JPH02200733A - Manufacture of high magnetic density grain-oriented silicon steel sheet - Google Patents

Manufacture of high magnetic density grain-oriented silicon steel sheet

Info

Publication number
JPH02200733A
JPH02200733A JP2196489A JP2196489A JPH02200733A JP H02200733 A JPH02200733 A JP H02200733A JP 2196489 A JP2196489 A JP 2196489A JP 2196489 A JP2196489 A JP 2196489A JP H02200733 A JPH02200733 A JP H02200733A
Authority
JP
Japan
Prior art keywords
annealing
nitriding
less
rolled
hot rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2196489A
Other languages
Japanese (ja)
Inventor
Masayoshi Mizuguchi
水口 政義
Yasumitsu Kondo
泰光 近藤
Yoichi Zaizen
洋一 財前
Takashi Kobayashi
尚 小林
Kenichi Yatsugayo
健一 八ケ代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2196489A priority Critical patent/JPH02200733A/en
Publication of JPH02200733A publication Critical patent/JPH02200733A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain the grain-oriented silicon steel sheet having high magnetic flux density by subjecting a silicon steel slab having specified C, Si, Mn, etc., to nitriding before, during or after decarburization annealing before finish annealing or further in the heating stage of finish annealing. CONSTITUTION:The silicon steel constituted of, by weight, 0.025 to 0.095% C, 2 to 4% Si, 0.08 to 0.45% Mn, <=0.015% S, 0.01 to 0.06% Al, 0.003 to 0.013% N and the balance Fe is refined. The slab of the steel is hot-rolled at <1280 deg.C and is left as hot-rolled or is subjected to hot rolled sheet annealing. Next, cold rolling is executed for one time or plural times with process annealing. Before, during or after decarburization annealing, the steel sheet is subjected to short time nitriding to form an inhibitor essentially consisting of (Al-Si)N. Then, the steel sheet is further subjected to nitriding in the heating stage of final annealing after coated with an annealing release agent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁束密度が極めて高い方向性電砂鍾1板の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a directional electrosand plate having an extremely high magnetic flux density.

(従来の技術) 方1ijl性電磁鋼板は主としてトランス、発電機、そ
の他の電気機器の鉄心H料に用いられ、磁気特性として
励磁特性と鉄損特性が良好でなければならない。方向性
電磁鋼板は二次再結晶現象を利用し7で圧延面に(11
0)面、圧延方向に(001)軸を()ったいわゆるゴ
ス方位を有する結晶粒を発達サーロー、 4 wとによ
り得られる。二次再結晶は周知のよ・うに仕」−焼鈍で
住しるが、二次再結晶。発η5を1分に図るためにはイ
」」二焼鈍の二、二次再結晶温度域まで一次結晶f・7
の成長を抑制する微細な/lnNMn5.M□nseナ
トの析出物いわゆる。インヒビタ、= 、1 存在させ
る必要がある。
(Prior Art) High-quality electrical steel sheets are mainly used for iron cores of transformers, generators, and other electrical equipment, and must have good magnetic properties such as excitation properties and iron loss properties. Grain-oriented electrical steel sheet utilizes the secondary recrystallization phenomenon to form a rolled surface at 7 (11
It is obtained by developing Thurlow, 4w crystal grains having the so-called Goss orientation with the (001) axis in the rolling direction. Secondary recrystallization is a well-known process, which is achieved by annealing, but secondary recrystallization occurs. In order to achieve η5 of 1 minute, it is necessary to
Fine /lnNMn5. The so-called precipitate of M□nse nato. Inhibitor, = , 1 must be present.

このため、電磁鋼スラブは1350−1400℃f’j
度の高温度に加熱され、・インヒビターを形成すZr 
y& 分たとえばAffi、Mn、S 、S e + 
N ’S’を完全に固溶させ、2熱延扱あるいは騒終冷
延前の中間板において・インヒビターを微細に析出さセ
る焼鈍が行われている。
For this reason, the electrical steel slab has a temperature of 1350-1400℃f'j
Zr is heated to high temperatures to form an inhibitor.
y & min e.g. Affi, Mn, S, S e +
Annealing is performed to completely dissolve N'S' in solid solution and precipitate the inhibitor finely in the intermediate plate before the second hot rolling treatment or final cold rolling.

