JPH0696743B2 - Method for producing unidirectional silicon steel sheet having excellent magnetic properties - Google Patents

Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Info

Publication number
JPH0696743B2
JPH0696743B2 JP63240962A JP24096288A JPH0696743B2 JP H0696743 B2 JPH0696743 B2 JP H0696743B2 JP 63240962 A JP63240962 A JP 63240962A JP 24096288 A JP24096288 A JP 24096288A JP H0696743 B2 JPH0696743 B2 JP H0696743B2
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
final
finish
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63240962A
Other languages
Japanese (ja)
Other versions
JPH02125815A (en
Inventor
勝生 岩本
嘉明 飯田
文二郎 福田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63240962A priority Critical patent/JPH0696743B2/en
Publication of JPH02125815A publication Critical patent/JPH02125815A/en
Publication of JPH0696743B2 publication Critical patent/JPH0696743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、主として電力トランスの鉄心に用いられる低
い鉄損値と高い磁束密度を有する一方向性珪素鋼板の製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a unidirectional silicon steel sheet having a low iron loss value and a high magnetic flux density, which is mainly used for iron cores of power transformers.

〈従来の技術〉 一方向性珪素鋼板に要求される磁気特性は低い鉄損値と
高い磁束密度であり、一般に鉄損値はW17/50(W/kg)
で、磁束密度はB10(T)で評価されることが多い。
<Prior art> The magnetic properties required for unidirectional silicon steel sheet are low iron loss value and high magnetic flux density. Generally, the iron loss value is W17 / 50 (W / kg).
Therefore, the magnetic flux density is often evaluated by B 10 (T).

従来、鉄損を低減させる方法としてはSi含有量を高め
る,成品厚を薄くする,成品の不純物を少なくする,2次
再結晶粒方位の(110)〔001〕方位いわゆるゴス方位へ
の集積度を高める、あるいは2次再結晶粒を小さくする
などの方法が知られている。
Conventionally, the methods of reducing iron loss are to increase the Si content, reduce the product thickness, reduce the impurities in the product, and integrate the secondary recrystallized grains in the (110) [001] orientation, the so-called Goss orientation. Is known, or secondary recrystallized grains are made smaller.

特に磁気鉄損改善方法のうち成品の不純物を少なくする
方法としては、特開昭61−177320号公報に、次のように
開示されている。即ち鋼中に純化すべき硫化物,セレン
化物または窒化物のうち少なくともいづれか一つを含有
した二次再結晶粒から成る2.5〜4.5%Siの珪素鋼帯を、
水素ガスを主とした雰囲気中で、1100〜1250℃で3時間
以上の均熱を行なう際、均熱サイクルの前期の温度を、
後期の温度より5℃以上高くし鋼中の硫化物,セレン化
物,窒化物析出分散相の溶体化を促進せしめるに充分な
時間保持し、後期は前期より5℃以上低くし、前期で充
分液体化した鋼中の不純物元素を鋼板表面に拡散せし
め、表面から純化せしめるに充分な温度域に、かつ鋼板
表面に形成されているフォルステライト被膜の還元が促
進せず、また積層鋼板のクリープ変形が促進しない温度
域に保持する鉄損値と被膜形成の改善方法である。
Among the methods for improving magnetic iron loss, a method for reducing impurities in a product is disclosed in JP-A-61-177320 as follows. That is, a silicon steel strip of 2.5 to 4.5% Si composed of secondary recrystallized grains containing at least one of sulfide, selenide and nitride to be purified in steel,
When performing soaking at 1100-1250 ° C for 3 hours or more in an atmosphere mainly containing hydrogen gas, the temperature in the first half of the soaking cycle is
Keep the temperature 5 ° C or more higher than the latter temperature and hold it for a sufficient time to accelerate the solutionization of sulfide, selenide, or nitride precipitation dispersed phase in the steel. The diffused impurity elements in the converted steel are diffused to the surface of the steel sheet, and the reduction of the forsterite film formed on the steel sheet surface is not promoted within a temperature range sufficient to purify the steel sheet surface, and the creep deformation of the laminated steel sheet This is a method of improving the iron loss value and the film formation, which is maintained in a temperature range where it is not accelerated.

また特開昭60−138016号公報には、一方向性珪素鋼板を
製造するにあたって、脱炭1次再結晶後の鋼板表面にMg
Oを主成分とする焼鈍分離剤のスラリーを塗布する際、
該スラリーの塗布量が局部的に異なった領域をその相互
間隔が40mm以内に、塗布量差が10〜50%になるように分
散形成して、2次再結晶焼鈍に供する鋼板の成層姿勢に
おける相互間に通気間隙を確保し、その後常法に従う2
次再結晶および純化焼鈍を施す方法が開示されている。
Further, in JP-A-60-138016, in producing a unidirectional silicon steel sheet, Mg was formed on the surface of the steel sheet after decarburizing primary recrystallization.
When applying the slurry of the annealing separator containing O as a main component,
In the stratified posture of the steel sheet to be subjected to secondary recrystallization annealing, the regions where the coating amount of the slurry is locally different are dispersedly formed within 40 mm of each other so that the coating amount difference is 10 to 50%. Ensure a ventilation gap between each other and then follow the usual method 2
A method of performing secondary recrystallization and purification annealing is disclosed.

〈発明が解決しようとする課題〉 しかしながら、前記の特開昭61−177320号公報では、複
雑な仕上焼鈍のヒートサイクル,ガス雰囲気及び露点の
制御を必要とする上に、ガス雰囲気制御で減少した鋼中
の不純物はフォルステライト被膜中にトラップされてお
り、実機組立後に歪取焼鈍を行う場合には、この焼鈍に
よってフォルステライト被膜中の不純物が鋼中に析出し
て仕上厚が薄くなるほど実機特性を劣化させる。そのた
めこの技術は歪取焼鈍を必要としない積鉄心用にしか使
用できないという不利を有している。
<Problems to be Solved by the Invention> However, in the above-mentioned Japanese Patent Laid-Open No. 61-177320, it is necessary to control the heat cycle, gas atmosphere and dew point of complicated finish annealing, and the gas atmosphere is reduced. Impurities in the steel are trapped in the forsterite coating, and when strain relief annealing is performed after assembly of the actual equipment, the impurities in the forsterite coating precipitate in the steel due to this annealing, and the thinner the finished thickness, the better the characteristics of the actual equipment. Deteriorate. Therefore, this technique has the disadvantage that it can only be used for laminated cores that do not require strain relief annealing.

一方特開昭60−138016号公報は、塗布量差に基づく通気
性改善により最終仕上焼鈍を有利に導く方法で、リンガ
ーロールを加工して差厚部を連続的に形成させる訳であ
るが、スラリー状のために差厚制御が困難なこと、リン
ガーロールの摩耗が激しく処理費用がかさむなどの欠点
があった。
On the other hand, JP-A-60-138016 discloses a method in which the finisher annealing is advantageously guided by improving the air permeability based on the difference in coating amount, and the ringer roll is processed to continuously form the difference thickness portion. Since it is a slurry, it is difficult to control the thickness difference, and there are drawbacks such as severe wear of the ringer roll and high processing cost.

本発明は以上の事情に鑑みてなされたもので、通常の製
造方法において、容易に不純物元素の排除を促進して薄
手一方向性珪素鋼の磁気特性をさらに改善する製造方法
を提供するものである。
The present invention has been made in view of the above circumstances, and provides a manufacturing method for easily improving the magnetic characteristics of thin unidirectional silicon steel by easily promoting the exclusion of impurity elements in a normal manufacturing method. is there.

〈課題を解決するための手段〉 本発明は重量%にて、C:0.020〜0.080%、Si:2.5〜4.0
%、Mn:0.03〜0.15%、S及び/又はSeを合計で0.008〜
0.100%、さらに必要に応じてSb:0.008〜0.100%を含
み、残部Fe及び不可避的不純物からなる珪素鋼スラブを
熱間圧延し、ついで1回又は中間焼鈍をはさむ2回の冷
間圧延を、最終冷間圧延の圧下率が40〜80%の範囲にて
施し、最終板厚に仕上げた後、脱炭焼鈍について焼鈍分
離剤を塗布し最終仕上げ焼鈍を施す一連の工程からなる
一方向性珪素鋼板の製造方法において、該最終仕上げ焼
鈍のガス流量を2cc/分・kg以上とすることを特徴とする
磁気特性の優れた一方向性珪素鋼板の製造方法であり、
また本発明は、重量%にて、C:0.020〜0.080%、Si:2.5
〜4.0%、Mn:0.03〜0.15%、酸可溶性AI:0.010〜0.070
%、N:0.0035〜0.0140%、さらにS及び/又はSeを合計
で0.008〜0.100%含み、残部Fe及び不可避的不純物から
なる珪素鋼スラブを熱間圧延し、熱延板を焼鈍後、圧下
率80%以上の冷間圧延を施し、最終板厚に仕上げた後、
脱炭焼鈍について焼鈍分離剤を塗布し最終仕上げ焼鈍を
施す一連の工程からなる一方向性珪素鋼板の製造方法に
おいて、該最終仕上げ焼鈍のガス流量を2cc/分・kg以上
とすることを特徴とする磁気特性の優れた一方向性珪素
鋼板の製造方法である。
<Means for Solving the Problems> The present invention, in% by weight, C: 0.020 to 0.080%, Si: 2.5 to 4.0
%, Mn: 0.03 to 0.15%, S and / or Se in total of 0.008 to
0.100%, and optionally Sb: 0.008 to 0.100%, hot-rolled a silicon steel slab consisting of the balance Fe and unavoidable impurities, and then cold-rolled once or twice with intermediate annealing. The final cold rolling reduction is performed in the range of 40 to 80%, and after finishing to the final plate thickness, the decarburization annealing is applied with an annealing separator and the final finishing annealing is performed. In the method for producing a steel sheet, the method for producing a unidirectional silicon steel sheet having excellent magnetic properties, characterized in that the gas flow rate of the final finish annealing is 2 cc / min · kg or more,
Further, the present invention, in% by weight, C: 0.020 to 0.080%, Si: 2.5
~ 4.0%, Mn: 0.03-0.15%, acid-soluble AI: 0.010-0.070
%, N: 0.0035 to 0.0140%, and 0.008 to 0.100% in total of S and / or Se, and the balance Fe and unavoidable impurities are hot-rolled to anneal the hot-rolled sheet. After 80% or more cold rolling and finishing to the final thickness,
Regarding decarburizing annealing, in a method for producing a unidirectional silicon steel sheet comprising a series of steps of applying an annealing separator and performing final finishing annealing, the gas flow rate of the final finishing annealing is 2 cc / min · kg or more, And a method for producing a unidirectional silicon steel sheet having excellent magnetic properties.

