JPS6393823A - Annealing method for high silicon iron plate - Google Patents

Annealing method for high silicon iron plate

Info

Publication number
JPS6393823A
JPS6393823A JP23914786A JP23914786A JPS6393823A JP S6393823 A JPS6393823 A JP S6393823A JP 23914786 A JP23914786 A JP 23914786A JP 23914786 A JP23914786 A JP 23914786A JP S6393823 A JPS6393823 A JP S6393823A
Authority
JP
Japan
Prior art keywords
annealing
silicon iron
iron plate
high silicon
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23914786A
Other languages
Japanese (ja)
Other versions
JPH0643612B2 (en
Inventor
Yoshiichi Takada
高田 芳一
Akira Hiura
日裏 昭
Hironori Ninomiya
弘憲 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23914786A priority Critical patent/JPH0643612B2/en
Publication of JPS6393823A publication Critical patent/JPS6393823A/en
Publication of JPH0643612B2 publication Critical patent/JPH0643612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a high silicon iron plate having excellent magnetic characteristic and stable product characteristics, by executing annealing under the specific condition in the process of producing the high silicon iron plate by melting high silicon iron alloy containing the specific quantity of Si. CONSTITUTION:After hot-rolling a slab obtd. by melting iron alloy containing 4.0-7.0wt% Si, the high silicon iron plate is produced by executing de-scaling treatment, meta-warm temp. rolling, degassing treatment, annealing and insulating film coating treatment, in order. In the annealing treatment in this production process, at first, the pre-annealing is executed under holding for 30min-10hr in the range of temp. 200-400 deg.C to the degreased rolled material. next, the box annealing is executed in the range of temp. 800-1,300 deg.C to the rolled material and its soaking time is executed for the time from 10min to less than 10hr. In this way, the magnetic characteristic of rolled material is remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高珪素鉄板の焼鈍方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of annealing high-silicon iron plates.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

珪素鉄板は優れた軟磁気特性を有するため、従来から電
力用の磁心や回転機用の材料として大量に使用されて来
たが、近年省エネルギー、省資源の観点から変圧器1回
転機などの電気機器の効率化、小型化が強く要請され、
これに伴いその鉄心用材料である珪素鉄板にも、より優
れた軟磁気特性及び鉄損特性が要求されるようになって
きた。この珪素鉄板の軟磁気特性はStの添加量ととも
に向上し、特に6.6wt%付近で最高の透ia率を示
し、さらに固有電気抵抗も高いことから、鉄損も小さく
なることが知られている。
Because silicon iron plates have excellent soft magnetic properties, they have traditionally been used in large quantities as materials for electric power magnetic cores and rotating machines, but in recent years, silicon iron plates have been used in electrical applications such as transformers and single-rotation machines from the viewpoint of energy and resource conservation. There is a strong demand for greater efficiency and miniaturization of equipment,
Along with this, the silicon iron plate that is the material for the iron core is also required to have better soft magnetic properties and iron loss properties. It is known that the soft magnetic properties of this silicon iron plate improve with the addition amount of St, and in particular, it shows the highest permeability around 6.6wt%, and also has a high specific electrical resistance, which reduces iron loss. There is.

しかし、珪素鉄板はSt含有量が4. 0wt%以上と
なると加工性が急激に劣化し、このため従来では圧延法
(熱間−冷間圧延法)により高珪素鉄板を工業的規模で
製造することは不可能であるとされていた。
However, the silicon iron plate has a St content of 4. If it exceeds 0 wt%, workability deteriorates rapidly, and for this reason, it was conventionally considered impossible to manufacture high-silicon iron plates on an industrial scale by rolling methods (hot-cold rolling methods).

このような圧延法に対し、近年超急冷凝固法と称される
方法が研究開発されているが、この方法により製造され
る高珪素箔帯は表面性状や表面の平坦度が劣り、また厚
さや板幅が限定されてしまい、加えて生産性が劣り生産
コストも高くつく等、工業規模で実施する上で多くの問
題を有している。
In contrast to such rolling methods, a method called the ultra-rapid solidification method has been researched and developed in recent years, but the high-silicon foil strips produced by this method have poor surface properties and surface flatness, and also have poor thickness and There are many problems in implementing it on an industrial scale, such as the board width being limited, productivity being poor, and production costs being high.

