese (ja)
Other versions
JPH0757888B2 (en
Inventor
Ichiro Tsukatani
一郎 塚谷
Tadamichi Sakai
酒井 忠迪
Masato Matsumoto
正人 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1132960A priority Critical patent/JPH0757888B2/en
Publication of JPH032323A publication Critical patent/JPH032323A/en
Publication of JPH0757888B2 publication Critical patent/JPH0757888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the nonoriented silicon steel sheet having high magnetic flux density by properly heating a slab having specified compsn. constituted of C, Si, Mn, P, S, Al, N and Fe to execute hot rolling, subjecting it to annealing and cold rolling and thereafter executing specified final annealing. CONSTITUTION:A slab contg., by weight, <=0.005% C, 0.7 to 1.7% Si, 0.1 to 1.5% Mn, 0.005 to 0.10% P, <=0.005% S, 0.3 to 1.3% Al (where <2.0% Si+Al is regulated), <=0.005% N and the balance Fe with inevitable impurities is heated to a temp. within a gamma loop in an Fe-(Si+Al) series to execute hot rolling. The hot rolled steel sheet is subjected to hot rolled sheet annealing within an alphaphase areal temp. of 800 deg.C to the AC3 point. Next, the hot rolled sheet is subjected to cold rolling at >=50% and is thereafter to final annealing. As the final annealing, continuous annealing of 800 to 1000 deg.CX0.5 to 5 min or box annealing of 700 to 850 deg.CX1 to 10hr is executed. In this way, the nonoriented silicon steel sheet having excellent magnetic characteristics of remarkably high magnetic flux density and low core loss can be obtd. at low cost.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は磁気特性の優れた無方向性電磁鋼帯の製造方法
に係り、特に磁束密度が極めて高く、鉄損が低いフルプ
ロセス又はセミプロセス無方向性電磁鋼帯の製造方法に
関する。 (従来の技術) 無方向性電磁m帯は発電機、電動機、小型変圧器及び安
定器等の鉄心材料として使用される。しかし、昨今、省
エネルギー化が強く叫ばれ、電気機器の効率向上若しく
は小型化のため、磁束密度が高く、かつ鉄損の低い鉄心
材料の要求がますます高まってきている。 磁束密度を支配する要因としては集合組織が挙げられる
が、無方向性鋼板の場合、集合組織を改良して磁束密度
を向上させる方法は殆ど知られていない、無方向性鋼板
としては(100)面が板面に平行な、いわゆる面内無
方向性が理想的であり、その製造方法も幾つか提案され
ているが、いずれも製造コストが高いために工業的生産
には適用されていない。このため、素材が持つ磁気特性
を完全に引き出せないでいた。 例えば、集合組織の改善による磁束密度の向上に関して
は、特開昭54−、68716号にてsbを添加した珪
素鋼のホットコイルを800℃で5時間HNxガ人中で
焼鈍し、冷延以降の工程は公知の方法で処理することに
よって(100)<uvW〉近傍の集積が強くなること
が開示されている。 しかし、この方法ではホットコイルの焼鈍時間が長いた
めコスト高となる。 また、無方向性電磁鋼板製造の従来技術として冷間圧延
前の素材の結晶粒径を大きくしておくことが磁気特性の
向上に有効であることがケロられている。 例えば、特願昭55−110314号には、冷間圧延前
の結晶粒を粗大化する方法が提案されている。この方法
は、特定の化学成分を有する鋼塊又はスラブを熱延鋼帯
に熱間圧延するに際し、熱間圧延終了温度を磁鋼の化学
成分に応じて次式(1)で表わされる温度以上とし、 (891−900(C%)+50(S j%)−88(
Mn%)+190(P%)+380(A Q Z)) 
(’C)      ・= −(1)次いで、この熱延
