JP2528748B2 - Method of manufacturing silicon steel sheet by continuous line - Google Patents

Method of manufacturing silicon steel sheet by continuous line

Info

Publication number
JP2528748B2
JP2528748B2 JP3155398A JP15539891A JP2528748B2 JP 2528748 B2 JP2528748 B2 JP 2528748B2 JP 3155398 A JP3155398 A JP 3155398A JP 15539891 A JP15539891 A JP 15539891A JP 2528748 B2 JP2528748 B2 JP 2528748B2
Authority
JP
Japan
Prior art keywords
steel sheet
plate
treatment
length
siliconizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3155398A
Other languages
Japanese (ja)
Other versions
JPH04354861A (en
Inventor
正広 阿部
和久 岡田
常弘 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP3155398A priority Critical patent/JP2528748B2/en
Publication of JPH04354861A publication Critical patent/JPH04354861A/en
Application granted granted Critical
Publication of JP2528748B2 publication Critical patent/JP2528748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、拡散浸透法による珪素
鋼板の連続製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a silicon steel sheet by a diffusion infiltration method.

【0002】[0002]

【従来の技術】珪素鋼板は優れた軟磁気特性を持つた
め、トランスやモータのコア材として広く用いられてい
る。この種の鋼板はSi含有量が増すほど鉄損が低減さ
れ、Siが6.5wt%では磁歪が0となり、最大透磁
率もピークとなるなど優れた磁気特性を呈することが知
られている。従来、珪素鋼板を製造する方法として、圧
延法、直接鋳造法および拡散浸透法があるが、このうち
圧延法はSi含有量4wt%程度までは製造可能である
が、それ以上のSi含有量では加工性が著しく悪くなる
ため、冷間圧延が困難となる。また、直接鋳造法は圧延
法のような加工性の問題は生じないが、形状不良を起し
易く、また、厚物材や幅広材が製造できない等、多くの
問題点がある。
2. Description of the Related Art Silicon steel sheets are widely used as core materials for transformers and motors because of their excellent soft magnetic properties. It is known that this type of steel sheet exhibits excellent magnetic properties such that the iron loss is reduced as the Si content increases, and the magnetostriction becomes 0 when the Si content is 6.5 wt%, and the maximum magnetic permeability also peaks. Conventionally, there are a rolling method, a direct casting method and a diffusion infiltration method as a method for producing a silicon steel sheet. Among them, the rolling method can produce a Si content up to about 4 wt%, but if the Si content is higher than that, Cold workability becomes difficult because the workability is significantly deteriorated. Further, the direct casting method does not have the problem of workability unlike the rolling method, but has many problems, such as easy occurrence of shape defects, and the inability to produce thick or wide materials.

【0003】これに対し、拡散浸透法は低珪素鋼をあら
かじめ溶製して圧延により薄板化した後、表面からSi
を浸透させることにより珪素鋼板を製造するもので、こ
の方法によれば加工性の問題を生じることなく珪素鋼板
を得ることができる。この拡散浸透法による珪素鋼板の
製造は、一般に、普通鋼板または低珪素鋼板(通常、S
i:4wt%以下)に対して、SiCl4等のSi化合
物を含む無酸化性ガス雰囲気中でSiの浸透処理(浸珪
処理)を施して鋼板の表面からSiを浸透させ、次い
で、Si化合物を含まない無酸化性ガス雰囲気中で鋼板
に対して拡散熱処理を施して、浸透させた珪素を鋼板中
に拡散させ、Siを均質に含有させた珪素鋼板を得るも
のである。
On the other hand, in the diffusion infiltration method, low silicon steel is melted in advance and thinned by rolling, and then Si is applied from the surface.
A silicon steel sheet is manufactured by infiltrating the steel sheet. According to this method, the silicon steel sheet can be obtained without causing a problem of workability. The production of silicon steel sheets by this diffusion infiltration method is generally performed by using ordinary steel sheets or low silicon steel sheets (usually S
i: 4 wt% or less) is subjected to Si infiltration treatment (siliconization treatment) in an atmosphere of non-oxidizing gas containing Si compound such as SiCl 4 to infiltrate Si from the surface of the steel sheet, and then Si compound A steel sheet is subjected to a diffusion heat treatment in a non-oxidizing gas atmosphere containing no oxygen to diffuse the permeated silicon into the steel sheet to obtain a silicon steel sheet containing Si uniformly.

【0004】従来、この種の製造方法に関しては、鋼板
を連続的に処理する場合の諸条件が十分検討されておら
ず、処理時間が30分以上と長いことや、処理温度が1
230℃と極めて高くエッジ部が溶解するおそれがある
など、処理条件が事実上連続ラインには適用できず、鋼
板の連続ラインでの安定製造が期待できないという問題
があった。
Conventionally, with respect to this type of manufacturing method, various conditions for continuously treating a steel sheet have not been sufficiently examined, and the treatment time is as long as 30 minutes or more, and the treatment temperature is 1
There is a problem that the processing conditions cannot be applied to a continuous line practically, such as 230 ° C., which is extremely high and the edge part may be melted, and stable production in a continuous line of steel sheets cannot be expected.