〔問題を解決するための手段〕[Means to solve the problem]

このようななかで本発明者等は、Si含有量が4.0w
t%を超える高珪素鉄板の圧延による製造法について検
討を進めてきた。そしてその結果、熱間圧延条件等の選
択により圧延による高珪素鉄板の製造が可能であること
が判ってきた。
Under these circumstances, the present inventors have determined that the Si content is 4.0w.
We have been studying methods for producing high-silicon steel sheets by rolling. As a result, it has been found that it is possible to manufacture high-silicon steel sheets by rolling by selecting hot rolling conditions and the like.

ところで、この種の珪素鉄板の有する優れた磁気特性を
得るためには、焼鈍して再結晶を起させることが必要と
されるが、従来圧延による製造自体が不可能とされてき
たことから、圧延により得られた高珪素鉄板の焼鈍条件
についての検討は未だなされた例はない。
By the way, in order to obtain the excellent magnetic properties of this type of silicon iron plate, it is necessary to cause recrystallization by annealing, but manufacturing by rolling has traditionally been considered impossible. No studies have yet been made on the annealing conditions for high-silicon iron plates obtained by rolling.

本発明者等はこのような現状に鑑み、4.0〜7.0w
t56Si鉄板についてその焼鈍方法について検討した
結果、優れた磁気特性が得られる焼鈍条件を見い出した
ものである。
In view of the current situation, the inventors of the present invention
As a result of studying annealing methods for t56Si iron plates, we have discovered annealing conditions that provide excellent magnetic properties.

すなわち本発明は、St : 4.0〜7. 0wtチ
を含む高珪素鉄合金スラブを熱間圧延後、脱スケール処
理、圧延、脱脂処理、焼鈍及び絶縁皮膜処理を雇次施し
て高珪素鉄板を製造するに当り、前記焼鈍処理では、2
00〜400℃の温度で30分〜10時間の前焼鈍を行
い、次いで800〜1300℃の温度で箱焼鈍を行うこ
とを特徴とする高珪素鉄板の焼鈍方法である。
That is, the present invention provides St: 4.0 to 7. After hot-rolling a high-silicon iron alloy slab containing 0wt silicon, a high-silicon iron plate is manufactured by sequentially performing descaling treatment, rolling, degreasing treatment, annealing, and insulation coating treatment, and in the annealing treatment, 2
This is a method of annealing a high-silicon iron plate, which is characterized by performing pre-annealing at a temperature of 00 to 400°C for 30 minutes to 10 hours, and then performing box annealing at a temperature of 800 to 1300°C.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明ではSiを4.0〜7.0wtfi含有した鉄合
金を溶製する。前述したようにStは固有電気抵抗を高
めて渦電流損を減らし、鉄損を低下させるのに有効な元
素であり、本発明ではSt: 4.owt’1以上の鉄
合金をその対象とする。一方、siか7.0wt%を超
えると、磁歪の上昇、地利磁束密度や最大透磁率の低下
など磁気特性が却って劣化し、また加工性も悪(なる。
In the present invention, an iron alloy containing 4.0 to 7.0 wtfi of Si is produced. As mentioned above, St is an element effective in increasing specific electrical resistance, reducing eddy current loss, and lowering iron loss, and in the present invention, St: 4. The target is iron alloys with owt'1 or more. On the other hand, if the Si content exceeds 7.0 wt%, the magnetic properties will deteriorate, such as an increase in magnetostriction, a decrease in the magnetic flux density and the maximum permeability, and the workability will also deteriorate.

il製された合金は熱間圧延された後、脱スケール処理
を施され、室温〜400℃の温度範囲で準温間圧延(冷
間圧延を含む)される。
After the il-formed alloy is hot-rolled, it is subjected to a descaling treatment, and then semi-warm rolled (including cold rolled) in a temperature range of room temperature to 400°C.

次いで、この圧延材は脱脂後焼鈍処理される。Next, this rolled material is degreased and then annealed.

この焼鈍処理では、まず200℃から400℃の間の温
度域で30分間から10時間保持される。上記の温度範
囲では、再結晶は起こらず回復が起こるが、200℃未
満の温度では1回復の効果を得るのに長時間を必要とし
、400℃超では、回復量が大きすぎ逆に磁気特性が劣
化する。ここで言う回復は、磁気特性に対して次の効果
を与えると推定される。
In this annealing treatment, the material is first held at a temperature between 200° C. and 400° C. for 30 minutes to 10 hours. In the above temperature range, recrystallization does not occur and recovery occurs, but at temperatures below 200°C it takes a long time to obtain one recovery effect, and at temperatures above 400°C, the amount of recovery is too large and the magnetic properties deteriorates. The recovery referred to here is estimated to have the following effects on magnetic properties.