鋼帯を磁鋼のAr、変態点温度以下、30秒間以上15
分間以下の条件で焼鈍することを主な特徴とするもので
ある。 また、特開昭58−204126号では、無方向性電磁
鋼板の製造方法において、c:Q、Q2%以下、Si若
しくは(Si+Al)のいずれかが1゜5%以下、Mn
: 1 、0%以下、P:0.20%以下を含み、残部
がFe及び不可避的不純物よりなる鋼につき、前記熱間
圧延工程における圧延終了温度を600〜700℃1巻
取温度を500℃以上の温度範囲で行い、次いで巻取鋼
帯をA3変態点以下の温度で30秒間以上15分間以下
で焼鈍することを特徴とする特許 磁鋼帯の製造方法が開示されている。 しかしながら、これらはいずれも低温で熱間圧延を行な
うものであり、高Si鋼の場合,熱間圧延時、割れや破
断を引き起こす危険性をはらんでいる。 一方、従来、無方向性電磁鋼板としては一般に珪素鋼板
が用いられている。珪素鋼板は比抵抗を増加させて鉄損
を低下させるためにSiを添加した鋼種である。その結
果、高級鋼ほどSi含有量が高いため磁束密度に関して
は低い傾向を示している。 また、Si量を増加すると、Fe−Si系状態図におい
てγループをはずれ、α単相域となるため、通常の熱延
前加熱温度においても粗大なα粒を得ることができる。 しかしながら、粗大なα粒が必要なのは冷延前であり,
このため、熱延前からα粒を粗大にすることは多くの弊
害をもたらす。例えば、板厚方向での組織分布が不均一
となり、冷延一焼鈍後の磁気特性が劣化するばかりか、
リジングやソーエツジをもたらす。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、冷延前の素材の結晶粒径を容易に大
きくすることができ、特に磁束密度が極めて高く,鉄損
が低い無方向性Ti磁鋼帯を連続的に製造し得る方法を
提供することを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者らは、冷延前の素材
の結晶粒径をフルプロセス又はセミプロセスで容易に大
きくすることができる方策について鋭意研究を重ねた。 その結果、特にSi量及びAQfl.を規制することに
より、熱間圧延後,微細且つ均一な結晶組織を有する熱
延鋼帯を得,この熱延鋼帯の結晶粒径を粗大化するため
の熱延鋼帯の焼鈍には従来の箱焼鈍の如き長時間焼鈍で
はなく,また脱炭させる必要もなく、15分以下の短時
間で比較的安価に、かつ容易に熱延鋼帯の結晶粒を粗大
化するのに成功し,ここに本発明をなしたものである。 すなわち、本発明による方法は、C:0.O O 5%
以下、Si:0.7 〜1.7%、Mn:0.1〜1.
5%、P:O.O O 5 〜0.1 0%、S:O.
005%以下.AQ:0.3〜1。3%(但し、Si+
AI2(2、0%)及び[0.0 0 5%以下を含み
,残部が鉄及び不可避的不純物よりなるスラブを熱間圧
延するに際して、Fe−(Si+Al)系におけるγル
ープ内の温度に加熱して熱間圧延した後、得られた熱延
鋼板について800℃以上、A c 3点以下のα相域
温度内で熱延板焼鈍を施し、更に50%以上の冷間圧延
を行い、次いで最終焼鈍として、800〜b 鈍、或いは700〜850@cX1〜10時間の条件の
箱焼鈍を行うことを特徴とする鉄損が低く、磁束密度の
高い無方向性電磁鋼板の製造方法を要旨とするものであ
る。 以下に本発明を更に詳細に説明する。 (作用) 本発明は前述の各条件の組合せによるものであるが、そ
の基本的構成は以下のとおりである。 まず、微細且つ均一な結晶組織を有する熱延鋼帯を得る
ために、熱間圧延前の加熱温度を低温のγ相領域とし、
熱間圧延をできるだけγ相領域で終了する。これにより
併わせで析出物の微細化を抑制することもでき1次の熱
延板焼鈍における粒成長性を助長することもできる6 そして、更に、このような熱延鋼帯の焼鈍(熱延板焼鈍
)に際しては、できるだけ高温のα域に加熱することに
より、粗大な結晶組織を有する冷延前素材が得られる。 これにより、最終焼鈍において(100)<uvw>+
(110)<001>集合組織が得られるので、従来の
同一の鉄損値の無方向性電磁鋼板に比べて、極めて高い
磁束密度が得られる。 鉄損と磁束密度のバランスを考慮して、これらの条件を
実現するための成分系は、以下のとおりとする。 Si:0.7〜1.7% AQ:0.3〜1.3% Si+Al≦2.0% すなわち、Si十AQの合計量は、熱間圧延前の加熱を
γ相領域(例、第1図のa点)で行い、その後の熱延板
焼鈍はα相領域(例、第1図・の5点)で行う観点から
規制するもので、2.0%以下とし、更に、Si量は必
要な鉄損値と磁束密度のバランスを達成するために規制
されるものである。 更に、AQ量は、Si量が鉄損値と磁束密度とのバラン
スにより規制される条件下で、γループのごく近傍(第
1図のC点)に位置させることにより。 上記の効果を最も効率よく達成し、更に、Nとの溶解度
積によりAQN析出物の微細析出を抑制する観点から規
制するものである。なお、AQ量は少ないと良好な鉄損
が得られないし、多いと磁束密度が低下する。 次に本発明における化学成分の限定理由について説明す
る。 C: Cは磁気特性を保持するためには有害な元素であり、含
有量は0.01%以下とする必要があるが、少ないほど
好ましく、そのためには溶鋼脱炭により低減するのがよ
く、更に磁気時効を防止するためには、0.005%以
下とするのがよい。 したがって、C含有量は0.005%以下とする。 Si: Siは本発明の効果を充分に発揮せしめる観点から規制
するものである。すなわち、S、Lは固有抵抗増加によ
る鉄損改善のために必要な元素であるが、含有量が0.