このよらな処理を施すこと?、こより(51東密度の高
い方向性電磁鋼板が製造されるようになっCいるが、電
磁網スラブの加熱は前述のように高温で行われるために
、溶融スゲールの発生量が人で加熱炉の操業に支障をき
たす。また加熱炉の:c :jζルギー原午位高や表面
疵の発生等の問題がある。
Applying this additional treatment? (51) Grain-oriented electrical steel sheets with high density are now being manufactured, but since the heating of the electromagnetic mesh slab is carried out at high temperatures as mentioned above, the amount of molten sgale produced is reduced by humans in the heating furnace. In addition, there are problems such as the height of the heating furnace and surface flaws.

スラブ加熱温度を下げた方向性電磁鋼板の製造法が検討
されている。例えば特Di)昭5224116号公報ご
はA、eの他に、Zr、Ti、B、Nb、Ta、V、C
r、Mo等の窒化物形成元素を含有させることにより、
スラブ加熱を1100−1260℃で行う製造法が開示
されている。特開昭59−190324号公報ではC含
有量を0.01%以Fの低炭素でS、SeさらにAI、
 Bを選υぐ的に含有させた電磁鋼スラブを素材とシフ
、冷延後の一次再結晶焼鈍時に鋼板表面を短時間繰り返
し高温加熱”イるパルス焼鈍を行−)ことにより、スラ
ブ加熱温度を1300°C以下とする製造法が開示され
ζいる。また特開昭59−5622号公報ではMr+を
O,08〜0.45%、Sを0.007%以下とし、(
Mn:1(S )積を下げ、さらに/V、 P、Nを含
イiさせた電磁網スラブを素材とすることにより、スラ
ブ加熱温度を1280°C以下とする製造法を従業じで
いる。
A method for manufacturing grain-oriented electrical steel sheets that lowers the slab heating temperature is being considered. For example, in addition to A and e, Zr, Ti, B, Nb, Ta, V, and C
By containing nitride-forming elements such as r and Mo,
A manufacturing method is disclosed in which slab heating is performed at 1100-1260°C. JP-A No. 59-190324 discloses that the C content is as low as 0.01% F, and S, Se, AI,
A magnetic steel slab selectively containing B is mixed with the raw material, and during primary recrystallization annealing after cold rolling, pulse annealing is performed in which the surface of the steel plate is repeatedly heated to high temperatures for a short period of time. A manufacturing method is disclosed in which the temperature is 1300°C or less. Also, in Japanese Patent Application Laid-Open No. 59-5622, Mr+ is O, 08 to 0.45%, S is 0.007% or less, and (
By lowering the Mn:1(S) product and using an electromagnetic mesh slab containing /V, P, and N, we are using a manufacturing method that lowers the slab heating temperature to 1280°C or less. .

(発明が解決しようとする課題) このように、方向性電磁綱板の製造におい°ζ、低温ス
ラブ加熱による方法が検討され、それなりの作用効果が
奏されているが、二次再結晶の発現に充分に効果的なイ
ンヒビターを形成することが難しく高子f1東密度のも
のを工業的に安定して!!!造、4″るには、さらなる
検討が必要である。
(Problems to be Solved by the Invention) As described above, in the production of grain-oriented electromagnetic steel sheets, methods using low-temperature slab heating have been studied, and although some effects have been achieved, secondary recrystallization occurs. It is difficult to form a sufficiently effective inhibitor for high density f1 to be industrially stable! ! ! Further study is required to construct a 4" model.

7本発明は電磁鋼スラブの加熱を1280“C未満の低
温とし”乙溶融スケールの発生防1F、表面;ill:
防止や加熱エネルギーの減少等の利点を得ながら、磁束
密度の極めこ高い方向性電磁鋼板を−[業的に安定し、
で得ることを「1的とする。
7. The present invention heats the electromagnetic steel slab at a low temperature of less than 1280C to prevent the occurrence of molten scale.
While obtaining advantages such as prevention and reduction of heating energy, grain-oriented electrical steel sheets with extremely high magnetic flux density - [industrially stable,
What you get is ``1 target.''

(課題を解決するための丁、段) 本発明の要旨とするところ:、よ、重イ%ごC;0.0
25〜□0.095%。
(To solve the problem) The gist of the present invention: 0.0
25~□0.095%.

Si;2.0・−・4.0%1 Mri:0.0B ”=0.45% S :0.015%以下 八!:0.010〜0.060 % ド;0.0030−0.0130%。Si; 2.0・-・4.0%1 MRI:0.0B”=0.45% S: 0.015% or less Eight! :0.010~0.060% 0.0030-0.0130%.