低温間圧延材は、圧延集合組織の主方位の1つである(
111)面を持っており、この結晶面は磁気特性に対し
て非常に有害であるといわれている。焼鈍時の再結晶の
核生成とその成長速度は、内部の歪エネルギーに依存し
ているので、ある適当な条件の下でこの内部の歪エネル
ギーを解放(回復)しておくと再結晶焼鈍時に板面内に
(111)面以外の結晶面の密度を増大させ、磁気特性
に良い影響を与えると考えられる。
The cold rolled material has one of the main orientations of the rolling texture (
111) plane, and this crystal plane is said to be extremely harmful to magnetic properties. The nucleation and growth rate of recrystallization during annealing depends on the internal strain energy, so if this internal strain energy is released (recovered) under certain appropriate conditions, the nucleation rate of recrystallization during recrystallization annealing will increase. It is thought that this increases the density of crystal planes other than the (111) plane within the plate plane, which has a positive effect on the magnetic properties.

このようにして比較的低温で前焼鈍を施された圧延材は
800〜1300℃の温度で箱焼鈍され、再結晶組織が
形成される。均熱時間は10分以上10時間以内か好ま
しい。この最終焼鈍において均熱温度が800℃未満で
は粒成長が十分に起こらず所定の磁気特性か得られない
。また焼鈍温度か1300℃を超える焼鈍は異常粒成長
を超こし、優れた磁気特性が得られない。
The rolled material pre-annealed at a relatively low temperature in this manner is box-annealed at a temperature of 800 to 1300°C to form a recrystallized structure. The soaking time is preferably from 10 minutes to 10 hours. In this final annealing, if the soaking temperature is less than 800°C, sufficient grain growth will not occur and predetermined magnetic properties will not be obtained. Further, annealing at an annealing temperature exceeding 1300° C. causes abnormal grain growth, making it impossible to obtain excellent magnetic properties.

ここでの焼鈍温度および均熱時間は用途によって選定さ
れる。すなわち、使用する周波数での鉄損、必要とされ
る軟磁気特性や磁歪等と焼鈍コストの兼合い等から決定
されるべきである。
The annealing temperature and soaking time here are selected depending on the application. That is, it should be determined based on the balance between iron loss at the frequency used, required soft magnetic properties, magnetostriction, etc., and annealing cost.

第1図は本発明における焼鈍の効果を示すもので、横軸
は再結晶焼鈍時の焼鈍温度を表わし、縦軸は本願焼鈍後
に測定した最大透磁率μ3と単純焼鈍した後に測定した
最大透磁率μ!の比(μ3/μl)を表わしている。こ
こでの単純焼鈍は、前焼鈍を実施せずに100℃/hr
の昇温速度で加熱し、本願焼鈍と同時間再結晶焼鈍を行
ない、同速度で冷却している。第1図において、2本の
実線間が本発明の効果を表わしている・この効果は、焼
鈍前過程の履歴因子及び焼鈍時の因子に依存している。
Figure 1 shows the effect of annealing in the present invention, where the horizontal axis represents the annealing temperature during recrystallization annealing, and the vertical axis represents the maximum magnetic permeability μ3 measured after main annealing and the maximum magnetic permeability measured after simple annealing. μ! It represents the ratio (μ3/μl). Here, simple annealing is performed at 100°C/hr without performing pre-annealing.
Recrystallization annealing is performed for the same time as the annealing in this application, and cooling is performed at the same rate. In FIG. 1, the area between two solid lines represents the effect of the present invention. This effect depends on the history factor of the pre-annealing process and the factor during annealing.

例えば、卑湿間圧延温度か低い場合は本発明における前
焼鈍温度を高めに取るか、あるいは前焼鈍時間を長く取
る(保持時間を長(する)ことにより、この効果が顕著
になる。第1図に幅があるのは、前焼鈍温度及び時間、
再結晶焼鈍時間ならびに昇温、冷却速度条件の違いによ
るものである。
For example, when the humid rolling temperature is low, this effect becomes noticeable by increasing the pre-annealing temperature in the present invention or by increasing the pre-annealing time (lengthening the holding time).First The range in the figure is due to the pre-annealing temperature and time.
This is due to differences in recrystallization annealing time, temperature increase, and cooling rate conditions.

