JPH0717953B2 - Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JPH0717953B2
JPH0717953B2 JP1021963A JP2196389A JPH0717953B2 JP H0717953 B2 JPH0717953 B2 JP H0717953B2 JP 1021963 A JP1021963 A JP 1021963A JP 2196389 A JP2196389 A JP 2196389A JP H0717953 B2 JPH0717953 B2 JP H0717953B2
Authority
JP
Japan
Prior art keywords
annealing
less
steel sheet
rolled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1021963A
Other languages
Japanese (ja)
Other versions
JPH02200732A (en
Inventor
政義 水口
泰光 近藤
洋一 財前
尚 小林
健一 八ケ代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1021963A priority Critical patent/JPH0717953B2/en
Publication of JPH02200732A publication Critical patent/JPH02200732A/en
Publication of JPH0717953B2 publication Critical patent/JPH0717953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気特性の優れた方向性電磁鋼板の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.

(従来の技術) 方向性電磁鋼板は主としてトランス、発電機、その他の
電気機器の鉄心材料に用いられ、磁気特性として励磁特
性と鉄損性が良好でなければならない。又、良好な被膜
を有することも重要である。方向性電磁鋼板は二次再結
晶現象を利用して圧延面に(110)面、圧延方向に〔00
1〕軸を持ったいわゆるゴス方位を有する結晶粒を発達
させることにより得られる。
(Prior Art) Grain-oriented electrical steel sheets are mainly used as core materials for transformers, generators, and other electric devices, and must have good magnetic properties such as excitation properties and iron loss properties. It is also important to have a good coating. The grain-oriented electrical steel sheet uses the secondary recrystallization phenomenon to make the (110) plane in the rolling plane and [00] in the rolling direction.
1) Obtained by developing a crystal grain having a so-called Goss orientation with an axis.

この二次再結晶は周知のように仕上焼鈍で生じるが、二
次再結晶の発現を十分に図るためには仕上焼鈍での二次
再結晶温度域まで一次再結晶粒の成長を抑制する微細な
AlN,MnS,MnSe等の析出物いわゆるインヒビターを存在さ
せる必要がある。
As is well known, this secondary recrystallization occurs during finish annealing, but in order to sufficiently develop the secondary recrystallization, it is necessary to control the growth of primary recrystallized grains up to the secondary recrystallization temperature range during finish annealing. Na
Precipitates such as AlN, MnS, MnSe and so-called inhibitors must be present.

このため電磁鋼スラブは1350〜1400℃程度の高温度に加
熱され、インヒビターを形成する成分、例えばAl,Mn,S,
Se,N等を完全に固溶させ、熱延板あるいは最終冷延前の
中間板においてインヒビターを微細に析出させる焼鈍が
行われている。
Therefore, the electromagnetic steel slab is heated to a high temperature of about 1350 to 1400 ° C, and components that form an inhibitor, such as Al, Mn, S,
Annealing is performed in which Se, N, etc. are completely dissolved and the inhibitor is finely precipitated in the hot-rolled sheet or the intermediate sheet before the final cold rolling.

このような処理を施すことにより磁束密度の高い方向性
電磁鋼板が製造されるようになっているが、電磁鋼スラ
ブの加熱は前述の如く高温で行われるために溶融スケー
ルの発生量が大となり、加熱炉の操業に支障をきたす。
また加熱炉のエネルギー原単位が高いなどの問題があ
る。
By performing such treatment, grain oriented electrical steel sheets with high magnetic flux density are manufactured, but since the heating of electromagnetic steel slabs is performed at high temperatures as described above, the amount of molten scale generated becomes large. , Interfere with the operation of the heating furnace.
There is also a problem that the energy intensity of the heating furnace is high.

一方、スラブ加熱温度を下げて、方向性電磁鋼板の製造
法が検討されている。例えば特開昭52−24116号公報で
はAlの他に、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の窒化物形成元
素を鋼中に含有させることにより、スラブ加熱を、1110
〜1260℃で行う製造法が開示されている。特開昭59−19
0324号公報ではC含有量を0.01%以下の低炭素でS,Seさ
らにAlとBを選択的に含有させた電磁鋼スラブを素材と
し、冷延後の一時再結晶焼鈍時に、鋼板表面を短時間繰
り返し高温加熱するパルス焼鈍を行うことにより、スラ
ブ加熱温度を1300℃以下とする製造法が開示されてい
る。また、特開昭59−56522号公報ではMnを0.08〜0.45
%、Sを0.007%以下とし、〔Mn〕〔S〕積を下げ、さ
らにAl,P,Nを含有させた電磁鋼スラブを素材とすること
により、スラブ加熱温度を1280℃以下とする製造法を提
案している。
On the other hand, a method of manufacturing a grain-oriented electrical steel sheet by lowering the slab heating temperature is being studied. For example, in Japanese Unexamined Patent Publication (Kokai) No. 52-24116, in addition to Al, slab heating is performed by adding a nitride-forming element such as Zr, Ti, B, Nb, Ta, V, Cr, and Mo to the steel.
Disclosed is a manufacturing method performed at ˜1260 ° C. JP 59-19
According to Japanese Patent No. 0324, an electromagnetic steel slab containing S, Se, and Al and B selectively in a low carbon content of 0.01% or less is used as a material, and the surface of the steel sheet is shortened during temporary recrystallization annealing after cold rolling. A manufacturing method is disclosed in which the slab heating temperature is set to 1300 ° C. or lower by performing pulse annealing in which high temperature heating is repeatedly performed. Further, in JP-A-59-56522, Mn is 0.08 to 0.45.
%, S is 0.007% or less, the [Mn] [S] product is reduced, and a slab heating temperature is 1280 ° C or less by using a magnetic steel slab containing Al, P, N as a raw material. Is proposed.