を含み1.また必要に応して、P:0.005・・・・
0.045%。
Including 1. Also, if necessary, P: 0.005...
0.045%.

Cr;0.07〜0.25%の1種又は2種1MO2シ
、Nh、Sti。
Cr; 0.07 to 0.25% of one or two types of 1MO2, Nh, Sti.

Sn、Ti、Te、11の1種以」−を合計で1.5%
以F含frシ、残部が鉄及び不可避的ト純物からなる電
磁鋼スラブを、1280℃未満の温度に加熱し2、熱間
圧延し7、熱延まま又は熱延板焼鈍し、1回又は中間焼
鈍・訃挟んで2回収=Fの冷間圧延し2、脱炭焼鈍の前
、途中又は後に鋼板を短時間窒化し1′\ (AZ、5
i)N−を−り組成とするインヒビターを形成12、焼
鈍分離、fll+を塗布した後の仕上焼鈍の加熱過程で
さらに窒化することを特徴とする高磁束密度方向外電!
am板の製造方法にある。
1.5% in total of one or more of Sn, Ti, Te, 11.
An electrical steel slab containing F and the remainder being iron and unavoidable pure substances is heated to a temperature of less than 1280 ° C. 2, hot rolled 7, as hot rolled or hot rolled sheet annealed, once. Or intermediate annealing and 2 recovery = F cold rolling 2, nitriding the steel plate for a short time before, during or after decarburization annealing 1'\ (AZ, 5
i) A high-magnetic-flux-density-direction external conductor characterized by forming an inhibitor having an N--based composition, separating it by annealing, and further nitriding it in the heating process of final annealing after applying fll+!
It is in the manufacturing method of AM board.

以r、本発明に−)いて詳細に説明づ−る。Hereinafter, the present invention will be explained in detail.

本発明者達は電磁鋼スラブを、1280 ”c未詳の温
度に加熱する低温スラブ加熱を適用して、高磁束密度の
方向性電磁鋼板を工業的に安定して型造ずべく検S1シ
た。その結果、スラブ加熱の段階ではインヒビターを形
成する成分のAl、 Mn、S、 Nなどを固溶させず
、脱炭焼鈍の前、途中あるいは後に窒化を短時間で行う
と、機能の高いインヒビター(Δ/、54)Nが鋼板に
一様に分散し2で形成され、さらに仕上焼鈍の加熱過程
で窒化すると新たな微細なインヒビター(Aj、5i)
Nが形成され、漏磁束密度材が安定し−こ得られること
を見出した。
The present inventors applied low-temperature slab heating, which heats a magnetic steel slab to an unknown temperature of 1280"C, to conduct a test S1 test in order to industrially stably mold a grain-oriented electrical steel sheet with a high magnetic flux density. As a result, when the components that form inhibitors, such as Al, Mn, S, and N, are not dissolved in solid solution during the slab heating stage, and nitriding is performed for a short time before, during, or after decarburization annealing, highly functional inhibitors can be formed. (Δ/, 54)N is uniformly dispersed in the steel sheet and formed as 2, and when it is further nitrided during the heating process of final annealing, a new fine inhibitor (Aj, 5i) is formed.
It has been found that N is formed and that a magnetic leakage flux density material can be stably obtained.

本発明が適用される電磁鋼スラブの成分組成は次のよう
である。
The composition of the electromagnetic steel slab to which the present invention is applied is as follows.

Cの含有量が少なくなると二次再結晶が不安定となり、
また二次再結晶した場合でも磁束密度が低いものとなる
ので(1025%以上とする。一方、その含有量が多く
なると脱炭焼鈍時間が長くなるので0.095%以下と
する。
When the C content decreases, secondary recrystallization becomes unstable,
Further, even if secondary recrystallization is performed, the magnetic flux density will be low (1025% or more). On the other hand, if the content increases, the decarburization annealing time will become longer, so the content should be 0.095% or less.

Siは鉄mの低下、・インヒビター形成のために必要な
成分で、そのために2.0%以ト含有させる。
Si is a necessary component for reducing iron m and forming an inhibitor, and for this purpose it is contained in an amount of 2.0% or more.

一方、その含f1゛量が多くなると冷間用延時に板破断
、耳割れ等が多発するので4,0%以下とする。
On the other hand, if the f1 content increases, plate breakage, edge cracking, etc. will occur frequently during cold rolling, so it should be kept at 4.0% or less.