上記前焼鈍においては、200−400℃の温度域に1
0時間を超えて保持すると特性が劣化するため、これを
避けるべきである。第2図は前焼鈍の保持時間と得られ
る磁気特性との関係をまとめたもので、横軸は前焼鈍(
200℃〜400℃)における保持時間を示し、縦軸は
保持時間に対する磁気特性を、保持時間か30分間の場
合を1とした時の相対的な最大透磁率で表わしている。
In the above pre-annealing, 1
If held for more than 0 hours, the characteristics will deteriorate, so this should be avoided. Figure 2 summarizes the relationship between the holding time of pre-annealing and the obtained magnetic properties, and the horizontal axis is the pre-annealing (
200° C. to 400° C.), and the vertical axis represents the magnetic properties with respect to the holding time as the relative maximum permeability when the holding time is 30 minutes as 1.

但し、ここでの再結晶焼鈍温度、時間及び昇温・冷却速
度はすべて同一条件で行なったものである。
However, the recrystallization annealing temperature, time, and heating/cooling rate were all performed under the same conditions.

本発明の焼鈍において、200℃未満、400℃超の各
昇温速度、全サイクル中の冷却速度については特に限定
しないか、冷却に関しては歪か入らないよう急冷しない
ことが好ましい。
In the annealing of the present invention, there are no particular limitations on the temperature increase rate below 200° C. and above 400° C., and the cooling rate during the entire cycle, or it is preferable not to rapidly cool the material to avoid distortion.

また焼鈍は無酸化または還元状態で実施すべきである。Also, annealing should be performed in non-oxidizing or reducing conditions.

焼鈍雰囲気は保護雰囲気ガスでも可能ではあるが、効果
を顕著なものとするため還元性ガスまたは不活性ガス、
若しくはこれらの混合ガスとすべきである。なお、焼鈍
は炉内圧力を10  torrにした真空条件下で行っ
てもよく、これによっても顕著な効果が得られる。
Although it is possible to use a protective atmosphere gas as the annealing atmosphere, in order to make the effect more pronounced, reducing gas or inert gas,
or a mixture of these gases. Note that annealing may be performed under vacuum conditions with a furnace pressure of 10 torr, and a remarkable effect can also be obtained by this.

焼鈍後、高珪素鉄板を絶縁皮膜処理する。After annealing, the high silicon iron plate is treated with an insulation coating.

この絶縁皮膜は、積層状態で使用される高珪素鉄板の眉
間抵抗を上げるため形成するもので、例えば、シリカ及
び第1リン酸マグネシウムの混合液を板表面に塗布した
後、800℃で焼付を行う処理がなされる。
This insulating film is formed to increase the glabellar resistance of high-silicon iron plates used in a laminated state.For example, after applying a mixture of silica and monobasic magnesium phosphate to the plate surface, baking is performed at 800℃. The processing to be performed is performed.

〔実施例〕〔Example〕

・実施例 (1) 第1表に示す成分組成からなる鉄合金スラブを熱間圧延
し、2mの板厚とした後、酸洗し板温100℃の状態で
板厚0.3糟まで準潟間圧延した。その後、脱脂し、窒
素雰囲気中にて第3図(a)〜(e)に示すような種々
の熱サイクルで、1000℃まで昇温し、焼鈍した。
・Example (1) An iron alloy slab having the composition shown in Table 1 was hot rolled to a thickness of 2 m, and then pickled and rolled to a thickness of 0.3 m at a temperature of 100°C. Rolled between lagoons. Thereafter, it was degreased and annealed by increasing the temperature to 1000 DEG C. in a nitrogen atmosphere through various thermal cycles as shown in FIGS. 3(a) to 3(e).

このようにして得られたサンプルについて、最大透磁率
及び鉄損を測定した。ここで。
The maximum magnetic permeability and core loss of the sample thus obtained were measured. here.

測定はリング状(外径20fi、内径lO■)サンプル
にて行なった。第4図は各熱サイクルの供試材の最大透
磁率を、また第5図は同じく鉄損を示している。
The measurement was carried out using a ring-shaped sample (outer diameter 20fi, inner diameter 1O■). FIG. 4 shows the maximum magnetic permeability of the test material for each thermal cycle, and FIG. 5 also shows the iron loss.

