JPH03140442A - Silicon steel sheet having excellent magnetic characteristics and its manufacture - Google Patents

Silicon steel sheet having excellent magnetic characteristics and its manufacture

Info

Publication number
JPH03140442A
JPH03140442A JP27828189A JP27828189A JPH03140442A JP H03140442 A JPH03140442 A JP H03140442A JP 27828189 A JP27828189 A JP 27828189A JP 27828189 A JP27828189 A JP 27828189A JP H03140442 A JPH03140442 A JP H03140442A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
inner layer
balance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27828189A
Other languages
Japanese (ja)
Inventor
Tomonori Fukagawa
智機 深川
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27828189A priority Critical patent/JPH03140442A/en
Publication of JPH03140442A publication Critical patent/JPH03140442A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the surface properties and magnetic characteristics in the silicon steel sheet by subjecting a cold rolled silicon steel sheet having a multilayer structure in which the compsn. of the surface layer parts and inner layer part is specified to decarburizing, thereafter subjecting the steel sheet to decarburizing annealing and reducing the content of C to specified value or below. CONSTITUTION:The compsn. of both surface layer parts of at least 10mum thickness from the surface of a cold rolled silicon steel sheet having a multilayer structure is formed from, by weight, 0.02 to 1% C, <=3% Si, 0.5 to 5% Mn, <=0.1% P, <=0.05% S, <=0.005% N, <=0.1% Al and the balance Fe with inevitable impurities. The inner layer part is formed from 0.02 to 1% C, 3 to 7% Si, 0.5 to 5% Mn, <=0.1% P, <=0.05% S, <=0.005% N, <=0.1% Al and the balance Fe with inevitable impurities. The silicon steel sheet is decarburized and is thereafter subjected to decarburizing annealing at a temp. in which a ferrite single phase is substantially formed to regulate the content of C in the surface layer parts and inner layer part to <=0.1%. In this way, the silicon steel sheet in which the <100> axis in the crystalline grains is integrated in a direction vertical to the sheet face with high density can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面特性に優れ、且つ< 100 >軸が仮面
垂直方向に高密度に集積した磁気特性の優れた珪素鋼板
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon steel plate with excellent surface properties and excellent magnetic properties in which <100> axes are densely concentrated in the direction perpendicular to the mask, and a method for manufacturing the same.

(従来の技術) 珪素鋼板は次の二種類に大別される。そのひとつは、モ
ーター類のロータあるいはステータの鉄芯、汎用の小型
変圧器の鉄芯、照明器具の安定器等に使用されている無
方向性珪素鋼板と呼ばれている集合組織制御されていな
い結晶配向性の低い材料である。もうひとつは、大型変
圧器、高周波変圧器のような優れた軟磁気特性が要求さ
れる機器に使用されているもので、一方向性珪素鋼板と
呼ばれている材料である。これは、集合組織制御によっ
てゴス方位と呼ばれる磁化容易軸である<100>方向
を鋼板長手方向に集積させて(1101<001>集合
組織を著しく発達させた結晶配向性の高い材料である。
(Prior Art) Silicon steel sheets are roughly classified into the following two types. One type is non-oriented silicon steel sheet, which is used in the iron cores of motor rotors and stators, the iron cores of general-purpose small transformers, and the ballasts of lighting equipment. It is a material with low crystal orientation. The other type is a material called unidirectional silicon steel plate, which is used in equipment that requires excellent soft magnetic properties, such as large transformers and high-frequency transformers. This is a material with high crystal orientation in which the <100> direction, which is an axis of easy magnetization called the Goss orientation, is concentrated in the longitudinal direction of the steel sheet through texture control (1101<001> texture has been significantly developed).

ところで、近年、これらの珪素鋼板に対して、機器の電
力損失を低減し小型化を図るため、低鉄損化及び高磁束
密度化という磁気特性の改善が強く求められている。
Incidentally, in recent years, there has been a strong demand for improved magnetic properties of these silicon steel plates, such as lower iron loss and higher magnetic flux density, in order to reduce power loss and downsize devices.

低鉄損化については、従来から無方向性珪素鋼板にあっ
ては、鋼中のSi量を増して固有抵抗を増す方法と鋼中
の不純物元素を少なくして結晶粒径を最適値に調整する
方法、等の手段が主としてとられている。このうちのS
i量を増す方法は低鉄損化に効果があるものの、Stを
増量するとその分だけFeの含有量が少なくなるので、
磁束密度が低下する。さらには、Siを増量すると以下
に述べるような製造プロセス上の多くの問題が発生して
くる。
Regarding low iron loss, conventional methods for non-oriented silicon steel sheets include increasing the amount of Si in the steel to increase the specific resistance, and reducing impurity elements in the steel to adjust the grain size to the optimum value. The main methods used are methods such as Of these, S
Although increasing the amount of i is effective in reducing iron loss, increasing the amount of St reduces the Fe content accordingly.
Magnetic flux density decreases. Furthermore, increasing the amount of Si causes many problems in the manufacturing process as described below.

即ち、鋼中のSiを増量すると、■低融点スケール(F
e1SlOa)の生成が促進されて、熱間圧延後の酸洗
が困難となったり、■靭性が低下して冷間圧延時にエツ
ジ割れが発生しやすくなったり、■溶接性が劣化して、
酸洗ラインや連続焼鈍ラインにおいて、溶接接続部の破
断を招いたり、■鋼板表面が不活性となって、電磁鋼板
表面に最終的に施される絶縁皮膜と鋼板とのぬれ性が低
下する、等の問題が発生するのである0例えば、Siを
6.5%含有させると磁歪が零になり高透磁率になるも
のの、鋼は非常に脆くなって圧延によって鋼板に加工す
るのが困難となる。このため、現状では圧延が容易なS
i含有量が4%以下の珪素鋼板が多く使用されている。
That is, if the amount of Si in steel is increased, ■ low melting point scale (F
The formation of e1SlOa) is promoted, making pickling after hot rolling difficult, ■ reducing toughness and making edge cracks more likely to occur during cold rolling, ■ deteriorating weldability,
In pickling lines and continuous annealing lines, it may lead to breakage of welded joints, or the surface of the steel plate may become inert, reducing the wettability between the insulating film and the steel plate that is finally applied to the surface of the electrical steel plate. For example, if 6.5% Si is contained, the magnetostriction becomes zero and the magnetic permeability becomes high, but the steel becomes extremely brittle and difficult to process into a steel plate by rolling. . For this reason, currently S is easy to roll.
Silicon steel sheets with an i content of 4% or less are often used.