(発明が解決しようとする課題) このように、方向性電磁鋼板の製造において、低温スラ
ブ加熱による方法が検討され、それなりの作用効果が奏
されているが、二次再結晶の発現に充分に効果的なイン
ヒビターを安定して形成することが難しく磁気特性の優
れたものを工業的に安定して製造するには、さらなる検
討が必要である。
(Problems to be solved by the invention) As described above, in the production of grain-oriented electrical steel sheet, a method by low-temperature slab heating has been studied, and some action and effect have been exhibited, but sufficient for manifestation of secondary recrystallization. Further studies are required to industrially stably produce effective inhibitors that are difficult to stably form and have excellent magnetic properties.

本発明は電磁鋼スラブの加熱を1280℃未満の低温とし
て、溶融スケールの発生防止、表面疵防止や加熱エネル
ギーの減少等の利点を得ながら、仕上焼鈍以前に二次再
結晶の発現を確実化するインヒビターを鋼板の全般にわ
たって形成し、磁気特性が優れた方向性電磁鋼板を工業
的に安定して得ることを目的とする。
The present invention, by heating the electromagnetic steel slab at a low temperature of less than 1280 ° C, ensures the development of secondary recrystallization before finish annealing while obtaining advantages such as prevention of molten scale generation, surface flaw prevention and reduction of heating energy. It is intended to industrially stably obtain a grain-oriented electrical steel sheet having excellent magnetic properties by forming such an inhibitor over the entire steel sheet.

(課題を解決するための手段) 本発明の要旨とするところは、重量%で C ;0.025〜0.095%, Si;2.0〜4.0%, Mn;0.08〜0.45%, S ;0.015%以下 Al;0.010〜0.060%, N ;0.0030〜0.0130%, を含み、また必要に応じて、P;0.005〜0.045%,Cr;0.07
〜0.25%の1種または2種、Mo,V,Nb,Sb,Sn,Ti,Te,Bの
1種以上を合計で1.5%以下含有し、残部が鉄及び不可
避的不純物からなる電磁鋼スラブを、1280℃未満の温度
に加熱し、熱間圧延し、熱延まま又は熱延板焼鈍し、1
回又は中間焼鈍を挟んで2回以上の冷間圧延し、脱炭焼
鈍し、鋼板表面の酸化層を還元するか、除去した後、ス
トリップを走行せしめる状態下で500〜900℃の温度で2
分未満の短時間窒化し、焼鈍分離剤を塗布して仕上焼鈍
することを特徴とする磁気特性の優れた方向性電磁鋼板
の製造法にある。
(Means for Solving the Problems) The gist of the present invention is that C; 0.025 to 0.095%, Si; 2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010% by weight. 〜0.060%, N; 0.0030〜0.0130%, and if necessary P; 0.005〜0.045%, Cr; 0.07
~ 0.25% of 1 or 2 kinds, 1 or more kinds of Mo, V, Nb, Sb, Sn, Ti, Te, B in total less than 1.5%, and the balance is iron and unavoidable impurities Is heated to a temperature of less than 1280 ° C., hot-rolled, hot-rolled or annealed, 1
Cold rolling twice or more with intermediate or intermediate annealing in between, decarburization annealing to reduce or remove the oxide layer on the surface of the steel sheet, and then at a temperature of 500 to 900 ° C. under the condition of running the strip.
It is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises nitriding for a short time of less than a minute, applying an annealing separator, and finish annealing.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明者等は電磁鋼スラブを、1280℃未満の温度で加熱
する低温スラブ加熱を適用して、磁気特性の優れた方向
性電磁鋼板を、安定して製造すべく検討した。その結
果、スラブ加熱の段階ではインヒビターを形成する成分
例えばのAl,N,Mn,Sなどを鋼中に完全に固溶させず、脱
炭焼鈍の後、鋼板表面の酸化層を還元するか、あるいは
除去し、その後ストリップを走行せしめる状態下で短時
間窒化すると、インヒビター作用の強い(Al,Si)Nを
主組成とするインヒビターが鋼板にムラなく形成され、
磁気特性の優れた方向性電磁鋼板が得られることを見出
した。
The present inventors applied low-temperature slab heating in which an electromagnetic steel slab is heated at a temperature of less than 1280 ° C. and studied to stably produce a grain-oriented electrical steel sheet having excellent magnetic properties. As a result, components that form an inhibitor such as Al, N, Mn, and S are not completely dissolved in steel in the stage of slab heating, and after decarburization annealing, reduce the oxide layer on the surface of the steel sheet, or Alternatively, if it is removed and then nitrided for a short time while the strip is running, an inhibitor having a strong inhibitory action (Al, Si) N as a main composition is uniformly formed on the steel sheet,
It has been found that a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained.

本発明が適用される電磁鋼スラブの成分組成は次のよう
である。
The composition of components of the electromagnetic steel slab to which the present invention is applied is as follows.

Cの含有量が少なくなると二次再結晶が不安定となるの
で0.025%以上とする。一方、その含有量が多くなり過
ぎると脱炭焼鈍時間が長くなるので0.095%以下とす
る。
If the C content is low, the secondary recrystallization becomes unstable, so the content is made 0.025% or more. On the other hand, if the content is too large, the decarburization annealing time becomes long, so the content is made 0.095% or less.