両図において、縦軸はそれぞれ各熱サイクル後と単純焼
鈍後の最大透磁率の比μ2/μl、ならびに鉄損(WI
O/400 )の比W、/Wlを示す。
In both figures, the vertical axes are the ratio μ2/μl of the maximum magnetic permeability after each thermal cycle and after simple annealing, and the iron loss (WI
The ratio W, /Wl of O/400) is shown.

但し、ここで単純焼鈍の熱サイクルは第3図(e)に示
されるものである。このように、200℃から400℃
の間の温度域に30分間以上10時間以内保持させるこ
とにより優れた磁気特性が得られることがわかる。
However, the thermal cycle for simple annealing is shown in FIG. 3(e). In this way, from 200℃ to 400℃
It can be seen that excellent magnetic properties can be obtained by maintaining the temperature in a temperature range between 30 minutes and 10 hours.

・実施例 (2) 第2表に示す成分組成からなる鉄合金スラブを熱間圧延
し、2喘の板厚とした後、酸洗し、板温50℃の状態で
板厚0.3 +uまで圧延した。その後、脱脂し、水素
雰囲気中にて第6図(a)〜(e)に示されるような種
々の熱サイクルで1200℃まで昇温し、焼鈍した。
・Example (2) An iron alloy slab having the composition shown in Table 2 was hot rolled to a thickness of 2 mm, and then pickled to a thickness of 0.3 +u at a temperature of 50°C. Rolled to. Thereafter, it was degreased and annealed by increasing the temperature to 1200 DEG C. in a hydrogen atmosphere through various thermal cycles as shown in FIGS. 6(a) to (e).

このようにして得られたサンプルについて。Regarding the samples obtained in this way.

最大透磁率及び鉄損を測定した。ここで測定はリング状
(外径20m、内径10fi)サンプルにて行なった。
The maximum permeability and iron loss were measured. Here, the measurement was performed using a ring-shaped sample (outer diameter 20 m, inner diameter 10 fi).

第7図は各熱サイクルに対する最大透磁率を示し、第8
図は同じく鉄損を示している。ここで縦軸は、それぞれ
各熱サイクル後と単純焼鈍後の最大透磁率の比島/μ重
ならびに鉄損(WIQ/40@ )の比W27w、を示
す、但し、ここで単純焼鈍の熱サイクルは第6図(e)
に示されるものであり、雰囲気は上記と同様に水素であ
る。このように、200℃から400℃の間の温度域に
30分間以上10時間以内保持させることにより優れた
磁気特性が得られることがわかる。
Figure 7 shows the maximum permeability for each thermal cycle;
The figure also shows iron loss. Here, the vertical axis shows the ratio W27w of the maximum magnetic permeability and the iron loss (WIQ/40@) after each thermal cycle and simple annealing, respectively. However, here, the thermal cycle of simple annealing is Figure 6(e)
The atmosphere is hydrogen as described above. Thus, it can be seen that excellent magnetic properties can be obtained by maintaining the temperature in the temperature range between 200° C. and 400° C. for 30 minutes or more and 10 hours or less.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、磁気特性が著しく改
善され、磁気特性に優れた安定した製品特性を有する高
珪素鉄板を得ることができる。
As described above, according to the present invention, it is possible to obtain a high-silicon iron plate with significantly improved magnetic properties and stable product characteristics with excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における焼鈍の効果を。 再結晶焼鈍時の焼鈍温度と磁気特性との関係で示すもの
である。第2図は本発明における低温焼鈍の効果を低i
v8mの保持時間と得られる磁気特性との関係で示すも
のである。第3図(a)〜(e)は実施例(1)におい
て用いた熱サイクルを示すものである。第4図は実施例
(1)における各供試材の最大透磁率を、また第5図は
同じく鉄損を示すものである。第6図(a)〜(e)は
実施例(2)において用いた熱サイクルを示すものであ
る。第7図は実施例(2)における各供試材の最大透磁
率を、また第8図は同じく鉄損を示すものである。 特許出願人  日本鋼管株式会社 発  明  者   高   1)  芳   −′X
9.銭:品度  (OC) Q、eε 戻鈍菰 (・C) j 蔑鈍濃度  (0C)         コW2/Wl R2A (d) 虎鈍時間 (hr) 6I!1 (e) 読鈍晴聞 (hr) 昭和61年11月17日
Figure 1 shows the effect of annealing in the present invention. This is shown by the relationship between the annealing temperature during recrystallization annealing and magnetic properties. Figure 2 shows the effect of low-temperature annealing in the present invention.
This is shown by the relationship between the retention time of v8m and the obtained magnetic properties. FIGS. 3(a) to 3(e) show the thermal cycle used in Example (1). FIG. 4 shows the maximum magnetic permeability of each sample material in Example (1), and FIG. 5 similarly shows the iron loss. FIGS. 6(a) to 6(e) show the thermal cycle used in Example (2). FIG. 7 shows the maximum magnetic permeability of each sample material in Example (2), and FIG. 8 similarly shows the iron loss. Patent applicant Nippon Kokan Co., Ltd. Inventor Takashi 1) Yoshi -'X
9. Money: quality (OC) Q, eε return dullness (・C) j contemptuous concentration (0C) KO W2/Wl R2A (d) tiger dullness time (hr) 6I! 1 (e) Yodun Haruben (hr) November 17, 1986