このようなSiの増量に伴う製造プロセス上の問題を、
電磁鋼板を多層構造とし、表層部の合金組成を内層部に
比べて希薄な状態とすることにより解決しようとする発
明が特開昭63−114940号公報に提案されている
。この発明とは一定厚の表層部におけるSi含有量を1
wt%未満と少なくし、表層部の延性を高めることで表
面改質、エツジ割れの低減、溶接性の向上及び絶縁皮膜
密着性の向上を図り、内層部のSi含有量を1〜7wt
%とすることで従来と同等の磁気特性を確保するもので
ある。
We solved the problems in the manufacturing process due to the increase in the amount of Si.
JP-A-63-114940 proposes an invention that attempts to solve this problem by forming an electromagnetic steel sheet into a multilayer structure and making the alloy composition of the surface layer thinner than that of the inner layer. This invention means that the Si content in the surface layer of a constant thickness is 1
By reducing the Si content to less than wt% and increasing the ductility of the surface layer, we aim to improve the surface, reduce edge cracking, improve weldability, and improve the adhesion of the insulation film, and reduce the Si content in the inner layer to 1 to 7wt.
% to ensure magnetic properties equivalent to conventional ones.

従って、この特開昭63−114940号公報記載の発
明は、特に、集合組織を制御して磁気特性のより一層の
改善を図ったものではない。
Therefore, the invention described in JP-A-63-114940 does not particularly aim at controlling the texture to further improve the magnetic properties.

高磁束密度化のためには、集合組織を制御することが必
要である。無方向性珪素鋼板にあっては、磁化容易軸で
ある< 100 >方位が板面内に無方向に分布した集
合組織であることが理想であり、このような集合組織を
形成するためには< ioo >軸が板面垂直方向に高
密度に集積していることが必要である。一方、Elコア
のような機器に使われる珪素鋼板にあっては、[100
1<001>方位あるいは(1001<011>方位の
ような面内の2方向に<100>軸が存在するような集
合組織が最も適している。
In order to increase the magnetic flux density, it is necessary to control the texture. Ideally, a non-oriented silicon steel sheet has a texture in which the <100> orientation, which is the axis of easy magnetization, is distributed non-directionally within the sheet surface, and in order to form such a texture, It is necessary that the <ioo> axes are concentrated in a direction perpendicular to the plate surface. On the other hand, silicon steel plates used in equipment such as El cores have a [100
A texture in which <100> axes exist in two directions within a plane, such as a 1<001> orientation or a (1001<011> orientation), is most suitable.

従来、このような板面垂直方向に<100>軸を有する
電磁鋼板の製造方法として、以下の方法が知られている
Conventionally, the following method is known as a method for manufacturing such an electrical steel sheet having a <100> axis in a direction perpendicular to the sheet surface.

(1)凝固組織を用いる方法 この方法は、インゴット柱状高誼の1lool繊維組織
を利用するもので、特殊な鋳造方法によって製造した柱
状高誼インゴットを+ 100 )面が板面平行となる
ように切り出して圧延し、1000°C以上の温度で焼
鈍するものである。
(1) Method using solidified structure This method utilizes the 1lool fiber structure of the ingot with a high columnar height, and the columnar high height ingot manufactured by a special casting method is cast so that the +100) plane is parallel to the plate surface. It is cut out, rolled, and annealed at a temperature of 1000°C or higher.

(2)表面エネルギーを利用する方法 厚さ0.15mm以下の薄珪素鋼板を弱酸化性雰囲気中
で1000″C以上の温度で焼鈍する方法であり、結晶
粒は一度板厚程度の大きさに成長した後、板面垂直方向
に<ioo>軸を有する結晶粒が表面エネルギーを駆動
力として優先的に成長する。
(2) Method using surface energy This is a method in which a thin silicon steel plate with a thickness of 0.15 mm or less is annealed at a temperature of 1000"C or more in a slightly oxidizing atmosphere, and the crystal grains are once reduced to the size of the plate thickness. After growth, crystal grains having <ioo> axes in the direction perpendicular to the plate surface preferentially grow using surface energy as a driving force.

(3)交叉圧延を利用する方法 微量のA2等を添加した珪素鋼を0°と90’の方向に
交叉圧延し、1150℃で最終焼鈍を行い、(JOOI
 <001>方位の結晶粒を二次再結晶させる方法であ
る。
(3) Method using cross rolling Silicon steel to which a small amount of A2 etc. has been added is cross rolled in the 0° and 90' directions, final annealed at 1150°C, (JOOI
This is a method of secondary recrystallization of <001> oriented crystal grains.

(4)γ単相温度域からの冷却による方法この方法は、
特開昭53−31515号公報に開示されている如く、
本質的にCを含有しない鋼板をT単相域へ昇温した後徐
冷して、その時のT−α変態によって板面垂直方向に<
 100 >軸を集積させるものである。
(4) Method by cooling from the γ single-phase temperature range This method is
As disclosed in Japanese Patent Application Laid-open No. 53-31515,
A steel plate that essentially does not contain C is heated to the T single-phase region and then slowly cooled, and the T-α transformation at that time results in <
100 > axis is integrated.

ところが、前記(1)〜(3)の方法で集積度を高めよ
うとすると非常に大きな結晶粒組織となり、磁気特性は
良好なるものの、交流電界中では渦電流損が大きくなり
、十分な低鉄損が得られないという欠点がある。さらに
、(1)の方法は特殊な鋳造方法によるインゴットを用
いなければならず、(2)の方法は0.15mm厚以下
占いう薄い板にしか適用することができず、(3)の方
法は交叉圧延という特殊な圧延のために長尺の薄板には
適用することができない等、いずれの方法も工業的には
実用化が非常に困難である。また、(4)の方法では板
面垂直方向の<100>軸密度はランダムになるものの
、高々3〜7倍程度でしかなく、十分な磁気特性が確保
されない。
However, when trying to increase the degree of integration using methods (1) to (3) above, the result is a very large grain structure, and although the magnetic properties are good, eddy current loss becomes large in an AC electric field, and it is difficult to obtain a sufficiently low iron The disadvantage is that you cannot make a profit. Furthermore, method (1) requires the use of an ingot made by a special casting method, method (2) can only be applied to thin plates with a thickness of 0.15 mm or less, and method (3) Both methods are extremely difficult to put into practical use industrially, as they cannot be applied to long thin plates because of the special rolling called cross rolling. Further, in method (4), although the <100> axis density in the direction perpendicular to the plate surface becomes random, it is only about 3 to 7 times as large, and sufficient magnetic properties cannot be ensured.

(発明が解決しようとする課題) 本発明の課題は、以上述べたSi増量に伴う製造プロセ
ス上の問題点及び従来の集合組織制御における問題点が
全て解決できる結晶粒組織の珪素鋼板及びその製造方法
を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a silicon steel sheet with a grain structure that can solve all of the above-mentioned problems in the manufacturing process associated with increasing the amount of Si and problems in conventional texture control, and to manufacture the same. The purpose is to provide a method.

(課題を解決するための手段) 前掲の特開昭63−114940号公報記載の方法では
、製造プロセス上における問題点を改善することができ
るものの、磁気特性をより一層高めることができない、
ところが、本発明者らは鋼板表面から一定厚の表層部に
おけるSi含有量を内層部より少なくしたCとMnを多
量に含む多層構造の冷間圧延珪素鋼板を、珪素鋼板の脱
炭焼鈍が進行する過程でT→α変態を発生させると、板
面垂直方向に<100>軸が高密度で集積した低鉄損で
磁束密度も高い結晶粒組織の珪素鋼板が高精度の板厚で
板厚等の制限を受けることなくしかも工業的規模で容易
に製造できることを確認した。
(Means for Solving the Problems) Although the method described in the above-mentioned Japanese Patent Application Laid-open No. 114940/1983 can improve the problems in the manufacturing process, it cannot further improve the magnetic properties.
However, the present inventors developed a cold-rolled silicon steel sheet with a multilayer structure containing large amounts of C and Mn, in which the Si content in the surface layer of a certain thickness from the steel sheet surface was lower than that in the inner layer, and the decarburization annealing of the silicon steel sheet progressed. When T→α transformation occurs in the process, a silicon steel plate with a crystal grain structure with low iron loss and high magnetic flux density, in which <100> axes are concentrated in a high density in the direction perpendicular to the plate surface, is formed with a high precision plate thickness. It was confirmed that the method can be easily manufactured on an industrial scale without being subject to such limitations.

ここに本発明は下記の(i)及び(11)を要旨とする
The gist of the present invention is the following (i) and (11).

(i)鋼板表面から少な(とも10μ鶴厚の両表層部に
おける化学組成が、C≦0.01wt%、Si53wt
%、0.5wt≦Mn≦5wt%、P≦0.1wt%、
s <o、oswt%、N≦0.005wt%、A2≦
0.1wt%、残部Fe及び不可避不純物からなり、内
層部における化学組成がC≦0.01wt%、3wt%
<Si≦7wt%、0.5wt≦Mn≦5wt%、P≦
0.1wt%、S≦0.05wt%、N≦0.005w
t%、AIl≦0.1wt%、残部Fe及び不可避不純
物からなる多層構造の珪素鋼板であって、該珪素鋼板は
板面垂直方向に表面から内部に向かって成長した結晶粒
を有し、その結晶粒の< ioo >軸が板面垂直方向
に集積していることを特徴とする磁気特性 (ii)鋼板表面から少なくとも10μ■厚の両表層部
における化学組成が、0.02wt%≦C≦lwt%、
S+63wt%、0.5wt≦Mn≦511L%、P≦
Q.1wt%、S≦0.05賀t%、N≦0.005綽
t%、A2≦Q.1wt%、残部Fe及び不可避不純物
からなり、内層部における化学組成が0.02wt%≦
C≦lwt%、3wt%<Si57wt%、0.5wt
≦Mn≦5wt%、P≦Q.1wt%、S≦0、05w
t%、N≦0.005wt%、A2≦0.1wt%、残
部Fe及び不可避不純物からなる多層構造の冷間圧延珪
素鋼板を、脱炭後実質的にフェライト単相となる温度で
表層部及び内層部におけるC含有量が0、01wt%以
下になるまで脱炭焼鈍することを特徴とする磁気特性に
優れた珪素鋼板の製造方法。
(i) The chemical composition in both surface layers (both 10μ thick) is C≦0.01wt%, Si53wt% from the steel sheet surface.
%, 0.5wt≦Mn≦5wt%, P≦0.1wt%,
s<o, oswt%, N≦0.005wt%, A2≦
0.1wt%, the balance consists of Fe and unavoidable impurities, and the chemical composition in the inner layer is C≦0.01wt%, 3wt%
<Si≦7wt%, 0.5wt≦Mn≦5wt%, P≦
0.1wt%, S≦0.05wt%, N≦0.005w
t%, AIl≦0.1wt%, the balance being Fe and unavoidable impurities. Magnetic properties characterized by the <ioo> axis of the crystal grains being concentrated in the direction perpendicular to the sheet surface (ii) The chemical composition in both surface layers at least 10μ thick from the steel sheet surface is 0.02wt%≦C≦ lwt%,
S+63wt%, 0.5wt≦Mn≦511L%, P≦
Q. 1 wt%, S≦0.05 t%, N≦0.005 t%, A2≦Q. 1wt%, the balance is Fe and unavoidable impurities, and the chemical composition in the inner layer is 0.02wt%≦
C≦lwt%, 3wt%<Si57wt%, 0.5wt
≦Mn≦5wt%, P≦Q. 1wt%, S≦0, 05w
t%, N≦0.005wt%, A2≦0.1wt%, the balance being Fe and unavoidable impurities. A method for producing a silicon steel sheet with excellent magnetic properties, comprising decarburizing and annealing until the C content in the inner layer becomes 0.01 wt% or less.

(作用) 以下、本発明について詳細に説明する。(effect) The present invention will be explained in detail below.

本願第1発明の珪素鋼板、即ち、内層部とこの内層部よ
り合金組成が希釈な表層部とからなり、結晶粒が仮面垂
直方向に< ioo >軸が集積した珪素鋼板は、多層
構造の冷間圧延珪素鋼板を、本願第2発明に従って脱炭
焼鈍して集合組織を制御することで得られる。
The silicon steel sheet of the first invention of the present application, that is, the silicon steel sheet consisting of an inner layer part and a surface layer part whose alloy composition is more dilute than the inner layer part, and in which the crystal grains have <ioo> axes accumulated in the direction perpendicular to the mask, has a multilayer structure. It is obtained by decarburizing and annealing a co-rolled silicon steel plate according to the second invention of the present application to control the texture.

前記冷間圧延珪素鋼板は、次のようにして製造すること
ができる。
The cold rolled silicon steel plate can be manufactured as follows.

(l)内層部となる鋼塊を鋳造し、これを溶湯に浸して
表層部となるシェルを鋳ぐるみ、内層部に比ベシエル部
の合金組成が希薄な状態の鋼塊を製造し、この鋼塊を直
接または均熱後、熱間圧延し、次いでスケールを除去し
た後、−回又は中間焼鈍を挟む二回以上の冷間圧延を行
う方法。
(l) Cast a steel ingot that will become the inner layer, immerse it in molten metal, and cast the shell that will become the surface layer to produce a steel ingot in which the alloy composition of the inner layer is thinner than that of the besiel part. A method in which the ingot is hot-rolled directly or after soaking, then scale is removed, and then cold-rolled two or more times with one or intermediate annealing in between.

(2)シェル層を鋳造し、その中に内層部となる溶湯を
鋳込み、内層部に比ベシェル層部の合金組成が希薄な状
態の鋼塊を製造し、この鋼塊を前記と同様に加工する方
法。
(2) Cast a shell layer, pour the molten metal that will become the inner layer into it, produce a steel ingot with a dilute alloy composition in the inner layer compared to the shell layer, and process this steel ingot in the same manner as above. how to.

(3)表層部となるシェルと内層部となる鋼塊を鋳造し
、これらを別々に熱間圧延で鋼板に加工した後、脱スケ
ールを施し、3層に重ね合わせて冷間圧延を行い、クラ
ツド鋼板とする方法。
(3) Cast a steel ingot that will become the surface layer and an inner layer, and after processing these separately into steel plates by hot rolling, descaling them, stacking them in 3 layers and cold rolling, Method of making a clad steel plate.

本発明において、これら最終製品の珪素F4仮及び冷間
圧延珪素鋼板の表層部の厚み、表層部及び内層部におけ
る化学組成を前記のように限定する理由は下記のとおり
である。
In the present invention, the reason why the thickness of the surface layer and the chemical composition of the surface layer and inner layer of the silicon F4 temporary and cold rolled silicon steel sheets of these final products are limited as described above is as follows.

(a)表層部の厚さ 表層部は圧延困難な高Si鋼の冷間圧延を容易にするた
めにある。冷間圧延を容易にするためには、表層部にお
けるSi含存量を3wt%以下とし、その厚みは片面当
たり少なくとも10μ頂とする必要がある。表層部にお
けるSi含有量を3wt%以下としても、その厚みが1
0μmより薄いと冷間圧延が困難となり、圧延時にエツ
ジ割れが発生しやすくなる。この表層部の厚みは冷間圧
延性と最終的に必要とする磁気特性から決めるのが望ま
しい0表層部を厚くする方が冷間圧延性を確保するうえ
で有利となるが、過度に厚くすると内層部が薄くなり、
必要な磁気特性が得られなくなる場合も考えられるので
、望ましい上限は全板厚に対して273程度である。
(a) Thickness of the surface layer The surface layer is provided to facilitate cold rolling of high-Si steel, which is difficult to roll. In order to facilitate cold rolling, the Si content in the surface layer should be 3 wt% or less, and the thickness should be at least 10 microns per side. Even if the Si content in the surface layer is 3wt% or less, the thickness is 1
If it is thinner than 0 μm, cold rolling becomes difficult and edge cracks are likely to occur during rolling. It is desirable to determine the thickness of this surface layer based on the cold rollability and the final required magnetic properties.0 It is advantageous to make the surface layer thicker in order to ensure cold rollability, but if it is too thick, The inner layer becomes thinner,
Since there may be cases where the necessary magnetic properties cannot be obtained, a desirable upper limit is about 273 with respect to the total plate thickness.

(b)化学組成 C: Cはγ相域を拡大し、(α十T)→α変態またはT→α
変態による集合組織の制御を行うために、後述する最終
焼鈍前の段階で0 、02w t%以上、好ましくは、
0.05wt%以上含有させる必要がある。上限は、脱
炭時間を抑えるために11%以下、好ましくは0.3w
t%以下とする。また、脱炭焼鈍(最終焼鈍)後には、
磁気特性を劣化させないために0.01wt%以下、好
ましくは0.003wt%以下とする。
(b) Chemical composition C: C expands the γ phase region, resulting in (α+T)→α transformation or T→α
In order to control the texture by transformation, at least 0.02 wt%, preferably, at a stage before the final annealing described below.
It is necessary to contain 0.05 wt% or more. The upper limit is 11% or less, preferably 0.3w to suppress decarburization time.
t% or less. In addition, after decarburization annealing (final annealing),
In order not to deteriorate the magnetic properties, the content is set to 0.01 wt% or less, preferably 0.003 wt% or less.

Si : Siは前記のように外層部においては、冷間圧延時の割
れを抑制するために3wt%以下とする。内層部におい
ては、磁気特性改善効果から3wt%を超える量とする
。また、Siは6.5wt%程度まではけ歪低減、透磁
率向上、鉄1員低下などの効果が朋待できるが、7wt
%を超えると、逆に透磁率の低下が顕著となり、合金設
計上の利点は低下するため、上限を7wt%とする。
Si: As mentioned above, the content of Si in the outer layer is 3 wt% or less in order to suppress cracking during cold rolling. In the inner layer part, the amount is set to exceed 3 wt% for the effect of improving magnetic properties. Furthermore, up to about 6.5wt% Si can be expected to have effects such as reducing brush strain, improving magnetic permeability, and lowering the number of iron members;
%, the magnetic permeability decreases significantly and the advantages in terms of alloy design decrease, so the upper limit is set at 7 wt %.

Mn : 電気抵抗を増大させ渦電7wt員を低下させるためと、
γ相域を拡大し、(α十γ)→α変態またはT→α変態
による集合組織制御を容易するために添加される。含有
量が少ないとこれらの作用が得られないので下限は0.
5wt%以上とする。一方、多量に添加すると変態温度
が過度に低下してしまうとともに磁束密度も低下するの
で、上限は5wt%とするのがよい。
Mn: To increase electrical resistance and reduce eddy current 7wt.
It is added to expand the γ phase region and facilitate texture control through (α10γ)→α transformation or T→α transformation. If the content is small, these effects cannot be obtained, so the lower limit is 0.
The content shall be 5 wt% or more. On the other hand, if added in a large amount, the transformation temperature will drop excessively and the magnetic flux density will also drop, so the upper limit is preferably 5 wt%.

板面垂直方向に<100>軸が集積した結晶粒を得るた
めには、最終焼鈍の後期は脱炭後α単相となる温度で焼
鈍する必要がある。Mnは多量に添加すると脱炭完了後
実質的にα単相となる温度が低下し、焼鈍温度を極端に
低くしなければならなくなるので、この焼鈍温度をあま
り低下させないように、脱炭後のα相から(α+γ)相
への変態温度が800’C以上となるように添加するの
が望ましい。
In order to obtain crystal grains in which <100> axes are accumulated in the direction perpendicular to the plate surface, it is necessary to perform annealing at a temperature at which α single phase is formed after decarburization in the latter stage of final annealing. If a large amount of Mn is added, the temperature at which the α-single phase becomes substantially after decarburization is completed will be lowered, and the annealing temperature must be extremely low. It is desirable to add so that the transformation temperature from the α phase to the (α+γ) phase is 800'C or higher.

実際に添加できるMn1lはα域拡大元素であるSi及
びAlの含有量に関係するが、Siを2wt%含有する
場合は、およそ3.5wt%以下、Siを3wt%含有
する場合は、およそ54%以下である。
The amount of Mn1l that can actually be added is related to the content of Si and Al, which are α-range expanding elements, but when containing 2 wt% of Si, it is approximately 3.5 wt% or less, and when containing 3 wt% of Si, it is approximately 54 wt%. % or less.

置 Pは前記Siと同様、α安定化元素であると同様に比抵
抗を増大させるため、交流磁気特性の改善には有効な元
素である。しかし、一方でフェライト粒界に偏析して鋼
を脆化させる元素でもある。
Like Si, P is an α-stabilizing element and increases the resistivity, so it is an effective element for improving the AC magnetic properties. However, it is also an element that segregates at ferrite grain boundaries and makes steel brittle.

特にSiが1.0wt%を超える鋼においては、Pの脆
化作用が顕著となるので、含有量は0.1wt%以下と
する。
Particularly in steels containing more than 1.0 wt% of Si, the embrittlement effect of P becomes significant, so the content is set to 0.1 wt% or less.

S: Sは磁気特性に対しては有害な元素であるため、できる
限り少ない方が望ましい、 0.05wt%以下であれ
ばSによる悪影害は比較的小さい。
S: Since S is a harmful element to magnetic properties, it is desirable to reduce it as much as possible. If it is 0.05 wt% or less, the adverse effects caused by S are relatively small.

N : NはCと同様に磁気時効に関与する元素であるため、で
きるだけ少ない方が望ましい。その含有量が0.005
wt%以下であれば磁気時効に対する関与が小さい。
N: Like C, N is an element that participates in magnetic aging, so it is desirable to have as little as possible. Its content is 0.005
If it is less than wt%, its contribution to magnetic aging is small.

八2 : AlはSiと同様の効果によって交流磁気特性の改善に
寄与するが、Siに比べ多量に添加した場合、製鋼段階
でアルミナ介在物の生成が著しくなり、素材の清浄度を
低下させるので、含有量は0.]wt%以下とする。
82: Al contributes to the improvement of AC magnetic properties through the same effect as Si, but when added in a large amount compared to Si, alumina inclusions are formed significantly during the steelmaking stage, reducing the cleanliness of the material. , the content is 0. ]wt% or less.

(C) T100I集合組織 これは、最終製品よりC含有量を多くした前記化学組成
の冷間圧延珪素鋼板を、脱炭後実質的にフェライト単相
となる温度で表層部及び内層部におけるC含有量を0.
01wt%以下になるまで脱炭焼鈍することで得られる
(C) T100I texture This is the process by which a cold-rolled silicon steel sheet with the above chemical composition, which has a higher C content than the final product, is heated to a temperature at which it becomes substantially a single phase of ferrite after decarburization, so that the C content in the surface layer and the inner layer increases. Reduce the amount to 0.
It can be obtained by decarburization annealing until it becomes 0.01 wt% or less.