7%未満では効果が少なく、また1、7%を超えるとS
i単独でもFe−8i系のγループを超えるばかりか磁
束密度が低下する。 したがって、Si含有量は0.7〜1.7%の範囲とす
る。 Mn: Mnは熱間圧延時の赤熱防止及び集合組織の改善による
磁性向上に効果のある元素である。しかし、含有量が0
.1%未満では効果が少なく、また1、5%を超えると
磁性特性を劣化させる。したがって1Mn含有量は0.
1〜1.5の範囲%とする。 P: Pは鉄損改善に効果のある元素であ。しかし、含有量が
0.005%未満ではこの効果が少なく、また0、1%
を超えて含有すると磁束密度が低下する。したがって、
P含有量は0.005〜0.1%の範囲とする。 Sは磁性向上に有害なMnS等の非金属介在物を生成さ
せる元素であり、少ないほど好ましく、0.005wt
%以下でなければ安定した磁性改善効果は得られない。 したがって、S含有量は0゜005%以下とする。 AQ: AQは、Siと同様、本発明を構成する重要な元素であ
る。すなわち、AQは(100)結晶方向の成分を発達
させること、及びSiと同様に比抵抗を増加させること
以外に、AQNの溶解度積の変化により無方向性珪素鋼
板の磁性特性上有害なAQNの微細析出を抑制するため
に必要な元素である。しかし、含有量が0.3%未満で
はこのような効果が少なく、また良好な鉄損が得られず
、一方1.3%を超えて含有すると磁束密度が低下する
。したがって、Afl含有量は0.3〜1.3%の範囲
とする。 但し、上記SiとAQについては、前述の如く熱間圧延
前の加熱をγ相領域で行い、その後の熱延板焼鈍はα相
領域で行う観点から、Si+A9合計量を2.0%以下
に規制する必要がある。 次に1本発明における製造工程について説明する。 まず、上記化学成分を有する鋼は、通常の方法により溶
製してから、連続鋳造により鋼スラブに鋳造するか、又
は造塊法により鋼塊を作製し、これを分塊圧延により鋼
スラブに形成してもよい。 このようにして作製された鋼スラブは、Fe−(Si十
AQ)系におけるγループ内の、温度に加熱して熱間圧
延を行い、厚さ1.5〜3.0mmの熱延板を得る。こ
の熱延板は殆どの圧下をγ相領域で行うので、微細な結
晶組織(α)が板厚方向に均一に得られ、後の熱延板焼
鈍において著しい粒成長が達成でき、その熱延板集合組
織も磁気特性にとって好都合となる。 次いで、熱延板に熱延板焼鈍を施すことにより、粗大な
結晶粒が得られると共に集合組織が改善される。その焼
鈍条件は800℃以上、Ac、意思下の温度(α相域温
度内)とし、好ましくはこの温度において0.5〜5分
の間保持する連続焼鈍を行う、この焼鈍条件において、
800℃未満の低温度では連続焼鈍において良好な熱延
板結晶組織が得られず、焼鈍効果が期待できない。また
Ac、点を超える高温焼鈍では熱延板焼鈍中にα→γ変
態し、かえって結晶粒が微細化し、また以後の工程にお
ける酸洗性の劣化を招くので好ましくない。 次に、この熱延板焼鈍を終了した熱間圧延板は、通常の
方法によりスケール除去のために酸洗を行った後、圧下
率50%以上の冷間圧延を行う。これは、鉄損や磁束密
度に対して最適な焼鈍板粒径と集積の高い(100)<
uvw>集合組織を得るためには50%以上の冷間圧延
率が必要なためである。 冷間圧延された冷間圧延板は、最終焼鈍を行うことによ
って、集合組織が発達し、磁気特性が改善される。 この焼鈍条件としては、800〜1000℃の温度にお
いて0.5〜5分の間保持する連続焼鈍を行うか、或い
は700〜850℃の温度において1〜10時間の間保
持する箱焼鈍を行う。 この場合、連続焼鈍において800℃未満5箱焼鈍にお
いて700℃未満では焼鈍時の粒成長性が悪く、良好な
磁気特性が得られない。また、連続焼鈍において100
0℃を超え、箱焼鈍において850℃を超えると、逆に
磁束密度が低下し、炉温の過度の上昇は炉の維持、管理
や経済性の点から不利である。 この最終焼鈍の保持時間は焼鈍方式によって異なり、そ
れぞれの温度によって適宜選択すれば良いが、連続焼鈍
の場合、0.5分未満では再結晶組織が得られず、更に
磁性不良を招来するという問題があり、また保持時間が
5分を超えると連続焼鈍炉の操業においてラインスピー
ドが過度に遅くなる。一方、箱焼鈍の場合、1時間未満
では連続焼鈍における保持時間下限の限定理由と同様の
問題があり、10時間を超えると経済性の問題がある。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する供試鋼を真空溶解炉にて
Lot溶製し、鋼塊とした後、1150℃の温度に加熱
してから200+++mの厚さのスラブを作製した。 このスラブを1150℃の温度に加熱して、2゜OLI
Imの厚さまで熱間圧延を行った。熱間圧延後、755
〜1060℃の温度において2分間の熱間圧延板焼鈍を
行った。 更に、酸洗後、Q、5mm厚まで冷間圧延を行い、この
冷間圧延板に連続焼鈍(840℃×1.5分。 945℃×1.5分)或いは箱焼鈍(750℃×3時間
)を施した。 得られた焼鈍板からエプスタイン試験片を剪断により採
取して磁気特性を測定した。その結果を第1表に併記す
る。 第1表において、試験Ha 3〜Ha 4、Ha 8、
&11〜Nα13、Nα15は本発明例である。 第1表より明らかなように1本発明例はいずれも、鉄損
を低下させながら磁束密度を高くできることが判る。す
なわち、鉄損が低く、磁束密度の高い無方向性電磁鋼板
が製造することができる。 一方、化学成分が本発明範囲外の比較例尚1〜Nα2、
Nα5〜Nn 7、&9.並びに化学成分は本発明範囲
内であるが製造条件が本発明範囲外である比較例Nα1
0、Nα14は鉄損を低下させることができず、高い磁
束密度も得られていない。
(Industrial Application Field) The present invention relates to a method for manufacturing a non-oriented electrical steel strip with excellent magnetic properties, and in particular to a method for manufacturing a non-oriented electrical steel strip with extremely high magnetic flux density and low iron loss. Regarding the manufacturing method. (Prior Art) Non-directional electromagnetic m-band is used as core material for generators, electric motors, small transformers, ballasts, etc. However, in recent years, there has been a strong demand for energy conservation, and in order to improve the efficiency or downsize electrical equipment, there has been an increasing demand for iron core materials with high magnetic flux density and low core loss. Texture is one of the factors that governs magnetic flux density, but in the case of non-oriented steel sheets, there is almost no known method for improving the texture to improve magnetic flux density.As for non-oriented steel sheets, (100) So-called in-plane non-direction, in which the plane is parallel to the plate surface, is ideal, and several manufacturing methods have been proposed, but none have been applied to industrial production due to high manufacturing costs. For this reason, it was not possible to fully bring out the magnetic properties of the material. For example, regarding the improvement of magnetic flux density by improving the texture, in JP-A-54-68716, a hot coil of silicon steel added with sb was annealed at 800°C for 5 hours in an HNx gas, and after cold rolling, It is disclosed that the accumulation in the vicinity of (100)<uvW> becomes stronger by processing the process using a known method. However, this method requires a long annealing time for the hot coil, resulting in high costs. Furthermore, as a conventional technique for producing non-oriented electrical steel sheets, it has been shown that increasing the grain size of the material before cold rolling is effective in improving magnetic properties. For example, Japanese Patent Application No. 55-110314 proposes a method of coarsening grains before cold rolling. In this method, when hot-rolling a steel ingot or slab having a specific chemical composition into a hot-rolled steel strip, the hot-rolling end temperature is set to a temperature equal to or higher than the temperature expressed by the following formula (1) according to the chemical composition of the magnetic steel. and (891-900(C%)+50(S j%)-88(
Mn%) + 190 (P%) + 380 (A Q Z))
('C) ・= - (1) Next, this hot rolled steel strip is heated in Ar of magnetic steel at below the transformation point temperature for 30 seconds or more.
The main feature is that annealing is performed under conditions of less than 1 minute. Furthermore, in JP-A No. 58-204126, in a method for manufacturing a non-oriented electrical steel sheet, c:Q, Q2% or less, either Si or (Si+Al) is 1°5% or less, Mn
: 1. For steel containing 0% or less, P: 0.20% or less, and the remainder consisting of Fe and unavoidable impurities, the rolling end temperature in the hot rolling process is 600 to 700°C. 1 coiling temperature is 500°C. A method for producing a patented magnetic steel strip is disclosed, which is characterized in that the above temperature range is used, and then the rolled steel strip is annealed at a temperature not higher than the A3 transformation point for 30 seconds or more and 15 minutes or less. However, these methods all involve hot rolling at low temperatures, and in the case of high-Si steel, there is a risk of cracking or breaking during hot rolling. On the other hand, conventionally, silicon steel sheets have generally been used as non-oriented electrical steel sheets. A silicon steel plate is a steel type to which Si is added to increase specific resistance and reduce iron loss. As a result, the higher the Si content, the higher the Si content, so the magnetic flux density tends to be lower. In addition, when the amount of Si is increased, the Fe-Si system phase diagram leaves the γ loop and enters the α single phase region, so that coarse α grains can be obtained even at the normal pre-hot rolling heating temperature. However, coarse α grains are required before cold rolling.