Claims (1)

【特許請求の範囲】 (1)Si:4.0〜7.0wt%を含む高珪素鉄合金
スラブを熱間圧延後、脱スケール処理、 圧延、脱脂処理、焼鈍及び絶縁皮膜処理 を順次施して高珪素鉄板を製造するに当 り、前記焼鈍処理では、200〜400℃の温度で30
分〜10時間の前焼鈍を行い、 次いで800〜1300℃の温度で箱焼鈍を行うことを
特徴とする高珪素鉄板の焼鈍 方法。 (2)前焼鈍後、直ちに800〜1300℃に加熱する
ことを特徴とする特許請求の範囲 (1)記載の高珪素鉄板の焼鈍方法。
[Claims] (1) After hot rolling a high-silicon iron alloy slab containing Si: 4.0 to 7.0 wt%, it is sequentially subjected to descaling treatment, rolling, degreasing treatment, annealing, and insulation coating treatment. In producing high-silicon iron plates, the annealing treatment is performed at a temperature of 200 to 400°C for 30°C.
A method for annealing a high-silicon iron plate, which comprises performing pre-annealing for a period of minutes to 10 hours, and then box annealing at a temperature of 800 to 1300°C. (2) The method for annealing a high-silicon iron plate according to claim (1), characterized in that the heating is performed at 800 to 1300°C immediately after the pre-annealing.
JP23914786A 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate Expired - Lifetime JPH0643612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23914786A JPH0643612B2 (en) 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23914786A JPH0643612B2 (en) 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate

Publications (2)

Publication Number Publication Date
JPS6393823A true JPS6393823A (en) 1988-04-25
JPH0643612B2 JPH0643612B2 (en) 1994-06-08

Family

ID=17040451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23914786A Expired - Lifetime JPH0643612B2 (en) 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate

Country Status (1)

Country Link
JP (1) JPH0643612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032323A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Manufacture of nonoriented silicon steel sheet having high magnetic flux density
CN103266205A (en) * 2013-04-12 2013-08-28 南通新京隆电器有限公司 EI type orientation silicon steel plate annealing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032323A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Manufacture of nonoriented silicon steel sheet having high magnetic flux density
CN103266205A (en) * 2013-04-12 2013-08-28 南通新京隆电器有限公司 EI type orientation silicon steel plate annealing process

Also Published As

Publication number Publication date
JPH0643612B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US10134513B2 (en) High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
TW202104613A (en) Method for producing non-oriented electromagnetic steel sheet, method for producing motor core, and motor core
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP4029430B2 (en) Method for producing non-oriented electrical steel sheet
JPS6393823A (en) Annealing method for high silicon iron plate
JP7331802B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101675318B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JPH04325629A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH06200325A (en) Production of silicon steel sheet having high magnetism
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JPH0445228A (en) Production of nonoriented silicon steel sheet excellent in magnetic property after stress relief annealing
WO1989008152A1 (en) Process for producing nonoriented electric steel sheet having excellent magnetic properties in lowly magnetic field
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH03294422A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH0645823B2 (en) Method for manufacturing high silicon iron plate
KR100237159B1 (en) The manufacturing method for non orient electric steel sheet
JP4267215B2 (en) Method for producing non-oriented electrical steel sheet with excellent iron loss and brittleness characteristics
KR100328032B1 (en) A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties