JP7331802B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP7331802B2
JP7331802B2 JP2020134849A JP2020134849A JP7331802B2 JP 7331802 B2 JP7331802 B2 JP 7331802B2 JP 2020134849 A JP2020134849 A JP 2020134849A JP 2020134849 A JP2020134849 A JP 2020134849A JP 7331802 B2 JP7331802 B2 JP 7331802B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
oriented electrical
hot
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020134849A
Other languages
Japanese (ja)
Other versions
JP2022030684A (en
Inventor
正憲 大立
智幸 大久保
善彰 財前
幸乃 宮本
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020134849A priority Critical patent/JP7331802B2/en
Publication of JP2022030684A publication Critical patent/JP2022030684A/en
Application granted granted Critical
Publication of JP7331802B2 publication Critical patent/JP7331802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板およびその製造方法に関し、特に、モータの鉄心に使用される無方向性電磁鋼板とその製造方法に関する。 TECHNICAL FIELD The present invention relates to a non-oriented electrical steel sheet and its manufacturing method, and more particularly to a non-oriented electrical steel sheet used for the iron core of a motor and its manufacturing method.

無方向性電磁鋼板はモータやトランスの鉄心として使用される材料であり、これら電気機器の効率向上の観点から無方向性電磁鋼板には低鉄損が要求される。無方向性電磁鋼板の鉄損低減には固有抵抗の増加や薄手化が有効である。しかしながら、無方向性電磁鋼板の固有抵抗を増加するには合金コストが、薄手化するには圧延や焼鈍のコストが増加するという課題があり、新たな鉄損低減手法の確立が望まれている。 Non-oriented electrical steel sheets are materials used as iron cores of motors and transformers, and low iron loss is required for non-oriented electrical steel sheets from the viewpoint of improving the efficiency of these electric devices. Increasing the specific resistance and reducing the thickness of the non-oriented electrical steel sheet are effective in reducing iron loss. However, increasing the resistivity of a non-oriented electrical steel sheet increases the cost of the alloy, and reducing the thickness increases the cost of rolling and annealing. .

固有抵抗や薄手化以外の鉄損低減手法として、無方向性電磁鋼板に張力を加えることでヒステリシス損を改善する手法が知られている。特許文献1にあるように、方向性電磁鋼板では鋼板表面に酸化物からなる皮膜を形成し、ガラスコーティングを施すことで、皮膜と鋼板との熱膨張差により張力を付与する方法がとられている。 As a method of reducing iron loss other than specific resistance and thinning, a method of improving hysteresis loss by applying tension to a non-oriented electrical steel sheet is known. As described in Patent Document 1, grain-oriented electrical steel sheets employ a method in which a film made of an oxide is formed on the surface of the steel sheet, and a glass coating is applied to the steel sheet to apply tension due to the difference in thermal expansion between the film and the steel sheet. there is

また、特許文献2では、無方向性電磁鋼板において鋼板表面に酸化物を主体とする複層構造の被膜を形成することで、被膜と鋼板の密着性を損なうことなく鋼板に張力を付与する方法が開示されている。 Further, in Patent Document 2, a method of applying tension to a steel sheet without impairing the adhesion between the coating and the steel sheet by forming a multi-layer structure coating mainly composed of oxides on the surface of the non-oriented electrical steel sheet. is disclosed.

特開2008-31499号公報JP-A-2008-31499 特開2017-101292号公報JP 2017-101292 A

しかしながら、前記特許文献1、2に開示された方法では、鋼板表面に硬い酸化物層を形成することから、打ち抜きによりモータ鉄心に加工する際に金型の寿命を縮めてしまい、生産性が低下、コストが増加するという問題がある。 However, in the methods disclosed in Patent Documents 1 and 2, since a hard oxide layer is formed on the surface of the steel sheet, the life of the die is shortened when the steel sheet is punched into a motor core, resulting in a decrease in productivity. , there is a problem that the cost increases.

本発明は、上記問題点に鑑みてなされたものであり、鋼板表面に酸化物層を形成することなく、鋼板に張力を付与した無方向性電磁鋼板を提供することを目的とする。
また、本発明は、前記無方向性電磁鋼板の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-oriented electrical steel sheet in which tension is applied to the steel sheet without forming an oxide layer on the surface of the steel sheet.
Another object of the present invention is to provide a method for manufacturing the non-oriented electrical steel sheet.

本発明者らは、上記課題の解決に向け、α-Feに固溶し格子定数に及ぼす鋼成分の影響に着目して検討を重ねた。その結果、特定の固溶元素を鋼板表面に濃化させることで、鋼板表層と板厚中心層の格子定数差により、引張応力が生じることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors focused attention on the effects of steel components dissolved in α-Fe and exerted on the lattice constant. As a result, the present inventors have found that by concentrating a specific solute element on the surface of the steel sheet, tensile stress is generated due to the difference in lattice constant between the surface layer of the steel sheet and the central layer of the thickness of the steel sheet, leading to the completion of the present invention.

すなわち、本発明の要旨構成は次の通りである。
[1]質量%で、
C:0.005%以下、
Si:1.0%以上7.0%以下、
Mn:0.02%以上4.0%以下、
Sol.Al:0.001%以上4.0%以下、
P:0.001%以上0.2%以下、
S:0.005%以下、
N:0.005%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
格子定数が、板厚中心の格子定数より0.002Å以上大きい領域であるA層を両表面に有し、前記A層の表面から板厚方向への深さが20μm以下である、無方向性電磁鋼板。
[2]前記成分組成に加えて、さらに、質量%で、
Sb:0.002%以上0.5%以下、
Sn:0.002%以上0.5%以下、
W:0.002%以上0.5%以下、
Zn:0.002%以上0.5%以下から選んだ1種もしくは2種以上を含有する、[1]に記載の無方向性電磁鋼板。
[3]質量%で、
C:0.005%以下、
Si:1.0%以上7.0%以下、
Mn:0.02%以上4.0%以下、
Sol.Al:0.001%以上4.0%以下、
P:0.001%以上0.2%以下、
S:0.005%以下、
N:0.005%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延板とし、前記熱延板に熱延板焼鈍を施した後または熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、
CVD、PVD、メッキ、クラッドのいずれかの処理を施すことにより、
格子定数が、板厚中心の格子定数より0.002Å以上大きい領域であるA層を両表面に有し、前記A層の表面から板厚方向への深さが20μm以下となる無方向性電磁鋼板を製造する、無方向性電磁鋼板の製造方法。
[4]前記成分組成に加えて、さらに、質量%で、
Sb:0.002%以上0.5%以下、
Sn:0.002%以上0.5%以下、
W:0.002%以上0.5%以下、
Zn:0.002%以上0.5%以下から選んだ1種もしくは2種以上を含有する、[3]に記載の無方向性電磁鋼板の製造方法。
That is, the gist and configuration of the present invention are as follows.
[1] % by mass,
C: 0.005% or less,
Si: 1.0% or more and 7.0% or less,
Mn: 0.02% or more and 4.0% or less,
Sol. Al: 0.001% or more and 4.0% or less,
P: 0.001% or more and 0.2% or less,
S: 0.005% or less,
N: having a component composition containing 0.005% or less, the balance being Fe and inevitable impurities,
A layer having a lattice constant larger than the lattice constant at the center of the plate thickness by 0.002 Å or more on both surfaces, and having a depth of 20 μm or less in the plate thickness direction from the surface of the A layer, non-oriented electromagnetic steel sheet.
[2] In addition to the above component composition, in mass%,
Sb: 0.002% or more and 0.5% or less,
Sn: 0.002% or more and 0.5% or less,
W: 0.002% or more and 0.5% or less,
Zn: The non-oriented electrical steel sheet according to [1], containing one or more selected from 0.002% or more and 0.5% or less.
[3] in % by mass,
C: 0.005% or less,
Si: 1.0% or more and 7.0% or less,
Mn: 0.02% or more and 4.0% or less,
Sol. Al: 0.001% or more and 4.0% or less,
P: 0.001% or more and 0.2% or less,
S: 0.005% or less,
A steel slab having a chemical composition containing N: 0.005% or less and the balance being Fe and unavoidable impurities is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is subjected to hot-rolled sheet annealing. Alternatively, a method for manufacturing a non-oriented electrical steel sheet in which cold rolling is performed once or twice or more with intermediate annealing without performing hot-rolled sheet annealing to obtain a cold-rolled sheet having a final thickness, and then finish annealing is performed. in
By applying any one of CVD, PVD, plating, and cladding,
A non-directional electromagnetic wave having on both surfaces a layer A having a lattice constant larger than the lattice constant at the center of the plate thickness by 0.002 Å or more, and having a depth of 20 μm or less in the plate thickness direction from the surface of the layer A. A method for manufacturing a non-oriented electrical steel sheet for manufacturing a steel sheet.
[4] In addition to the above component composition, in mass%,
Sb: 0.002% or more and 0.5% or less,
Sn: 0.002% or more and 0.5% or less,
W: 0.002% or more and 0.5% or less,
Zn: The method for producing a non-oriented electrical steel sheet according to [3], containing one or more selected from 0.002% or more and 0.5% or less.

本発明によれば、鋼板表面に酸化物層を形成することなく、鋼板に張力を付与した無方向性電磁鋼板を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which applied tension|tensile_strength to a steel plate can be provided, without forming an oxide layer on the steel plate surface.

本発明による無方向性電磁鋼板は、打ち抜き加工での生産性と優れた鉄損特性を両立するものである。本発明の無方向性電磁鋼板はモータコア用として好適である。 The non-oriented electrical steel sheet according to the present invention achieves both productivity in punching and excellent iron loss properties. The non-oriented electrical steel sheet of the present invention is suitable for motor cores.

鋼板表面からの深さと、板厚方向のAl濃度との関係を示すグラフの一例である。It is an example of a graph showing the relationship between the depth from the steel plate surface and the Al concentration in the plate thickness direction. 鋼板表面からの深さと、板厚中心との格子定数差との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the depth from the steel plate surface and the lattice constant difference with the plate|board thickness center.

まず、本発明の無方向性電磁鋼板の成分組成について説明する。なお、各元素の含有量を示す「%」は、特に断らない限り質量%を意味する。また、板厚方向で濃度が変化する元素は、板厚方向での平均値をその元素の含有量とする。 First, the chemical composition of the non-oriented electrical steel sheet of the present invention will be described. Note that "%" indicating the content of each element means % by mass unless otherwise specified. For elements whose concentration changes in the plate thickness direction, the average value in the plate thickness direction is taken as the content of the element.

C:0.005%以下
Cは、磁気時効の原因となり製品板の磁気特性を劣化させる有害元素であるので、本発明ではC含有量を0.005%以下に制限する。Cは極力低減させたい元素であり、C含有量は、好ましくは0.003%以下である。
C: 0.005% or less C is a harmful element that causes magnetic aging and deteriorates the magnetic properties of the product sheet. Therefore, in the present invention, the C content is limited to 0.005% or less. C is an element to be reduced as much as possible, and the C content is preferably 0.003% or less.

Si:1.0%以上7.0%以下
Siは、鋼板の固有抵抗を高め、鉄損を低減するのに有効な元素であるので、本発明ではSi含有量を1.0%以上とする。一方、7.0%を超えるSiの添加は鋼を著しく脆化するので、Si含有量を7.0%以下に制限する。Si含有量は、好ましくは1.5%以上であり、より好ましくは1.8%以上である。また、Si含有量は、好ましくは6.5%以下であり、より好ましくは4.8%以下である。
Si: 1.0% or more and 7.0% or less Si is an element effective in increasing the specific resistance of the steel sheet and reducing iron loss, so in the present invention, the Si content is made 1.0% or more. . On the other hand, the addition of Si exceeding 7.0% makes the steel extremely embrittled, so the Si content is limited to 7.0% or less. The Si content is preferably 1.5% or more, more preferably 1.8% or more. Also, the Si content is preferably 6.5% or less, more preferably 4.8% or less.

Mn:0.02%以上4.0%以下
Mnは、熱間圧延時の赤熱脆性を防止するため、0.02%以上添加する必要がある。しかし、4.0%を超えると、磁束密度が低下し、脆化も顕著となる。よって、Mn含有量は0.02%以上4.0%以下の範囲とする。Mn含有量は、好ましくは0.02%以上2.0%以下の範囲である。Mnは、α-Feに固溶することで格子定数を増加させる元素であることから鋼板表層側のA層に多く固溶させることが好ましい。
Mn: 0.02% or more and 4.0% or less Mn must be added in an amount of 0.02% or more in order to prevent red hot brittleness during hot rolling. However, when it exceeds 4.0%, the magnetic flux density decreases and embrittlement becomes remarkable. Therefore, the Mn content is in the range of 0.02% or more and 4.0% or less. The Mn content is preferably in the range of 0.02% or more and 2.0% or less. Mn is an element that increases the lattice constant by forming a solid solution in α-Fe, so it is preferable to make a large amount of Mn form a solid solution in the A layer on the surface layer side of the steel sheet.

Sol.Al:0.001%以上4.0%以下
Alは、鋼板の固有抵抗を高め、鉄損を低減するのに有効な元素であるので、本発明では0.001%以上添加する。しかし、4.0%を超えて添加すると脆化が問題になる。よって、Al含有量は、Sol.Alとして0.001%以上4.0%以下の範囲とする。Alは、α-Feに固溶することで格子定数を増加させる元素であることから鋼板表層側のA層に多く固溶させることが好ましい。
Sol. Al: 0.001% or more and 4.0% or less Al is an element effective in increasing the specific resistance of the steel sheet and reducing iron loss, so in the present invention, 0.001% or more is added. However, adding more than 4.0% causes embrittlement. Therefore, the Al content is the Sol. The range of Al is 0.001% or more and 4.0% or less. Since Al is an element that increases the lattice constant by dissolving in α-Fe, it is preferable to make a large amount of Al dissolve in the A layer on the surface layer side of the steel sheet.

P:0.001%以上0.2%以下
Pは、0.2%を超えて添加すると脆化が激しく、生産性を著しく低下させるので、本発明ではP含有量を0.2%以下とする。また、P含有量を0.001%未満とするためにはコストが著しく増加することからP含有量の下限を0.001%とする。
P: 0.001% or more and 0.2% or less In the present invention, the P content is set to 0.2% or less because embrittlement is severe when added in excess of 0.2%, and productivity is significantly reduced. do. In addition, if the P content is less than 0.001%, the cost will increase significantly, so the lower limit of the P content is made 0.001%.

S:0.005%以下
Sは、MnS等の硫化物を生成し、鉄損を増加させる有害元素であるため、S含有量の上限を0.005%とする。S含有量は、好ましくは0.003%以下である。
S: 0.005% or less S is a harmful element that forms sulfides such as MnS and increases iron loss, so the upper limit of the S content is made 0.005%. The S content is preferably 0.003% or less.

N:0.005%以下
Nは、窒化物を生成し、鉄損を増加させる有害元素であるため、N含有量の上限を0.005%とする。N含有量は、好ましくは0.003%以下である。
N: 0.005% or less N is a harmful element that forms nitrides and increases iron loss, so the upper limit of the N content is made 0.005%. The N content is preferably 0.003% or less.

本発明の無方向性電磁鋼板は、上記成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することが好ましい。 The non-oriented electrical steel sheet of the present invention preferably has a chemical composition containing the above components with the balance being Fe and unavoidable impurities.

また、本発明の無方向性電磁鋼板は、上記成分組成に加えて、Sb:0.002%以上0.5%以下、Sn:0.002%以上0.5%以下、W:0.002%以上0.5%以下、Zn:0.002%以上0.5%以下から選んだ1種または2種以上を含有することが出来る。これらの元素はα-Feに固溶することで格子定数を増加させる元素であることから、鋼板表層側のA層に多く固溶させることが好ましい。 In addition to the above chemical composition, the non-oriented electrical steel sheet of the present invention has Sb: 0.002% or more and 0.5% or less, Sn: 0.002% or more and 0.5% or less, W: 0.002 % or more and 0.5% or less, and Zn: 0.002% or more and 0.5% or less. Since these elements are elements that increase the lattice constant by dissolving in α-Fe, it is preferable to dissolve many of them in the A layer on the surface layer side of the steel sheet.

次に、本発明の無方向性電磁鋼板の成分傾斜と鋼板内の応力状態について説明する。 Next, the component gradient of the non-oriented electrical steel sheet of the present invention and the stress state in the steel sheet will be described.

本発明の無方向性電磁鋼板は、鋼板表層の領域と、板厚中心の領域が、異なる格子定数を有する。具体的には、本発明の無方向性電磁鋼板は、格子定数が、板厚中心(板厚中心面)の格子定数よりも0.002Å以上大きい領域であるA層を両表面に有する。そして、前記A層の間には、格子定数が、板厚中心の格子定数と0.002Å未満の差を有する領域であるB層を有する。 In the non-oriented electrical steel sheet of the present invention, the steel sheet surface layer region and the plate thickness center region have different lattice constants. Specifically, the non-oriented electrical steel sheet of the present invention has layers A on both surfaces, which are regions in which the lattice constant is 0.002 Å or more larger than the lattice constant at the thickness center (thickness center plane). Between the A layers, there is a B layer, which is a region having a lattice constant different from the lattice constant at the center of the plate thickness by less than 0.002 Å.

本発明の無方向性電磁鋼板は、上記A層を表層に有することで、鋼板に張力を付与できる。このため、本発明の無方向性電磁鋼板は、鋼板に張力を付与するための酸化物層を形成しなくても、鋼板に張力を付与することができる。 Since the non-oriented electrical steel sheet of the present invention has the layer A on the surface layer, tension can be applied to the steel sheet. Therefore, the non-oriented electrical steel sheet of the present invention can apply tension to the steel sheet without forming an oxide layer for applying tension to the steel sheet.

上述したA層の深さ(厚さ)は、表面から20μm以下(A層の厚さが20μm以下)である。A層は、B層から圧縮応力がかかるため、A層の深さが20μmを超えた場合、無方向性電磁鋼板の鉄損が劣化する。A層の深さは、好ましくは15μm以下である。 The depth (thickness) of the A layer described above is 20 μm or less from the surface (the thickness of the A layer is 20 μm or less). Compressive stress is applied to the A layer from the B layer, so if the depth of the A layer exceeds 20 μm, the core loss of the non-oriented electrical steel sheet deteriorates. The depth of the A layer is preferably 15 μm or less.

また、十分な鉄損改善効果を得るために、上記A層がB層に及ぼす引張応力は0.1MPa以上であることが好ましい。 In order to obtain a sufficient iron loss improvement effect, the tensile stress exerted by the layer A on the layer B is preferably 0.1 MPa or more.

十分な鉄損改善効果を得るために、A層とB層の境界における板厚方向深さに対する格子定数の勾配は0.0001Å/μm以上であることが好ましい。 In order to obtain a sufficient iron loss improvement effect, the gradient of the lattice constant with respect to the thickness direction depth at the boundary between the A layer and the B layer is preferably 0.0001 Å/μm or more.

A層は、例えば、鋼板表層にAl、Mn、Sb、Sn、W、Zn等のα-Feに固溶することで格子定数を増加させる元素を濃化させて存在させることで形成できる。すなわち、鋼板表層(A層)のAl、Mn、Sb、Sn、W、Zn濃度を、板厚中心よりも高くする(濃化する)ことで形成できる。なお、このような成分傾斜は、後述するCVD、PVD、メッキ、クラッドにより実施できる。また、上述のSb、Sn、W、Znから選んだ1種または2種以上をCVD、PVD、メッキ、クラッドにより鋼板に含有させる場合には、これらの元素は、鋼板表層(A層)のみに含まれてもよい。 The A layer can be formed, for example, by concentrating an element, such as Al, Mn, Sb, Sn, W, and Zn, which increases the lattice constant by forming a solid solution with α-Fe in the surface layer of the steel sheet. That is, it can be formed by increasing (concentrating) the Al, Mn, Sb, Sn, W, and Zn concentrations of the steel sheet surface layer (A layer) above the center of the sheet thickness. In addition, such component inclination can be performed by CVD, PVD, plating, and clad, which will be described later. Further, when one or more selected from the above-mentioned Sb, Sn, W, and Zn are contained in the steel sheet by CVD, PVD, plating, or clad, these elements are contained only in the steel sheet surface layer (A layer). may be included.

次に、本発明の無方向性電磁鋼板の製造方法について述べる。
本発明の無方向性電磁鋼板の製造方法は、鋼スラブを熱間圧延して熱延板とし、前記熱延板に熱延板焼鈍を施した後または熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、さらに、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、メッキ、クラッドのいずれかの処理を施すことにより、鋼板表層の領域の格子定数を増加させる工程を有する。
Next, the method for manufacturing the non-oriented electrical steel sheet of the present invention will be described.
A method for producing a non-oriented electrical steel sheet according to the present invention includes hot-rolling a steel slab into a hot-rolled sheet, and performing hot-rolled sheet annealing on or without hot-rolled sheet annealing. A method for manufacturing a non-oriented electrical steel sheet, which is subjected to cold rolling twice or more with double or intermediate annealing to obtain a cold-rolled sheet having a final thickness, and then to final annealing, further comprising CVD (Chemical Vapor Deposition), It includes a step of increasing the lattice constant of the region of the surface layer of the steel sheet by performing any one of PVD (Physical Vapor Deposition), plating, and cladding.

各工程について、詳細に説明する。まず、上記の好適成分組成に調整した溶鋼から、鋼スラブを製造する。鋼スラブは、通常の造塊-分塊法や連続鋳造法によって製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。 Each step will be described in detail. First, a steel slab is produced from molten steel adjusted to have the above-described preferred chemical composition. A steel slab may be produced by a normal ingot casting-blooming method or a continuous casting method, or may be produced by a direct casting method from a thin slab having a thickness of 100 mm or less.

次いで、鋼スラブは通常の方法で加熱して熱間圧延に供するが、鋳造後加熱せずに直ちに熱間圧延に供してもよい。ここで、上記熱間圧延後の鋼板(熱延板)の板厚は、1.0~5.0mmの範囲とするのが好ましい。1.0mm未満では、熱間圧延での圧延トラブルが増加する傾向となり、一方、5.0mm超えでは、冷延圧下率が高くなり過ぎ、集合組織が劣化するおそれがあるからである。 The steel slab is then heated in the usual manner and subjected to hot rolling, although it may be subjected to hot rolling immediately after casting without heating. Here, the thickness of the steel sheet (hot-rolled sheet) after hot rolling is preferably in the range of 1.0 to 5.0 mm. If the thickness is less than 1.0 mm, rolling troubles in hot rolling tend to increase.

熱間圧延後に熱延板焼鈍を施す場合には、均熱温度は900~1200℃の範囲とするのが好ましい。均熱温度が900℃以上であると、熱延板焼鈍の効果をより享受することができ磁気特性をより高めやすくなる。また、均熱温度が1200℃以下であると、コスト的に有利となる他、スケール起因の表面疵の発生を抑制しやすくなる。 When the hot-rolled sheet is annealed after hot rolling, the soaking temperature is preferably in the range of 900 to 1200°C. When the soaking temperature is 900° C. or higher, the effect of hot-rolled sheet annealing can be more enjoyed, and the magnetic properties can be more easily improved. Further, when the soaking temperature is 1200° C. or less, it is advantageous in terms of cost, and it becomes easy to suppress the occurrence of surface flaws caused by scale.

なお、熱延板焼鈍に代えて、熱間圧延後、巻き取ったコイルの自己焼鈍を活用してもよく、その場合には、コイル巻取温度は600℃以上とすることが好ましい。 In place of hot-rolled sheet annealing, self-annealing of a coil wound after hot rolling may be utilized, and in this case, the coil winding temperature is preferably 600° C. or higher.

熱間圧延後の熱延板または熱延板焼鈍後の熱延焼鈍板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施し冷延板とする。特に、最終の冷間圧延は、設備上や生産制約上、コスト的に問題がなければ、磁束密度を向上する目的で、板温を200℃程度に昇温して圧延する温間圧延を採用することが好ましい。 A hot-rolled sheet after hot rolling or a hot-rolled annealed sheet after hot-rolled sheet annealing is cold-rolled once or twice or more with intermediate annealing to obtain a cold-rolled sheet. In particular, for the final cold rolling, if there is no cost problem due to equipment or production restrictions, warm rolling, in which the sheet temperature is raised to about 200°C for the purpose of improving the magnetic flux density, is adopted. preferably.

なお、上記冷延板の板厚(最終板厚)は、0.1~1.0mmの範囲とするのが好ましい。冷延板の板厚が0.1mm以上であると、板厚を薄くすることによって生じる生産性の低下を抑制しやすくなる。冷延板の板厚が1.0mm以下であると、鉄損の低減効果を高めやすくなる。 The thickness (final thickness) of the cold-rolled sheet is preferably in the range of 0.1 to 1.0 mm. When the thickness of the cold-rolled sheet is 0.1 mm or more, it becomes easier to suppress the decrease in productivity caused by reducing the sheet thickness. When the thickness of the cold-rolled sheet is 1.0 mm or less, it becomes easier to enhance the effect of reducing iron loss.

本発明の無方向性電磁鋼板の製造方法においては、さらに、CVD、PVD、メッキ、クラッドのいずれかの処理を施す。 In the method of manufacturing the non-oriented electrical steel sheet of the present invention, any one of CVD, PVD, plating, and clad treatment is further performed.

(クラッドによる処理)
上記熱間圧延または冷間圧延の際に、母鋼板(母材)に、母鋼板よりも格子定数が大きい薄板(合わせ板)を板厚方向の上下に重ね合わせて圧着するクラッド処理を施すことで、鋼板表層の領域の格子定数を増加することができる。この際、母鋼板の板厚に対して、圧着する薄板(合わせ板)の板厚は5%以下であることが好ましい。
(treatment by clad)
During the above hot rolling or cold rolling, the mother steel sheet (base material) is subjected to a clad treatment in which thin sheets (laminated sheets) having a lattice constant larger than that of the mother steel sheet are stacked vertically in the thickness direction and crimped. , the lattice constant of the region of the surface layer of the steel sheet can be increased. At this time, the thickness of the thin plate (laminated plate) to be crimped is preferably 5% or less of the thickness of the mother steel plate.

具体的には、クラッド処理は、上述の鋼スラブを熱間圧延して熱延板とする際、前記鋼スラブを母材とし、その両表面に前記母材よりも格子定数が大きい薄板(合わせ板)を重ね合わせて圧着する処理とすることができる。また、クラッド処理は、熱延板または冷延板を母材とし、その両表面に前記母材よりも格子定数が大きい薄板(合わせ板)を重ね合わせて圧着する処理としてもよい。なお、薄板は、母材よりも格子定数が大きいものであれば、特に限定されないが、母材と同様に、上述の好適成分組成を有することが好ましく、さらにSb、Sn、W、Znを含む成分組成を有することが好ましい。 Specifically, when the steel slab is hot-rolled to form a hot-rolled sheet, the cladding process uses the steel slab as a base material, and coats both surfaces of the steel slab with a thin sheet having a lattice constant larger than that of the base material. plates) can be overlapped and crimped. The cladding treatment may be a process in which a hot-rolled sheet or a cold-rolled sheet is used as a base material, and thin sheets (laminated sheets) having a lattice constant larger than that of the base material are superimposed on both surfaces of the base material and crimped. The thin plate is not particularly limited as long as it has a lattice constant larger than that of the base material, but it preferably has the above-mentioned suitable component composition as well as the base material, and further includes Sb, Sn, W, and Zn. It is preferred to have a component composition.

(CVD、PVD、メッキによる処理)
また、上記冷間圧延後の冷延板に対して、CVD、PVD、メッキのいずれかの処理を行うことでAl、Mn、Sb、Sn、W、Zn等のα-Feに固溶することで格子定数を増加させる元素の濃化層を鋼板表面に形成し、鋼板表層の領域の格子定数を増加させてもよい。その場合には、上記濃化層の厚みは、鋼板片面側20μm以下であることが好ましく、より好ましくは10μm以下、更に好ましくは3μm以下である。
(Processing by CVD, PVD, plating)
In addition, the cold-rolled sheet after the cold rolling is subjected to any one of CVD, PVD, and plating so that it dissolves in α-Fe such as Al, Mn, Sb, Sn, W, and Zn. A concentrated layer of an element that increases the lattice constant may be formed on the surface of the steel sheet to increase the lattice constant of the region of the surface layer of the steel sheet. In that case, the thickness of the thickened layer is preferably 20 μm or less on one side of the steel sheet, more preferably 10 μm or less, and even more preferably 3 μm or less.

その後、上記最終板厚とした冷延板に仕上焼鈍を施す。仕上焼鈍は、700~1100℃の温度で1~3000秒間均熱する連続焼鈍を採用するのが好ましい。均熱温度が700℃以上であると、再結晶を十分に進行させることができ、良好な磁気特性が得られやすくなることに加え、連続焼鈍における形状矯正効果が十分に得られやすくなる。また、均熱温度が1100℃以下であると、結晶粒が過度に粗大化することを抑制しやすくなり、強度の低下や靭性の低下を抑制しやすくなる。均熱温度は、より好ましくは800~1100℃である。均熱時間は、より好ましくは1~100秒である。 Thereafter, the cold-rolled sheet having the final thickness is subjected to finish annealing. For the final annealing, it is preferable to employ continuous annealing in which the steel is soaked at a temperature of 700 to 1100° C. for 1 to 3000 seconds. When the soaking temperature is 700° C. or higher, recrystallization can be sufficiently advanced, and in addition to being likely to obtain good magnetic properties, it is easy to obtain a sufficient shape correction effect in continuous annealing. In addition, when the soaking temperature is 1100° C. or lower, excessive coarsening of crystal grains can be easily suppressed, and reduction in strength and toughness can be easily suppressed. The soaking temperature is more preferably 800-1100°C. The soaking time is more preferably 1 to 100 seconds.

なお、上記Al、Mn、Sb、Sn、W、Zn等の元素をCVD、PVD、メッキ処理により鋼板表面に濃化させた場合、仕上焼鈍により鋼中に上記元素を拡散させることが必要である。この際、拡散距離が長くなると引張応力が付与される体積が減り、十分な鉄損低減効果が得られなくなることから、上記元素の拡散距離は鋼板表面から20μm以下となるように仕上焼鈍時間と温度を制御する必要がある。 When the elements such as Al, Mn, Sb, Sn, W, and Zn are concentrated on the surface of the steel sheet by CVD, PVD, or plating, it is necessary to diffuse the elements into the steel by final annealing. . At this time, if the diffusion distance increases, the volume to which the tensile stress is applied decreases, and a sufficient iron loss reduction effect cannot be obtained. Temperature should be controlled.

ここで、上記連続焼鈍の均熱時における雰囲気は、酸化性であると表層で急激に成長した酸化物が粒成長を阻害し、鉄損を劣化させるため、酸素ポテンシャルPH2O/PH2が0.001以下の非酸化性雰囲気とするのが好ましい。酸素ポテンシャルは、より好ましくは0.0005以下である。 Here, if the atmosphere during the soaking of the continuous annealing is oxidizing, oxides that grow rapidly on the surface inhibit grain growth and deteriorate iron loss, so the oxygen potential P H2O /P H2 is 0. A non-oxidizing atmosphere of 0.001 or less is preferable. The oxygen potential is more preferably 0.0005 or less.

前記仕上焼鈍後に、必要に応じて絶縁コーティングを施し、製品板とする。絶縁コーティングは公知のものを用いることができ、無機コーティング、有機コーティング、無機-有機混合コーティングなどを目的に応じて使い分ければよい。 After the finish annealing, if necessary, an insulating coating is applied to obtain a product sheet. Known insulating coatings can be used, and inorganic coatings, organic coatings, inorganic-organic mixed coatings, etc. may be used depending on the purpose.

なお、本発明の無方向性電磁鋼板は、上述のA層を表層に有することで、あえて鋼板に張力を付与するための皮膜(酸化物層等)を形成しなくても、鋼板に張力を付与することができる。 In addition, the non-oriented electrical steel sheet of the present invention has the above-described A layer on the surface layer, so that tension is applied to the steel sheet without forming a film (such as an oxide layer) for applying tension to the steel sheet. can be granted.

次に、本発明の無方向性電磁鋼板の評価方法について説明する。 Next, a method for evaluating the non-oriented electrical steel sheet of the present invention will be described.

上述したような製造方法で製造された仕上焼鈍後の板(無方向性電磁鋼板、以下、仕上焼鈍板ともいう)から、圧延方向に対してなす角度φがφ=0°、90°となる方向に長い300mm×100mmの試験片を採取し、単板磁気測定試験で1.5T、50Hzの正弦波により励磁した際の鉄損W15/50を測定し、φ=0°と90°の試験片の鉄損の平均値を求めた。 From the plate after finish annealing (non-oriented electrical steel sheet, hereinafter also referred to as finish annealing plate) manufactured by the above-described manufacturing method, the angles φ made with respect to the rolling direction are φ = 0 ° and 90 °. A test piece of 300 mm × 100 mm long in the direction was taken, and the iron loss W 15/50 when excited by a sine wave of 1.5 T and 50 Hz was measured in a single plate magnetic measurement test, and φ = 0 ° and 90 °. The average iron loss of the test pieces was obtained.

仕上焼鈍板から、10mm角の試験片を採取し、Cモールドに埋め込んだのち、表面を研磨することで鋼板断面観察用試験片を作製し、EPMA(Electron Probe Micro Analyzer)により板厚方向の元素分布を評価した。 A 10 mm square test piece was taken from the finish annealed plate, embedded in a C mold, and then the surface was polished to prepare a test piece for observing the steel plate cross section. distribution was evaluated.

仕上焼鈍板から、30mm角のX線回折用試験片を採取し、化学研磨により段階的に鋼板を削りながらX線回折を行うことで鋼板表面から鋼板の板厚中心層(鋼板の板厚中心面)までの格子定数の変化を評価した。また、板厚中心の格子定数よりも格子定数が0.002Å以上大きい格子定数を有する領域をA層、板厚中心の格子定数に対する格子定数の差が0.002Å未満となる領域をB層として、A層の表面からの深さ(厚み)を評価した。 A 30 mm square X-ray diffraction test piece is taken from the finish annealed sheet, and X-ray diffraction is performed while gradually scraping the steel sheet by chemical polishing. The change in lattice constant up to the plane) was evaluated. In addition, a region having a lattice constant larger than the lattice constant at the thickness center by 0.002 Å or more is defined as layer A, and a region having a lattice constant difference of less than 0.002 Å with respect to the lattice constant at the thickness center is defined as layer B. , the depth (thickness) from the surface of the A layer was evaluated.

仕上焼鈍板から、300mm×30mmの応力測定用試験片を採取し、該試験片の片面から50μmの領域を化学研磨により除去したのち、鋼板の反り量を計測することで鋼板表面から加えられる応力(引張応力)を評価した。 A test piece for stress measurement of 300 mm × 30 mm is taken from the finish annealed sheet, a region of 50 μm is removed from one side of the test piece by chemical polishing, and then the amount of warpage of the steel sheet is measured. (tensile stress) was evaluated.

(実施例1)
C:0.0020、Si:2.5%、Mn:0.5%、Sol.Al:0.7%、P:0.05%、S:0.0020%、N:0.0023%となる成分組成の鋼を実験室で溶解し、熱間圧延を行い、板厚2.0mmの熱延板を得た。前記熱延板に1000℃で10秒の熱延焼鈍を施し、酸洗したのち、仕上げ厚0.30mmとなる冷間圧延を施し冷延板とした。前記冷延板に、アルミ有機金属ガスを用いたCVD処理あるいはN雰囲気での熱処理を950℃で100秒の条件で行い、それぞれの条件の冷延板にさらに950℃のN雰囲気中で30から15000秒の間で均熱時間を変更した仕上焼鈍を施し、仕上焼鈍板(無方向性電磁鋼板)を作製した。得られた仕上焼鈍板から磁気測定試験片と断面観察用試験片、X線回折用試験片を作製し、磁気特性と板厚方向の元素分布を測定した。
(Example 1)
C: 0.0020, Si: 2.5%, Mn: 0.5%, Sol. A steel having a chemical composition of Al: 0.7%, P: 0.05%, S: 0.0020%, and N: 0.0023% was melted in a laboratory and hot-rolled to obtain a plate thickness of 2.5%. A 0 mm hot-rolled sheet was obtained. The hot-rolled sheet was hot-rolled and annealed at 1000° C. for 10 seconds, pickled, and then cold-rolled to a finished thickness of 0.30 mm to obtain a cold-rolled sheet. The cold-rolled sheet was subjected to CVD treatment using aluminum organic metal gas or heat treatment in N2 atmosphere at 950°C for 100 seconds, and the cold-rolled sheet under each condition was further subjected to 950°C in N2 atmosphere. Finish annealing was performed by changing the soaking time between 30 and 15000 seconds to produce a finish annealed sheet (non-oriented electrical steel sheet). A test piece for magnetic measurement, a test piece for cross-sectional observation, and a test piece for X-ray diffraction were prepared from the obtained finish-annealed sheet, and the magnetic properties and element distribution in the sheet thickness direction were measured.

一部の条件(後掲の表1の条件2、3、7)について、図1に板厚方向の元素分布を示す。CVD処理を施した試験片の鋼板表面ではAl濃度が高く、板厚中心に近づくほど低下し、板厚中心付近でほぼ一定となった。また、図2に示すように格子定数はAl濃度の低下とともに減少し、板厚中心付近でほぼ一定となった。 FIG. 1 shows the distribution of elements in the plate thickness direction under some conditions (Conditions 2, 3, and 7 in Table 1 below). The Al concentration was high on the surface of the steel sheet of the CVD-treated test piece, decreased as it approached the center of the plate thickness, and became almost constant near the center of the plate thickness. Moreover, as shown in FIG. 2, the lattice constant decreased as the Al concentration decreased, and became almost constant near the center of the plate thickness.

表1に引張応力と鉄損の評価結果を示す。仕上焼鈍を30秒施した場合、鋼板に50MPa程度の引張応力が付与されたが(条件2)、仕上焼鈍を15000秒施した場合、応力の変化は認められなかった(条件7)。これは拡散時間を長くしたことでAlが長距離拡散し、板厚中心と表層との格子定数差がほとんどなくなったことが原因と考えられる。鉄損W15/50は引張応力が付与された試験片の方が低い値となった。 Table 1 shows the evaluation results of tensile stress and iron loss. When the finish annealing was performed for 30 seconds, a tensile stress of about 50 MPa was applied to the steel sheet (Condition 2), but when the finish annealing was performed for 15000 seconds, no change in stress was observed (Condition 7). This is probably because Al diffused over a long distance by lengthening the diffusion time, and the lattice constant difference between the thickness center and the surface layer almost disappeared. Iron loss W 15/50 was lower in the tensile stressed test piece.

Figure 0007331802000001
Figure 0007331802000001

以上の結果から、鋼板表面にAlを固溶、拡散させ、格子定数の大きい領域を鋼板表層に形成し、鋼板に引張応力を付与したため、鉄損が低減することを見出した。 From the above results, it was found that the iron loss was reduced by dissolving and diffusing Al on the steel sheet surface, forming a region with a large lattice constant on the steel sheet surface layer, and applying tensile stress to the steel sheet.

(実施例2)
表2に示す成分組成の鋼を実験室で溶解し、厚みが1mmあるいは140mmとなるよう鋼塊を切断したのち、表面を平滑にし、表3にある組み合わせで厚み140mmの鋼塊(母材)の上下に1mmの鋼塊(合わせ材)を積層し、真空雰囲気中で電子ビーム溶接した。溶接した鋼塊に熱間圧延を行い、板厚1.8mmの熱延板を得た。前記熱延板に1000℃で10秒の熱延板焼鈍を施し、酸洗したのち、仕上げ厚0.30mmとなる冷間圧延を施し冷延板とした。前記冷延板に、1000℃のN雰囲気中で10秒仕上焼鈍を施し、鉄損と鋼板表面からの応力を評価した。評価結果を表3に示す。この結果から、格子定数の大きい鋼板表層を形成し、鋼板内部に引張応力を付与することで鉄損が改善することが分かる。
(Example 2)
Steel having the chemical composition shown in Table 2 was melted in a laboratory, and steel ingots were cut to a thickness of 1 mm or 140 mm. Steel ingots (laminated material) of 1 mm were laminated on the upper and lower sides of the plate, and electron beam welding was performed in a vacuum atmosphere. The welded steel ingot was hot-rolled to obtain a hot-rolled sheet with a thickness of 1.8 mm. The hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000° C. for 10 seconds, pickled, and cold-rolled to a finished thickness of 0.30 mm to obtain a cold-rolled sheet. The cold-rolled steel sheet was subjected to finish annealing for 10 seconds in a N2 atmosphere at 1000°C, and iron loss and stress from the steel sheet surface were evaluated. Table 3 shows the evaluation results. From this result, it can be seen that iron loss is improved by forming a steel sheet surface layer with a large lattice constant and applying tensile stress to the inside of the steel sheet.

Figure 0007331802000002
Figure 0007331802000002

Figure 0007331802000003
Figure 0007331802000003

Claims (4)

質量%で、
C:0.005%以下、
Si:1.8%以上7.0%以下、
Mn:0.02%以上4.0%以下、
Sol.Al:0.001%以上4.0%以下、
P:0.001%以上0.2%以下、
S:0.005%以下、
N:0.005%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
格子定数が、板厚中心の格子定数より0.002Å以上大きい領域であるA層を両表面に有し、前記A層の表面から板厚方向への深さが20μm以下である、無方向性電磁鋼板。
in % by mass,
C: 0.005% or less,
Si: 1.8 % or more and 7.0% or less,
Mn: 0.02% or more and 4.0% or less,
Sol. Al: 0.001% or more and 4.0% or less,
P: 0.001% or more and 0.2% or less,
S: 0.005% or less,
N: having a component composition containing 0.005% or less, the balance being Fe and inevitable impurities,
A layer having a lattice constant larger than the lattice constant at the center of the plate thickness by 0.002 Å or more on both surfaces, and having a depth of 20 μm or less in the plate thickness direction from the surface of the A layer, non-oriented electromagnetic steel sheet.
前記成分組成に加えて、さらに、質量%で、
Sb:0.002%以上0.5%以下、
Sn:0.002%以上0.5%以下、
W:0.002%以上0.5%以下、
Zn:0.002%以上0.5%以下から選んだ1種もしくは2種以上を含有する、請求項1に記載の無方向性電磁鋼板。
In addition to the component composition, in mass %,
Sb: 0.002% or more and 0.5% or less,
Sn: 0.002% or more and 0.5% or less,
W: 0.002% or more and 0.5% or less,
2. The non-oriented electrical steel sheet according to claim 1, containing one or more selected from Zn: 0.002% or more and 0.5% or less.
質量%で、
C:0.005%以下、
Si:1.8%以上7.0%以下、
Mn:0.02%以上4.0%以下、
Sol.Al:0.001%以上4.0%以下、
P:0.001%以上0.2%以下、
S:0.005%以下、
N:0.005%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延板とし、前記熱延板に熱延板焼鈍を施した後または熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、
CVD、PVD、メッキ、クラッドのいずれかの処理を施すことにより、
格子定数が、板厚中心の格子定数より0.002Å以上大きい領域であるA層を両表面に有し、前記A層の表面から板厚方向への深さが20μm以下となる無方向性電磁鋼板を製造する、無方向性電磁鋼板の製造方法。
in % by mass,
C: 0.005% or less,
Si: 1.8 % or more and 7.0% or less,
Mn: 0.02% or more and 4.0% or less,
Sol. Al: 0.001% or more and 4.0% or less,
P: 0.001% or more and 0.2% or less,
S: 0.005% or less,
A steel slab having a chemical composition containing N: 0.005% or less and the balance being Fe and unavoidable impurities is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is subjected to hot-rolled sheet annealing. Alternatively, a method for manufacturing a non-oriented electrical steel sheet in which cold rolling is performed once or twice or more with intermediate annealing without performing hot-rolled sheet annealing to obtain a cold-rolled sheet having a final thickness, and then finish annealing is performed. in
By applying any one of CVD, PVD, plating, and cladding,
A non-directional electromagnetic wave having on both surfaces a layer A having a lattice constant larger than the lattice constant at the center of the plate thickness by 0.002 Å or more, and having a depth of 20 μm or less in the plate thickness direction from the surface of the layer A. A method for manufacturing a non-oriented electrical steel sheet for manufacturing a steel sheet.
前記成分組成に加えて、さらに、質量%で、
Sb:0.002%以上0.5%以下、
Sn:0.002%以上0.5%以下、
W:0.002%以上0.5%以下、
Zn:0.002%以上0.5%以下から選んだ1種もしくは2種以上を含有する、請求項3に記載の無方向性電磁鋼板の製造方法。
In addition to the component composition, in mass %,
Sb: 0.002% or more and 0.5% or less,
Sn: 0.002% or more and 0.5% or less,
W: 0.002% or more and 0.5% or less,
4. The method for producing a non-oriented electrical steel sheet according to claim 3, containing one or more selected from Zn: 0.002% or more and 0.5% or less.
JP2020134849A 2020-08-07 2020-08-07 Non-oriented electrical steel sheet and manufacturing method thereof Active JP7331802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020134849A JP7331802B2 (en) 2020-08-07 2020-08-07 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020134849A JP7331802B2 (en) 2020-08-07 2020-08-07 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022030684A JP2022030684A (en) 2022-02-18
JP7331802B2 true JP7331802B2 (en) 2023-08-23

Family

ID=80324232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134849A Active JP7331802B2 (en) 2020-08-07 2020-08-07 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7331802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070489A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072394A1 (en) 2007-12-03 2009-06-11 Nippon Steel Corporation Non-oriented electromagnetic steel plate having low high-frequency iron loss and process for producing the non-oriented electromagnetic steel plate
WO2010104067A1 (en) 2009-03-13 2010-09-16 新日本製鐵株式会社 Non-oriented magnetic steel sheet and method for producing the same
JP2014196539A (en) 2013-03-29 2014-10-16 Jfeスチール株式会社 Magnetic steel sheet
JP2015061940A (en) 2013-08-22 2015-04-02 新日鐵住金株式会社 Fe-BASED METAL PLATE HAVING EXCELLENT MAGNETIC CHARACTERISTIC

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528748B2 (en) * 1991-05-31 1996-08-28 日本鋼管株式会社 Method of manufacturing silicon steel sheet by continuous line
JP3896688B2 (en) * 1998-04-10 2007-03-22 Jfeスチール株式会社 Method for producing high silicon steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072394A1 (en) 2007-12-03 2009-06-11 Nippon Steel Corporation Non-oriented electromagnetic steel plate having low high-frequency iron loss and process for producing the non-oriented electromagnetic steel plate
WO2010104067A1 (en) 2009-03-13 2010-09-16 新日本製鐵株式会社 Non-oriented magnetic steel sheet and method for producing the same
JP2014196539A (en) 2013-03-29 2014-10-16 Jfeスチール株式会社 Magnetic steel sheet
JP2015061940A (en) 2013-08-22 2015-04-02 新日鐵住金株式会社 Fe-BASED METAL PLATE HAVING EXCELLENT MAGNETIC CHARACTERISTIC

Also Published As

Publication number Publication date
JP2022030684A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
TWI665313B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
TWI692534B (en) Multilayer electromagnetic steel plate
JP6319465B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2018115362A (en) Nonoriented electromagnetic steel sheet and method for producing the same
JP7218794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5167824B2 (en) Manufacturing method of non-oriented electrical steel sheet for etching and motor core
JP6769587B1 (en) Electrical steel sheet and its manufacturing method
KR20230107900A (en) Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
JP7331802B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP2560580B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP7329049B2 (en) Electrical steel sheet and manufacturing method thereof
TWI688658B (en) Non-oriented electrical steel sheet
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP4457835B2 (en) SOFT MAGNETIC STEEL FOR LOW TEMPERATURE OXIDE FILM FORMATION, SOFT MAGNETIC STEEL, AND METHOD FOR PRODUCING THEM
JP5954527B2 (en) Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics
JP4259002B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6253571B2 (en)
CN113692452B (en) Non-oriented electromagnetic steel sheet
JP7028148B2 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2023149269A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7331802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150