For this reason, coarsening the α grains before hot rolling brings about many disadvantages. For example, the structure distribution in the sheet thickness direction becomes uneven, which not only deteriorates the magnetic properties after cold rolling and annealing, but also
Brings ridging and sawing. The present invention was made to solve the problems of the prior art described above, and it is possible to easily increase the crystal grain size of the material before cold rolling, and in particular, the magnetic flux density is extremely high, and the iron loss is reduced. The object of the present invention is to provide a method that can continuously produce a Ti magnetic steel strip with low non-orientation. (Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted intensive research on measures that can easily increase the crystal grain size of the material before cold rolling by a full process or a semi-process. Layered. As a result, especially the amount of Si and AQfl. In order to obtain a hot-rolled steel strip with a fine and uniform crystal structure after hot rolling, and to coarsen the grain size of this hot-rolled steel strip, conventional annealing methods are used. It is possible to coarsen the grains of a hot-rolled steel strip relatively cheaply and easily in a short time of 15 minutes or less, without requiring long annealing time such as box annealing, and without the need for decarburization. This is where the present invention is made. That is, the method according to the present invention provides C:0. O O 5%
Below, Si: 0.7 to 1.7%, Mn: 0.1 to 1.
5%, P:O. O O 5 ~0.1 0%, S:O.
005% or less. AQ: 0.3 to 1.3% (However, Si+
When hot rolling a slab containing AI2 (2.0%) and [0.005% or less, with the remainder consisting of iron and unavoidable impurities, it is heated to a temperature within the γ loop in the Fe-(Si+Al) system. After hot rolling, the obtained hot rolled steel sheet is annealed at a temperature of 800°C or higher and within the α phase region temperature of 3 points or less, further cold rolled by 50% or more, and then The summary is a method for producing a non-oriented electrical steel sheet with low core loss and high magnetic flux density, which is characterized by performing final annealing at 800-b or box annealing at 700-850@c for 1-10 hours. It is something to do. The present invention will be explained in more detail below. (Operation) The present invention is based on a combination of the above-mentioned conditions, and its basic configuration is as follows. First, in order to obtain a hot rolled steel strip having a fine and uniform crystal structure, the heating temperature before hot rolling is set to a low temperature γ phase region,
Hot rolling is completed in the γ phase region as much as possible. This can also suppress the refinement of precipitates and promote grain growth in the primary hot-rolled sheet annealing6. During plate annealing, a pre-cold-rolled material having a coarse crystal structure can be obtained by heating to the α region as high as possible. This results in (100)<uvw>+ in the final annealing.
Since a (110)<001> texture is obtained, an extremely high magnetic flux density can be obtained compared to a conventional non-oriented electrical steel sheet having the same core loss value. Considering the balance between iron loss and magnetic flux density, the component system to realize these conditions is as follows. Si: 0.7-1.7% AQ: 0.3-1.3% Si+Al≦2.0% In other words, the total amount of Si + AQ is determined by heating before hot rolling in the γ phase region (e.g. Point a in Figure 1), and subsequent hot-rolled sheet annealing is regulated in the α phase region (e.g., point 5 in Figure 1), with a Si content of 2.0% or less. is regulated in order to achieve the necessary balance between iron loss value and magnetic flux density. Furthermore, the AQ amount is determined by locating the Si amount very close to the γ loop (point C in FIG. 1) under the condition that the Si amount is regulated by the balance between the iron loss value and the magnetic flux density. The above effect is achieved most efficiently, and furthermore, it is regulated from the viewpoint of suppressing fine precipitation of AQN precipitates due to the solubility product with N. Note that if the AQ amount is small, good core loss cannot be obtained, and if it is large, the magnetic flux density decreases. Next, the reasons for limiting the chemical components in the present invention will be explained. C: C is a harmful element in order to maintain magnetic properties, and the content must be kept at 0.01% or less, but the lower the content, the better. Furthermore, in order to prevent magnetic aging, the content is preferably 0.005% or less. Therefore, the C content is set to 0.005% or less. Si: Si is regulated from the viewpoint of fully exhibiting the effects of the present invention. That is, S and L are elements necessary for improving iron loss by increasing specific resistance, but their content is 0.