従来の珪素鋼板に対する最終焼鈍はα単相の温度域で行
うのが通例である。これに対し、Cを適量添加しT相の
温度域を拡大した冷間圧延珪素鋼板を脱炭が完了したと
きにα単相となる温度域で、真空中等の弱脱炭性雰囲気
で焼鈍すると、この焼鈍過程ではCが十分に含有されて
いることがら、α+12相域もしくはT単相の温度域で
焼鈍が行われることになる。
Final annealing of conventional silicon steel sheets is usually carried out in the α single phase temperature range. On the other hand, if a cold-rolled silicon steel sheet with an appropriate amount of C added to expand the temperature range of the T phase is annealed in a weakly decarburizing atmosphere such as vacuum in a temperature range where the α single phase is formed when decarburization is completed. Since a sufficient amount of C is contained in this annealing process, annealing is performed in the α+12 phase region or T single phase temperature region.

その結果、表面から5〜50μm深さまでの領域が脱炭
され、この部分のみがα単相となる。そして、このα単
相域が深部まで至らないように保持しておくと、板面垂
直方向に<100>軸を持つ結晶粒のみが板面平行方向
に成長する。
As a result, a region from the surface to a depth of 5 to 50 μm is decarburized, and only this portion becomes α single phase. If this α single phase region is maintained so as not to reach deep parts, only crystal grains having <100> axes in the direction perpendicular to the plate surface will grow in the direction parallel to the plate surface.

かくして、表層は板面垂直方向に< 100 >軸が強
く集積したα単相の集合Mi職を持つようになる。
In this way, the surface layer has a single α-phase aggregate Mi structure with <100> axes strongly integrated in the direction perpendicular to the plate surface.

この段階での表層のα粒は板面平行方向に30〜300
μm程度の大きさの結晶粒となっている。
At this stage, the number of α grains in the surface layer is 30 to 300 in the direction parallel to the plate surface.
The crystal grains have a size of approximately μm.

続いて露点°C以上のI−12中等の強脱炭性雰ひ■気
中で脱炭を進行させると、表層のα粒が内部のα+12
相域、もしくはT相域に向かって成長し、最終的には両
表面から内部に向かって延びた柱状高校が板厚中心部で
衝突したα単相の柱状晶MX織となる。
Subsequently, when decarburization is allowed to proceed in a strongly decarburizing atmosphere such as I-12 with a dew point of °C or higher, the α grains in the surface layer become α+12 inside.
It grows toward the phase region or T-phase region, and finally becomes an α single-phase columnar crystal MX weave in which columnar high schools extending inward from both surfaces collide at the center of the plate thickness.

以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

(実施例1) 常法により得た第1表に示す化学組成のインゴットを熱
間鍛造によって厚さ501の鋼片とした。
(Example 1) An ingot having the chemical composition shown in Table 1 obtained by a conventional method was hot forged into a steel billet having a thickness of 50 mm.

Nα1の鋼種Aついては、1200°Cに加熱後3.2
闘厚の鋼板に圧延した。この時点で多数の割れが発止し
たが、疵取り手入れ後酸洗し冷間圧延を試みたところ、
割れが激しく以後の圧延を中断した。
For steel type A with Nα1, the temperature is 3.2 after heating to 1200°C.
Rolled into thick steel plate. At this point, many cracks had started, but after removing the flaws, we tried pickling and cold rolling.
Cracks were severe and subsequent rolling was interrupted.

Nα2〜Nα8の鋼種B−Hについては熱間圧延と冷間
圧延によって厚さ1.5mmの鋼板(表層材用鋼板)と
した。同じく鋼種(b)〜(h)については熱間圧延で
厚さ20II1mのw4板(内層材用鋼板)とした。次
いで、これらの表面スケールを除去後、内層材用鋼板を
外層材用N板で包み、溶接して組立した。これらを12
50”Cに加熱後、厚さ3.5111mまで熱間圧延し
、スケール除去後厚さ0.7mmまで冷間圧延した。
Steel types B-H with Nα2 to Nα8 were hot-rolled and cold-rolled into steel plates with a thickness of 1.5 mm (steel plates for surface layer materials). Similarly, the steel types (b) to (h) were hot rolled into W4 plates (steel plates for inner layer material) with a thickness of 20II1 m. Next, after removing these surface scales, the steel plate for the inner layer material was wrapped with the N plate for the outer layer material, and assembled by welding. 12 of these
After heating to 50''C, it was hot rolled to a thickness of 3.5111 m, and after removing scale, it was cold rolled to a thickness of 0.7 mm.

Nα6のものはこの時点で割れ発生がひどく、その後の
調査を中断した。圧延によって健全なりラッド鋼板がで
きたNα2〜Nα5及びNα7〜NαBについて表層部
の片側と内層部の厚さを顕微鏡Mi織観察によって1周
べたところそれぞれ25μm、0.65mmであった。
At this point, cracking was severe in the case of Nα6, and further investigation was discontinued. For Nα2 to Nα5 and Nα7 to NαB, which were made into sound rad steel plates by rolling, the thickness of one side of the surface layer and the inner layer was observed by microscopic Mi weave observation and found to be 25 μm and 0.65 mm, respectively.

これらより小片を採取し、第一回目の焼鈍を950°C
で10−’Torrの真空中で7時間行った。これは弱
脱炭焼鈍である。この第一回目の焼鈍後、顕微鏡組織観
察によって縦断面を調べたところ、i・1α7は全体的
に等軸粒であったが、No 2〜Nα5に関しては表層
が100μm程脱炭し、その部分は柱状晶粒であった。
Small pieces were collected from these and annealed for the first time at 950°C.
The test was carried out in a vacuum of 10-' Torr for 7 hours. This is weak decarburization annealing. After this first annealing, the vertical cross section was examined by microscopic structure observation, and it was found that i・1α7 was an equiaxed grain as a whole, but for Nos. 2 to 5, the surface layer was decarburized by about 100 μm, and that part was decarburized. were columnar grains.