【0005】このような問題に対し、本出願人は先に、
拡散浸透法を連続ラインに適用した珪素鋼板の製造法
を、特開昭62−227078号および特開昭62−2
27091号として提案した。これらの方法は、鋼板を
加熱し、SiCl4を含む無酸化性ガス雰囲気中で化学
気相蒸着法により連続的に浸珪処理した後、SiCl4
を含まない無酸化性ガス雰囲気で拡散均熱処理してSi
を均一化し、冷却後コイル状に巻取る一連のプロセス
を、連続ライン化し、珪素鋼板を効率よく製造する方法
に関するもので、連続ラインにおいて浸珪処理する際の
反応ガス濃度、反応時間、均熱拡散処理時間および処理
温度等を詳細に検討且つ特定し、連続ラインでの拡散浸
透処理による珪素鋼板の製造を可能ならしめたものであ
る。
To address such a problem, the present applicant first
A method for producing a silicon steel sheet in which the diffusion and infiltration method is applied to a continuous line is disclosed in JP-A-62-227078 and JP-A-62-2.
Proposed as No. 27091. These methods, heating the steel sheet after continuously siliconizing treatment by chemical vapor deposition in a non-oxidizing gas atmosphere containing SiCl 4, SiCl 4
Diffusion annealing in a non-oxidizing gas atmosphere containing no Si
It relates to a method for producing a silicon steel sheet efficiently by serializing a series of processes for homogenizing and cooling and coiling it into a coil. Reaction gas concentration, reaction time, soaking at the time of siliconizing in a continuous line. The diffusion processing time and the processing temperature are studied and specified in detail, and it is possible to manufacture a silicon steel sheet by diffusion permeation processing in a continuous line.

【0006】[0006]

【発明が解決しようとする課題】しかし本発明者らのそ
の後の検討によれば、上記のように処理条件を特定した
製造法は、従来連続ライン化の障害とされていた問題を
解消し、原理的には珪素鋼板の効率的な製造が可能であ
るものの、浸珪処理に起因して鋼板に著しい形状不良が
生じるという新たな問題があることが判明した。従来、
このような製品鋼板の形状制御に関しては、その詳細な
検討がなされた例はない。本発明は、このようなSiの
連続拡散浸透処理による珪素鋼板の製造方法において、
形状不良のない平坦な高品質の珪素鋼板を連続的に安定
して製造するための方法の提供をその目的とする。
However, according to the subsequent studies by the present inventors, the manufacturing method in which the processing conditions are specified as described above solves the problem which has hitherto been an obstacle to continuous line formation, Although it is possible in principle to efficiently manufacture a silicon steel sheet, it has been found that there is a new problem that a significant shape defect occurs in the steel sheet due to the siliconizing treatment. Conventionally,
Regarding the shape control of such a product steel sheet, there is no detailed study. The present invention provides a method for manufacturing a silicon steel sheet by such continuous diffusion and permeation treatment of Si,
It is an object of the present invention to provide a method for continuously and stably producing a flat and high-quality silicon steel sheet having no shape defect.

【0007】[0007]

【課題を解決するための手段】本発明は、反応炉内で鋼
板にその表面からSiを浸透させる浸珪処理を施し、こ
のSiを板厚方向に拡散させることにより珪素鋼板を製
造する方法において、鋼板の形状不良を防止するため、
浸珪量、鋼板の板厚および板幅に応じて浸珪処理帯の長
さ(反応炉長)を規定することにより、鋼板長手方向で
の浸珪処理によるSi増加勾配(wt%/m)を所定の
値以下に抑えること骨子とするもので、その特徴とする
ところは、炉内の通板部の上下に炉長手方向で1m以下
の間隔でスリットノズルが複数配され、且つ下式を満足
する炉長L(m)の反応炉に素材鋼板を通板させ、前記
スリットノズルから素材鋼板に反応ガスを吹き付けるこ
とにより、鋼板を浸珪処理することにある。
The present invention relates to a method for producing a silicon steel sheet by subjecting a steel sheet to a siliconizing treatment for infiltrating Si from its surface in a reaction furnace and diffusing this Si in the sheet thickness direction. , To prevent defective shape of steel plate,
By defining the length of the siliconizing zone (reactor length) according to the amount of siliconizing, the thickness of the steel sheet and the width of the steel sheet, the Si increase gradient (wt% / m) in the longitudinal direction of the steel sheet due to the siliconizing treatment Is to be kept below a predetermined value, and the feature is that a plurality of slit nozzles are arranged at intervals of 1 m or less in the furnace longitudinal direction above and below the plate passing portion in the furnace, and The steel plate is passed through a reaction furnace having a satisfactory furnace length L (m), and the reaction gas is blown from the slit nozzle to the steel plate to perform the siliconizing treatment on the steel plate.

【数2】 [Equation 2]

【0008】ここで素材鋼板とは、普通鋼板もしくは比
較的低い珪素含有量(通常4wt%以下)の無方向性ま
たは方向性の珪素鋼板である。また、本発明の浸珪処理
で使用される反応ガスは、SiCl4等のSi化合物と
無酸化性ガス(通常、不活性ガス)との混合ガスであ
り、この混合ガスがスリットノズルから鋼板に吹き付け
られる。
Here, the raw steel plate is a normal steel plate or a non-oriented or oriented silicon steel plate having a relatively low silicon content (usually 4 wt% or less). The reaction gas used in the siliconizing treatment of the present invention is a mixed gas of a Si compound such as SiCl 4 and a non-oxidizing gas (usually an inert gas). To be sprayed.

【0009】[0009]

【作用】以下、本発明の詳細を説明する。連続浸珪処理
により低珪素鋼板にSiを添加して高珪素鋼板を製造す
る場合、浸珪反応の制御が容易に行え、Siの添加量の
調整を精度良く行い得ることが重要である。このために
は、反応ガスをノズルから鋼板に吹き付け、流量、濃
度、流速等のパラメ−タを調整して、Si量を制御する
ことが最も好ましい。このような観点から、本発明では
図1および図2に示すように鋼板通板部の上下位置にお
いて、スリットノズル2を炉長手方向で間隔的に複数配
列し、これらスリットノズル2から鋼板1に反応ガスを
吹き付けることにより、鋼板に連続的に浸珪処理を施す
ことを基本とする。
The details of the present invention will be described below. When manufacturing a high silicon steel sheet by adding Si to a low silicon steel sheet by continuous siliconization treatment, it is important that the siliconization reaction can be easily controlled and the amount of Si added can be accurately adjusted. For this purpose, it is most preferable to control the amount of Si by spraying the reaction gas from the nozzle onto the steel sheet and adjusting the parameters such as the flow rate, the concentration and the flow rate. From such a viewpoint, in the present invention, a plurality of slit nozzles 2 are arranged at intervals in the longitudinal direction of the furnace at the upper and lower positions of the steel plate passage portion in the present invention, and the slit nozzles 2 are connected to the steel plate 1 as shown in FIGS. 1 and 2. Basically, the steel sheet is continuously subjected to a siliconizing treatment by spraying a reaction gas.

【0010】図3に示すような連続浸珪処理において
は、図中に示されるように処理炉内で鋼板のSi濃度が
連続的に増加し、鋼板長手方向にSiの濃度分布が生じ
る。そして、鋼板中のSiの増加により、図5に示すよ
うに格子定数が減少するため、処理炉内において鋼板の
収縮が生じる。このため、連続体である鋼板には板幅方
向に応力が働き、その応力値が臨界応力値を超えると、
鋼板は浸珪処理中に板絞りやエッジめくれなどの変形を
起こす。したがって、この連続浸珪処理による鋼板の収
縮で発生する板幅方向の圧縮応力を、変形が生じない程
度に緩和し、鋼板の変形を防止することが非常に重要と
なる。
In the continuous siliconizing treatment as shown in FIG. 3, the Si concentration of the steel sheet continuously increases in the treatment furnace as shown in the figure, and a Si concentration distribution occurs in the longitudinal direction of the steel sheet. Then, since the lattice constant decreases as shown in FIG. 5 due to the increase of Si in the steel sheet, the steel sheet shrinks in the processing furnace. Therefore, a stress acts on the steel plate which is a continuum in the plate width direction, and when the stress value exceeds the critical stress value,
The steel plate undergoes deformation such as plate drawing and edge flipping during the siliconizing process. Therefore, it is very important to alleviate the compressive stress in the plate width direction generated by the contraction of the steel plate due to the continuous siliconizing treatment to the extent that no deformation occurs and prevent the deformation of the steel plate.

【0011】この鋼板の形状不良の原因となる幅方向応
力(特に圧縮応力)は鋼板の単位長さ当たりの板幅収縮
量に依存する。このため、この応力を緩和するために
は、浸珪処理を鋼板長手方向に充分な長さをとって徐々
に行うことが必要となる。そこで本発明者らは、応力理
論、機械物性試験及び浸珪処理試験に基づき、鋼板に連
続浸珪処理を施こす際、板変形が起こらないための必要
最低限の浸珪領域長L1(m)を(1)式のように導い
た。
The stress in the width direction (particularly the compressive stress) that causes the defective shape of the steel sheet depends on the amount of contraction of the sheet width per unit length of the steel sheet. For this reason, in order to relieve this stress, it is necessary to gradually perform the siliconizing treatment with a sufficient length in the longitudinal direction of the steel sheet. Therefore, the inventors of the present invention, based on a stress theory, a mechanical property test, and a siliconizing treatment test, perform a continuous siliconizing treatment on a steel sheet, and a necessary minimum siliconized area length L 1 (so as not to cause plate deformation. m) was derived as in equation (1).

【数3】 (Equation 3)

【0012】ここで、図1及び図2に示すようにスリッ
トノズル2から鋼板1に反応ガスを吹き付ける場合、反
応量はノズル(スリット3)直下部で最も大きく、ノズ
ル直下部から離れるにしたがい減少する。したがって、
ノズルどうしの間隔が大きい場合には、ノズル間で反応
が生じない部分が生じる可能性がある。この部分は、浸
珪領域とはみなすことができず、炉長と浸珪領域長を同
等と考えることはできない。そこで、ノズルの配列間隔
を変えて反応が生じない部分の長さを測定し、最低限の
ノズル配列間隔を求めた。この結果を図4に示す。これ
によれば各ノズルの間隔を1m以下としなければ、ノズ
ル配列間で反応がない部分が生じることが判明した。し
たがって、本発明はスリットノズルの間隔が1m以下で
あることが前提条件となる。また、浸珪処理はノズルと
鋼板間の距離によっても影響を受け、ノズルからの吹き
出しガスがバルクガス流(雰囲気ガス流)によって影響
を受けないことを前提とするため、ノズルスリットと鋼
板との距離をスリット幅の15倍以下とすることを前提
とした。
Here, when the reaction gas is sprayed from the slit nozzle 2 to the steel plate 1 as shown in FIGS. 1 and 2, the reaction amount is the largest just below the nozzle (slit 3) and decreases as the distance from the immediately below the nozzle increases. To do. Therefore,
When the distance between the nozzles is large, there is a possibility that some reaction may not occur between the nozzles. This part cannot be regarded as a siliconized region, and the furnace length and the siliconized region length cannot be considered equal. Therefore, the minimum nozzle arrangement interval was determined by changing the nozzle arrangement interval and measuring the length of the portion where no reaction occurred. The result is shown in FIG. According to this, it has been found that there is a portion where there is no reaction between the nozzle arrays unless the distance between the nozzles is 1 m or less. Therefore, the present invention is premised on the slit nozzles having an interval of 1 m or less. The siliconizing process is also affected by the distance between the nozzle and the steel plate, and it is premised that the gas blown out from the nozzle is not affected by the bulk gas flow (atmosphere gas flow). Was set to be 15 times or less the slit width.

【0013】図7ないし図9は上記(1)式が得られた
試験結果のいくつかの例を示しており、素材鋼板の板幅
が大きい程、また板厚が薄い程、浸珪処理領域長を長く
とり、鋼板長手方向でSi濃度を徐々に高めるような浸
珪処理を行なわなくてはならず、任意の板厚t、板幅
w、Si量:S1(wt%)の素材鋼板に連続浸珪処理
を施こし、板厚方向平均Si量:S2(wt%)の鋼板
を製造する場合、上記(1)式で規定される最低浸珪領
域長L1(m)以上を浸珪領域長(反応炉長)としなく
てはならない。本発明者らは上記(1)式を検証するた
め、図3に示す製造ラインを使用し、種々の寸法の鋼板
に対し連続浸珪処理試験を行った。この結果、板幅は現
状で製造可能な最大幅1800mmまで、また板厚は
0.05〜1.0mmの範囲で本式を適用できることが
確認できた。
FIG. 7 to FIG. 9 show some examples of the test results for obtaining the above formula (1). The larger the plate width of the raw steel plate and the thinner the plate thickness, the more the siliconized region. It is necessary to take a long length and perform a siliconizing treatment that gradually increases the Si concentration in the longitudinal direction of the steel sheet, and a raw steel sheet having an arbitrary sheet thickness t, sheet width w, and Si amount: S 1 (wt%). When a steel sheet having an average Si content in the plate thickness direction: S 2 (wt%) is manufactured by subjecting the steel to continuous siliconization treatment, a minimum siliconization region length L 1 (m) or more defined by the above formula (1) is required. The length of the siliconized region (reactor length) must be set. In order to verify the above formula (1), the present inventors used the manufacturing line shown in FIG. 3 and conducted a continuous siliconizing treatment test on steel sheets of various sizes. As a result, it has been confirmed that the present formula can be applied to the plate width up to the maximum 1800 mm that can be manufactured at present, and the plate thickness in the range of 0.05 to 1.0 mm.

【0014】したがって、ノズルの配列を上記条件と
し、且つこの最低浸珪領域長L1以上の浸珪処理領域長
(反応炉長)でノズルから鋼板に反応ガスを吹き付けて
連続浸珪処理を施こすことによってのみ、形状が良好な
珪素鋼板を製造することができる。
Therefore, the nozzles are arranged under the above conditions, and the continuous siliconizing process is performed by spraying the reaction gas from the nozzles onto the steel plate with the siliconizing region length (reactor furnace length) longer than the minimum siliconizing region length L 1. Only by rubbing, a silicon steel plate having a good shape can be manufactured.

【0015】なお、ノズルからの吹き出しガスの流速に
関しては、0.5m/sec未満であるとバルク流の影
響が大きく、一方、3.5m/secを超えると炉内へ
の供給ガス量が膨大となり、この場合も吹き付けガスに
影響するため、ガス流速は0.5〜3.5m/secと
することが好ましい。また、反応ガスの濃度について
は、5vol%未満では反応量が極めて小さく、十分な
浸珪反応が生じない。一方、40vol%を超えるとノ
ズル直下部での反応量が増加するため、局部的に急激な
反応が生じ板変形が発生してしまう。このため、反応ガ
ス濃度は5vol%〜40vol%とすることが好まし
い。
Regarding the flow rate of the gas blown from the nozzle, if the flow rate is less than 0.5 m / sec, the bulk flow has a large effect, while if it exceeds 3.5 m / sec, the amount of gas supplied to the furnace is enormous. Therefore, in this case also, the gas flow rate is affected, so the gas flow rate is preferably 0.5 to 3.5 m / sec. Further, with respect to the concentration of the reaction gas, if the concentration is less than 5 vol%, the reaction amount is extremely small, and a sufficient siliconizing reaction does not occur. On the other hand, if it exceeds 40 vol%, the reaction amount immediately below the nozzle increases, so that a rapid reaction occurs locally and plate deformation occurs. For this reason, the reaction gas concentration is preferably 5 vol% to 40 vol%.

【0016】また、鋼板の浸珪処理温度は、1050℃
未満では十分な反応が生ぜず、一方、1250℃を超え
ると鋼板表面に蒸着したSi層が溶解してしまうため、
1050〜1250℃の範囲とすることが好ましい。
The siliconizing temperature of the steel sheet is 1050 ° C.
If it is less than 1250 ° C, a sufficient reaction does not occur, while if it exceeds 1250 ° C, the Si layer deposited on the surface of the steel sheet is dissolved,
It is preferably in the range of 1050 to 1250 ° C.

【0017】上述したように本発明法において素材(原
板)として使用される鋼板は、一般に、普通鋼板または
比較的低いSi含有量(通常、Si:4wt%以下)の
無方向性若しくは方向性珪素鋼板である。このような素
材鋼板の成分は特に限定されるものではないが、優れた
磁気特性を得るために以下のように規定することが好ま
しい。
As described above, the steel sheet used as a raw material (original plate) in the method of the present invention is generally a plain steel sheet or a non-oriented or oriented silicon having a relatively low Si content (usually Si: 4 wt% or less). It is a steel plate. The components of such a steel sheet are not particularly limited, but are preferably specified as follows in order to obtain excellent magnetic properties.

【0018】まず、非金属元素について説明すると、 C:Cは初透磁率、最大透磁率を低下させ、Hcを増
し、鉄損を増大させる。この影響は、0.01wt%を
超えると顕著になることが知られており、したがって、
Cは0.01wt%以下とすることが好ましい。但し、
結晶方位改善を目的として製鋼段階でCを0.01wt
%を超えて含有させ、圧延することも可能であるが、こ
の場合には、時効および特性劣化を防止するため脱炭焼
鈍を実施し、Cを0.01wt%以下とすることが好ま
しい。すなわち、C濃度の調整は溶製段階で行ってもよ
く、また、脱炭焼鈍を実施することにより行なってもよ
い。
First, the non-metallic element will be described. C: C lowers the initial permeability and the maximum permeability, increases Hc, and increases iron loss. This effect is known to be significant above 0.01 wt% and therefore
C is preferably 0.01 wt% or less. However,
0.01 wt% C at the steelmaking stage for the purpose of improving crystal orientation
%, It is possible to roll, but in this case, it is preferable to carry out decarburization annealing in order to prevent aging and characteristic deterioration, and to make C 0.01 wt% or less. That is, the C concentration may be adjusted at the smelting stage or by performing decarburizing annealing.

【0019】O:Oは鉄損を高め、SiO2のようなコ
ロイド状微粒子として存在する場合には、磁気特性を著
しく劣化させる元素として知られている。また、OはC
とどの程度共存するかによっても磁気特性を変化させ
る。特に、O含有量とC含有量とがほぼ同等の場合、鉄
損値が最小になることも知られており、上記C含有量の
適正範囲と同様に、O含有量も0.01wt%以下とす
ることが好ましい。
O: O is known as an element which enhances iron loss and, when present as colloidal fine particles such as SiO 2 , significantly deteriorates magnetic properties. O is C
The magnetic characteristics are changed depending on the degree of coexistence with. In particular, it is also known that the iron loss value becomes the minimum when the O content and the C content are substantially equal to each other, and the O content is 0.01 wt% or less like the appropriate range of the C content. It is preferable that

【0020】N、S:共に時効の原因となるため極力少
なくすることが好ましく、これらの成分もそれぞれ0.
01wt%以下とすることが好ましい。 P:Pは酸素による磁性劣化を軽減し、鉄損を減少させ
る作用があり、また、最大透磁率の改善および磁束密度
の改善を目的として若干の添加が可能であるが、その添
加量の上限は1wt%程度までである。 H:Hは鋼板を著しく脆くさせるため、高圧下でHを含
有させる等、積極的な含有は避けるべきである(通常p
pmレベル以下)。以上のように非金属元素について
は、C、O、N、S等を極力低く抑え、且つCとOの比
率を適正化することが好ましい。
N and S: Since both cause aging, it is preferable to reduce them as much as possible.
It is preferable that the content be 01 wt% or less. P: P has the effect of reducing magnetic deterioration due to oxygen and reducing iron loss, and can be added in a small amount for the purpose of improving the maximum magnetic permeability and the magnetic flux density. Is up to about 1 wt%. H: Since H makes the steel sheet extremely brittle, aggressive inclusion such as H under high pressure should be avoided (usually p
pm level). As described above, it is preferable to minimize C, O, N, S, etc., and optimize the ratio of C and O for the nonmetallic elements.

【0021】次に金属元素について説明すると、 Mn:熱間圧延時の展延性の改善と、脱硫作用および規
則−不規則変態における磁性改善効果を考慮すると、M
nは0.5wt%以下の範囲で添加することが好まし
い。 Ca:Caは多量に含有すると透磁率を低下させるた
め、0.3wt%以下とすることが好ましい。
Next, the metal element will be described. Mn: M in consideration of the improvement of the ductility during hot rolling, and the effect of improving the desulfurization and magnetism in the ordered-disordered transformation.
n is preferably added in a range of 0.5 wt% or less. Ca: If Ca is contained in a large amount, the magnetic permeability is reduced. Therefore, the content is preferably not more than 0.3 wt%.

【0022】V:若干のVを添加することにより、Hc
が改善されることが知られている。すなわち、Vは0.
05wt%程度添加することにより、結晶粒の発達が促
進され、磁性が改善される。このため、Vは0.1wt
%を上限として添加することができる。 Ti:0.05wt%程度添加することでVと同様の効
果を期待でき、このため、0.1wt%を上限として添
加することができる。Be、As:若干の磁気特性改善
効果が期待でき、それぞれ0.1wt%を上限として添
加することができる。
V: Hc by adding a little V
Are known to be improved. That is, V is 0.
Addition of about 05 wt% promotes the development of crystal grains and improves magnetism. Therefore, V is 0.1 wt
% Can be added up to the upper limit. By adding about 0.05 wt% of Ti, the same effect as V can be expected, so that 0.1 wt% can be added as an upper limit. Be, As: A slight magnetic property improving effect can be expected, and 0.1 wt% of each can be added as an upper limit.

【0025】Cu:0.7wt%程度までは、磁性を大
きく劣化させることはないが、0.7wt%を超えて含
有すると鉄損が増大する。このため、Cuは0.7wt
%以下、好ましくは0.1wt%以下とすることが望ま
しい。 Cr:鉄損を増大させる傾向があり、0.03wt%以
下とすることが好ましい。 Ni:磁気特性を著しく悪化させるため、極力低減させ
ることが好ましく、0.01wt%以下とすることが好
ましい。
Cu: Up to about 0.7 wt%, the magnetism is not significantly deteriorated, but if it exceeds 0.7 wt%, iron loss increases. Therefore, Cu is 0.7 wt.
% Or less, preferably 0.1 wt% or less. Cr: tends to increase iron loss, and is preferably set to 0.03 wt% or less. Ni: To significantly deteriorate magnetic properties, it is preferable to reduce the Ni as much as possible, and it is preferable to set the content to 0.01 wt% or less.

【0024】Al:従来の珪素鋼板では、Alの電気抵
抗を高める効果と展延性の改善効果とを利用して、Si
の一部をAlで置き換える方法を採っている。例えば、
4wt%Siとする代わりに、Siを3wt%、Alを
1wt%とし、加工性を維持させる配慮がなされてい
る。本発明法では、Si含有量を6.5wt%以上とで
きるため、磁性改善のために新たにAlを添加する必要
はなく、溶製段階における脱酸促進および展延性の改善
という観点から、0.5wt%以下とすることが好まし
い。
Al: In the conventional silicon steel sheet, the effect of increasing the electric resistance of Al and the effect of improving ductility are utilized to obtain Si.
The part of Al is replaced with Al. For example,
Instead of 4 wt% Si, 3 wt% of Si and 1 wt% of Al have been considered to maintain the workability. According to the method of the present invention, since the Si content can be 6.5 wt% or more, it is not necessary to newly add Al for improving the magnetic properties. It is preferable that the content be 0.5 wt% or less.

【0025】また、Siの拡散処理をAr、He、H2
などの無酸化性雰囲気中で行う場合には、Alが上記の
量程度含まれていても特に問題はない。しかしながら、
2を含んだ雰囲気中で処理を行う場合には、高温処理
のためAlが窒化し、冷却条件が適切でない場合には、
その冷却過程において磁気特性に有害なAlNが析出す
る。したがって、N2を含んだ雰囲気中で処理を行う場
合には、AlNの析出を極力防止する観点から、Alは
80ppm以下とすることが好ましい。
Further, the diffusion process of Si is performed by Ar, He, H 2
In the case of performing the treatment in a non-oxidizing atmosphere such as the above, there is no particular problem even if Al is contained in the above amount. However,
When processing is performed in an atmosphere containing N 2 , Al is nitrided due to high temperature processing, and when cooling conditions are not appropriate,
During the cooling process, AlN harmful to the magnetic properties is deposited. Therefore, when the treatment is performed in an atmosphere containing N 2 , from the viewpoint of minimizing the precipitation of AlN, the Al content is preferably 80 ppm or less.

【0026】[0026]

【実施例】〔実施例1〕図6に示す製造ラインにより、
表1のNo.1の化学成分を有する板厚0.1mm、板
幅100〜800mmの3.0%Si鋼板に、表2に示
す条件の下に四塩化珪素ガスを使用して浸珪領域長(反
応炉長)を変えた連続浸珪処理を施し、6.5%Si鋼
板を製造し、得られた鋼板の形状の良否を評価した。
[Example] [Example 1] By the manufacturing line shown in FIG.
No. of Table 1 Silicone tetrachloride gas was used under the conditions shown in Table 2 on a 3.0% Si steel plate having a plate thickness of 0.1 mm and a plate width of 100 to 800 mm having the chemical composition of 1 under the conditions of the siliconized region (reactor furnace length). ) Was continuously treated to produce 6.5% Si steel sheet, and the quality of the obtained steel sheet was evaluated.

【0027】図7はその結果を示すもので、横軸に板
幅、縦軸に浸珪領域長(炉長)を示したものである。板
形状の評価は、鋼板を平坦面に置き、板幅方向の多数の
箇所において、板幅方向に平行な30mm間隔の2本の
ピンで鋼板を平坦面に押し付け、この2本のピン間にお
ける平坦面と鋼板間の間隙を測定した。そして、板幅方
向で測定された間隙の最大値をyとした場合、y≦0.2m
mの場合を◎、0.2mm<y≦0.4mmの場合を○、y>0.4mm
の場合を×として評価した。
FIG. 7 shows the results, in which the horizontal axis shows the plate width and the vertical axis shows the length of the siliconized region (furnace length). The plate shape is evaluated by placing the steel plate on a flat surface, pressing the steel plate against the flat surface at two points in the plate width direction with two pins parallel to the plate width direction at intervals of 30 mm, and between the two pins. The gap between the flat surface and the steel plate was measured. When the maximum value of the gap measured in the plate width direction is y, y ≦ 0.2m
◎ for m, ○ for 0.2 mm <y ≤ 0.4 mm, y> 0.4 mm
The case was evaluated as x.

【0028】図7の結果から、実線で示される上記
(1)式で規定される最低浸珪領域長L1以上であれ
ば、板形状は非常に良好であることが判る。したがっ
て、例えば板厚0.1mm、板幅600mmの3.0%
Si鋼板を連続浸珪処理し、形状が良好な6.5%Si
鋼板を製造する場合には、3.5m以上の炉長を有する
浸珪処理反応炉で処理を行う必要がある。
From the results of FIG. 7, it is understood that the plate shape is very good as long as it is at least the minimum siliconized region length L 1 defined by the above equation (1) shown by the solid line. Therefore, for example, a plate thickness of 0.1 mm and a plate width of 600 mm is 3.0%.
6.5% Si with good shape after continuous Si-SiC treatment
When manufacturing a steel sheet, it is necessary to perform the treatment in a siliconizing treatment reactor having a furnace length of 3.5 m or more.

【0029】〔実施例2〕図6に示す製造ラインによ
り、表1のNo.2の化学成分を有する板厚0.1m
m、板幅100〜600mmの3.2%方向性珪素鋼板
に、表3に示す条件の下に四塩化珪素ガスを使用して浸
珪領域長を変えた連続浸珪処理を施し、4.5%Si鋼
板を製造し、得られた鋼板の形状の良否を評価した。図
8はその結果を示すもので、横軸に板幅、縦軸に浸珪領
域長(反応炉長)を示したものである。なお、板形状の
評価は上記実施例1と同様の方法で行った。
[Embodiment 2] With the production line shown in FIG. Board thickness 0.1m with 2 chemical components
3. A 3.2% grain oriented silicon steel sheet having a width of 100 to 600 mm and a width of 100 to 600 mm was subjected to continuous siliconizing treatment under the conditions shown in Table 3 by using silicon tetrachloride gas and changing the siliconized region length. A 5% Si steel plate was manufactured and the quality of the obtained steel plate was evaluated. FIG. 8 shows the results, in which the horizontal axis shows the plate width and the vertical axis shows the length of the siliconized region (reactor length). The plate shape was evaluated in the same manner as in Example 1 above.

【0030】同図の結果から、実線で示される上記
(1)式で規定される最低浸珪領域長L1以上であれ
ば、方向性珪素鋼板においても連続浸珪処理により形状
が良好な珪素鋼板を得ることができることが判る。した
がって、例えば板厚0.1mm、板幅600mmの3.
2%方向性珪素鋼板を連続浸珪処理し、形状良好な4.
5%Si鋼板を製造する場合には、1.3m以上の炉長
を有する浸珪処理反応炉で処理を行う必要がある。
From the results shown in the figure, if the minimum siliconizing region length L 1 defined by the above equation (1) indicated by the solid line is not less than L 1, the grain-oriented silicon steel sheet can be formed into a good shape by continuous siliconizing treatment. It turns out that a steel plate can be obtained. Therefore, for example, the plate thickness of 0.1 mm and the plate width of 600 mm may be 3.
3. A 2% grain-oriented silicon steel sheet was subjected to continuous siliconizing treatment to obtain a good shape.
When manufacturing a 5% Si steel sheet, it is necessary to perform the treatment in a siliconizing treatment reactor having a furnace length of 1.3 m or more.

【0031】〔実施例3〕図6に示す製造ラインによ
り、表1のNo.1の化学成分を有する板厚0.3m
m、板幅100〜800mmの3.0%Si鋼板を、四
塩化珪素ガスを使用して浸珪領域長を変えて連続浸珪処
理し、6.5%Si鋼板を製造し、得られた鋼板の形状
の良否を評価した。図9はその結果を示すもので、横軸
に板幅、縦軸に浸珪領域長(反応炉長)を示したもので
ある。なお、板形状の評価は上記実施例1と同様の方法
で行った。
[Embodiment 3] With the production line shown in FIG. Plate thickness 0.3m with 1 chemical composition
m, and a 3.0% Si steel plate having a plate width of 100 to 800 mm was subjected to continuous siliconizing treatment while changing the siliconizing region length using silicon tetrachloride gas, and a 6.5% Si steel plate was manufactured and obtained. The quality of the shape of the steel sheet was evaluated. FIG. 9 shows the results, in which the horizontal axis shows the plate width and the vertical axis shows the length of the siliconized region (reactor length). The plate shape was evaluated in the same manner as in Example 1 above.

【0032】同図の結果から、実線で示される上記
(1)式で規定される最低浸珪領域長L1以上であれ
ば、板形状は非常に良好であることが判る。したがっ
て、例えば板厚0.3mm、板幅600mmの3.0%
Si鋼板を連続浸珪処理し、形状が良好な6.5%Si
鋼板を製造する場合には、0.7m以上の炉長を有する
浸珪処理反応炉で処理を行う必要がある。
From the results shown in the figure, it can be seen that the plate shape is very good as long as it is at least the minimum siliconized region length L 1 defined by the above equation (1) shown by the solid line. Therefore, for example, a plate thickness of 0.3 mm and a plate width of 600 mm is 3.0%.
6.5% Si with good shape after continuous Si-SiC treatment
When manufacturing a steel sheet, it is necessary to perform the treatment in a siliconizing treatment reactor having a furnace length of 0.7 m or more.

【0033】[0033]

【発明の効果】以上述べた本発明によれば、連続ライン
において鋼板を連続浸珪処理することにより、板形状が
良好な珪素鋼板を製造することができる。
According to the present invention described above, a silicon steel sheet having a good plate shape can be manufactured by continuously silicifying the steel sheet in a continuous line.

【図面の簡単な説明】[Brief description of drawings]

【図1】反応炉内のスリットノズルを示す斜視図であ
る。
FIG. 1 is a perspective view showing a slit nozzle in a reaction furnace.

【図2】反応炉内のスリットノズルの配置状態を示す説
明図である。
FIG. 2 is an explanatory diagram showing an arrangement state of slit nozzles in a reaction furnace.

【図3】浸珪処理反応炉および炉内で処理される鋼板の
長手方向Si濃度分布を示す説明図である。
FIG. 3 is an explanatory diagram showing a Si concentration distribution in a longitudinal direction of a siliconizing treatment reaction furnace and a steel sheet processed in the furnace.

【図4】反応炉内でのノズル配列間隔と鋼板未浸珪部長
さとの関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a nozzle arrangement interval in a reaction furnace and a length of a steel sheet unimpregnated silicon portion.

【図5】Si鋼のSi量による格子定数を示すグラフで
ある。
FIG. 5 is a graph showing the lattice constant of Si steel depending on the amount of Si.

【図6】実施例で使用された連続浸珪処理ラインを示す
説明図である。
FIG. 6 is an explanatory diagram showing a continuous siliconizing treatment line used in Examples.

【図7】実施例1で製造された鋼板の形状の良否を、板
幅と反応炉長との関係で示すグラフである。
FIG. 7 is a graph showing the quality of the shape of the steel sheet manufactured in Example 1 by the relationship between the sheet width and the reactor length.

【図8】実施例2で製造された鋼板の形状の良否を、板
幅と反応炉長との関係で示すグラフである。
FIG. 8 is a graph showing the quality of the shape of the steel sheet manufactured in Example 2 by the relationship between the sheet width and the reactor length.

【図9】実施例3で製造された鋼板の形状の良否を、板
幅と反応炉長との関係で示すグラフである。
FIG. 9 is a graph showing the quality of the shape of the steel sheet manufactured in Example 3 by the relationship between the sheet width and the reactor length.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応炉内で鋼板にその表面からSiを浸
透させる浸珪処理を施し、このSiを板厚方向に拡散さ
せることにより珪素鋼板を製造する方法において、炉内
の通板部の上下に炉長手方向で1m以下の間隔でスリッ
トノズルが複数配され、且つ下式を満足する炉長L
(m)の反応炉に素材鋼板を通板させ、前記スリットノ
ズルから素材鋼板に反応ガスを吹き付けることにより、
鋼板を浸珪処理することを特徴とする連続ラインによる
珪素鋼板の製造方法。 【数1】
1. A method for producing a silicon steel sheet by subjecting a steel sheet to a siliconizing treatment for infiltrating Si from its surface in a reaction furnace and diffusing this Si in the thickness direction, comprising: A plurality of slit nozzles are vertically arranged at intervals of 1 m or less in the longitudinal direction of the furnace, and the furnace length L satisfies the following formula.
By passing the raw steel sheet through the reaction furnace of (m) and blowing a reaction gas to the raw steel sheet from the slit nozzle,
A method for manufacturing a silicon steel sheet by a continuous line, which comprises subjecting a steel sheet to a siliconizing treatment. [Equation 1]
JP3155398A 1991-05-31 1991-05-31 Method of manufacturing silicon steel sheet by continuous line Expired - Lifetime JP2528748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3155398A JP2528748B2 (en) 1991-05-31 1991-05-31 Method of manufacturing silicon steel sheet by continuous line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3155398A JP2528748B2 (en) 1991-05-31 1991-05-31 Method of manufacturing silicon steel sheet by continuous line

Publications (2)

Publication Number Publication Date
JPH04354861A JPH04354861A (en) 1992-12-09
JP2528748B2 true JP2528748B2 (en) 1996-08-28

Family

ID=15605096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155398A Expired - Lifetime JP2528748B2 (en) 1991-05-31 1991-05-31 Method of manufacturing silicon steel sheet by continuous line

Country Status (1)

Country Link
JP (1) JP2528748B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905374B2 (en) * 2007-12-10 2012-03-28 Jfeスチール株式会社 Unidirectional electrical steel sheet and manufacturing method thereof
CN103468865B (en) * 2013-09-24 2015-04-01 武汉钢铁(集团)公司 Method for controlling silicon content in low-silicon aluminum steel refining process
JP7331802B2 (en) * 2020-08-07 2023-08-23 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04354861A (en) 1992-12-09

Similar Documents

Publication Publication Date Title
EP2025766B1 (en) Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
EP2025767B1 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
EP3530770B1 (en) Hot-rolled steel sheet for electrical steel sheet production and method of producing same
EP3428294B1 (en) Method of producing grain-oriented electrical steel sheet
CN107614725B (en) Grain-oriented electromagnetic steel sheet and method for producing same
EP3421624B1 (en) Method for producing oriented electromagnetic steel sheet
KR20020013442A (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JPS598049B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR0183408B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
JP2528748B2 (en) Method of manufacturing silicon steel sheet by continuous line
KR20220045223A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2541383B2 (en) High silicon steel sheet with excellent soft magnetic properties
JP2560580B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP2684860B2 (en) Method for producing high silicon steel strip in continuous line
JP2605511B2 (en) Method for producing high silicon steel strip by continuous line
KR101697988B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JP3275712B2 (en) High silicon steel sheet excellent in workability and method for producing the same
EP3733895B1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP4470556B2 (en) Manufacturing method of high silicon steel sheet by continuous line
WO1990012897A1 (en) Method of manufacturing non-oriented electromagnetic steel plates with excellent magnetic characteristics
WO2023079922A1 (en) Finish annealing facility for electromagnetic steel sheet, finish annealing method and production method for electromagnetic steel sheet, and non-oriented electromagnetic steel sheet
EP4032996A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH02200733A (en) Manufacture of high magnetic density grain-oriented silicon steel sheet
KR20230095281A (en) Grain oriented electrical steel sheet and manufacturing method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 15

EXPY Cancellation because of completion of term