〈作用〉 以下本発明を具体的に説明する。<Operation> The present invention will be specifically described below.

まず本発明に至った経緯について説明する。First, the background of the invention will be described.

C:0.043%(以降すべて重量%),Si:3.23%,Mn:0.083
%,S:0.023%,Se:0.017%,Sb:0.025%を含み残部実質的
にFeよりなる珪素鋼スラブを通常の方法で2.2mmの熱延
板にし、950℃2minの焼鈍を施し、酸洗後、中間厚0.70m
mに冷延し、ついで975℃2.5minの中間焼鈍を施した。つ
いで73%の圧下率にて0.19mm厚に冷延し、脱脂後、830
℃3min湿水素雰囲気中で脱炭焼鈍を施したのち、MgOを
主成分とした焼鈍分離剤を塗布してから仕上焼鈍を施し
た。この仕上焼鈍では、ドライN2雰囲気中で常温から84
0℃までを30℃/Hrの速度で昇温し、840℃で40Hr保持し
て2次再結晶を終了させたのちドライH2雰囲気中で25℃
/Hrの速度で昇温したのち1200℃で10Hr保持後炉冷し
た。この仕上げ焼鈍の際のガス流量を鋼板重量1kg当り
0.1cc/分〜20cc/分の範囲に変化させた。
C: 0.043% (all weight% thereafter), Si: 3.23%, Mn: 0.083
%, S: 0.023%, Se: 0.017%, Sb: 0.025% and a balance of substantially Fe made of a silicon steel slab made into a hot rolled sheet of 2.2 mm by an ordinary method, annealed at 950 ° C for 2 min, After washing, intermediate thickness 0.70m
It was cold rolled to m and then subjected to intermediate annealing at 975 ° C. for 2.5 min. Then, it was cold rolled to a thickness of 0.19 mm at a reduction rate of 73%, and after degreasing, 830
After decarburization annealing was performed in a wet hydrogen atmosphere at ℃ for 3 min, an annealing separator containing MgO as a main component was applied and then finish annealing was performed. This finish annealing was performed at room temperature in a dry N 2 atmosphere at
After raising the temperature to 0 ℃ at a rate of 30 ℃ / Hr and maintaining it at 840 ℃ for 40Hr to terminate the secondary recrystallization, the temperature was set to 25 ℃ in a dry H 2 atmosphere.
After raising the temperature at a rate of / Hr, the temperature was maintained at 1200 ° C for 10 hours and then the furnace was cooled. The gas flow rate during this finish annealing is 1 kg of steel plate weight.
The range was changed from 0.1 cc / min to 20 cc / min.

因みに、この時の常温から2次再結晶終了までの840℃
で40Hr保持したときのガス流量と昇温時400℃時点での
雰囲気露点の関係を第1図に示す。この図から、常温か
ら2次再結晶終了までの間のガス流量が2cc/分・kg以上
の範囲を満足する場合に、昇温時400℃時点での雰囲気
露点が0℃以下の低酸化性になっていることが分かる。
By the way, 840 ℃ from normal temperature to the end of secondary recrystallization
Fig. 1 shows the relationship between the gas flow rate when held at 40Hr at 40 ° C and the atmospheric dew point at 400 ° C during temperature increase. From this figure, when the gas flow rate from room temperature to the end of secondary recrystallization satisfies the range of 2 cc / min · kg or more, the atmospheric dew point at 400 ° C at the time of temperature rise is 0 ° C or less and low oxidative property. You can see that.

さらに仕上げ焼鈍の後、焼鈍分離剤を除去した後、張力
コーティングを施し、フラットニング焼鈍を経て、エプ
スタイン試験片(30×280mm)に剪断後、ドライN2中で3
Hrの歪取焼鈍を施して磁気特性の測定と、MgO除去後の
フォルステライト被膜付の状態でS,Se,N成分の分析と、
成品の2次再結晶マクロ組織より2次再結晶率の測定を
実施した。第2図に磁気特性,B10(T),W17/50(W/k
g)とS,Se及びNの合計含有量及び2次再結晶率を示し
た。
After finishing annealing, after removing the annealing separator, tension coating is applied, and after flattening annealing, the Epstein test piece (30 x 280 mm) is sheared and then dried in dry N 2.
Measurement of magnetic properties by strain relief annealing of Hr, analysis of S, Se, N components in the state with forsterite coating after MgO removal,
The secondary recrystallization rate was measured from the secondary recrystallization macrostructure of the product. Fig. 2 shows the magnetic characteristics, B 10 (T), W17 / 50 (W / k
g) and the total content of S, Se and N and the secondary recrystallization rate are shown.

図面から明らかなように、仕上げ焼鈍のガス流量が2cc/
分・kg以上の範囲を満足する場合に、2次再結晶が十分
に発達して2次再結晶率が改善し、かつ地鉄とフォルス
テライト中のS,Se,N成分が著しく減少してB10値が向上
し、鉄損W17/50値が低下して優れた一方向性珪素鋼が得
られている。
As is clear from the drawing, the gas flow rate of finish annealing is 2cc /
When the content of min / kg or more is satisfied, the secondary recrystallization is sufficiently developed and the secondary recrystallization rate is improved, and the S, Se and N components in the base iron and forsterite are significantly reduced. An excellent unidirectional silicon steel is obtained with an improved B 10 value and a decreased iron loss W 17/50 value.

仕上げ焼鈍のガス流量が2cc/分・kg未満の場合は、2次
再結晶およびS,Se,Nの純化が著しく阻害されて磁気特性
の改善は望み得ない。従って本発明では仕上げ焼鈍時の
ガス流量は2cc/分・kg以上に限定される。また、ガス流
量が20cc/分・kgを越えても同じ効果が維持されるが、
使用ガスのコストも考慮して、経済的な使用方法を採用
すればよい。
When the gas flow rate of finish annealing is less than 2 cc / min · kg, secondary recrystallization and purification of S, Se and N are significantly hindered and improvement of magnetic properties cannot be expected. Therefore, in the present invention, the gas flow rate during finish annealing is limited to 2 cc / min · kg or more. Also, the same effect is maintained even if the gas flow rate exceeds 20 cc / min · kg,
An economical usage method may be adopted in consideration of the cost of the used gas.

次に鋼板の成分組成を前記の範囲に限定した理由は次の
とおりである。
Next, the reason why the composition of the steel sheet is limited to the above range is as follows.

C:0.020〜0.080% Cが0.020%に満たないと脱炭焼鈍後における集合組織
が損なわれ、磁気特性の劣化を招き、一方0.080%を超
えて多量に含まれると連続焼鈍による脱炭が困難とな
り、やきり最終製品の磁気特性を劣化させるので、C含
有量は0.020〜0.080%の範囲に限定した。
C: 0.020 to 0.080% If C is less than 0.020%, the texture after decarburization annealing is impaired, leading to deterioration of magnetic properties. On the other hand, if it exceeds 0.080%, it is difficult to decarburize by continuous annealing. Therefore, the C content is limited to the range of 0.020 to 0.080% because the magnetic properties of the final product are deteriorated.

Si:2.5〜4.0% Siが2.5%未満では、この発明で所期したほどの低い鉄
損値を得ることが難しく、一方4.0%を超えると脆くな
って冷間加工性の劣化を招き通常の工業的圧延が困難に
なるので、Si量は2.5〜4.0%の範囲に限定した。
Si: 2.5-4.0% When Si is less than 2.5%, it is difficult to obtain the iron loss value as low as expected in the present invention. Since industrial rolling becomes difficult, the Si content was limited to the range of 2.5 to 4.0%.

Mn:0.03〜0.15% Mnは、後述のSおよびSeとそれぞれMnS,MnSeを形成して
インヒビターとして仕上げ焼鈍において1次再結晶粒の
成長を抑制して(110)〔001〕方位の2次再結晶粒を先
鋭に発達させるのに有用な元素であるが、0.03%に満た
ないとその添加効果が乏しく、一方0.15%を超えると2
次再結晶が生じなくなるので0.03〜0.15%の範囲に限定
した。
Mn: 0.03 to 0.15% Mn forms MnS and MnSe with S and Se, which will be described later, respectively, and acts as an inhibitor to suppress the growth of primary recrystallized grains in finish annealing and to suppress secondary recrystallization of the (110) [001] orientation. It is an element useful for sharply developing crystal grains, but if it is less than 0.03%, its addition effect is poor, while if it exceeds 0.15%, it is 2
Since secondary recrystallization will not occur, it was limited to the range of 0.03 to 0.15%.