さらに、第2回目の焼鈍を露点20°Cのン兄潤水素中
において850°Cで2h保持して行った。脱炭後、同
様に縦断面の顕微鏡組織観察を行ったところ、Nα2、
Nα7は共に結晶粒は板厚を貫通していたが、Nα8は
まだセメンタイトが存在しており、脱炭しきれていなか
ったので、さらに二度同し条件で焼鈍を行った。この結
果、;4oBについては結晶キ゛ηが板厚を貫通したが
、粒径が500μmと非常に大きくなった。
Furthermore, a second annealing was carried out at 850°C for 2 hours in a hydrogen atmosphere with a dew point of 20°C. After decarburization, microscopic structure observation of the longitudinal section was performed in the same manner, and it was found that Nα2,
In both cases of Nα7, the crystal grains penetrated through the plate thickness, but in case of Nα8, cementite was still present and decarburization had not been completed, so annealing was performed twice under the same conditions. As a result, for ;4oB, the crystallinity η penetrated through the plate thickness, but the grain size was very large, 500 μm.

このようにして得られたNo、 2〜No 5及びNo
、 7〜Nα8の電磁鋼板について、板面垂直方向のX
線回折積分強度(軸密度)、圧延方向(R,[+、)の
<100>軸密度、磁束密度及び鉄損を測定した。その
結果を第1表に最終焼鈍後のC量とともに示す。
No. 2 to No. 5 and No. thus obtained
, For electromagnetic steel sheets of 7 to Nα8, X in the direction perpendicular to the sheet surface
Line diffraction integrated intensity (axial density), <100> axial density in the rolling direction (R, [+,), magnetic flux density, and iron loss were measured. The results are shown in Table 1 together with the amount of C after final annealing.

(以下、余白) 第1表より明らかなように、本発明例のNα2〜隘5は
どれも板面垂直方向の<100>軸密度が30〜40倍
と高く、さらに圧延方向の磁気特性もよい。
(Hereinafter, blank space) As is clear from Table 1, all of the examples of the present invention, Nα2 to Nα5, have a <100> axis density in the direction perpendicular to the plate surface that is 30 to 40 times higher, and furthermore, the magnetic properties in the rolling direction are also good.

これに対して比較例の魔7は< 100 >軸密度が弱
く、<111>軸密度が強いため、磁気特性が著しく悪
い、また、k8については<100.>軸密度は強いも
のの、鉄損が著しく大きい。これは粒径が非常に粗大で
あるために、渦電fitM及び異常渦電流損が大きくな
ったためであると考えられる。なお、これら鋼板の表層
部と内層部での集合&11織の差を調べたところ有意差
はないことを確認した。
On the other hand, the comparative example Ma7 has a weak <100> axis density and a strong <111> axis density, so its magnetic properties are extremely poor, and k8 has a <100> axis density. >Although the shaft density is strong, the iron loss is extremely large. This is considered to be because the particle size is very coarse, so the eddy current fitM and abnormal eddy current loss become large. In addition, when the difference in the set & 11 weave between the surface layer and the inner layer of these steel plates was investigated, it was confirmed that there was no significant difference.

(実施例2) 実施例1で用いた鋼種Cと同じ化学組成の板厚311I
lO熱延鋼板(表層材用鋼板)を製造し、スケール除去
後、内容積が40mmXIQ抛僧X 250vw高さの
一方が開放されている箱型に溶接して組立てた。
(Example 2) Plate thickness 311I with the same chemical composition as steel type C used in Example 1
IO hot-rolled steel plates (steel plates for surface materials) were produced, and after removing scale, they were welded and assembled into a box shape with an internal volume of 40 mm, a height of 40 mm, and a height of 250 vw, with one side open.

次いで実施例1で用いた鋼種(C)と同じ化学組成の溶
湯を内部に鋳込み、クラツド材を製造した。鋳込み後上
端より5011IBを切捨て、1200’Cに加熱後厚
さ3.21まで熱間圧延し、スケール除去後、厚さ0.
8■醜まで冷間圧延した。この冷延鋼板に実施例1と同
様の条件で焼鈍を施し集合組織制御を行った。第2表に
磁気特性を調査した結果を示す。
Next, a molten metal having the same chemical composition as the steel type (C) used in Example 1 was poured inside to produce a cladding material. After casting, 5011IB was cut off from the upper end, heated to 1200'C, hot rolled to a thickness of 3.21mm, and after removing scale, it was rolled to a thickness of 0.5mm.
8■ Cold rolled to the point of ugliness. This cold-rolled steel sheet was annealed under the same conditions as in Example 1 to control the texture. Table 2 shows the results of investigating the magnetic properties.

鋳造法によって得られたものであっても、優れた磁気特
性を有していることがわかる。
It can be seen that even those obtained by the casting method have excellent magnetic properties.

なお、鋼種(C)の内層材用の鋼塊を作り、溶解した外
層材用の鋼種Cの溶湯に浸漬し、所定の厚さの凝固殻が
成長した後引き上げ、この鋼塊を前記と同様の方法によ
って最終製品となし、その特性評価を行ったが、第1ま
たは第2表に示した本発明例のものと遜色のない結果が
得られた。
In addition, a steel ingot of steel type (C) for the inner layer material is made, immersed in molten metal of steel type C for the outer layer material, and pulled out after a solidified shell of a predetermined thickness has grown, and this steel ingot is treated in the same manner as above. A final product was prepared by the method described above, and its characteristics were evaluated, and results comparable to those of the examples of the present invention shown in Tables 1 and 2 were obtained.

(発明の効果) 実施例からも明らかなように、本発明方法によれば→今
まで容易に圧延できなかった高Si無方向性珪素鋼板の
圧延性を向上させることができるとともに一段と優れた
磁気特性を付与することかできる。
(Effects of the Invention) As is clear from the examples, according to the method of the present invention, it is possible to improve the rollability of high-Si non-oriented silicon steel sheets, which could not be easily rolled up to now, and to achieve even better magnetic properties. It is possible to add characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)鋼板表面から少なくとも10μm厚の両表層部に
おける化学組成が、C≦0.01wt%、Si≦3wt
%、0.5wt≦Mn≦5wt%、P≦0.1wt%、
S≦0.05wt%、N≦0.005wt%、Al≦0
.1wt%、残部Fe及び不可避不純物からなり、内層
部における化学組成がC≦0.01wt%、3wt%<
Si≦7wt%、0.5wt≦Mn≦5wt%、P≦0
.1wt%、S≦0.05wt%、N≦0.005wt
%、Al≦0.1wt%、残部Fe及び不可避不純物か
らなる多層構造の珪素鋼板であって、該珪素鋼板は板面
垂直方向に表面から内部に向かって成長した結晶粒を有
し、その結晶粒の<100>軸が板面垂直方向に集積し
ていることを特徴とする磁気特性に優れた珪素鋼板。
(1) The chemical composition of both surface layers at least 10 μm thick from the steel plate surface is C≦0.01wt%, Si≦3wt%.
%, 0.5wt≦Mn≦5wt%, P≦0.1wt%,
S≦0.05wt%, N≦0.005wt%, Al≦0
.. 1wt%, the balance is Fe and unavoidable impurities, and the chemical composition in the inner layer is C≦0.01wt%, 3wt%<
Si≦7wt%, 0.5wt≦Mn≦5wt%, P≦0
.. 1wt%, S≦0.05wt%, N≦0.005wt
%, Al≦0.1wt%, the balance being Fe and unavoidable impurities, the silicon steel sheet has crystal grains that grow from the surface to the inside in a direction perpendicular to the sheet surface, A silicon steel sheet with excellent magnetic properties, characterized in that <100> axes of grains are concentrated in a direction perpendicular to the sheet surface.
(2)鋼板表面から少なくとも10μm厚の両表層部に
おける化学組成が、0.02wt%≦C≦1wt%、S
i≦3wt%、0.5wt≦Mn≦5wt%、P≦0.
1wt%、S≦0.05wt%、N≦0.005wt%
、Al≦0.1wt%、残部Fe及び不可避不純物から
なり、内層部における化学組成が0.02wt%≦C≦
1wt%、3wt%<Si≦7wt%、0.5wt≦M
n≦5wt%、P≦0.1wt%、S≦0.05wt%
、N≦0.005wt%、Al≦0.1wt%、残部F
e及び不可避不純物からなる多層構造の冷間圧延珪素鋼
板を、脱炭後実質的にフェライト単相となる温度で表層
部及び内層部におけるC含有量が0.01wt%以下に
なるまで脱炭焼鈍することを特徴とする磁気特性に優れ
た珪素鋼板の製造方法。
(2) The chemical composition of both surface layers with a thickness of at least 10 μm from the steel sheet surface is 0.02wt%≦C≦1wt%, S
i≦3wt%, 0.5wt≦Mn≦5wt%, P≦0.
1wt%, S≦0.05wt%, N≦0.005wt%
, Al≦0.1wt%, the balance consists of Fe and unavoidable impurities, and the chemical composition in the inner layer is 0.02wt%≦C≦
1wt%, 3wt%<Si≦7wt%, 0.5wt≦M
n≦5wt%, P≦0.1wt%, S≦0.05wt%
, N≦0.005wt%, Al≦0.1wt%, balance F
A cold-rolled silicon steel sheet with a multilayer structure consisting of E and inevitable impurities is decarburized and annealed at a temperature at which it becomes substantially a single phase of ferrite after decarburization until the C content in the surface layer and inner layer becomes 0.01 wt% or less. A method for producing a silicon steel sheet with excellent magnetic properties.
JP27828189A 1989-10-25 1989-10-25 Silicon steel sheet having excellent magnetic characteristics and its manufacture Pending JPH03140442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27828189A JPH03140442A (en) 1989-10-25 1989-10-25 Silicon steel sheet having excellent magnetic characteristics and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27828189A JPH03140442A (en) 1989-10-25 1989-10-25 Silicon steel sheet having excellent magnetic characteristics and its manufacture

Publications (1)

Publication Number Publication Date
JPH03140442A true JPH03140442A (en) 1991-06-14

Family

ID=17595166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27828189A Pending JPH03140442A (en) 1989-10-25 1989-10-25 Silicon steel sheet having excellent magnetic characteristics and its manufacture

Country Status (1)

Country Link
JP (1) JPH03140442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551141A1 (en) * 1992-01-10 1993-07-14 Sumitomo Chemical Company, Limited Oriented magnetic steel sheets and manufacturing process therefor
JP2012197485A (en) * 2011-03-22 2012-10-18 Nippon Steel Corp Manufacturing method of steel sheet having crystal orientation
JP2015010241A (en) * 2013-06-26 2015-01-19 新日鐵住金株式会社 Fe-BASED METAL PLATE AND PRODUCTION METHOD OF THE SAME
JP2020090720A (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551141A1 (en) * 1992-01-10 1993-07-14 Sumitomo Chemical Company, Limited Oriented magnetic steel sheets and manufacturing process therefor
US5425820A (en) * 1992-01-10 1995-06-20 Sumitomo Metal Industries, Ltd. Oriented magnetic steel sheets and manufacturing process therefor
JP2012197485A (en) * 2011-03-22 2012-10-18 Nippon Steel Corp Manufacturing method of steel sheet having crystal orientation
JP2015010241A (en) * 2013-06-26 2015-01-19 新日鐵住金株式会社 Fe-BASED METAL PLATE AND PRODUCTION METHOD OF THE SAME
JP2020090720A (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
EP2796571B1 (en) High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
JP5927754B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
KR101614593B1 (en) Grain-oriented magnetic steel sheet
JP2007516345A (en) Improved manufacturing method for non-oriented electrical steel strip
US10584406B2 (en) Electrical steel sheet
TWI525198B (en) Non - directional electrical steel sheet and its hot - rolled steel sheet
JPH0586455B2 (en)
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
KR930010323B1 (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JPH11236618A (en) Production of low core loss nonoriented silicon steel sheet
JP7268803B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH08104923A (en) Production of non-oriented silicon steel sheet
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density