If it is less than 7%, there is little effect, and if it exceeds 1.7%, S
Even when i alone, not only does it exceed the γ loop of the Fe-8i system, but also the magnetic flux density decreases. Therefore, the Si content is in the range of 0.7 to 1.7%. Mn: Mn is an element that is effective in preventing red heat during hot rolling and improving magnetism by improving texture. However, the content is 0
.. If it is less than 1%, the effect will be small, and if it exceeds 1.5%, the magnetic properties will deteriorate. Therefore, 1Mn content is 0.
The range % is 1 to 1.5. P: P is an element that is effective in improving iron loss. However, this effect is small when the content is less than 0.005%, and 0.1%
If the content exceeds 20%, the magnetic flux density will decrease. therefore,
The P content is in the range of 0.005 to 0.1%. S is an element that generates nonmetallic inclusions such as MnS that are harmful to improving magnetism, and the smaller the amount, the better.
% or less, a stable magnetic improvement effect cannot be obtained. Therefore, the S content is set to 0°005% or less. AQ: Like Si, AQ is an important element constituting the present invention. In other words, in addition to developing components in the (100) crystal direction and increasing resistivity like Si, AQ also increases the solubility product of AQN, which is harmful to the magnetic properties of non-oriented silicon steel sheets. This is an element necessary to suppress fine precipitation. However, if the content is less than 0.3%, such effects are small and good iron loss cannot be obtained, while if the content exceeds 1.3%, the magnetic flux density decreases. Therefore, the Afl content should be in the range of 0.3 to 1.3%. However, regarding the above Si and AQ, the total amount of Si + A9 is set to 2.0% or less from the viewpoint that heating before hot rolling is performed in the γ phase region as described above, and subsequent hot rolled sheet annealing is performed in the α phase region. It needs to be regulated. Next, a manufacturing process in the present invention will be explained. First, steel having the above chemical composition is melted by a normal method and then cast into a steel slab by continuous casting, or a steel ingot is made by an ingot method, and then made into a steel slab by blooming. may be formed. The steel slab produced in this way is heated to a temperature in the γ loop in the Fe-(Si+AQ) system and hot-rolled to form a hot-rolled plate with a thickness of 1.5 to 3.0 mm. obtain. Since most of the reduction in this hot-rolled sheet is performed in the γ phase region, a fine crystal structure (α) can be obtained uniformly in the thickness direction, and remarkable grain growth can be achieved in the subsequent hot-rolled sheet annealing. The plate texture is also favorable for magnetic properties. Next, by subjecting the hot-rolled sheet to hot-rolled sheet annealing, coarse crystal grains are obtained and the texture is improved. The annealing conditions are 800°C or higher, Ac, the desired temperature (within the α phase region temperature), and preferably continuous annealing is performed by holding at this temperature for 0.5 to 5 minutes.
At a low temperature of less than 800° C., a good hot-rolled sheet crystal structure cannot be obtained in continuous annealing, and no annealing effect can be expected. Furthermore, annealing at a high temperature exceeding the Ac point is not preferable because α→γ transformation occurs during annealing of the hot rolled sheet, resulting in finer grains and deterioration of pickling properties in subsequent steps. Next, the hot-rolled plate that has undergone the hot-rolled plate annealing is pickled to remove scale by a conventional method, and then cold-rolled at a rolling reduction of 50% or more. This is the optimum annealed plate grain size for iron loss and magnetic flux density, and high agglomeration (100) <
This is because a cold rolling rate of 50% or more is required to obtain a texture of uvw>. By final annealing the cold-rolled sheet, the texture develops and the magnetic properties are improved. As the annealing conditions, continuous annealing is performed at a temperature of 800 to 1000°C for 0.5 to 5 minutes, or box annealing is performed at a temperature of 700 to 850°C and held for 1 to 10 hours. In this case, if the continuous annealing is less than 800°C and the five-box annealing is less than 700°C, grain growth during annealing is poor and good magnetic properties cannot be obtained. In addition, in continuous annealing, 100
When the temperature exceeds 0°C, and exceeds 850°C in box annealing, the magnetic flux density decreases, and an excessive increase in the furnace temperature is disadvantageous from the viewpoint of furnace maintenance, management, and economic efficiency. The holding time for this final annealing varies depending on the annealing method and can be selected appropriately depending on the respective temperature, but in the case of continuous annealing, a recrystallized structure cannot be obtained if it is less than 0.5 minutes, which further leads to poor magnetic properties. Moreover, if the holding time exceeds 5 minutes, the line speed will become excessively slow in the operation of the continuous annealing furnace. On the other hand, in the case of box annealing, if it is less than 1 hour, there is a problem similar to the reason for limiting the lower limit of the holding time in continuous annealing, and if it exceeds 10 hours, there is an economical problem. Next, examples of the present invention will be shown. (Example) A lot of test steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace to form a steel ingot, which was then heated to a temperature of 1150°C and then a slab with a thickness of 200+++m was produced. did. This slab was heated to a temperature of 1150°C and 2°OLI
Hot rolling was performed to a thickness of Im. After hot rolling, 755
Hot rolled sheets were annealed for 2 minutes at a temperature of ~1060°C. Furthermore, after pickling, cold rolling is performed to a thickness of Q, 5 mm, and this cold rolled plate is subjected to continuous annealing (840°C x 1.5 minutes, 945°C x 1.5 minutes) or box annealing (750°C x 3 time) was applied. Epstein test pieces were taken from the obtained annealed plates by shearing and their magnetic properties were measured. The results are also listed in Table 1. In Table 1, tests Ha 3 to Ha 4, Ha 8,
&11 to Nα13 and Nα15 are examples of the present invention. As is clear from Table 1, it can be seen that in each of the examples of the present invention, the magnetic flux density can be increased while reducing the iron loss. That is, a non-oriented electrical steel sheet with low iron loss and high magnetic flux density can be manufactured. On the other hand, comparative examples 1 to Nα2 with chemical components outside the scope of the present invention,
Nα5 to Nn 7, &9. Comparative example Nα1 whose chemical components are within the scope of the present invention but whose manufacturing conditions are outside the scope of the present invention
0 and Nα14 cannot reduce iron loss and cannot obtain high magnetic flux density.

【以下余白】[Left below]

(発明の効果) 以上詳述したように1本発明によれば、冷延前の素材の
結晶粒径を容易に且つ短時間で経済的に大きくすること
ができるので、磁束密度が極めて高く、鉄損が低い優れ
た磁気特性の無方向性電磁鋼帯を安価に製造することが
できる。
(Effects of the Invention) As detailed above, according to the present invention, the grain size of the material before cold rolling can be easily and economically increased in a short time, so that the magnetic flux density is extremely high. A non-oriented electrical steel strip with low core loss and excellent magnetic properties can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSi+AI2量と温度の関係を模式図的に示す
Fe−(Si+Al)系状態図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 5i+Al(%ン
FIG. 1 is a Fe-(Si+Al) system phase diagram schematically showing the relationship between the amount of Si+AI2 and temperature. Patent applicant Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. 5i+Al(%n)

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.005%以下
、Si:0.7〜1.7%、Mn:0.1〜1.5%、
P:0.005〜0.10%、S:0.005%以下、
Al:0.3〜1.3%(但し、Si+Al<2.0%
)及びN:0.005%以下を含み、残部が鉄及び不可
避的不純物よりなるスラブを熱間圧延するに際して、F
e−(Si+Al)系におけるγループ内の温度に加熱
して熱間圧延した後、得られた熱延鋼板について800
℃以上、Ac_3点以下のα相域温度内で熱延板焼鈍を
施し、更に50%以上の冷間圧延を行い、次いで最終焼
鈍として800〜1000℃×0.5〜5分の条件で連
続焼鈍を行うことを特徴とする鉄損が低く、磁束密度の
高い無方向性電磁鋼板の製造方法。
(1) In weight% (the same applies hereinafter), C: 0.005% or less, Si: 0.7 to 1.7%, Mn: 0.1 to 1.5%,
P: 0.005 to 0.10%, S: 0.005% or less,
Al: 0.3 to 1.3% (However, Si+Al<2.0%
) and N: 0.005% or less, and the balance is iron and unavoidable impurities.
After heating to a temperature within the γ loop in the e-(Si+Al) system and hot rolling, the obtained hot rolled steel sheet has a
Hot-rolled plate annealed within the alpha phase region temperature of ℃ or higher and Ac_3 point or lower, further cold rolled by 50% or higher, and then continuous as final annealing under the conditions of 800-1000℃ x 0.5-5 minutes. A method for producing a non-oriented electrical steel sheet with low iron loss and high magnetic flux density, which comprises performing annealing.
(2)前記最終焼鈍として、700〜850℃×1〜1
0時間の条件で箱焼鈍を行う請求項1に記載の方法。
(2) As the final annealing, 700-850°C x 1-1
The method according to claim 1, wherein box annealing is performed under conditions of 0 hours.
JP1132960A 1989-05-26 1989-05-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density Expired - Lifetime JPH0757888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132960A JPH0757888B2 (en) 1989-05-26 1989-05-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132960A JPH0757888B2 (en) 1989-05-26 1989-05-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH032323A true JPH032323A (en) 1991-01-08
JPH0757888B2 JPH0757888B2 (en) 1995-06-21

Family

ID=15093525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132960A Expired - Lifetime JPH0757888B2 (en) 1989-05-26 1989-05-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0757888B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130532A (en) * 1998-09-01 2000-10-10 Yazaki Corporation Indicator movement
JP2001234304A (en) * 2000-02-28 2001-08-31 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetism and its producing method
JP2001294997A (en) * 2000-04-06 2001-10-26 Nippon Steel Corp Nonoriented silicon steel sheet excellent in orientation integration degree and grain growthability, and its manufacturing method
JP2002129233A (en) * 2000-10-19 2002-05-09 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property in rolling direction and rolling orthogonal direction
JP2009518546A (en) * 2005-12-27 2009-05-07 ポスコ カンパニーリミテッド Non-oriented electrical steel sheet excellent in magnetism and method for producing the same
JP2012512961A (en) * 2008-12-26 2012-06-07 ポスコ Non-oriented electrical steel sheet excellent in customer processability and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735628A (en) * 1980-08-13 1982-02-26 Kawasaki Steel Corp Manufacture of nonoriented electrical steel strip with superior magnetic characteristic
JPS5825427A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of non-directional electromagnetic steel plate
JPS58204126A (en) * 1982-05-21 1983-11-28 Kawasaki Steel Corp Production of nondirectional electrical steel strip having excellent magnetic characteristic
JPS59123715A (en) * 1982-12-29 1984-07-17 Kawasaki Steel Corp Production of non-directional electromagnetic steel
JPS614892A (en) * 1984-06-19 1986-01-10 Mitsubishi Electric Corp Two cylinder rotary compressor
JPS617446A (en) * 1984-06-21 1986-01-14 Toshiba Corp Surface measuring device of linear body
JPS62253727A (en) * 1986-04-25 1987-11-05 Kawasaki Steel Corp Production of non-oriented electrical steel strip having excellent magnetic characteristic
JPS62267421A (en) * 1986-05-15 1987-11-20 Kawasaki Steel Corp Production of non-oriented electrical steel sheet of low iron loss
JPS6383226A (en) * 1986-09-29 1988-04-13 Nkk Corp Grain oriented electrical steel sheet having extremely uniform sheet thickness accuracy and magnetic characteristic nd its production
JPS6393823A (en) * 1986-10-09 1988-04-25 Nkk Corp Annealing method for high silicon iron plate
JPS644455A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having high magnetic flux density

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735628A (en) * 1980-08-13 1982-02-26 Kawasaki Steel Corp Manufacture of nonoriented electrical steel strip with superior magnetic characteristic
JPS5825427A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of non-directional electromagnetic steel plate
JPS58204126A (en) * 1982-05-21 1983-11-28 Kawasaki Steel Corp Production of nondirectional electrical steel strip having excellent magnetic characteristic
JPS59123715A (en) * 1982-12-29 1984-07-17 Kawasaki Steel Corp Production of non-directional electromagnetic steel
JPS614892A (en) * 1984-06-19 1986-01-10 Mitsubishi Electric Corp Two cylinder rotary compressor
JPS617446A (en) * 1984-06-21 1986-01-14 Toshiba Corp Surface measuring device of linear body
JPS62253727A (en) * 1986-04-25 1987-11-05 Kawasaki Steel Corp Production of non-oriented electrical steel strip having excellent magnetic characteristic
JPS62267421A (en) * 1986-05-15 1987-11-20 Kawasaki Steel Corp Production of non-oriented electrical steel sheet of low iron loss
JPS6383226A (en) * 1986-09-29 1988-04-13 Nkk Corp Grain oriented electrical steel sheet having extremely uniform sheet thickness accuracy and magnetic characteristic nd its production
JPS6393823A (en) * 1986-10-09 1988-04-25 Nkk Corp Annealing method for high silicon iron plate
JPS644455A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having high magnetic flux density

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130532A (en) * 1998-09-01 2000-10-10 Yazaki Corporation Indicator movement
JP2001234304A (en) * 2000-02-28 2001-08-31 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetism and its producing method
JP2001294997A (en) * 2000-04-06 2001-10-26 Nippon Steel Corp Nonoriented silicon steel sheet excellent in orientation integration degree and grain growthability, and its manufacturing method
JP2002129233A (en) * 2000-10-19 2002-05-09 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property in rolling direction and rolling orthogonal direction
JP2009518546A (en) * 2005-12-27 2009-05-07 ポスコ カンパニーリミテッド Non-oriented electrical steel sheet excellent in magnetism and method for producing the same
JP2012512961A (en) * 2008-12-26 2012-06-07 ポスコ Non-oriented electrical steel sheet excellent in customer processability and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0757888B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
CN114616353B (en) Non-oriented electromagnetic steel sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
KR20010039572A (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPS58204126A (en) Production of nondirectional electrical steel strip having excellent magnetic characteristic
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH01306524A (en) Production of non-oriented electrical sheet having high magnetic flux density