Siは鉄損の低下、インヒビター形成のために必要な成分
でそのために2.0%以上含有させる。一方その含有量が
多くなると、冷間圧延時に割れ発生が多発するので4.0
%以下とする。
Si is a component necessary for lowering iron loss and forming an inhibitor, so Si is contained in an amount of 2.0% or more. On the other hand, if its content increases, cracking frequently occurs during cold rolling.
% Or less.

Mnは熱間脆性を防ぐとともに、グラス被膜を良質化する
作用があり、これを奏するには0.08%以上必要である。
一方、その含有量が増えると、磁束密度が劣化するので
0.45%以下とする。さらに本発明ではスラブ加熱を1280
℃未満で行うので例えばSとの化合物、MnSは完全固溶
せずインヒビターとしてMnSを用いない点からもその上
限は前述の通りとする。
Mn has the effect of preventing hot brittleness and improving the quality of the glass coating. To achieve this, 0.08% or more is required.
On the other hand, when the content increases, the magnetic flux density deteriorates.
0.45% or less. Further, in the present invention, the slab heating is 1280
Since it is carried out at a temperature lower than ° C, for example, the compound with S and MnS do not form a complete solid solution and MnS is not used as an inhibitor.

Sは偏析を生じやすく、正常な二次再結晶粒の成長を妨
げる原因となるために0.015%以下とする。
S is likely to cause segregation and hinders the normal growth of secondary recrystallized grains, so S is made 0.015% or less.

AlはNあるいはSiと結合して(Al,Si)Nを形成し、二
次再結晶の安定化に必要であり、そのために0.010%以
上含有させる。一方、本発明でのスラブ加熱温度は1280
℃未満でAlを不完全に固溶させることから、Alの含有量
が多くなると、熱間圧延の段階で不適切なAlNが形成さ
れるので0.060%以下とする。
Al is combined with N or Si to form (Al, Si) N, which is necessary for stabilizing the secondary recrystallization. Therefore, 0.010% or more is contained. On the other hand, the slab heating temperature in the present invention is 1280.
Since Al is incompletely solid-solved at a temperature lower than 0 ° C, if the content of Al increases, unsuitable AlN is formed in the stage of hot rolling, so the content is made 0.060% or less.

Nは前記Al,Si等と結合して二次再結晶の安定化作用を
奏させるために0.0030%以上含有させる。しかし、その
含有量が多くなると表面欠陥が生じるので0.0130%以下
とする。
N is contained in an amount of 0.0030% or more in order to combine with Al, Si and the like to have a stabilizing effect on secondary recrystallization. However, if its content increases, surface defects occur, so the content is made 0.0130% or less.

さらに、必要に応じて上記元素の他にP,Crの1種または
2種または/およびMo,V,Nb,Sb,Sn,Ti,Te,Bの1種以上
を含有させても差し支えない。この時Pは低温スラブ加
熱の場合には、磁束密度を高める作用があり、この作用
を奏するためには0.005%以上必要である。一方、その
含有が多くなると冷延性が劣化するので0.045%以下と
する。
Further, if necessary, one or more of P and Cr or / and one or more of Mo, V, Nb, Sb, Sn, Ti, Te and B may be contained in addition to the above elements. At this time, P has the effect of increasing the magnetic flux density in the case of low-temperature slab heating, and 0.005% or more is necessary to achieve this effect. On the other hand, if its content increases, cold ductility deteriorates, so the content is made 0.045% or less.

Crは高磁束密度が得られるAl量の範囲を拡げることを介
して磁気特性を高める作用があり、そのためには0.07%
以上必要である。一方、その含有量が多くなると脱炭性
が劣化するので0.25%以下とする。
Cr has the effect of enhancing the magnetic properties through expanding the range of the amount of Al for which a high magnetic flux density can be obtained.
The above is necessary. On the other hand, if its content increases, decarburization deteriorates, so the content is made 0.25% or less.

Mo,V,Nb,Sb,Sn,Ti,Te,Bは磁気特性を高めるためにそれ
ぞれ0.30%以内で含有されるが、これらの合計の上限は
1.5%とする。
Mo, V, Nb, Sb, Sn, Ti, Te, and B are contained within 0.30% each to improve the magnetic properties, but the upper limit of the total of these is
1.5%

電磁鋼スラブは転炉あるいは電気炉などの溶解炉で溶製
され、必要に応じて真空脱ガス処理が施され、連続鋳
造、または造塊−分塊圧延により製造される。
The electromagnetic steel slab is melted in a melting furnace such as a converter or an electric furnace, vacuum degassing treatment is applied if necessary, and is manufactured by continuous casting or ingot-slab rolling.

電磁鋼スラブは熱間圧延に先立って加熱されるが、その
加熱温度は1280℃未満として省エネルギーが図られる。
この加熱温度では該電磁鋼スラブ中のAlは完全に固溶さ
れず不完全固溶状態となる。またさらに固溶温度の高い
MnSは当然ながら不完全固溶である。
The electromagnetic steel slab is heated prior to hot rolling, but the heating temperature is less than 1280 ° C to save energy.
At this heating temperature, Al in the electromagnetic steel slab is not completely solid-solved and becomes incompletely solid-solved. Moreover, the solid solution temperature is higher
MnS is, of course, an incomplete solid solution.

スラブ加熱後は、熱間圧延され、必要によっては焼鈍さ
れ、あるいは焼鈍することなく、冷間圧延される。冷間
圧延は1回または中間焼鈍を挟んで2回以上の冷間圧延
を施され最終板厚とされる。
After heating the slab, it is hot-rolled, optionally annealed, or cold-rolled without annealing. The cold rolling is performed once or twice or more with intermediate annealing sandwiched, to obtain the final plate thickness.

処で、本発明においては、電磁鋼スラブは1280℃未満の
低い温度に加熱される。
Here, in the present invention, the electromagnetic steel slab is heated to a low temperature of less than 1280 ° C.

従って、鋼中のAl,Mn,S等を不完全固溶状態としてお
り、このままでは、鋼板中に二次再結晶を発現させるた
めの(Al,Si)N,MnS等のインヒビターが存在しない。故
に、二次再結晶発現以前に、鋼中にNを侵入させ、イン
ヒビターとして機能する(Al,Si)Nを形成する必要が
ある。
Therefore, Al, Mn, S, etc. in the steel are in an incomplete solid solution state, and as they are, there are no inhibitors such as (Al, Si) N, MnS for expressing secondary recrystallization in the steel sheet. Therefore, it is necessary to infiltrate N into the steel to form (Al, Si) N that functions as an inhibitor before secondary recrystallization occurs.

鋼板の窒化は、ドライな雰囲気(低露点のガス)下で促
進される。
The nitriding of a steel sheet is promoted in a dry atmosphere (a gas with a low dew point).

従来、鋼板の窒化は窒素化合物を添加した焼鈍分離剤を
塗布し、占積率が90%程度のタイトなストリップコイル
の形態でなされていた。このようなタイトなストリップ
コイルの状態では、板間の間隙は10μm以下と狭く、通
気性が非常に悪い。従って、板間の雰囲気をドライな雰
囲気に置換するのに長時間を要するのみならず、窒化源
としてのN2が板間に侵入、拡散するためにも長時間を必
要とする。これを改善する手段として、ルーズなストリ
ップコイルとして鋼板の窒化処理を行うことが試みられ
ているけれども、鋼板の窒化処理をストリップコイルの
形態で行うときの問題である、コイル内温度の不均一さ
に起因する窒化の不均一さは減少するものの、十分とは
言えない。
Conventionally, nitriding of steel sheets has been performed in the form of tight strip coils with a space factor of about 90% by applying an annealing separator containing a nitrogen compound. In such a tight strip coil state, the gap between the plates is as narrow as 10 μm or less, and the air permeability is very poor. Therefore, it not only takes a long time to replace the atmosphere between the plates with a dry atmosphere, but also a long time is required for N 2 as a nitriding source to enter and diffuse between the plates. As a means to improve this, it has been attempted to perform nitriding treatment on a steel sheet as a loose strip coil, but it is a problem when performing nitriding treatment on a steel sheet in the form of a strip coil. Although the non-uniformity of nitridation caused by the above is reduced, it cannot be said to be sufficient.

本発明者等はインヒビター作用の強い(Al,Si)Nを安
定的に形成すべく、脱炭焼鈍後の窒化処理について種々
検討した。その結果、(Al,Si)Nの形成のための鋼板
の窒化は鋼板の表面の性状に大きく依存することを見出
した。この知見をさらに究明した結果、窒化能ガス、例
えばNH3ガスを用いて窒化する際に、NH3が先づ鋼板表面
に解離吸着した後、活性な原子状のNが鋼板にトラップ
されるが、脱炭焼鈍過程で形成される100〜200Å程度の
厚さを持つFe−Si系酸化物が鋼板表面に存在すると窒素
侵入のバリアとなっており、これを窒化処理前にH2を含
む還元性ガスで還元するか、酸洗等で除去することによ
り極めて短時間に窒化でき、(Al,Si)Nを鋼板の全般
にわたって一様に形成させ得ることが判った。
The present inventors have conducted various studies on nitriding treatment after decarburization annealing in order to stably form (Al, Si) N having a strong inhibitory action. As a result, it was found that the nitriding of the steel sheet for forming (Al, Si) N greatly depends on the surface properties of the steel sheet. As a result of further studying this finding, when nitriding using a nitriding gas such as NH 3 gas, NH 3 is first dissociated and adsorbed on the surface of the steel sheet, and then active atomic N is trapped in the steel sheet. , Fe-Si oxide with a thickness of 100-200Å formed in the decarburization annealing process is present on the surface of the steel sheet as a barrier for nitrogen infiltration, which is reduced by H 2 reduction before nitriding. It has been found that nitriding can be performed in an extremely short time by reducing with a volatile gas or removing with pickling or the like, and (Al, Si) N can be uniformly formed over the entire steel sheet.

第1図は窒化処理に先立ち事前にH2を含むガスで鋼板表
面を還元した時の還元時間をパラメーターとし、還元後
の窒化処理における窒化時間と鋼中窒素量との関係をプ
ロットしたものである。なお、窒化処理は650〜850℃で
鋼板をストリップ状で通板して行った。第1図から還元
処理を10秒以上とすることにより、鋼板の窒化が短時間
に起こることがわかる。その後焼鈍分離剤を塗布し、仕
上焼鈍を1200℃で行い、磁気特性を測定した。その結果
を第3図に示すが、脱炭焼鈍後に鋼板の酸化層を還元し
短時間窒化したものは磁束密度B10が高く、鉄損W17/50
が低く磁気特性が優れている。これは、還元し短時間窒
化を行うとインヒビター機能の高い(Al,Si)Nが形成
されたためと考えられる。なお、試験に用いた鋼スラブ
の成分組成は重量%で、C:0.05%,Si;3.2%,Mn:0.12%,
S:0.007%,Al:0.03%,N:0.008%,残部が鉄および不可
避的不純物であり、スラブ加熱温度は1200℃である。
Fig. 1 is a plot of the relationship between the nitriding time in the nitriding treatment after reduction and the amount of nitrogen in the steel, with the reduction time when the surface of the steel sheet was reduced with a gas containing H 2 prior to the nitriding treatment as a parameter. is there. The nitriding treatment was performed by passing a steel plate in strip form at 650 to 850 ° C. It can be seen from FIG. 1 that the nitriding of the steel sheet occurs in a short time when the reduction treatment is set to 10 seconds or more. After that, an annealing separator was applied, finish annealing was performed at 1200 ° C., and magnetic characteristics were measured. The results are shown in Fig. 3. The decarburization annealing reduces the oxide layer of the steel sheet and nitrides it for a short time, which has a high magnetic flux density B 10 and iron loss W 17/50.
Low and excellent magnetic properties. This is presumably because (Al, Si) N having a high inhibitor function was formed when reduction and nitridation were performed for a short time. The composition of the steel slab used in the test is% by weight, C: 0.05%, Si; 3.2%, Mn: 0.12%,
S: 0.007%, Al: 0.03%, N: 0.008%, the balance is iron and inevitable impurities, and the slab heating temperature is 1200 ° C.

また、第2図は窒化処理に先立ち、塩酸10%の溶液で脱
炭焼鈍後の鋼板の酸化層除去処理した時の処理時間をパ
ラメーターとし、処理後の窒化処理における窒化時間と
鋼中窒素量との関係をプロットしたものである。なお窒
化処理は750℃の温度で鋼板をストリップ状で通板して
行った。酸洗処理により、その後のストリップ通板状態
での窒化が短時間に起こることがわかる。その後、焼鈍
分離剤を塗布し、1200℃で仕上焼鈍し磁気特性を測定し
た。この場合も酸化層を除去し短時間窒化したものは磁
束密度B10,鉄損W17/50とも優れていた。これはインヒ
ビター(Al,Si)Nが安定して形成されたためと考えら
れる。
In addition, Fig. 2 shows the nitriding time and the amount of nitrogen in the nitriding treatment after the treatment, with the treatment time when the oxide layer of the steel sheet after decarburization annealing was treated with a 10% hydrochloric acid solution as a parameter before the nitriding treatment. It is a plot of the relationship with. The nitriding treatment was performed by passing a steel plate in strip form at a temperature of 750 ° C. It can be seen that the pickling treatment causes subsequent nitriding in a strip passing state in a short time. Then, an annealing separator was applied and finish annealing was carried out at 1200 ° C. to measure the magnetic properties. Also in this case, the one obtained by removing the oxide layer and nitriding for a short time had excellent magnetic flux density B 10 and iron loss W 17/50 . It is considered that this is because the inhibitor (Al, Si) N was stably formed.

このように、窒化に先立ち、例えばH2を含む還元性ガス
で鋼板表面を還元するか、塩酸,硫酸,硝酸,リン酸,
フッ酸などの希薄な酸洗液での酸洗処理により鋼板表面
の酸化物を除去することにより、窒化処理時間を短くで
き、インヒビター(Al,Si)Nを安定して形成すること
ができる。
Thus, prior to nitriding, the surface of the steel sheet is reduced with a reducing gas containing H 2 , or hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid,
By removing the oxide on the surface of the steel sheet by pickling with a dilute pickling solution such as hydrofluoric acid, the nitriding time can be shortened and the inhibitor (Al, Si) N can be stably formed.

窒化処理はストリップを走行せしめる状態にて行うが、
インヒビター機能の強い(Al,Si)Nを形成せしめるに
は短時間窒化が必要であるので、500℃以上900℃以下の
温度で、2分未満にて行う。このとき、窒化能ガス、好
ましくはNH3をH2とN2の混合雰囲気またはそれらの単独
雰囲気に1000〜100000ppm供給する雰囲気下とすること
が望ましい。
Nitriding is performed while the strip is running,
Since short-time nitriding is required to form (Al, Si) N having a strong inhibitory function, it is performed at a temperature of 500 ° C. or higher and 900 ° C. or lower in less than 2 minutes. At this time, it is desirable that the nitriding gas, preferably NH 3 , is supplied in a mixed atmosphere of H 2 and N 2 or an atmosphere in which 100 to 100,000 ppm is supplied to the single atmosphere thereof.

窒化処理の温度を前記のようにするのは、この温度が50
0℃未満であると短時間で窒化することが困難になり、
(Al,Si)Nの形成が乏しくなるからである。一方、こ
の温度が高温になると、この場合にも窒化が減少し、ま
た二次再結晶発現に作用する(Al,Si)Nの形成が少な
くなるので、900℃を上限とする。また、時間が長くな
っても効果的なインヒビター(Al,Si)Nが形成されな
いので2分未満とする必要がある。
The temperature of the nitriding treatment is set to the above, this temperature is 50
If it is less than 0 ° C, it becomes difficult to nitride in a short time,
This is because the formation of (Al, Si) N becomes poor. On the other hand, when this temperature becomes high, nitriding also decreases in this case, and the formation of (Al, Si) N acting on the development of secondary recrystallization decreases, so the upper limit is 900 ° C. Further, even if the time becomes long, an effective inhibitor (Al, Si) N is not formed, so it is necessary to set it to less than 2 minutes.

その後、焼鈍分離剤を塗布し、仕上焼鈍する。用いられ
る焼鈍分離剤は特定の必要がなく、MgOを主成分とする
公知のもの、TiO2,B等の公知の添加物を配合したものが
適用される。また鋼板への塗布は、スラリー状にして、
あるいはスラリー状とせずに粉状にての電磁静電塗布な
ど公知の方法で行われる。仕上焼鈍についても、その方
法を特定する必要はない。
Then, an annealing separator is applied and finish annealing is performed. The annealing separator used does not need to be specified, and known ones containing MgO as a main component and those containing known additives such as TiO 2 and B are applied. Moreover, the application to the steel plate is made into a slurry,
Alternatively, it is carried out by a known method such as electromagnetic electrostatic coating in powder form instead of slurry form. It is not necessary to specify the method for finish annealing either.

本発明によると前述のように磁気特性の優れたものが得
られるが、さらに窒化処理の前に行う前記前処理を行っ
ても、脱炭焼鈍によって形成される被膜の極く表層だけ
が還元、もしくは除去されるだけでシリカは十分量存在
するので、仕上焼鈍後、鋼板表面には良好なフォルステ
ライト被膜が形成される。
According to the present invention, excellent magnetic properties can be obtained as described above, but even if the pretreatment performed before the nitriding treatment is performed, only the very surface layer of the film formed by decarburization annealing is reduced, Alternatively, since the silica is simply removed and a sufficient amount of silica is present, a good forsterite film is formed on the surface of the steel sheet after finish annealing.

(実施例) 次に本発明を実施例に基づいて説明する。(Example) Next, this invention is demonstrated based on an Example.

実施例−1 第1表に示す成分組成のスラブを、同表に示す条件でス
ラブ加熱し、2.3mm厚みに熱間圧延し、熱延板まま、ま
たは熱延板焼鈍し、同表に示すように1回または中間焼
鈍を挟んで2回冷間圧延し、0.30mmの板厚とした。その
後、850℃×3分間、露点60℃のH270%からなる雰囲気
下で脱炭焼鈍し、同表に示す条件で鋼板をストリップ状
態にて走行させて酸化層の還元を行い、窒化処理した。
次いで、焼鈍分離剤をスラリー状として鋼板に塗布し、
乾燥し、コイルに捲取り、該コイルを仕上焼鈍した。得
られた鋼板の磁気特性と被膜特性を測定し、その結果を
第2表に示す。
Example-1 A slab having the component composition shown in Table 1 was slab-heated under the conditions shown in the same table, hot-rolled to a thickness of 2.3 mm, as-hot-rolled or annealed, and then shown in the same table. As described above, the steel sheet was cold-rolled once or twice with intermediate annealing interposed therebetween to obtain a plate thickness of 0.30 mm. After that, decarburization annealing is performed in an atmosphere consisting of H 2 70% with a dew point of 60 ° C. for 3 minutes at 850 ° C., and the steel sheet is run in a strip state under the conditions shown in the table to reduce the oxide layer and perform nitriding treatment. did.
Then, the annealing separator is applied to the steel sheet as a slurry,
It was dried, wound on a coil, and the coil was finish annealed. The magnetic properties and coating properties of the obtained steel sheet were measured, and the results are shown in Table 2.

実施例−2 第3表に示す成分組成のスラブを、同表に示す条件でス
ラブ加熱し、2.3mm厚みに熱間圧延し、熱延板まま、ま
たは熱延板焼鈍し、同表に示すように1回または中間焼
鈍を挟んで2回冷間圧延し、0.30mmの板厚として。その
後、850℃×3分間、露点60℃のH270%からなる雰囲気
下で脱炭焼鈍し、同表に示す条件で鋼板をストリップ状
態にて走行させて酸化層の除去を行い、窒化処理した。
次いで、焼鈍分離剤をスラリー状として鋼板に塗布し、
乾燥し、コイルに捲取り、該コイルを仕上焼鈍した。得
られた鋼板の磁気特性と被膜特性を測定し、その結果を
第4表に示す。
Example-2 A slab having the component composition shown in Table 3 is slab-heated under the conditions shown in the same table, hot-rolled to a thickness of 2.3 mm, and as-hot-rolled or annealed in the hot-rolled sheet, and then shown in the same table. As described above, cold rolling is performed once or twice with intermediate annealing, and a plate thickness of 0.30 mm is obtained. After that, decarburization annealing was performed in an atmosphere consisting of H 2 70% with a dew point of 60 ° C for 3 minutes at 850 ° C, and the steel sheet was run in a strip state under the conditions shown in the same table to remove the oxide layer, and then subjected to nitriding treatment. did.
Then, the annealing separator is applied to the steel sheet as a slurry,
It was dried, wound on a coil, and the coil was finish annealed. The magnetic properties and coating properties of the obtained steel sheet were measured, and the results are shown in Table 4.

(発明の効果) 本発明は、従来、仕上焼鈍で行っていた鋼板の窒化処理
を、仕上焼鈍以前の脱炭焼鈍後に鋼板表面の酸化層を還
元また除去し、ストリップ状態で短時間窒化するように
したので、磁気特性の優れた方向性電磁鋼板が安定して
得られる。
(Effects of the Invention) The present invention reduces the nitriding treatment of a steel sheet, which has been conventionally performed by finish annealing, to reduce or remove the oxide layer on the surface of the steel sheet after decarburization annealing before finish annealing, and to perform short-time nitriding in a strip state. Therefore, the grain-oriented electrical steel sheet having excellent magnetic properties can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は窒化処理に先立ち事前にH2を含むガスで鋼板表
面を還元した時の還元時間をパラメーターとし、還元後
の窒化処理における窒化時間と鋼中窒素量との関係をプ
ロットした図、第2図は窒化処理に先立ち塩酸10%の溶
液で脱炭焼鈍後の鋼板の酸化層除去処理した時の処理時
間をパラメーターとし、処理後の窒化処理における窒化
時間と鋼中窒素量との関係をプロットした図、第3図は
ストリップ窒化なしプロセス、ストリップ窒化(酸化層
還元処理なし)プロセス、ストリップ窒化(酸化層還元
処理あり)プロセスの各プロセスにより得られた方向性
電磁鋼板の磁気特性を示す図である。
FIG. 1 is a diagram plotting the relationship between the nitriding time in the nitriding treatment after reduction and the amount of nitrogen in the steel, using the reduction time when the steel sheet surface was reduced with a gas containing H 2 prior to the nitriding treatment as a parameter, Fig. 2 shows the relationship between the nitriding time in the nitriding treatment after treatment and the nitrogen content in the steel, using the treatment time as a parameter when the oxide layer of the steel sheet after decarburization annealing was treated with a 10% hydrochloric acid solution prior to the nitriding treatment. Fig. 3 shows the magnetic properties of the grain-oriented electrical steel sheets obtained by the strip nitriding process, the strip nitriding (without oxide layer reduction treatment) process, and the strip nitriding (with oxide layer reduction treatment) process. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 (72)発明者 小林 尚 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社第3技術研究所内 (72)発明者 八ケ代 健一 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社八幡製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01F 1/16 (72) Inventor Takashi Kobayashi 1-1-1 Edamitsu, Hachimanto-ku, Kitakyushu, Fukuoka Nippon Steel & Co., Ltd. 3rd Technical Research Institute (72) Inventor Kenichi Yatsushiro 1-1-1 Edamitsu, Hachimanto-ku, Kitakyushu-shi, Fukuoka New Nippon Steel & Co., Ltd. Yahata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%でC ;0.025〜0.095%, Si;2.0〜4.0%, Mn;0.08〜0.45%, S ;0.015%以下 Al;0.010〜0.060%, N ;0.0030〜0.0130%, を含み、残部が鉄及び不可避的不純物からなる電磁鋼ス
ラブを、1280℃未満の温度に加熱し、熱間圧延し、熱延
まま又は熱延板焼鈍し、1回又は中間焼鈍を挟んで2回
以上の冷間圧延し、脱炭焼鈍し、鋼板表面の酸化層を還
元するか、除去した後、ストリップを走行せしめる状態
下で500〜900℃の温度で2分未満の短時間窒化し、焼鈍
分離剤を塗布して仕上焼鈍することを特徴とする磁気特
性の優れた方向性電磁鋼板の製造法。
1. By weight%, C: 0.025 to 0.095%, Si; 2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130% are included. , Electromagnetic steel slab with the balance consisting of iron and unavoidable impurities is heated to a temperature of less than 1280 ° C, hot-rolled, as-hot-rolled or hot-rolled sheet annealed once or twice with intermediate annealing sandwiched. Cold-rolled, decarburized and annealed to reduce or remove the oxide layer on the surface of the steel sheet, and then nitrid at a temperature of 500 to 900 ° C for a short time of less than 2 minutes under the condition of running the strip, and then annealed and separated. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises applying an agent and finishing annealing.
【請求項2】重量%でC ;0.025〜0.095%, Si;2.0〜4.0%, Mn;0.08〜0.45%, S ;0.015%以下 Al;0.010〜0.060%, N ;0.0030〜0.0130%, を含み、さらに、P;0.005〜0.045%,Cr;0.07〜0.25%の
1種または2種を含有し、残部が鉄及び不可避的不純物
からなる電磁鋼スラブを、1200℃未満の温度に加熱し、
熱間圧延し、熱延まま又は熱延板焼鈍し、1回又は中間
焼鈍を挟んで2回以上の冷間圧延し、脱炭焼鈍し、鋼板
表面の酸化層を還元するか、除去した後、ストリップを
走行せしめる状態下で500〜900℃の温度で2分未満の短
時間窒化し、焼鈍分離剤を塗布して仕上焼鈍することを
特徴とする磁気特性の優れた方向性電磁鋼板の製造法。
2. By weight%, C: 0.025 to 0.095%, Si; 2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130% are included. , Further, P; 0.005 ~ 0.045%, Cr; 0.07 ~ 0.25% containing one or two kinds, the balance is an iron and unavoidable impurities electromagnetic steel slab heated to a temperature of less than 1200 ℃,
After hot rolling, hot rolling as-rolled or hot-rolled sheet annealing, cold rolling once or twice with intermediate annealing sandwiched, decarburization annealing, and reducing or removing the oxide layer on the steel sheet surface Manufacture of grain-oriented electrical steel sheet with excellent magnetic properties, which is characterized by nitriding for a short time of less than 2 minutes at a temperature of 500 to 900 ° C while running a strip, and applying an annealing separator to finish annealing. Law.
【請求項3】重量%でC ;0.025〜0.095%, Si;2.0〜4.0%, Mn;0.08〜0.45%, S ;0.015%以下 Al;0.010〜0.060%, N ;0.0030〜0.0130%, を含み、さらに、Mo,V,Nb,Sb,Sn,Ti,Te,Bの1種以上を
合計で1.5%以下含有し、残部が鉄及び不可避的不純物
からなる電磁鋼スラブを、1280℃未満の温度に加熱し、
熱間圧延し、熱延まま又は熱延板焼鈍し、1回又は中間
焼鈍を挟んで2回以上の冷間圧延し、脱炭焼鈍し、鋼板
表面の酸化層を還元するか、除去した後、ストリップを
走行せしめる状態下で500〜900℃の温度で2分未満の短
時間窒化し、焼鈍分離剤を塗布して仕上焼鈍することを
特徴とする磁気特性の優れた方向性電磁鋼板の製造法。
3. By weight%, C: 0.025 to 0.095%, Si; 2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130% are included. In addition, a magnetic steel slab containing one or more of Mo, V, Nb, Sb, Sn, Ti, Te and B in a total amount of 1.5% or less, and the balance being iron and unavoidable impurities, at a temperature of less than 1280 ° C. Heated to
After hot rolling, hot rolling as-rolled or hot-rolled sheet annealing, cold rolling once or twice with intermediate annealing sandwiched, decarburization annealing, and reducing or removing the oxide layer on the steel sheet surface Manufacture of grain-oriented electrical steel sheet with excellent magnetic properties, which is characterized by nitriding for a short time of less than 2 minutes at a temperature of 500 to 900 ° C while running a strip, and applying an annealing separator to finish annealing. Law.
【請求項4】重量%でC ;0.025〜0.095%, Si;2.0〜4.0%, Mn;0.08〜0.45%, S ;0.015%以下 Al;0.010〜0.060%, N ;0.0030〜0.0130%, を含み、さらに、P;0.005〜0.045%,Cr;0.07〜0.25%の
1種または2種、Mo,V,Nb,Sb,Sn,Ti,Te,Bの1種以上を
合計で1.5%以下含有し、残部が鉄及び不可避的不純物
からなる電磁鋼スラブを、1280℃未満の温度に加熱し、
熱間圧延し、熱延まま又は熱延板焼鈍し、1回又は中間
焼鈍を挟んで2回以上の冷間圧延し、脱炭焼鈍し、鋼板
表面の酸化層を還元するか、除去した後、ストリップを
走行せしめる状態下で500〜900℃の温度で2分未満の短
時間窒化し、焼鈍分離剤を塗布して仕上焼鈍することを
特徴とする磁気特性の優れた方向性電磁鋼板の製造法。
4. By weight%, C: 0.025 to 0.095%, Si; 2.0 to 4.0%, Mn; 0.08 to 0.45%, S; 0.015% or less Al; 0.010 to 0.060%, N; 0.0030 to 0.0130% are included. , And further contains P; 0.005-0.045%, Cr; 0.07-0.25%, one or two kinds, and Mo, V, Nb, Sb, Sn, Ti, Te, B, one or more kinds in total of 1.5% or less. , Heating the electromagnetic steel slab, the balance of which consists of iron and unavoidable impurities, to a temperature below 1280 ° C,
After hot rolling, hot rolling as-rolled or hot-rolled sheet annealing, cold rolling once or twice with intermediate annealing sandwiched, decarburization annealing, and reducing or removing the oxide layer on the steel sheet surface Manufacture of grain-oriented electrical steel sheet with excellent magnetic properties, which is characterized by nitriding for a short time of less than 2 minutes at a temperature of 500 to 900 ° C while running a strip, and applying an annealing separator to finish annealing. Law.
JP1021963A 1989-01-31 1989-01-31 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0717953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021963A JPH0717953B2 (en) 1989-01-31 1989-01-31 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021963A JPH0717953B2 (en) 1989-01-31 1989-01-31 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH02200732A JPH02200732A (en) 1990-08-09
JPH0717953B2 true JPH0717953B2 (en) 1995-03-01

Family

ID=12069716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021963A Expired - Lifetime JPH0717953B2 (en) 1989-01-31 1989-01-31 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0717953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538777B1 (en) * 2014-10-13 2015-07-22 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519615B2 (en) * 1991-09-26 1996-07-31 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP2709549B2 (en) * 1992-04-16 1998-02-04 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
DE102011119395A1 (en) * 2011-06-06 2012-12-06 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
WO2020027218A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN112513305B (en) 2018-07-31 2022-07-15 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
KR102457420B1 (en) 2018-07-31 2022-10-24 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
WO2021156960A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet
KR20220123453A (en) 2020-02-05 2022-09-06 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
CN111663081B (en) * 2020-07-10 2021-07-27 武汉科技大学 Niobium-containing oriented silicon steel adopting low-temperature heating plate blank and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538777B1 (en) * 2014-10-13 2015-07-22 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same

Also Published As

Publication number Publication date
JPH02200732A (en) 1990-08-09

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
EP0339474B1 (en) Process for preparation of grain-oriented electrical steel sheet having excellent magnetic and film characteristics
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2826903B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with good glass coating
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0672267B2 (en) Method for producing grain-oriented silicon steel sheet with less iron loss deterioration due to stress relief annealing
JPH10110217A (en) Production of grain oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 14

EXPY Cancellation because of completion of term