Mnは熱間脆性を防ぐとともに、グラス被膜を良質化す
る作用があり、これを奏するには0.08%以ト必要で
ある。一方、その含有量が多くなると磁束密度が劣化す
るので0.45%以Fとする。さらに本発明ではスラブ
加熱を1280°C未満の温度で行うので、例えばSと
の化合物MnSは完全固溶ゼずインヒビターとしてMn
Sを用いない点からもその」−限は前述の通りとする。
Mn has the effect of preventing hot brittleness and improving the quality of the glass coating, and 0.08% or more is required to achieve this effect. On the other hand, if the content increases, the magnetic flux density deteriorates, so the content should be 0.45% or more. Furthermore, in the present invention, since the slab heating is performed at a temperature below 1280°C, for example, the compound MnS with S is not completely dissolved in solid solution, but as an inhibitor of Mn.
Since S is not used, the limit is the same as described above.

Sは偏析を生じゃすく7正常な二次再結晶粒の成長を妨
げるために0.015%以下とする。
S is set to 0.015% or less in order to prevent segregation and inhibit the growth of normal secondary recrystallized grains.

AIばNあるいはSiと結合して(AI、5i)Nを形
成し2、二次再結晶の発現と安定に必要で、そのために
0.010%以り含有させる。一方、スラブ加熱温度は
1280℃未満でMを不完全に固溶させることから、A
Iの含有量が多くなると熱間圧延の段階で不適切なA、
I Nが形成されるので0.060%以トとする。
Al combines with N or Si to form (AI, 5i)N2, which is necessary for the development and stability of secondary recrystallization, and is therefore included in an amount of 0.010% or more. On the other hand, since the slab heating temperature is lower than 1280°C, M is completely dissolved in solid solution.
When the content of I increases, inappropriate A,
Since IN is formed, the content should be 0.060% or more.

Nは前記AI、 Si等と結合して二次再結晶の安定化
のために0.0030%以上含有さゼる。しかし、その
含イ]量が多くなるとブリスターと呼ばれる表面欠陥が
生じるので000130%以下とする。
N is contained in an amount of 0.0030% or more in order to combine with the aforementioned AI, Si, etc. and stabilize secondary recrystallization. However, if the content increases, surface defects called blisters will occur, so the content should be 000130% or less.

さらに、必、要に応じてP + Crの11!iまたは
2種を含有させる。また、Mo、シー Nb+ Sh+
 Sn、Ti * Tet 8の1種以上を含有させる
Furthermore, 11! of P + Cr as necessary. i or 2 types. Also, Mo, Sea Nb+ Sh+
Contains one or more of Sn, Ti*Tet 8.

Pは低温スラブ加熱の場合には、磁束密度を高める作用
があり、この作用を奏するためには0 、005%以上
必要である。一方、その含有量が多くなると冷延性が劣
化するので0.045%以下とする。
In the case of low-temperature slab heating, P has the effect of increasing the magnetic flux density, and in order to exhibit this effect, 0.005% or more is required. On the other hand, if the content increases, cold rollability deteriorates, so the content should be 0.045% or less.

Crは高磁束密度が得られるAI盪の範囲を拡げるごト
ラ介して磁気特性を高める作用があり、(のためには0
.07%以−し必要である。−力、その含有鼠が多くな
ると脱炭性が劣化Vるので0.25%以ドと吏る。
Cr has the effect of increasing magnetic properties by expanding the range of AI that can obtain high magnetic flux density.
.. 0.7% or more is required. - As the amount of carbon content increases, the decarburization performance deteriorates, so it should not exceed 0.25%.

Mo、シ、Nh、Sb、Sn、Ti、 Te、Bは磁気
特性を高めるために各成分につき、0.30%以内で1
種以上aイ1されるが、これらの合計の含fli量が多
くなると磁束密度を劣化させるので士1服は1.5%と
づ゛る。
Mo, Si, Nh, Sb, Sn, Ti, Te, and B are added within 0.30% of each component to improve magnetic properties.
However, if the total amount of fli contained increases, the magnetic flux density deteriorates, so the amount of fli is kept at 1.5%.

電磁鋼スラブは転炉あるいは電気炉な、1:゛の冷tM
;′−炉で)6製され5必′νに兎、じ(真空脱ガス処
理が施され、連続鋳造2.または造塊〜分塊圧延により
装造される。
Electromagnetic steel slabs are heated in a converter or electric furnace at a cold temperature of 1:゛.
;'-furnace)6, then vacuum degassed (vacuum degassing treatment), and formed by continuous casting2. or ingot-forming to blooming rolling.

電磁鋼スラブは熱間圧延に先立って加熱されるが、その
加熱温度は1280°C未満々しζ省エネルギーや溶融
スケールの発ζIE防止、表面疵防止が図られる。この
加熱温度では該電磁鋼スジ・ブ中のI’dは完全に固溶
されず不完全固溶となる。又、さらに固溶温度の高いM
nSは当然ながらより不完全固溶となる。
The electromagnetic steel slab is heated prior to hot rolling, and the heating temperature is less than 1280°C, which saves energy, prevents IE from generating molten scale, and prevents surface flaws. At this heating temperature, I'd in the electromagnetic steel strip is not completely dissolved in solid solution but becomes incompletely dissolved in solid solution. In addition, M with an even higher solid solution temperature
Naturally, nS becomes a more incomplete solid solution.

スンプ加熱後は熱間圧延され、必要によ、っては焼鈍さ
れ、あるいは焼鈍するこ乏なく、冷間圧延される。冷間
圧延は1回または中間焼鈍を挟んで2回収」二行われ最
終板厚とされる。
After the dump heating, it is hot rolled and optionally annealed, or cold rolled without annealing. Cold rolling is performed once or twice with intermediate annealing in between to achieve the final thickness.

本発明では前述の如く低温スラブ加熱であるから未だ鋼
板にインヒビターが存在しておらず、従って二次再結晶
発現以前に、鋼中にNを侵入させインヒビクー(八1.
5i)Nを形成する。インヒビター作用の強い(fJ 
、 S i ) Nは、巾に鋼板ヘトを加えても得られ
ない。
In the present invention, as mentioned above, since the slab is heated at a low temperature, there is no inhibitor present in the steel sheet.Therefore, before the onset of secondary recrystallization, N is introduced into the steel to inhibit it (81.
5i) Form N. Strong inhibitor effect (fJ
, S i ) N cannot be obtained even if the thickness of the steel plate is added to the width.

そごで本発明ではこの課題を解決4べく実験したところ
、脱炭焼鈍の前、途中又は後に鋼板を例えばストリ・ツ
ブ状で窒素化合物ガスの分解下で短時間に窒化し2、イ
ンヒビター(八7,5i)Nを形成することを確かめた
Therefore, in the present invention, we conducted an experiment to solve this problem4 and found that the steel plate was nitrided for a short time under the decomposition of nitrogen compound gas in the form of strips or tubes before, during, or after decarburization annealing. 7,5i) It was confirmed that N was formed.

窒化処理時間が例えば3分収ヒと長くなると、製品の磁
束密度は劣化する。加窒量は120〜2001)PMあ
ればよい。窒化の時期は脱炭焼鈍に入る前、あるいは脱
炭焼鈍の途中、又は脱炭焼鈍の後の何れであっても同様
な効果が得られる。また窒化は前記ストリップ状の通板
状態でNH,を混じえた雰囲気下が好ましいが、これに
限らず5.′仝素化合物含有の塩浴を通シフ゛ζもよく
、その1段は短時間窒化ができれば何れでも構わない。
When the nitriding treatment time is increased to, for example, 3 minutes, the magnetic flux density of the product deteriorates. The amount of nitriding should be 120 to 2001) PM. The same effect can be obtained whether nitriding is performed before decarburization annealing, during decarburization annealing, or after decarburization annealing. Further, nitriding is preferably carried out in an atmosphere mixed with NH while the strip is being passed through, but the method is not limited thereto. It is also possible to pass through a salt bath containing a nitrogen compound, and the first stage may be any one that can perform nitriding for a short time.

この後、焼鈍分離剤を崎仮に塗布して、仕1−焼鈍する
。仕上焼鈍では昇温加熱時に、先に形成されたインヒビ
ター(AC3i)Nのシイズや分散状態が微妙に変化す
ることから、本発明では一゛1次由結晶前の加熱過程で
さらに窒化する。1ごの窒化は焼鈍雰囲気に窒化能ガス
例えばN貼、N2114.NOを100〜1000PI
’M加えるごとにより、あるいは焼鈍う3’ iclを
剤に窒素化合物、例えばMnN 、窒化珪素を配合゛J
るごと等により達成される。この加窒量は20〜・10
0円)hであれば、新たなインヒビター (AI。
After that, an annealing separator is applied to the sakikari and annealing is performed. In the final annealing, the size and dispersion state of the previously formed inhibitor (AC3i)N change slightly during heating at elevated temperatures, so in the present invention, nitridation is further performed in the heating process before the first-order crystal formation. For nitriding, a nitriding gas such as N, N2114, etc. is added to the annealing atmosphere. NO 100-1000PI
A nitrogen compound such as MnN or silicon nitride is added each time M is added or annealing is performed.
This can be achieved through various means. This amount of nitriding is 20~・10
0 yen) h, a new inhibitor (AI.

5t)Nが形成され、二次再結間の発現が充分で、かつ
鋼板全最にわたって生じ、磁束密度の極めて高いものが
得られる。また窒化する加熱過程の温度域は600〜9
00°Cとずればよい。
5t) N is formed, the secondary reconsolidation occurs sufficiently, and occurs throughout the entire steel plate, resulting in an extremely high magnetic flux density. Also, the temperature range of the heating process for nitriding is 600 to 9
It is sufficient to deviate from 00°C.

次に、実施例について述べる。Next, examples will be described.

実施例−1 第1表に示す成分組成のスラブを、同表に示”す条件で
スラブ加熱し、2..3 m:m lゾみに熱間圧延し
7、熱延板まま、または熱延板焼鈍し、同表に示すよう
に1回または中間焼鈍を挟んご2回合間圧延し、0、.
30I71mの板jVとした。その後、850°CX3
分間、露点60℃の11.70%からなる雰囲気下で脱
炭焼鈍した。ごの脱炭焼鈍の1111、途中又は後ご同
表に示J−如く窒化した。その後、焼鈍分離剤4!:鋼
板に塗布し、仕上焼鈍した。仕上焼鈍の加熱時に同友に
示すようにさらに窒化した。得られた鋼板の磁気特性と
被膜特性を測定し7、その結果を第2表に示す。
Example-1 A slab having the composition shown in Table 1 was heated under the conditions shown in the same table, hot-rolled to a depth of 2.3 m:ml7, and then rolled as a hot-rolled sheet or The hot-rolled sheet is annealed, and as shown in the same table, it is rolled once or twice with intermediate annealing as shown in the table.
The plate jV was 30I71m. After that, 850°CX3
Decarburization annealing was performed in an atmosphere consisting of 11.70% with a dew point of 60° C. for 1 minute. 1111 During or after the decarburization annealing, nitriding was performed as shown in the same table. After that, annealing separator 4! : Applied to a steel plate and finish annealed. During heating for final annealing, the material was further nitrided as shown by a colleague. The magnetic properties and coating properties of the obtained steel plate were measured7, and the results are shown in Table 2.

(注) 1、被膜密着性; 180度曲げでi+離しない直径 2、被+1夕欠陥 一斑点状でグラス被1模の存在しな い部分できらきら光る金属光沢 (発明の効果) 128 O′C未満の低温スラブ加熱を適用し゛ζζ方
性性電磁鋼1板製造する際に、従来ば窒化を仕り焼鈍で
行ってインヒビター・−を形成していたのを、本発明で
はこの窒化を、仕り焼鈍以前の脱炭焼鈍の前、途中ある
いは後にストリップ状g−Q行い、。
(Notes) 1. Film adhesion; 180 degree bending without releasing i + diameter 2, + 1 defect with a spot of metallic luster in the area where there is no glass coating (effect of the invention) less than 128 O'C When manufacturing a sheet of ζζ-oriented electrical steel by applying low-temperature slab heating, conventionally nitriding was performed by pre-annealing to form an inhibitor, but in the present invention, this nitriding is performed before pre-annealing. Strip-shaped g-Q is performed before, during or after decarburization annealing.

ざらに仕」ニ焼鈍の加熱過程で行・うので、・インヒビ
ター効果の高い(A7,5i)Nが安定(7て形成され
、(j!重密度の高い力同性電磁鋼阪を(:)ることか
で)る。
Because it is carried out during the heating process of double annealing, ・(A7, 5i) N with high inhibitory effect is formed stably (7), and (j! (in terms of things).

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でC;0.025〜0.095%、Si;
2.0〜4.0%、 Mn;0.08〜0.45%、 S;0.015%以下 Al;0.010〜0.060%、 N;0.0030〜0.0130%、 を含み、残部が鉄及び不可避的不純物からなる電磁鋼ス
ラブを、1280℃未満の温度に加熱し、熱間圧延し、
熱延まま又は熱延板焼鈍し、1回又は中間焼鈍を挟んで
2回以上の冷間圧延し、脱炭焼鈍の前、途中又は後に鋼
板を短時間窒化して、(Al、Si)Nを主組成とする
インヒビターを形成し、焼鈍分離剤を塗布した後の仕上
焼鈍の加熱過程でさらに窒化することを特徴とする高磁
束密度方向性電磁鋼板の製造方法。
(1) C in weight%; 0.025-0.095%, Si;
2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130%, A magnetic steel slab containing iron and unavoidable impurities is heated to a temperature of less than 1280 ° C. and hot rolled,
The steel sheet is annealed as hot-rolled or hot-rolled, cold-rolled once or twice or more with intermediate annealing, and the steel sheet is nitrided for a short time before, during, or after decarburization annealing to produce (Al, Si)N. A method for producing a high magnetic flux density grain-oriented electrical steel sheet, characterized in that an inhibitor having a main composition of
(2)重量%でC;0.025〜0.095%、Si;
2.0〜4.0%、 Mn;0.08〜0.45%、 S;0.015%以下 Al;0.010〜0.060%、 N;0.0030〜0.0130%、 を含み、さらに、P;0.005〜0.045%、Cr
;0.07〜0.25%の1種又は2種を含有し、残部
が鉄及び不可避的不純物からなる電磁鋼スラブを、12
80℃未満の温度に加熱し、熱間圧延し、熱延まま又は
熱延板焼鈍し、1回又は中間焼鈍を挟んで2回以上の冷
間圧延し、脱炭焼鈍の前、途中又は後に鋼板を短時間窒
化して、(Al、Si)Nを主組成とするインヒビター
を形成し、焼鈍分離剤を塗布した後の仕上焼鈍の加熱過
程でさらに窒化することを特徴とする高磁束密度方向性
電磁鋼板の製造方法。
(2) C in weight%; 0.025-0.095%, Si;
2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130%, Contains, furthermore, P; 0.005 to 0.045%, Cr
; An electrical steel slab containing 0.07 to 0.25% of one kind or two kinds, with the balance consisting of iron and unavoidable impurities.
Heated to a temperature of less than 80°C, hot rolled, annealed as hot rolled or hot rolled sheet, cold rolled once or twice or more with intermediate annealing, before, during or after decarburization annealing. A high magnetic flux density direction characterized by nitriding a steel plate for a short time to form an inhibitor whose main composition is (Al, Si)N, and further nitriding in the heating process of finish annealing after applying an annealing separator. manufacturing method of magnetic steel sheet.
(3)重量%でC;0.025〜0.095%、Si;
2.0〜4.0%、 Mn;0.08〜0.45%、 S;0.015%以下 Al;0.010〜0.060%、 N;0.0030〜0.0130%、 を含み、さらに、Mo、V、Nb、Sb、Sn、Ti、
Te、Bの1種以上を合計で1.5%以下含有し、残部
が鉄及び不可避的不純物からなる電磁鋼スラブを、12
80℃未満の温度に加熱し、熱間圧延し、熱延まま又は
熱延板焼鈍し、1回又は中間焼鈍をはさんで2回以上の
冷間圧延し、脱炭焼鈍の前、途中又は後に鋼板を短時間
窒化して、(Al、Si)Nを主組成とするインヒビタ
ーを形成し、焼鈍分離剤を塗布した後の仕上焼鈍の加熱
過程でさらに窒化することを特徴とする高磁束密度方向
性電磁鋼板の製造方法。
(3) C in weight%; 0.025-0.095%, Si;
2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130%, Contains, furthermore, Mo, V, Nb, Sb, Sn, Ti,
An electrical steel slab containing one or more of Te and B in a total of 1.5% or less, with the balance consisting of iron and unavoidable impurities,
Heated to a temperature of less than 80°C, hot rolled, annealed as hot rolled or hot rolled sheet, cold rolled once or twice or more with intermediate annealing, before, during or after decarburization annealing. High magnetic flux density characterized by nitriding the steel plate for a short time afterwards to form an inhibitor whose main composition is (Al, Si)N, and further nitriding in the heating process of finish annealing after applying an annealing separator. A method for manufacturing grain-oriented electrical steel sheets.
(4)重量%でC;0.025〜0.095%、Si;
2.0〜4.0%、 Mn;0.08〜0.45%、 S;0.015%以下 Al;0.010〜0.060%、 N;0.0030〜0.0130%、 を含み、さらに、P;0.005〜0.045%、Cr
;0.07〜0.25%の1種又は2種、Mo、V、N
b、Sb、Sn、Ti、Te、Bの1種以上を合計で1
.5%以下含有し、残部が鉄及び不可避的不純物からな
る電磁鋼スラブを、1280℃未満の温度に加熱し、熱
間圧延し、熱延まま又は熱延板焼鈍し、1回又は中間焼
鈍をはさんで2回以上の冷間圧延し、脱炭焼鈍の前、途
中又は後に鋼板を短時間窒化して、(Al、Si)Nを
主組成とするインヒビターを形成し、焼鈍分離剤を塗布
した後の仕上焼鈍の加熱過程でさらに窒化することを特
徴とする高磁束密度方向性電磁鋼板の製造方法。
(4) C in weight%; 0.025-0.095%, Si;
2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130%, Contains, furthermore, P; 0.005 to 0.045%, Cr
; 0.07-0.25% of one or two types, Mo, V, N
A total of one or more of b, Sb, Sn, Ti, Te, and B
.. An electrical steel slab containing 5% or less and the remainder consisting of iron and unavoidable impurities is heated to a temperature below 1280°C, hot rolled, as hot rolled or hot rolled sheet annealed, and once or intermediate annealed. Cold rolling the steel plate two or more times, nitriding the steel plate for a short time before, during or after decarburization annealing to form an inhibitor whose main composition is (Al, Si)N, and applying an annealing separator. A method for producing a high magnetic flux density grain-oriented electrical steel sheet, characterized in that it is further nitrided in the heating process of final annealing after nitriding.
JP2196489A 1989-01-31 1989-01-31 Manufacture of high magnetic density grain-oriented silicon steel sheet Pending JPH02200733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196489A JPH02200733A (en) 1989-01-31 1989-01-31 Manufacture of high magnetic density grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196489A JPH02200733A (en) 1989-01-31 1989-01-31 Manufacture of high magnetic density grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH02200733A true JPH02200733A (en) 1990-08-09

Family

ID=12069742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196489A Pending JPH02200733A (en) 1989-01-31 1989-01-31 Manufacture of high magnetic density grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH02200733A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294428A (en) * 1989-05-09 1990-12-05 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
KR100431608B1 (en) * 1999-12-18 2004-05-17 주식회사 포스코 Manufacturing of high magnetic density grain oriented silicon steel
JP4943560B2 (en) * 2010-02-18 2012-05-30 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
JP4943559B2 (en) * 2010-02-18 2012-05-30 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
CN117721277A (en) * 2024-02-18 2024-03-19 包头威丰新材料有限公司 Decarbonization and nitridation process of high-magnetic-induction oriented electrical steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294428A (en) * 1989-05-09 1990-12-05 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
KR100431608B1 (en) * 1999-12-18 2004-05-17 주식회사 포스코 Manufacturing of high magnetic density grain oriented silicon steel
JP4943560B2 (en) * 2010-02-18 2012-05-30 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
JP4943559B2 (en) * 2010-02-18 2012-05-30 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
CN102762751A (en) * 2010-02-18 2012-10-31 新日本制铁株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
CN102762752A (en) * 2010-02-18 2012-10-31 新日本制铁株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
KR101322505B1 (en) * 2010-02-18 2013-10-28 신닛테츠스미킨 카부시키카이샤 Manufacturing method for grain-oriented electromagnetic steel sheet
US9175362B2 (en) 2010-02-18 2015-11-03 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet
CN117721277A (en) * 2024-02-18 2024-03-19 包头威丰新材料有限公司 Decarbonization and nitridation process of high-magnetic-induction oriented electrical steel

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
KR100442100B1 (en) Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
EP3428294B1 (en) Method of producing grain-oriented electrical steel sheet
KR19980032990A (en) Directional Electromagnetic Steel Sheet and Manufacturing Process
KR101351956B1 (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH02200733A (en) Manufacture of high magnetic density grain-oriented silicon steel sheet
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH01119621A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
JPS58107417A (en) Method of making unidirectional silicon steel sheet excellent in iron loss
JPH02258929A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPS5893878A (en) Production of unidirectional silicon steel plate having excellent magnetic characteristics
JP2001192733A (en) Method for producing grain oriented silicon steel sheet high in accumulation degree in goss orientation
JPH0417618A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2000160304A (en) Manufacture of grain oriented silicon steel sheet with high magnetic flux density and low iron loss