S及び/又はSe:0.008〜0.100% S及びSeは、上述した如くMnと結合してMnS,MnSeを形成
させるために添加されるもので、少くともS,Seのいずれ
か1種または2種合計で0.008%が必要である。しかし
ながらあまり多量に添加されるとSの場合は熱間割れを
生じ、またSeの場合は高価な元素であるためコストの上
昇を招く不利があるので、それぞれ単独添加の場合なら
びに併用の場合いずれにおいても0.100%を上限とし
た。
S and / or Se: 0.008 to 0.100% S and Se are added in order to combine with Mn to form MnS and MnSe as described above, and at least one or two of S and Se. A total of 0.008% is required. However, if added in a too large amount, hot cracking occurs in the case of S, and since Se is an expensive element, it has the disadvantage of increasing the cost. The upper limit was 0.100%.

Sb:0.008〜0.100% Sbは0.1%を超えると冷間加工性を劣化させるととも
に、磁気特性が劣化し、一方0.008%未満では添加効果
が乏しいので、0.008〜0.100%の範囲に規制する。
Sb: 0.008 to 0.100% If Sb exceeds 0.1%, cold workability is deteriorated and the magnetic properties are deteriorated. On the other hand, if less than 0.008%, the effect of addition is poor, so the range is 0.008 to 0.100%.

他にインヒビターとしてAs,Bi,Pb,Sn,Cn,Te,Mo,Wを単独
または複合で0.010〜0.20%程度含有されることは本発
明の効果を何ら阻害しない。
In addition, the content of As, Bi, Pb, Sn, Cn, Te, Mo, W alone or in a combined amount of about 0.010 to 0.20% as an inhibitor does not inhibit the effect of the present invention.

これらはいずれか単独または複合で0.010%未満ではイ
ンヒビターとしての役割を果せず、一方0.20%を超えて
含有されるとインヒビターの役割を逸脱してむしろ磁気
特性を劣化させることや、冷延性を著しく阻害すること
から、上記各成分の含有量は単独および複合のいずれの
場合においても0.010〜0.20%の範囲とすることが望ま
しい。
Any of these alone or in combination cannot function as an inhibitor if the content is less than 0.010%, while if they are contained in an amount exceeding 0.20%, they deviate from the role of the inhibitor and rather deteriorate the magnetic properties, or have a low cold rolling property. Since it significantly inhibits, the content of each of the above components is preferably in the range of 0.010 to 0.20% in both cases of single and complex.

酸可溶性Al:0.010〜0.070% 2次再結晶にAlNを利用する場合、必要最低量のAlNを確
保するためには酸可溶性Alとして0.010%以上必要であ
り、一方酸可溶性Alとして0.070%を超えると熱延板内
のAlNの分散状態が不適切となり、2次再結晶が不安定
となるので0.070%以下とした。
Acid-soluble Al: 0.010-0.070% When using AlN for secondary recrystallization, 0.010% or more of acid-soluble Al is required to secure the necessary minimum amount of AlN, while acid-soluble Al exceeds 0.070%. Since the dispersion state of AlN in the hot rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, the content was made 0.070% or less.

N:0.0035〜0.0140% 上述したように2次再結晶を行なわせるに必要な最低量
のAlNを確保するためにNとして0.0035%以上が必要
で、一方Nが0.0140%を超えて多く含有するとAlNの分
散が不適切となるために0.0140%以下とした。
N: 0.0035-0.0140% As described above, 0.0035% or more is required as N in order to secure the minimum amount of AlN required for secondary recrystallization, while if N is contained in excess of 0.0140%, AlN Since it is inappropriately dispersed, the content is set to 0.0140% or less.

次にこの発明に従う製造方法を工程順に具体的に説明す
る。
Next, the manufacturing method according to the present invention will be specifically described in the order of steps.

上記の好適成分組成に調整した珪素鋼素材を通常1250℃
以上の高温に加熱したのち、公知の方法によって板厚1.
2〜3.3mm程度の熱延板とする。ついでこの熱延板に、必
要に応じて850〜1150℃の範囲で短時間の焼鈍を行な
い、この熱延板をMns,MnSeをインヒビターとするもの
は、1回の冷間圧延または750〜1100℃程度の中間焼鈍
をはさむ2回の冷間圧延によって最終板厚に仕上げる
が、かかる冷間圧延においては最終冷延圧下率を40〜80
%とすることが肝要である。というのは最終冷延におけ
る圧下率が40%に満たなかったり、80%を超えた場合に
は脱炭焼鈍後に十分満足のいく程度に(110)〔001〕方
位の集積度が高い1次再結晶組織が得難く、所期した程
の優れた磁気特性が得られないからである。
The silicon steel material adjusted to the above preferable composition is usually used at 1250 ° C.
After heating to the above high temperature, the plate thickness 1.
Use a hot-rolled sheet of about 2 to 3.3 mm. Then, this hot-rolled sheet is annealed at a temperature of 850 to 1150 ° C for a short time if necessary, and this hot-rolled sheet using Mns or MnSe as an inhibitor is cold-rolled once or from 750 to 1100. The final strip thickness is finished by two cold rolling processes with intermediate annealing at about ℃. In such cold rolling, the final cold rolling reduction ratio is 40-80.
It is important to set it as%. If the reduction ratio in the final cold rolling is less than 40% or more than 80%, the degree of integration in the (110) [001] orientation is high enough to be sufficiently satisfied after decarburization annealing. This is because it is difficult to obtain a crystal structure, and the desired excellent magnetic properties cannot be obtained.

またAlNをインヒビターとするものは圧下率が80%に満
たないと脱炭焼鈍後に好適な(111)〔11〕方位の1
次再結晶集合組織が得られずに十分に高い磁束密度と低
い鉄損値が達成できないので80%以上に限定した。な
お、圧下率は95%を超える範囲で高くしても磁性はそれ
以上に改善されず、反面、熱延板の板厚が厚くなり、圧
延能率が低下するので上限として95%程度の範囲で行な
うことが望ましい。
In the case of using AlN as an inhibitor, if the rolling reduction is less than 80%, it is suitable for the (111) [11] orientation of 1 after decarburization annealing.
Since a secondary recrystallization texture cannot be obtained and a sufficiently high magnetic flux density and a low iron loss value cannot be achieved, it was limited to 80% or more. Even if the reduction rate is increased in the range of more than 95%, the magnetism is not further improved, but on the other hand, the thickness of the hot rolled sheet becomes thicker and the rolling efficiency decreases. It is desirable to do.

ここで仕上厚は特に限定されないが、発明者らが種々実
験した結果によると、鋼中あるいはフォルステライト被
膜中に存在する不純物は、仕上厚が薄くなるほど磁性に
悪影響する程度が大きく、本発明は、0.25mm以下の薄手
仕上の磁性改善により一層有利に適用できる。
Although the finish thickness is not particularly limited here, according to the results of various experiments conducted by the inventors, impurities existing in the steel or in the forsterite coating have a greater adverse effect on magnetism as the finish thickness decreases, and the present invention is It can be applied more advantageously by improving the magnetism of thin finish of 0.25 mm or less.

次に最終冷延板は湿水素雰囲気中において750〜900℃の
温度範囲で脱炭焼鈍し、C量を0.003%以下までに十分
に脱炭する。その後、MgO等の焼鈍分離剤を塗布した
後、最終仕上げ焼鈍を施す。この最終仕上げ焼鈍の目的
は、(110)〔001〕方位の2次再結晶粒を十分に成長発
達させると同時に鋼板中にインヒビターとして添加した
S,Seその他N等の不純物元素を純化除去する目的で施す
もので通常箱焼鈍によって行なわれるが、MnS,MnSeをイ
ンヒビターとするものは、高い磁束密度と低い鉄損値を
得る場合、820〜920℃程度の温度範囲に約10時間以上保
持して2次再結晶粒を十分成長させたのち1050℃以上の
高温に5時間以上保持して鈍化させることが望ましい。
この仕上げ焼鈍サイクルの場合、2次再結晶が完了する
まではドライN2ガス(Arガスでもよいがコストアップと
なる)で行なうが、後述の純化用H2ガスを早期に導入す
ると脱S,脱Seが生じてインヒビター機能が損われるから
であり、2次再結晶が完了した時点で脱S,脱Se,脱Nを
促進させる目的でN2からH2ガスに切換えることが望まし
い。
Next, the final cold-rolled sheet is decarburized and annealed in a temperature range of 750 to 900 ° C. in a wet hydrogen atmosphere to sufficiently decarburize the carbon content to 0.003% or less. After that, after applying an annealing separator such as MgO, final finish annealing is performed. The purpose of this final finish annealing was to add secondary recrystallized grains in the (110) [001] orientation to the steel sheet while at the same time adding them as inhibitors.
It is applied to purify and remove impurities such as S, Se and N, and is usually performed by box annealing. However, when using MnS or MnSe as an inhibitor, when high magnetic flux density and low iron loss value are obtained, It is desirable that the secondary recrystallized grains are sufficiently grown by holding them in a temperature range of about 920 ° C. for about 10 hours or more and then kept at a high temperature of 1050 ° C. or more for 5 hours or more to make them slow.
In the case of this finish annealing cycle, dry N 2 gas (Ar gas may be used but cost will increase) until the secondary recrystallization is completed, but if the purification H 2 gas described later is introduced early, S It is desirable to switch from N 2 to H 2 gas for the purpose of promoting de-S, de-Se, and de-N when secondary recrystallization is completed because de-Se occurs and the inhibitor function is impaired.

一方インヒビターをAlNとするものは直上げタイプの仕
上げ焼鈍が通常であるがその場合もまた、MnS,MnSeをイ
ンヒビターとするものでも820〜920℃で2次再結晶保定
を施さない通常の直上げタイプの仕上げ焼鈍の場合も、
2次再結晶が完了してからN2からH2に切替えて純化焼鈍
を行うことが好ましい。
On the other hand, when the inhibitor is AlN, the direct-up finish annealing is usually used, but in that case also, even when the inhibitors are MnS and MnSe, normal straight-up is not performed at 820 to 920 ℃. For type of finish annealing,
After the secondary recrystallization is completed, it is preferable to switch from N 2 to H 2 and perform purification annealing.

上述したように、仕上げ焼鈍においては2次再結晶完了
まではN2ガス、鈍化時にはH2ガスを使い分けるが、これ
ら仕上げ焼鈍におけるガス流量として2cc/分・kg以上と
限定した理由は次のとおりである。
As described above, in finish annealing, N 2 gas is used until secondary recrystallization is completed, and H 2 gas is selectively used in annealing. The reason for limiting the gas flow rate in these finish annealing to 2 cc / min · kg or more is as follows. Is.

脱炭焼鈍後にMgOを主体とする焼鈍分離剤を塗布後100〜
200℃で乾燥するが、まず箱焼鈍で常温から昇熱される
際にMgO中の結晶水が400℃前後で放出される訳である
が、この時点でN2ガス流量が2cc/分・kg未満であれば、
箱内の雰囲気が著しく酸化性となって露点が0℃以上と
なり鋼板表面を著しく酸化させて、鋼中のインヒビター
MnS,MnSeの表面濃化を助長して抑制力機能が著しく低下
する。たとえその後のH2切換後、ガス流量を2cc/分・kg
以上に増加して、鈍化はある程度改善されても成品の2
次再結晶率が劣化し磁気特性は所期した目的値に達せ
ず、故に、2次再結晶完了までに箱内の雰囲気を低酸化
性に保つために、2cc/分・kg以上のガス流量が必要であ
る。N2からH2ガスに切換後の純化では前述したごとくや
はり2cc/分・kg以上のガス流量にして雰囲気露点を0℃
以下に制御することが必要である。何故なら、たとえ2
次再結晶が十分でも、純化時ガス流量が2cc/分・kg未満
であると純化不十分による磁性劣化が生じるからであ
る。
After decarburization annealing, 100-
Although it is dried at 200 ° C, the water of crystallization in MgO is released at around 400 ° C when it is heated from room temperature by box annealing. At this point, the N 2 gas flow rate is less than 2cc / min ・ kg. If,
The atmosphere in the box becomes remarkably oxidative and the dew point rises above 0 ° C, causing the surface of the steel sheet to remarkably oxidize.
The surface concentration of MnS and MnSe is promoted, and the inhibitory function is significantly reduced. Even after the subsequent H 2 switching, the gas flow rate is 2cc / min ・ kg
Even if the slowdown is improved to some extent by increasing the above,
The secondary recrystallization rate deteriorates, and the magnetic properties do not reach the desired target values. Therefore, in order to keep the atmosphere in the box at a low oxidation rate until the completion of secondary recrystallization, the gas flow rate of 2cc / min.kg or more. is necessary. In the purification after switching from N 2 to H 2 gas, as described above, the gas flow rate is also 2 cc / min · kg or more and the atmospheric dew point is 0 ° C.
It is necessary to control the following. Because even 2
This is because even if the secondary recrystallization is sufficient, if the gas flow rate during purification is less than 2 cc / min · kg, magnetic degradation will occur due to insufficient purification.

このようにN2ガスとH2ガス流量を増やすことにより、十
分な2次再結晶化と十分な純化が達成でき、本発明の目
的を達成することができる。以上の理由から仕上げ焼鈍
におけるガス流量は2cc/分・kg以上に限定した。
By thus increasing the flow rates of N 2 gas and H 2 gas, sufficient secondary recrystallization and sufficient purification can be achieved, and the object of the present invention can be achieved. For the above reasons, the gas flow rate during finish annealing was limited to 2 cc / min · kg or more.

なお、仕上焼鈍に使用するN2,H2ガスの純度を高めた
り、コイル層間隔を増加させたりする方法を併用すれば
なお一層の効果が得られる。
Further effects can be obtained even more by using a method of increasing the purity of N 2 and H 2 gas used for finish annealing and increasing the coil layer spacing.

コスト的な面を考慮すれば、純化終了後炉冷に入った場
合再びN2ガスに切換えて、その場合はガス流量を低減す
る等の方法も効果的である。
Considering the cost aspect, it is effective to switch to N 2 gas again when the furnace cooling is started after the completion of purification and to reduce the gas flow rate in that case.

また、最近では仕上厚が薄手化する傾向にあるが、例え
ば0.35mm厚仕上と0.14mm仕上では、MgOを同一コイル単
重で、単位面積当りの塗布量を同量塗布した場合、当然
0.14mm仕上の方が2.5倍の結晶水を含んでいる訳で前述
した如く、薄仕上ほど不純物の影響を受け易いことか
ら、薄仕上ほどガス流量を増すような方法も適正な処理
で所期した目標が達成される。
In addition, although the finish thickness tends to be thin recently, for example, in the case of 0.35 mm thick finish and 0.14 mm finish, when MgO is applied with the same coil unit weight and the same amount of coating per unit area, naturally,
As mentioned earlier, the 0.14 mm finish contains 2.5 times more water of crystallization, so the thinner the finish, the more susceptible it is to impurities.Therefore, a proper treatment may be used to increase the gas flow rate for the thinner finish. The goals you have achieved are achieved.

仕上焼鈍が終了した後、絶縁張力コーティングを施し、
フラットニング焼鈍して製品に仕上げるが、通常積鉄心
に用いる場合は所定寸法剪断後に歪取焼鈍は不要である
が、巻鉄心材の場合は歪取を施して評価されるので、発
明者らは仕上焼鈍後のフォルステライト付のまま板厚貫
通分析を実施して純化程度を評価している。これまでの
公知文献例えば特開昭61−177320号公報も同様に鋼中の
S,N含有量で評価されているが、S,Se,N成分はフォルス
テライト中にほとんどがトラップされており、800℃前
後のフラットニング処理や巻鉄心後の800℃で3Hr程度の
歪取焼鈍で容易にフォルステライト中から鋼中に拡散浸
入して実機特性を著しく劣化させるからである。
After finishing annealing, apply insulation tension coating,
Although finished into a product by flattening annealing, usually when used in a laminated core, strain relief annealing is not required after shearing with a predetermined dimension, but in the case of a wound core material, the strain is evaluated by strain relief, so the inventors have After the finish annealing, the through-thickness analysis is performed with the forsterite attached to evaluate the degree of purification. Previously known documents such as Japanese Patent Laid-Open No. 61-177320 also have
Although it is evaluated by the S, N content, most of the S, Se, N components are trapped in forsterite, and flattening treatment at around 800 ° C or strain relief of about 3 Hr at 800 ° C after the winding core is performed. This is because the annealing easily diffuses and penetrates from the forsterite into the steel and significantly deteriorates the actual machine characteristics.

かかる処理工程によって磁気特性の優れた一方向性珪素
鋼板を安定して得ることができる。
By such a treatment step, a unidirectional silicon steel sheet having excellent magnetic properties can be stably obtained.

〈実施例〉 実施例1 C:0.048%,Si:3.25%,Mn:0.081%,S:0.025%,Se:0.024
%,Sb:0.019%を含み残部が実質的にFeより成る200mm厚
の連鋳スラブをいずれも1380℃に1時間加熱後、2.2mm
厚に熱延し、930℃2minの焼鈍後酸洗して0.65mm厚に中
間冷延し、980℃1.5minの中間焼鈍後、圧下率66%で最
終冷延し、0.22mm厚に仕上げた。
<Example> Example 1 C: 0.048%, Si: 3.25%, Mn: 0.081%, S: 0.025%, Se: 0.024
%, Sb: 0.019% and the balance consisting essentially of Fe, 200 mm thick continuous cast slabs were heated to 1380 ° C for 1 hour and then 2.2 mm
Hot-rolled thickly, annealed at 930 ° C for 2 min, pickled, intermediate cold-rolled at 0.65 mm thickness, intermediate-annealed at 980 ° C for 1.5 min, finally cold-rolled at a reduction rate of 66%, and finished to 0.22 mm thickness .

次いで脱脂後、湿水素中で840℃5min間の脱炭焼鈍を施
したのち、MgOを主体とする分離剤を塗布してから仕上
焼鈍を施した。ドライN2雰囲気中で常温から30℃/hの昇
熱速度で昇温し840℃で40時間保持して2次再結晶を完
了させた後、ドライH2雰囲気に変更して25℃/hの昇熱速
度で1200℃まで昇熱し、10時間保定数30℃/hで冷却し50
0℃に到達した後ドライN2雰囲気とした。この仕上焼鈍
の際の2次再結晶完了までのN2雰囲気のガス流量を4水
準に、また純化焼鈍領域のH2雰囲気のガス流量を4水準
に変更した。N2雰囲気の露点(DP)は400℃に昇温され
た時点で測定した。
Then, after degreasing, decarburization annealing was performed in wet hydrogen at 840 ° C. for 5 minutes, and then a separating agent mainly containing MgO was applied and then finish annealing was applied. After raising the temperature from room temperature at a heating rate of 30 ° C / h in dry N 2 atmosphere and holding at 840 ° C for 40 hours to complete the secondary recrystallization, change to dry H 2 atmosphere and change to 25 ° C / h. The temperature is raised to 1200 ℃ at a heating rate of 10 ℃, and the cooling rate is kept at 30 ℃ / h for 10 hours.
After reaching 0 ° C., a dry N 2 atmosphere was established. In this finish annealing, the gas flow rate of the N 2 atmosphere until the completion of secondary recrystallization was changed to 4 levels, and the gas flow rate of the H 2 atmosphere in the purification annealing region was changed to 4 levels. The dew point (DP) of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上焼鈍後にMgOを除去して張力コーティングを施しフ
ラットニング焼鈍した。エプスタインサイズの試片に剪
断後、800℃3Hrで歪取焼鈍後0.5kg重さで磁気特性B
10(T),W17/50(W/kg)を測定した。また、仕上げ焼
鈍後MgOを除去したフォルステライト被膜付のS,Se,N成
分の分析と成品板のマクロ組織より2次再結晶率の測定
を行ない、第1表に3成分の合計含有量,2次再結晶率と
磁気特性を示す。
After finish annealing, MgO was removed, tension coating was applied, and flattening annealing was performed. Epstein-sized specimens were sheared, strain relief annealed at 800 ° C for 3 hours, and magnetic properties were measured at a weight of 0.5 kg.
10 (T) and W17 / 50 (W / kg) were measured. In addition, after the finish annealing, the Mg, O-free forsterite-coated S, Se, and N components were analyzed and the secondary recrystallization rate was measured from the macrostructure of the product sheet. The secondary recrystallization rate and magnetic properties are shown.

同表から明らかなように、ガス流量がN2,H2ガスともに
この発明の適正範囲を満たしているものは、十分な2次
再結晶化と仕上げ焼鈍後の純化が促進されて、高い磁束
密度と低い鉄損値が得られている。
As is clear from the table, when the gas flow rates of both N 2 and H 2 gas satisfy the proper range of the present invention, sufficient secondary recrystallization and purification after finish annealing are promoted, resulting in high magnetic flux. Density and low iron loss values are obtained.

実施例2 C:0.055%,Si:3.20%,Mn:0.088%,S:0.025%,酸可溶性
Al:0.028%,N:0.0091%を含み残部実質的にFeよりなる2
20mm厚の連鋳スラブをいずれも1400℃に1時間加熱後、
1.8mm厚に熱延し、1050℃の1minの焼鈍後、酸洗して89
%の冷延圧下率で0.20mm厚に仕上げ、脱脂後、湿水素中
で840℃,2minの脱炭焼鈍後、MgOを主成分とする焼鈍分
離剤を塗布したのち、仕上焼鈍を施した。ドライN2中で
1000℃までを35℃/hrの昇熱速度で昇熱して2次再結晶
を完了させ、ドライH2に切換えて1200℃までを25℃/hの
昇熱速度で昇熱後、10時間の保定を実施して純化焼鈍を
施し、40℃/hrの冷却速度で冷却し途中600℃の温度に達
した時ドライN2に切換えた。この仕上焼鈍の際のガス流
量を、2次再結晶完了までのドライN2と純化時のドライ
H2を4水準に変化させた。なおN2雰囲気の露点(DP)は
400℃に昇温された時点で測定した。
Example 2 C: 0.055%, Si: 3.20%, Mn: 0.088%, S: 0.025%, acid soluble
Al: 0.028%, N: 0.0091% and the balance essentially Fe 2
After heating the 20 mm thick continuous cast slab to 1400 ° C for 1 hour,
Hot rolled to a thickness of 1.8 mm, annealed at 1050 ° C for 1 min, then pickled 89
% Cold rolling reduction to 0.20 mm thickness, degreasing, decarburization annealing in wet hydrogen at 840 ° C. for 2 min, then applying an annealing separator containing MgO as a main component, and then finishing annealing. In dry N 2
The secondary recrystallization is completed by heating up to 1000 ° C at a heating rate of 35 ° C / hr, switching to dry H 2 and heating up to 1200 ° C at a heating rate of 25 ° C / h, then for 10 hours. After carrying out retention, purification annealing was carried out, cooling was carried out at a cooling rate of 40 ° C / hr, and when the temperature reached to 600 ° C, it was switched to dry N 2 . The gas flow rate during this finish annealing was set to dry N 2 until the completion of secondary recrystallization and dry gas during purification.
The H 2 was changed to 4 levels. The dew point (DP) of N 2 atmosphere is
The measurement was performed when the temperature was raised to 400 ° C.

仕上げ焼鈍後、MgOを除去して張力コーティングを施
し、フラットニング焼鈍を実施した後、エプスタインサ
イズの試片に剪断後、800℃で3Hrで歪取焼鈍後、0.5kg
の測定重量で磁気特性B10(T),W17/50(W/kg)を測定
した。また、仕上焼鈍後MgOを除去したフォルステライ
ト被膜付のS,N成分の分析と、成品板のマクロ組織より
2次再結晶率の測定を行ない、第2表に2成分の合計含
有量と2次再結晶率,磁気特性を示した。
After finish annealing, MgO is removed, tension coating is applied, flattening annealing is performed, and then Epstein size specimens are sheared, then strain relief annealing is performed at 800 ° C for 3 hours, and then 0.5 kg.
The magnetic properties B 10 (T) and W17 / 50 (W / kg) were measured with the measured weight of. In addition, the S and N components with the forsterite coating from which MgO was removed after finish annealing and the secondary recrystallization rate were measured from the macrostructure of the product sheet, and Table 2 shows the total contents of the 2 components and 2 The secondary recrystallization rate and magnetic properties were shown.

同表から明らかなように、この発明適正範囲を満たして
いるものは、十分な2次再結晶化及び純化と高い磁束密
度と低い鉄損値が得られた。
As is clear from the table, those satisfying the proper range of the present invention obtained sufficient secondary recrystallization and purification, high magnetic flux density and low iron loss value.

実施例3 C:0.049%,Si:3.39%,Mn:0.087%,Se:0.027%を含み残
部実質的にFeよりなる180mm厚の連鋳スラブをいずれも1
360℃に1時間加熱後1.3mm厚に熱延し、910℃2minの焼
鈍後酸洗して0.40mm厚に中間冷延し、950℃2minの中間
焼鈍後圧下率65%で最終冷延し、0.14mm厚に仕上げた。
次いで脱脂後湿水素中で820℃3min間の脱炭焼鈍を施し
たのち、MgOを主体とする焼鈍分離剤を塗布し、仕上げ
焼鈍を施した。ドライN2中で33℃/hrの昇熱速度で835℃
で45Hr保定して2次再結晶を完了させたのちドライH2
スに切替えて30℃/hrの昇温速度で昇熱し1200℃で10Hr
保定による純化焼鈍後35℃/hrの冷却速度で冷却し、途
中550℃でドライN2ガスに切替えた。この仕上げ焼鈍の
際のガス流量を、2次再結晶完了までのN2と純化焼鈍の
H2をそれぞれ4水準に変化した。なおN2雰囲気の露点
(DP)は400℃に昇温された時点で測定した。
Example 3 A continuous cast slab having a thickness of 180 mm and containing C: 0.049%, Si: 3.39%, Mn: 0.087%, Se: 0.027% and the balance being substantially Fe was 1
After heating at 360 ° C for 1 hour, hot rolling to 1.3mm thickness, annealing at 910 ° C for 2min, pickling, intermediate cold rolling to 0.40mm thickness, and final cold rolling at 65% reduction after intermediate annealing at 950 ° C for 2min. , Finished to 0.14mm thickness.
Then, after degreasing, decarburization annealing was performed in wet hydrogen at 820 ° C. for 3 min, then an annealing separator mainly composed of MgO was applied, and finish annealing was applied. 835 ° C in dry N 2 at a heating rate of 33 ° C / hr
After holding for 45 hours at 50 ° C to complete the secondary recrystallization, switch to dry H 2 gas and heat up at a heating rate of 30 ° C / hr to 10Hr at 1200 ° C.
After purification annealing by retention, it was cooled at a cooling rate of 35 ° C / hr and switched to dry N 2 gas at 550 ° C on the way. The gas flow rate during this final annealing was set to N 2 until the completion of secondary recrystallization and the purification annealing.
Each H 2 was changed to 4 levels. The dew point (DP) of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上げ焼鈍後にMgOを除去して張力コーティングを施
し、フラットニング焼鈍後エプスタイン試片サイズに剪
断後、800℃で3Hrで歪取焼鈍を実施し、0.5kg重さで磁
気測定し、B10(T),W17/50(W/kg)を、また仕上げ焼
鈍後MgOを除去したフォルステライト被膜付のSe,N成分
の分析と2次再結晶率の測定を行った結果を第3表に示
した。
Applying tension coating to remove MgO after finish annealing, after shearing the Epstein test piece size after flattening annealing, performed stress relief annealing at 3Hr at 800 ° C., and magnetic measurements with 0.5kg weight, B 10 (T ), W17 / 50 (W / kg), and the Se and N components with the forsterite coating from which MgO was removed after finish annealing and the secondary recrystallization rate were measured. The results are shown in Table 3. .

同表から明らかなように、本発明適正範囲を満たしてい
る条件のものは十分な2次再結晶化及び純化が達成され
優れた磁気特性が得られた。
As is clear from the table, under the conditions satisfying the proper range of the present invention, sufficient secondary recrystallization and purification were achieved and excellent magnetic properties were obtained.

実施例4 C:0.055%,Si:3.20%,Mn:0.088%,S:0.028%,Se:0.018
%,酸可溶性Al:0.030%,N:0.0095%を含み残部実質的
にFeよりなる180mm厚連鋳スラブをいずれも1360℃に1
時間加熱後、1.6mm厚に熱延し、1025℃に1min焼鈍後酸
洗して89%の冷延圧下率で0.17mm厚に仕上げ脱脂後、湿
水素中で825℃、2minの脱炭焼鈍後、MgOを主成分とする
焼鈍分離剤を塗布した後、仕上げ焼鈍を実施した。
Example 4 C: 0.055%, Si: 3.20%, Mn: 0.088%, S: 0.028%, Se: 0.018
%, Acid-soluble Al: 0.030%, N: 0.0095% and the balance is a 180 mm continuous cast slab consisting essentially of Fe at 1360 ° C.
After heating for 1 hour, hot rolled to 1.6 mm thickness, annealed at 1025 ° C for 1 min, pickled, finished to 0.17 mm thickness with 89% cold rolling reduction, decarburized and annealed in wet hydrogen at 825 ° C for 2 min. After that, after applying an annealing separator containing MgO as a main component, finish annealing was performed.

ドライN2中で1000℃までを37.5℃/Hrの昇熱速度で昇温
して2次再結晶を完了させた後にドライH2に切替えて12
00℃までを30℃/hrの速度で昇熱して、10時間保定して
純化焼鈍し、その後40℃/Hrの速度で冷却して途中600℃
の温度に達した時ドライN2ガスに切替えた。この仕上焼
鈍の際のガス流量を、2次再結晶完了までのドライN2
純化時のドライH2を4水準に変化させた。なおN2雰囲気
の露点(DP)は400℃に昇温された時点で測定した。
The temperature was raised up to 1000 ° C in dry N 2 at a heating rate of 37.5 ° C / Hr to complete the secondary recrystallization, and then switched to dry H 2 12
Heat up to 00 ℃ at a rate of 30 ℃ / hr, hold for 10 hours and anneal for purification, then cool at a rate of 40 ℃ / Hr and 600 ℃
When the temperature reached, the gas was switched to dry N 2 gas. The gas flow rate during this finish annealing was changed to 4 levels of dry N 2 until the completion of secondary recrystallization and dry H 2 during purification. The dew point (DP) of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上げ焼鈍後、MgOを除去して張力コーティングを施
し、フラットニング焼鈍後エプスタイン試片サイズに剪
断後、800℃で3Hrで歪取焼鈍後、0.5kgの測定重量で磁
気測定B10(T),W17/50(W/kg)を測定し、また、仕上
げ焼鈍後MgOを除去したフォルステライト被膜付のS,Se,
N成分の分析および2次再結晶率の測定を行い、第4表
に3成分の合計含有量と2次再結晶率,磁気特性を示し
た。
After finish annealing, MgO is removed to apply tension coating, flattening annealing, shearing to Epstein sample size, strain relief annealing at 800 ° C for 3 hours, magnetic measurement at 0.5 kg B 10 (T), W17 / 50 (W / kg) was measured, and S, Se, with forsterite coating with MgO removed after finish annealing,
The N component was analyzed and the secondary recrystallization rate was measured, and Table 4 shows the total content of the three components, the secondary recrystallization rate, and the magnetic properties.

同表から明らかなように、本発明の条件を満たしている
ものは、十分な2次再結晶化及び純化と優れた磁気特性
を得た。
As is clear from the table, those satisfying the conditions of the present invention obtained sufficient secondary recrystallization and purification and excellent magnetic properties.

実施例5 C:0.043%,Si:3.15%,Mn:0.087%,S:0.024%を含み残部
実質的にFeよりなる240mm厚の連鋳スラブをいずれも139
0℃に1時間加熱後2.4mm厚に熱延し、酸洗後0.80mmに中
間冷延し930℃,2min間の中間焼鈍後、69%の冷延率で0.
25mm厚に最終冷延し、脱脂後、湿水素中で820℃で3min
間の脱炭焼鈍を施したのち、MgOを主体とする焼鈍分離
剤を塗布してから、仕上げ焼鈍を実施した。ドライN2
で35℃/Hrの速度で昇熱し、2次再結晶が完了した925℃
でドライH2ガスに切替え同じ昇熱速度で昇温し1200℃に
10Hr保持して純化を完了させ、35℃/hrの速度で冷却
し、途中650℃でドライN2ガスに切替えた。この仕上焼
鈍の際のガス流量を2次再結晶完了までのドライN2と純
化領域のドライH2ガスについて4水準に変更した。なお
N2雰囲気の露点(DP)は400℃に昇温された時点で測定
した。
Example 5 A continuous cast slab having a thickness of 240 mm and containing C: 0.043%, Si: 3.15%, Mn: 0.087%, S: 0.024% and the balance being substantially Fe was 139.
After heating at 0 ° C for 1 hour, hot rolling to a thickness of 2.4 mm, pickling, intermediate cold rolling to 0.80 mm, intermediate annealing at 930 ° C for 2 minutes, cold rolling of 69% to 0.
Final cold rolling to a thickness of 25 mm, after degreasing, in wet hydrogen at 820 ° C for 3 min
After performing decarburization annealing in the meantime, an annealing separator mainly composed of MgO was applied, and then final annealing was performed. The temperature was raised in dry N 2 at a rate of 35 ℃ / Hr and the secondary recrystallization was completed at 925 ℃.
Switch to dry H 2 gas and raise the temperature at the same heating rate to 1200 ℃
Purification was completed by holding 10 Hr, cooling was performed at a rate of 35 ° C./hr, and switching to dry N 2 gas was performed at 650 ° C. on the way. The gas flow rate during this finish annealing was changed to 4 levels for dry N 2 until the completion of secondary recrystallization and dry H 2 gas in the purification region. Note that
The dew point (DP) of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上焼鈍後にMgOを除去して張力コーティングを施し、
フラットニング焼鈍を行った後、エプスタインサイズの
試片に剪断後、800℃で3Hrの歪取焼鈍後0.5kg重さで磁
気特性B10(T),W17/50(W/kg)を測定するとともに、
仕上げ焼鈍後MgOを除去したフォルステライト被膜付の
S,N成分の分析及び2次再結晶率の測定を行ない第5表
に示した。
After finish annealing, remove MgO and apply tension coating,
After flattening annealing, after shearing to an Epstein-sized specimen, after strain relief annealing at 800 ° C for 3 hours, measure the magnetic properties B 10 (T), W17 / 50 (W / kg) at a weight of 0.5 kg. With
With a forsterite film with MgO removed after finish annealing
The S and N components were analyzed and the secondary recrystallization rate was measured and shown in Table 5.

同表から明らかなように、ガス流量がN2,H2ともにこの
発明の範囲を満たしているものは、2次再結晶化と仕上
焼鈍後の純化が十分に促進されて高い磁束密度と低い鉄
損値が得られている。
As is clear from the table, when the gas flow rates of N 2 and H 2 both satisfy the range of the present invention, secondary recrystallization and purification after finish annealing are sufficiently promoted, and high magnetic flux density and low The iron loss value is obtained.

実施例6 C:0.050%,Si:3.35%,Mn:0.086%とインヒビターとして
S:0.025%,Se:0.015%のほかにSb:0.020%,Mo:0.015%,
Bi:0.017%,Te:0.019%を含み残部実質的にFeより成る2
20mm厚の連鋳スラブをいずれも1410℃に1時間加熱後、
2.2mm厚に熱延し、960℃で1.5minの焼鈍後酸洗して0.64
mm厚に中間冷延し、950℃で2minの中間焼鈍後圧下率66
%で最終冷延して0.22mm厚に仕上げた。
Example 6 C: 0.050%, Si: 3.35%, Mn: 0.086% as an inhibitor
In addition to S: 0.025%, Se: 0.015%, Sb: 0.020%, Mo: 0.015%,
Bi: 0.017%, Te: 0.019% and balance Fe
After heating 20 mm continuous cast slabs to 1410 ℃ for 1 hour,
Hot rolled to a thickness of 2.2 mm, annealed at 960 ° C for 1.5 min, and then pickled to give 0.64
mm cold rolling, intermediate rolling at 950 ° C for 2 min, reduction rate 66
% Final cold-rolled to 0.22 mm thickness.

次いで脱脂後、湿水素中で840℃で3min間の脱炭焼鈍を
施したのち、MgOを主体とする分離剤を塗布してから仕
上焼鈍を施す。この際にドライN2雰囲気中で常温から35
℃/hの昇熱速度で昇熱し、845℃で35時間保持して2次
再結晶を完了させた後、ドライH2雰囲気に変更して30℃
/hの昇熱速度で1200℃まで昇温して10時間保定後、35℃
/hで冷却して500℃に到達した後ドライN2雰囲気に切換
えた。この仕上げ焼鈍の際の2次再結晶完了までのN2
囲気のガス流量を4水準に純化焼鈍の領域のH2雰囲気の
ガス流量を4水準に変更した。なおN2雰囲気の露点(D
P)は400℃に昇温された時点で測定した。
Then, after degreasing, decarburization annealing is performed in wet hydrogen at 840 ° C. for 3 minutes, and then a separating agent mainly containing MgO is applied and then finish annealing is applied. At this time, in a dry N 2 atmosphere, from room temperature to 35
After raising the temperature at a heating rate of ℃ / h and holding at 845 ℃ for 35 hours to complete the secondary recrystallization, change to a dry H 2 atmosphere and change to 30 ℃.
After heating up to 1200 ℃ at a heating rate of / h and holding for 10 hours, 35 ℃
After cooling with / h and reaching 500 ° C., the atmosphere was changed to dry N 2 . In this finish annealing, the gas flow rate of the N 2 atmosphere until the completion of secondary recrystallization was changed to 4 levels, and the gas flow rate of the H 2 atmosphere in the purification annealing region was changed to 4 levels. The N 2 atmosphere of dew point (D
P) was measured when the temperature was raised to 400 ° C.

仕上げ焼鈍後にMgOを除去して張力コーティングを施
し、フラットニング焼鈍した後エプスタインサイズの試
片に剪断後、800℃で3Hrで歪取焼鈍後0.5kg重さで磁気
特性B10(T),W17/50(W/kg)を測定した。また仕上げ
焼鈍後MgOを除去したままのフォルステライト被膜付の
S,Se,N成分の分析及び2次再結晶率の測定を行ない、第
6表に3成分の合計含有量と2次再結晶率,磁気特性を
示す。
After finish annealing, MgO is removed, tension coating is applied, flattening annealing is performed, and then Epstein size specimens are sheared, then strain relief annealing is performed at 800 ° C. for 3 hours, and 0.5 kg weight is applied to magnetic properties B 10 (T), W17. / 50 (W / kg) was measured. In addition, after the finish annealing, with the forsterite film with MgO removed
The S, Se and N components were analyzed and the secondary recrystallization rate was measured. Table 6 shows the total content of the three components, the secondary recrystallization rate and magnetic properties.

同表から明らかなように、ガス流量がN2,N2ガスともに
本発明の範囲を満たしているものは、高い磁束密度と低
い鉄損値が得られている。
As is clear from the table, in the case where the gas flow rates of both N 2 and N 2 gas satisfy the range of the present invention, a high magnetic flux density and a low iron loss value are obtained.

実施例7 C:0.053%,Si:3.25%,Mn:0.089%及びインヒビターとし
てのS:0.022%,Se:0.018%,酸可溶性Al:0.023%,N:0.0
099%の他にSn:0.077%,Cu:0.083%を含み残部実質的に
Feより成る220mm厚の連鋳スラブをいずれも1425℃に1
時間加熱後、2.0mm厚に熱延し、1030℃に1.5minの焼鈍
後、酸洗して90%の冷延圧下率で0.20mm厚に仕上げ、脱
脂後湿水素中で845℃で2.5minの脱炭焼鈍後、MgOを主成
分とする焼鈍分離剤を塗布したのち、仕上げ焼鈍を施し
た。ドライN2中で1025℃までを40℃/hの昇熱速度で昇熱
した2次再結晶を完了させ、ドライH2に切換えて1200℃
までを20℃/hの速度で昇熱し、10時間保定後45℃/hの速
度で冷却し途中550℃の温度に達したときドライN2に切
換えた。この仕上げ焼鈍の時のガス流量を2次再結晶完
了までのドライN2と純化時のドライH2についてそれぞれ
4水準に変化させた。なおN2雰囲気の露点は400℃に昇
温された時点で測定した。
Example 7 C: 0.053%, Si: 3.25%, Mn: 0.089% and S: 0.022% as an inhibitor, Se: 0.018%, acid-soluble Al: 0.023%, N: 0.0
In addition to 099%, Sn: 0.077%, Cu: 0.083% are included, and the balance is substantially
220mm thick continuous cast slabs made of Fe were all heated to 1425 ℃.
After time heating, hot rolled to 2.0mm thickness, annealed to 1030 ℃ for 1.5min, pickled and finished at 0.20mm thickness with 90% cold rolling reduction, and after degreasing in wet hydrogen at 845 ℃ for 2.5min. After decarburizing and annealing, the annealing separator containing MgO as a main component was applied, and then the final annealing was performed. Complete the secondary recrystallization by heating up to 1025 ℃ in dry N 2 at a heating rate of 40 ℃ / h, and switch to dry H 2 to 1200 ℃.
Was heated at a rate of 20 ° C / h, held for 10 hours, cooled at a rate of 45 ° C / h, and switched to dry N 2 when it reached a temperature of 550 ° C. The gas flow rate during this finish annealing was changed to 4 levels for dry N 2 until the completion of secondary recrystallization and dry H 2 during purification. The dew point of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上げ焼鈍後、MgOを除去して張力コーティングを施し
フラットニング処理を経てエプスタインサイズの試片に
剪断後、800℃で3Hrの歪取焼鈍を実施した後、0.5kgの
重量で磁気測定B10(T)とW17/50(W/kg)を測定し
た。また仕上焼鈍後MgOを除去したフォルステライト被
膜付のS,Se,N成分の分析及び2次再結晶率測定を行な
い、第7表に3成分の合計含有量と2次再結晶率,磁気
特性を示した。
After finish annealing, MgO is removed, tension coating is applied, and flattening is performed to shear the specimen of Epstein size, and then strain relief annealing is performed at 800 ° C for 3 hours, and then magnetic measurement is performed at a weight of 0.5 kg B 10 ( T) and W17 / 50 (W / kg) were measured. In addition, after the finish annealing, the S, Se and N components with the forsterite coating from which MgO was removed were analyzed and the secondary recrystallization rate was measured. Table 7 shows the total content of the three components, the secondary recrystallization rate and the magnetic properties. showed that.

同表から明らかなように、本発明適正範囲を満たしてい
るものは優れた磁気特性が得られた。
As is clear from the table, those satisfying the proper range of the present invention had excellent magnetic characteristics.

実施例8 C:0.049%,Si:3.31%,Mn:0.085%及びインヒビターとし
てS:0.025%,Se:0.023%を含み残部実質的にFeより成る
220mm厚の連鋳スラブをいずれも1420℃に1時間加熱後
3.0mm厚に熱延し、950℃で2minの焼鈍後酸洗して、0.90
mm厚に中間冷延し、950℃で2minの中間焼鈍後圧下率66.
7%で最終冷延して0.30mm厚に仕上げた。
Example 8 C: 0.049%, Si: 3.31%, Mn: 0.085% and S: 0.025%, Se: 0.023% as an inhibitor, and the balance is essentially Fe.
After continuously casting 220mm thick continuous cast slabs at 1420 ℃ for 1 hour
Hot rolled to a thickness of 3.0 mm, annealed at 950 ° C for 2 minutes, then pickled to 0.90
Cold rolled to an intermediate thickness of mm and rolled at 950 ° C for 2 min after intermediate annealing.
The final cold rolling was performed at 7% to a thickness of 0.30 mm.

次いで脱脂後、湿水素中で835℃で3min間の脱炭焼鈍を
施したのち、MgOを主体とする分離剤を塗布してから、
仕上焼鈍を施す。この際にドライN2雰囲気中で常温から
35℃/hの昇熱速度で昇熱し、840℃で40時間保持して2
次再結晶を完了させた後、ドライH2雰囲気に変更して35
℃/hの昇熱速度で1200℃まで昇温して10時間保定後、35
℃/hで冷却して500℃に到達した後に、ドライN2雰囲気
に切換えた。この仕上げ焼鈍の際の2次再結晶完了まで
のN2雰囲気のガス流量を4水準に、純化焼鈍の領域のH2
雰囲気のガス流量を4水準に変更した。なおN2雰囲気の
露点は400℃に昇温された時点で測定した。
Then, after degreasing, decarburization annealing was performed in wet hydrogen at 835 ° C for 3 minutes, and then a separating agent mainly composed of MgO was applied,
Apply finish annealing. At this time, from room temperature in a dry N 2 atmosphere
Heat at a heating rate of 35 ℃ / h and hold at 840 ℃ for 40 hours.
After completing the next recrystallization, change to a dry H 2 atmosphere.
After raising the temperature to 1200 ℃ at a heating rate of ℃ / h and holding for 10 hours,
After cooling at ℃ / h and reaching 500 ℃, it was switched to a dry N 2 atmosphere. In this finishing annealing, the gas flow rate of the N 2 atmosphere until the completion of secondary recrystallization was set to 4 levels, and H 2 in the purification annealing region was changed.
The gas flow rate of the atmosphere was changed to 4 levels. The dew point of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上げ焼鈍後、MgOを除去して張力コーティングを施
し、フラットニング焼鈍した後エプスタインサイズの試
片に剪断後、800℃で3Hrの歪取焼鈍を行い0.5kgの重さ
で磁気測定B10(T)とW17/50(W/kg)を測定した。ま
た仕上焼鈍後MgOを除去したままのフォルステライト被
膜付のS,Se,N成分の分析と、成品板のマクロ組織より2
次再結晶率の測定を行った結果を第8表に示した。
After finish annealing, MgO is removed, tension coating is applied, flattening annealing is performed, and then Epstein size specimens are sheared, and strain relief annealing is performed at 800 ° C for 3 hours, and magnetic measurement is performed with a weight of 0.5 kg B 10 (T ) And W17 / 50 (W / kg) were measured. In addition, after the finish annealing, analysis of S, Se, N components with forsterite coating with MgO removed and from the macrostructure of the product sheet
The results of the measurement of the next recrystallization rate are shown in Table 8.

同表から明らかなように、本発明適正範囲を満たしてい
る条件のものは、十分な2次再結晶と仕上焼鈍後の純化
が促進されて高い磁束密度と低い鉄損値が得られてい
る。
As is clear from the table, under the conditions satisfying the proper range of the present invention, sufficient secondary recrystallization and purification after finish annealing are promoted, and high magnetic flux density and low iron loss value are obtained. .

実施例9 C:0.054%,Si:3.26%,Mn:0.090%及びインヒビターとし
てSe:0.028%,酸可溶性Al:0.030%,N:0.0105を含み残
部実質的にFeより成る220mm厚の連鋳スラブをいずれも1
425℃に1時間加熱後3.0mm厚に熱延し、1050℃で1minの
焼鈍後、酸洗して88.5%の冷延圧下率で0.35mm厚に仕上
げ、脱脂後湿水素中で840℃で3minの脱炭焼鈍後、MgOを
主成分とする焼鈍分離剤を塗布したのち、仕上げ焼鈍を
施した。ドライN2中で常温から1000℃までを35℃/hの速
度で昇熱して2次再結晶を完了させた後にドライH2に切
換えて1200℃までを25℃/hの速度で昇熱し、10時間保定
後50℃/hの速度で冷却し途中550℃の温度に到達したと
きにドライN2に切換えた。この仕上げ焼鈍の時のガス流
量を2次再結晶完了までのドライN2と純化時のドライH2
についてそれぞれ4水準に変化させた。なおN2雰囲気の
露点(DP)は400℃に昇温された時点で測定した。
Example 9 C: 0.054%, Si: 3.26%, Mn: 0.090%, Se: 0.028% as an inhibitor, acid-soluble Al: 0.030%, N: 0.0105, and the balance is a Fe continuous cast slab having a thickness of 220 mm. For both 1
After heating at 425 ℃ for 1 hour, hot rolled to 3.0mm thickness, annealed at 1050 ℃ for 1min, pickled and finished at 88.5% cold rolling reduction to 0.35mm thickness, and after degreasing at 840 ℃ in wet hydrogen. After decarburization annealing for 3 minutes, an annealing separator containing MgO as a main component was applied, and then final annealing was performed. After the secondary recrystallization is completed by raising the temperature from room temperature to 1000 ° C in dry N 2 at a rate of 35 ° C / h, switch to dry H 2 and raise the temperature to 1200 ° C at a rate of 25 ° C / h, After holding for 10 hours, it was cooled at a rate of 50 ° C / h, and when it reached a temperature of 550 ° C, it was switched to dry N 2 . The gas flow rate during this final annealing was set to dry N 2 until the completion of secondary recrystallization and dry H 2 during purification.
For each of the four levels. The dew point (DP) of the N 2 atmosphere was measured when the temperature was raised to 400 ° C.

仕上げ焼鈍後、MgOを除去して張力コーティングを施し
フラットニング処理を経てエプスタインサイズの試片に
剪断後、800℃で3Hrの歪取焼鈍を実施した後、0.5kgの
重量で磁気測定B10(T)とW17/50(W/kg)を測定し
た。また仕上焼鈍後MgOを除去したフォルステライト被
膜付のSe,N成分の分析と、成品板のマクロ組織により2
次再結晶率測定を行い、第9表に3成分の合計含有量と
2次再結晶率及び磁気特性を示した。
After finish annealing, MgO is removed, tension coating is applied, and flattening is performed to shear the specimen of Epstein size, and then strain relief annealing is performed at 800 ° C for 3 hours, and then magnetic measurement is performed at a weight of 0.5 kg B 10 ( T) and W17 / 50 (W / kg) were measured. In addition, after the finish annealing, MgO was removed and the Se and N components with the forsterite coating were analyzed and the macrostructure of the product sheet
The secondary recrystallization rate was measured, and Table 9 shows the total content of the three components, the secondary recrystallization rate, and the magnetic properties.

同表から明らかなように、本発明適正範囲を満たしてい
るものは優れた磁気特性が得られた。
As is clear from the table, those satisfying the proper range of the present invention had excellent magnetic characteristics.

〈発明の効果〉 かくして、本発明によれば十分に高い磁束密度と低い鉄
損値を有する薄手一方向性珪素鋼板が容易に安定して得
られる。
<Effect of the Invention> Thus, according to the present invention, a thin unidirectional silicon steel sheet having a sufficiently high magnetic flux density and a low iron loss value can be easily and stably obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、仕上焼鈍におけるガス流量と雰囲気露点の関
係を示すグラフ、第2図は、仕上げ焼鈍におけるガス流
量が、仕上焼鈍MgO除去後のフォルステライト被膜付の
S,Se,N成分の合計含有量、成品板の2次再結晶率及び歪
取焼鈍後の磁気特性{B10(T),W17/50(W/kg)}に及
ぼす影響を示すグラフである。
FIG. 1 is a graph showing the relationship between the gas flow rate and the atmospheric dew point in the finish annealing, and FIG. 2 is the gas flow rate in the finish annealing when the forsterite coating after removal of the finish annealing MgO was applied.
A graph showing the effect on the total content of S, Se, N components, the secondary recrystallization rate of the product sheet, and the magnetic properties after stress relief annealing {B 10 (T), W17 / 50 (W / kg)} is there.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−67625(JP,A) 特開 昭61−119650(JP,A) 特公 昭62−31050(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 60-67625 (JP, A) JP 61-119650 (JP, A) JP 62-31050 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%にて、C:0.020〜0.080%,Si:2.5〜
4.0%,Mn:0.03〜0.15%、さらにS及び/又はSeを合計
で0.008〜0.100%含み、残部Fe及び不可避的不純物から
なる珪素鋼スラブを熱間圧延し、ついで1回又は中間焼
鈍をはさむ2回の冷間圧延を、最終冷間圧延の圧下率が
40〜80%の範囲にて施し、最終板厚に仕上げた後、脱炭
焼鈍についで焼鈍分離剤を塗布し最終仕上げ焼鈍を施す
一連の工程からなる一方向性珪素鋼板の製造方法におい
て、該最終仕上げ焼鈍のガス流量を2cc/分・kg以上とす
ることを特徴とする磁気特性の優れた一方向性珪素鋼板
の製造方法。
1. C: 0.020-0.080%, Si: 2.5-
4.0%, Mn: 0.03 to 0.15%, further containing S and / or Se in a total of 0.008 to 0.100%, hot-rolling a silicon steel slab consisting of balance Fe and unavoidable impurities, followed by one or intermediate annealing Two cold rolling, the final cold rolling reduction
In the manufacturing method of the unidirectional silicon steel sheet comprising a series of steps of applying 40 to 80% in range, finishing the final plate thickness, followed by decarburization annealing, applying an annealing separating agent and performing final finishing annealing, A method for producing a unidirectional silicon steel sheet with excellent magnetic properties, characterized in that the gas flow rate of final finish annealing is 2 cc / min · kg or more.
【請求項2】重量%にて、C:0.020〜0.080%,Si:2.5〜
4.0%,Mn:0.03〜0.15%,Sb:0.008〜0.100%、さらにS
及び/又はSeを合計で0.008〜0.100%含み、残部Fe及び
不可避的不純物からなる珪素鋼スラブを熱間圧延し、つ
いで1回又は中間焼鈍をはさむ2回の冷間圧延を、最終
冷間圧延の圧下率が40〜80%の範囲にて施し、最終板厚
に仕上げた後、脱炭焼鈍についで焼鈍分離剤を塗布し最
終仕上げ焼鈍を施す一連の工程からなる一方向性珪素鋼
板の製造方法において、該最終仕上げ焼鈍のガス流量を
2cc/分・kg以上とすることを特徴とする磁気特性の優れ
た一方向性珪素鋼板の製造方法。
2. In% by weight, C: 0.020 to 0.080%, Si: 2.5 to
4.0%, Mn: 0.03 to 0.15%, Sb: 0.008 to 0.100%, and S
And / or Se in a total amount of 0.008 to 0.100% and the balance of Fe and unavoidable impurities are hot-rolled into a silicon steel slab, followed by one or two cold-rolling steps with intermediate annealing and final cold rolling. A unidirectional silicon steel sheet consisting of a series of steps in which the reduction ratio of 40 to 80% is applied to finish the final plate thickness, decarburization annealing, then an annealing separator is applied, and final finishing annealing is performed. In the method, the gas flow rate of the final annealing is
A method for producing a unidirectional silicon steel sheet with excellent magnetic properties, which is characterized by 2 cc / min · kg or more.
【請求項3】重量%にて、C:0.020〜0.080%,Si:2.5〜
4.0%,Mn:0.03〜0.15%,酸可溶性Al:0.010〜0.070%,
N:0.0035〜0.0140%、さらにS及び/又はSeを合計で0.
008〜0.100%含み、残部Fe及び不可避的不純物からなる
珪素鋼スラブを熱間圧延し、熱延板を焼鈍後、圧下率80
%以上の冷間圧延を施し、最終板厚に仕上げた後、脱炭
焼鈍についで焼鈍分離剤を塗布し最終仕上げ焼鈍を施す
一連の工程からなる一方向性珪素鋼板の製造方法におい
て、該最終仕上げ焼鈍のガス流量を2cc/分・kg以上とす
ることを特徴とする磁気特性の優れた一方向性珪素鋼板
の製造方法。
3. In weight%, C: 0.020 to 0.080%, Si: 2.5 to
4.0%, Mn: 0.03-0.15%, acid-soluble Al: 0.010-0.070%,
N: 0.0035 to 0.0140%, and S and / or Se in total of 0.
Hot rolling a silicon steel slab containing 008 to 0.100% and the balance Fe and unavoidable impurities, and annealing the hot rolled sheet
% Or more cold rolling to finish the final plate thickness, followed by decarburization annealing, then applying an annealing separating agent, and finally finishing annealing. A method for producing a unidirectional silicon steel sheet with excellent magnetic properties, characterized in that the gas flow rate for finish annealing is 2 cc / min · kg or more.
JP63240962A 1988-07-20 1988-09-28 Method for producing unidirectional silicon steel sheet having excellent magnetic properties Expired - Fee Related JPH0696743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240962A JPH0696743B2 (en) 1988-07-20 1988-09-28 Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17912588 1988-07-20
JP63-179125 1988-07-20
JP63240962A JPH0696743B2 (en) 1988-07-20 1988-09-28 Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH02125815A JPH02125815A (en) 1990-05-14
JPH0696743B2 true JPH0696743B2 (en) 1994-11-30

Family

ID=26499076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240962A Expired - Fee Related JPH0696743B2 (en) 1988-07-20 1988-09-28 Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0696743B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559865B2 (en) * 2005-01-14 2010-10-13 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
JP5853352B2 (en) * 2010-08-06 2016-02-09 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5810506B2 (en) * 2010-11-05 2015-11-11 Jfeスチール株式会社 Oriented electrical steel sheet
MX2022005191A (en) * 2019-10-31 2022-05-16 Jfe Steel Corp Grain-oriented electromagnetic steel sheet and method for manufacturing same.
CN111341545B (en) * 2020-03-23 2021-09-14 大连北方互感器集团有限公司 Manufacturing process of transformer iron core
CN117460850A (en) * 2021-05-28 2024-01-26 杰富意钢铁株式会社 Method for producing oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH02125815A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
JPH10500454A (en) Method of manufacturing grain-oriented electrical steel sheet for transformer
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH07278670A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JP7159594B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0797631A (en) Production of high magnetix flux density grain oriented silicon steel sheet excellent in magnetic property and film property
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH01162725A (en) Production of silicon steel sheet having good magnetic characteristic
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0257125B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees