JP2603130B2 - Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet - Google Patents
Manufacturing method of high magnetic flux density grain-oriented electrical steel sheetInfo
- Publication number
- JP2603130B2 JP2603130B2 JP1114293A JP11429389A JP2603130B2 JP 2603130 B2 JP2603130 B2 JP 2603130B2 JP 1114293 A JP1114293 A JP 1114293A JP 11429389 A JP11429389 A JP 11429389A JP 2603130 B2 JP2603130 B2 JP 2603130B2
- Authority
- JP
- Japan
- Prior art keywords
- rolled
- annealing
- hot
- less
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は磁束密度が高い方向性電磁鋼板の製造法に関
する。The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density.
(従来の技術) 方向性電磁鋼板は主としてトランス、発電機、その他
の電気機器の鉄心材料に用いられ、磁気特性として励磁
特性と鉄損特性が良好でなければならない。(Prior Art) Grain-oriented electrical steel sheets are mainly used for core materials of transformers, generators, and other electrical equipment, and must have good excitation characteristics and iron loss characteristics as magnetic characteristics.
方向性電磁鋼板は二次再結晶現象を利用して圧延面に
(110)面、圧延方向に〔001〕軸をもったいわゆるゴス
方位を有する結晶粒を発達させることにより得られる。A grain-oriented electrical steel sheet is obtained by utilizing the secondary recrystallization phenomenon to develop crystal grains having a so-called Goss orientation having a (110) plane on the rolling surface and a [001] axis in the rolling direction.
二次再結晶は周知のように仕上焼鈍で生じるが、二次
再結晶の発現を十分に図るためには仕上焼鈍の二次再結
晶温度領域まで一次再結晶粒の成長を抑制する微細なAl
N,MnS,MnSeなどの析出物いわゆるインヒビターを存在さ
せる必要がある。As is well known, secondary recrystallization occurs during finish annealing.However, in order to sufficiently achieve the appearance of secondary recrystallization, fine Al that suppresses the growth of primary recrystallized grains up to the secondary recrystallization temperature region of finish annealing
It is necessary to have so-called inhibitors, such as precipitates such as N, MnS, and MnSe.
このため、電磁鋼スラブは1350〜1400℃程度の高温度
に加熱され、インヒビターを形成する成分たとえばAl,M
n,S,Se,N等を完全に固溶させ、熱延板あるいは最終冷延
前の中間板においてインヒビターを微細に析出させる焼
鈍が行われている。For this reason, the electromagnetic steel slab is heated to a high temperature of about 1350 to 1400 ° C., and the components forming the inhibitor, for example, Al, M
2. Description of the Related Art Annealing is performed in which n, S, Se, N, and the like are completely dissolved, and an inhibitor is finely precipitated on a hot-rolled sheet or an intermediate sheet before final cold-rolling.
このような処理を施すことにより磁束密度の高い方向
性電磁鋼板が製造されるようになっているが、電磁鋼ス
ラブの加熱は前述のように高温で行われるために、溶融
スケールの発生量が大で加熱炉の操業に支障をきたす。
また加熱炉のエネルギー原単位高や表面疵の発生等の問
題がある。By performing such a process, a grain-oriented electrical steel sheet with a high magnetic flux density is manufactured, but since the heating of the electromagnetic steel slab is performed at a high temperature as described above, the amount of generated molten scale is reduced. Large and hinders operation of heating furnace.
There are also problems such as a high energy consumption unit of the heating furnace and the occurrence of surface flaws.
スラブ加熱温度を下げた方向性電磁鋼板の製造法が検
討されている。例えば特開昭52−24116号公報ではAlの
他に、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の窒化物形成元素を含
有させることにより、スラブ加熱を1110〜1260℃で行う
製造法が開示されている。特開昭59−190324号公報では
C含有量を0.01%以下の低炭素でS,SeさらにAl,Bを選択
的に含有させた電磁鋼スラブを素材とし、冷延後の一次
再結晶焼鈍時に鋼板表面を短時間繰り返し高温加熱する
パルス焼鈍を行うことにより、スラブ加熱温度を1300℃
以下とする製造法が開示されている。また特開昭59−56
522号公報ではMnを0.08〜0.45%、Sを0.007%以下と
し、〔Mn〕〔S〕積を下げ、さらにAl,P,Nを含有させた
電磁鋼スラブを素材とすることにより、スラブ加熱温度
を1280℃以下とする製造法を提案している。A method for producing a grain-oriented electrical steel sheet at a reduced slab heating temperature is being studied. For example, in Japanese Patent Application Laid-Open No. 52-24116, slab heating is performed at 1110 to 1260 ° C. by including nitride forming elements such as Zr, Ti, B, Nb, Ta, V, Cr, and Mo in addition to Al. Performed manufacturing methods are disclosed. In JP-A-59-190324, a magnetic steel slab containing a low carbon content of 0.01% or less of carbon and selectively containing S, Se, and Al and B is used as a material, and is subjected to primary recrystallization annealing after cold rolling. The slab heating temperature is increased to 1300 ° C by performing pulse annealing in which the steel sheet surface is repeatedly heated to high temperature for a short time.
The following manufacturing method is disclosed. JP-A-59-56
No. 522 discloses that Mn is set to 0.08 to 0.45%, S is set to 0.007% or less, [Mn] [S] product is reduced, and a magnetic steel slab containing Al, P, and N is used as a raw material, whereby slab heating is performed. A production method in which the temperature is set to 1280 ° C. or less is proposed.
(発明が解決しようとする課題) このように、方向性電磁鋼板の製造において、低温ス
ラブ加熱による方法が検討され、それなりの作用効果が
奏されているが、二次再結晶の発現に充分に効果的なイ
ンヒビターを形成することが難しく高磁束密度のものを
工業的に安定して製造するには、さらなる検討が必要で
ある。(Problems to be Solved by the Invention) As described above, in the production of grain-oriented electrical steel sheets, a method using low-temperature slab heating has been studied, and a certain effect has been achieved. It is difficult to form an effective inhibitor, and further investigation is necessary for industrially stably manufacturing a product having a high magnetic flux density.
本発明は電磁鋼スラブの加熱を1200℃以下の低温とし
て、溶融スケールの発生防止、表面疵防止や加熱エネル
ギーの減少等の利点を得ながら、磁束密度の高い方向性
電磁鋼板を工業的に安定して得ることを目的とする。The present invention sets the magnetic steel slab to a low temperature of 1200 ° C or less, and industrially stabilizes grain-oriented electrical steel sheets with high magnetic flux density while obtaining advantages such as prevention of generation of molten scale, prevention of surface flaws, and reduction of heating energy. The purpose is to gain.
(課題を解決するための手段) 本発明の要旨とするところは、重量%でC:0.025〜0.0
75%、Si:2.5〜4.5%、Mn:0.07〜0.45%、S:0.012%以
下、酸可溶Al:0.010〜0.060%、N:0.0030〜0.010%、P:
0.007〜0.045%を含み、また必要に応じて、Cr,Mo,V,N
b,Sb,Sn,Ti,Te,Bの1種以上を合計で1.5%以下含有し、
残部が鉄及び不可避的不純物からなる電磁鋼スラブを、
1200℃以下の温度に加熱し、熱間圧延し、熱延まま又は
熱延板焼鈍し、1回又は中間焼鈍をはさんで2回以上の
冷間圧延し、脱炭焼鈍する際、湿潤雰囲気に窒素化合物
ガスを混じえて、脱炭とともに窒化し(Al,Si)Nを主
組成とするインヒビターを形成し、焼鈍分離剤を塗布し
仕上焼鈍することを特徴とする高磁束密度方向性電磁鋼
板の製造法にある。(Means for Solving the Problems) The gist of the present invention is that C: 0.025 to 0.0% by weight.
75%, Si: 2.5-4.5%, Mn: 0.07-0.45%, S: 0.012% or less, acid-soluble Al: 0.010-0.060%, N: 0.0030-0.010%, P:
0.007 to 0.045%, and if necessary, Cr, Mo, V, N
b, Sb, Sn, Ti, Te, B contains 1.5% or less in total
Electromagnetic steel slabs consisting of iron and unavoidable impurities,
When heated to a temperature of 1200 ° C or less, hot-rolled, hot-rolled or hot-rolled sheet annealed, cold-rolled one or more times with intermediate annealing interposed, and decarburized annealing, wet atmosphere High flux density directional electrical steel sheet characterized by mixing nitrogen with a nitrogen compound gas, decarburizing and nitriding to form an inhibitor with a main composition of (Al, Si) N, applying an annealing separator and finish annealing. Manufacturing method.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明者達は電磁鋼スラブを、1200℃以下の温度に加
熱する低温スラブ加熱を適用して、高磁束密度の方向性
電磁鋼板を工業的に安定して製造すべく検討した。その
結果、スラブ加熱の段階ではインヒビターを形成する成
分のAl,Mn,S,Nなどを固溶させず、冷間圧延後に脱炭焼
鈍を行う際、湿潤雰囲気に窒素化合物ガスを混じえた雰
囲気とし、鋼板をストリップ状で走行させ脱炭とともに
窒化を行うと、窒化が容易で特公昭62−45285号公報で
開示されているインヒビター機能の高い(Al,Si)Nを
主組成とするものが形成され磁束密度の高い方向性電磁
鋼板が安定して得られることをつきとめた。The present inventors have studied the application of low-temperature slab heating, which heats an electromagnetic steel slab to a temperature of 1200 ° C. or less, to produce a grain-oriented electrical steel sheet having a high magnetic flux density in an industrially stable manner. As a result, at the stage of slab heating, the components forming inhibitors, such as Al, Mn, S, and N, were not dissolved, and when performing decarburization annealing after cold rolling, the atmosphere was changed to a wet atmosphere mixed with nitrogen compound gas. When a steel sheet is run in strip form and denitrification is performed and nitriding is performed, it is easy to nitridate, and a substance mainly composed of (Al, Si) N having a high inhibitory function disclosed in JP-B-62-45285 is formed. It has been found that a grain-oriented electrical steel sheet having a high magnetic flux density can be stably obtained.
本発明が適用される電磁鋼スラブの成分組成の限定理
由は次のとおりである。The reasons for limiting the component composition of the electromagnetic steel slab to which the present invention is applied are as follows.
Cは、その含有量が少なくなると二次再結晶が不安定
となり、また二次再結晶した場合でも磁束密度が低いも
のとなるので0.025%以上とする。一方、含有量が多く
なると脱炭焼鈍時間が長くなり、また脱炭時に行う窒化
の量のコントロールが難しくなるので0.075%以下とす
る。The content of C is set to 0.025% or more because the secondary recrystallization becomes unstable when the content of C is small, and the magnetic flux density becomes low even in the case of secondary recrystallization. On the other hand, when the content increases, the decarburization annealing time increases, and it becomes difficult to control the amount of nitriding performed during decarburization.
Siは鉄損の低下、インヒビター形成のために必要な成
分でそのために、2.5%以上含有させる。一方、その含
有量が多くなると冷間圧延時に板破断、耳割れ等が多発
するので4.5%以下とする。Si is a component necessary for reducing iron loss and forming an inhibitor, and therefore, is contained in an amount of 2.5% or more. On the other hand, when the content increases, the sheet breaks, edge cracks and the like occur frequently during cold rolling.
Mnは熱間脆性を防ぐとともに、グラス皮膜を良質化す
る作用があり、これを奏するには0.07%以上必要であ
る。一方、その含有量が多くなると磁束密度が劣化する
ので0.45%以下とする。さらに本発明ではスラブ加熱を
1200℃以下の温度で行うので、例えばSとの化合物MnS
は完全固溶せずインヒビターとしてMnSを用いない点か
らもその上限は前述の通りとする。Mn has the effect of preventing hot brittleness and improving the quality of the glass film. To achieve this, 0.07% or more is required. On the other hand, if the content increases, the magnetic flux density deteriorates. Furthermore, in the present invention, slab heating
Since the reaction is performed at a temperature of 1200 ° C. or less, for example, the compound MnS with S
Is not completely dissolved and MnS is not used as an inhibitor.
Sは偏析を生じやすく、正常な二次再結晶粒の成長を
妨げるために0.012%以下とする。S is likely to cause segregation and is set to 0.012% or less in order to prevent normal growth of secondary recrystallized grains.
AlはNあるいはSiと結合して(Al,Si)Nを形成し、
二次再結晶の発現と安定に必要で、そのために0.010%
以上含有させる。一方、スラブ加熱温度は1200℃以下で
Alを不完全に固溶させることから、該Alの含有量が多く
なると熱間圧延の段階で不適切なAlNが形成されるので
0.060%以下とする。Al combines with N or Si to form (Al, Si) N,
Necessary for the appearance and stability of secondary recrystallization, for which 0.010%
It is contained above. On the other hand, the slab heating temperature is
Since incomplete solid solution of Al, if the content of Al increases, inappropriate AlN is formed at the stage of hot rolling.
0.060% or less.
Nは前記Al,Si等と結合して二次再結晶の安定化のた
めに0.0030%以上含有させる。しかし、その含有量が多
くなるとブリスターと呼ばれる表面欠陥が生じるので0.
010%以下とする。N is combined with Al, Si or the like and is contained in an amount of 0.0030% or more for stabilizing secondary recrystallization. However, if the content increases, surface defects called blisters occur, so that the
010% or less.
Pは低温スラブ加熱の場合には、磁束密度を高める作
用があり、この作用を奏するためには0.007%以上必要
である。一方、その含有量が多くなると冷延性が劣化す
るので0.045%以下とする。P has the effect of increasing the magnetic flux density in the case of low-temperature slab heating, and to achieve this effect, 0.007% or more is required. On the other hand, if the content increases, the cold rolling property deteriorates, so the content is set to 0.045% or less.
さらに、必要に応じてCr,Mo,V,Nb,Sb,Sn,Ti,Te,Bの1
種以上を含有させる。Further, if necessary, one of Cr, Mo, V, Nb, Sb, Sn, Ti, Te, B
Contains more than one species.
これらのCr,Mo,V,Nb,Sb,Sn,Ti,Te,Bは磁気特性を高め
る作用があり、そのために各成分につき0.30%以内で、
1種以上含有させるが、これらの合計の含有量が多くな
ると磁束密度を劣化させるので上限は1.5%とする。These Cr, Mo, V, Nb, Sb, Sn, Ti, Te, B have the effect of enhancing the magnetic properties, and therefore, within 0.30% for each component,
One or more of them are contained, but if the total content of these increases, the magnetic flux density deteriorates, so the upper limit is made 1.5%.
電磁鋼スラブは、転炉あるいは電気炉などの溶解炉で
溶製され、必要に応じて真空脱ガス処理が施された溶鋼
を連続鋳造するが、または造塊−分塊圧延することによ
り製造される。Electromagnetic steel slabs are produced by melting in a melting furnace such as a converter or an electric furnace and continuously casting molten steel subjected to vacuum degassing as necessary, or by ingot-bulking rolling. You.
電磁鋼スラブは熱間圧延に先立って加熱されるが、そ
の加熱温度は1200℃以下として省エネルギーや溶融スケ
ールの発生防止、表面疵防止が図られる。この加熱温度
では該電磁鋼スラブ中のAlは完全に固溶されず不完全固
溶となる。またさらに固溶温度の高いMnSは当然ながら
より不完全固溶である。The electromagnetic steel slab is heated prior to hot rolling, and the heating temperature is set to 1200 ° C. or less to save energy, prevent generation of molten scale, and prevent surface flaws. At this heating temperature, Al in the electromagnetic steel slab is not completely dissolved but becomes incompletely dissolved. MnS having a higher solid solution temperature is, of course, incompletely solid solution.
スラブ加熱後は熱間圧延され、必要によっては焼鈍さ
れ、あるいは焼鈍することなく、冷間圧延される。冷間
圧延は1回または中間焼鈍をはさんで2回以上行われ最
終板厚とされる。After the slab is heated, it is hot-rolled, and if necessary, annealed, or cold-rolled without annealing. Cold rolling is performed once or twice or more with intermediate annealing therebetween to obtain a final sheet thickness.
本発明では前述の如く低温スラブ加熱であるから未だ
鋼板にインヒビターが存在していないので二次再結晶発
現以前に、鋼中にNを侵入させ前記インヒビター(Al,S
i)Nを形成する必要がある。そこで本発明ではこの課
題を解決すべく冷間圧延した後の脱炭焼鈍を行うにあた
り、鋼板をストリップ状で通板して脱炭するのと併行し
て窒素化合物ガス例えばNH3ガスの分解下で窒化する。
これによりインヒビター機能の高い(Al,Si)Nが量的
にも容易にかつ短時間で形成される。In the present invention, since the inhibitor is not yet present in the steel sheet due to the low-temperature slab heating as described above, N is introduced into the steel before the secondary recrystallization occurs, and the inhibitor (Al, S
i) N must be formed. Therefore, in the present invention, in performing decarburization annealing after cold rolling in order to solve this problem, a steel sheet is passed through a strip in a strip shape and decarburization is performed simultaneously with decomposition of a nitrogen compound gas such as NH 3 gas. With nitriding.
As a result, (Al, Si) N having a high inhibitory function can be easily formed in a short time and in a short time.
脱炭焼鈍において脱炭と窒化をともに行うには、湿潤
雰囲気に前記窒素化合物ガス例えばNH3を0.050%以上含
ませ、その分解下で、また露点を−30〜+75℃とする雰
囲気下で、温度500〜900℃で2分間以内にて鋼板をスト
リップ状として通板することが望ましい。また、このと
きの窒化量は30〜300ppmであれば、磁束密度の高い方向
性電磁鋼板が得られる。In order to perform both decarburization and nitriding in decarburization annealing, the above-mentioned nitrogen compound gas, for example, NH 3 is contained in an atmosphere of 0.050% or more in a humid atmosphere, under decomposition thereof, and in an atmosphere having a dew point of −30 to + 75 ° C. It is desirable to pass the steel sheet in a strip form at a temperature of 500 to 900 ° C. within 2 minutes. If the nitriding amount at this time is 30 to 300 ppm, a grain-oriented electrical steel sheet having a high magnetic flux density can be obtained.
その後、MgOを主成分とする焼鈍分離剤を鋼板に塗布
して、仕上焼鈍する。Thereafter, an annealing separator containing MgO as a main component is applied to the steel sheet and finish annealing is performed.
次ぎに、実施例について述べる。 Next, examples will be described.
実施例1. 重量で、C:0.048%、Si:3.00%、Mn:0.08%、Al:0.02
5%、S:0.006%、N:0.0077%、P:0.026%、残部Feおよ
び不可避的不純物からなる電磁鋼スラブを1150℃に加熱
した後、熱間圧延し板厚2.3mmの熱延板とした。Example 1. By weight, C: 0.048%, Si: 3.00%, Mn: 0.08%, Al: 0.02
5%, S: 0.006%, N: 0.0077%, P: 0.026%, the electromagnetic steel slab consisting of Fe and unavoidable impurities was heated to 1150 ° C, and then hot-rolled to a hot-rolled sheet with a thickness of 2.3 mm. did.
この熱延板を1120℃×3分間焼鈍した後、冷間圧延し
最終板厚0.30mmとした。得られたストリップを、次い
で、露点65℃、5000ppm{〔(NH3)/(H2:75%+N2:25
%)〕=体積比}のNH3を含むH2:75%+N2:25%の混合
ガス雰囲気中、850℃×1.5分間、脱炭焼鈍し、脱炭とと
もに窒化した。このときの窒化量は240ppmであった。This hot-rolled sheet was annealed at 1120 ° C. for 3 minutes and then cold-rolled to a final sheet thickness of 0.30 mm. The obtained strip was then subjected to a dew point of 65 ° C. and 5000 ppm {[(NH 3 ) / (H 2 : 75% + N 2 : 25
%)] = Decarburization annealing at 850 ° C. for 1.5 minutes in a mixed gas atmosphere of H 2 containing NH 3 at a volume ratio of 3 : 75% + N 2 : 25%, followed by nitriding together with decarburization. The nitriding amount at this time was 240 ppm.
然る後、ストリップを冷却し、次いで焼鈍分離剤に水
を添加してスラリー状とし、ロールコーターで塗布した
後、乾燥炉でストリップ温度が180℃となるまで昇温さ
せて水分を除去し、巻き取ってストリップコイルとし
た。After that, the strip was cooled, then water was added to the annealing separator to form a slurry, and the slurry was applied using a roll coater.Then, the temperature was increased in a drying oven until the strip temperature reached 180 ° C to remove moisture, It was wound up to form a strip coil.
このストリップコイルを仕上焼鈍炉に装入し、通常の
仕上焼鈍を行った。得られた製品の磁気特性、グラス皮
膜特性を第1表に示す。The strip coil was charged into a finish annealing furnace, and normal finish annealing was performed. Table 1 shows the magnetic properties and glass film properties of the obtained products.
比較材は、仕上焼鈍炉中で雰囲気ガスおよび焼鈍分離
剤中に添加した窒化源から窒素を供給して鋼板を窒化し
たものである。The comparative material was prepared by nitriding a steel sheet by supplying nitrogen from a nitriding source added to the atmosphere gas and the annealing separator in a finish annealing furnace.
実施例2. 重量で、C:0.060%、Si:3.30%、Mn:0.14%、Al:0.03
0%、S:0.010%、N:0.0085%、P:0.030%、Mo:0.008
%、V:0.005%、残部Feおよび不可避的不純物からなる
電磁鋼スラブを1150℃に加熱した後、熱間圧延し、板厚
2.0mmの熱延板とした。 Example 2. By weight, C: 0.060%, Si: 3.30%, Mn: 0.14%, Al: 0.03
0%, S: 0.010%, N: 0.0085%, P: 0.030%, Mo: 0.008
%, V: 0.005%, magnetic steel slab consisting of balance Fe and unavoidable impurities is heated to 1150 ° C, hot-rolled, and
A 2.0 mm hot rolled sheet was used.
この熱延板を1120℃×3分間焼鈍した後、冷間圧延し
最終板厚0.23mmとした。得られたストリップを、次い
で、露点55℃、8000ppm{〔(NH3)/(H2:75%+N2:25
%)〕=体積比}のNH3を含むH2:75%+N2:25%の混合
ガス雰囲気中、850℃×2分間、脱炭焼鈍し、脱炭とと
もに窒化した。窒化量は180ppmであった。This hot-rolled sheet was annealed at 1120 ° C. for 3 minutes and then cold-rolled to a final sheet thickness of 0.23 mm. The obtained strip was then subjected to a dew point of 55 ° C. and 8000 ppm {[(NH 3 ) / (H 2 : 75% + N 2 : 25
%)] = Decarburization annealing at 850 ° C. for 2 minutes in a mixed gas atmosphere of H 2 : 75% + N 2 : 25% containing NH 3 at a volume ratio of 3, and nitriding together with decarburization. The nitriding amount was 180 ppm.
然る後、ストリップを冷却し、次いで焼鈍分離剤に水
を添加してスラリー状とし、ロールコーターで塗布した
後、乾燥炉でストリップ温度が180℃となるまで昇温さ
せて水分を除去し、巻き取ってストリップコイルとし
た。After that, the strip was cooled, then water was added to the annealing separator to form a slurry, and the slurry was applied using a roll coater.Then, the temperature was increased in a drying oven until the strip temperature reached 180 ° C to remove moisture, It was wound up to form a strip coil.
このストリップコイルを仕上焼鈍炉に装入し、通常の
仕上焼鈍を行った。得られた製品の磁気特性、グラス皮
膜特性を第2表に示す。The strip coil was charged into a finish annealing furnace, and normal finish annealing was performed. Table 2 shows the magnetic properties and glass film properties of the obtained product.
比較材は、仕上焼鈍炉中で雰囲気ガスおよび焼鈍分離
剤中に添加した窒化源から窒素を供給して鋼板を窒化し
たものである。The comparative material was prepared by nitriding a steel sheet by supplying nitrogen from a nitriding source added to the atmosphere gas and the annealing separator in a finish annealing furnace.
(発明の効果) 本発明によれば、電磁鋼スラブの加熱を1200℃以下の
低温として、溶融スケールの発生防止、表面疵防止、加
熱エネルギーの節減等の利益を得ながら、高磁束密度の
方向性電磁鋼板を工業的に安定して得ることができる。 (Effects of the Invention) According to the present invention, the magnetic steel slab is heated at a low temperature of 1200 ° C or less, and the direction of high magnetic flux density is obtained while obtaining benefits such as prevention of generation of molten scale, prevention of surface flaws, and reduction of heating energy. A magnetic steel sheet can be obtained industrially stably.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 政広 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社八幡製鐵所内 (56)参考文献 特開 平1−301820(JP,A) 特開 平2−200733(JP,A) 特開 平2−259017(JP,A) 特公 昭62−45285(JP,B2) ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masahiro Yamamoto 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu-city, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (56) References JP-A-1-301820 (JP) JP-A-2-200733 (JP, A) JP-A-2-259017 (JP, A) JP-B-62-45285 (JP, B2)
Claims (2)
5%、Mn:0.07〜0.45%、S:0.012%以下、酸可溶Al:0.01
0〜0.060%、N:0.0030〜0.010%、P:0.007〜0.045%を
含み、残部が鉄及び不可避的不純物からなる電磁鋼スラ
ブを、1200℃以下の温度に加熱し、熱間圧延し、熱延ま
ま又は熱延板焼鈍し、1回又は中間焼鈍をはさんで2回
以上の冷間圧延し、脱炭焼鈍をする際、湿潤雰囲気に窒
素化合物ガスを混じえて、脱炭とともに窒化し(Al,S
i)Nを主組成とするインヒビターを形成し、焼鈍分離
剤を塗布し仕上焼鈍することを特徴とする高磁束密度方
向性電磁鋼板の製造法。(1) C: 0.025-0.075% by weight, Si: 2.5-4.
5%, Mn: 0.07 to 0.45%, S: 0.012% or less, acid-soluble Al: 0.01
An electromagnetic steel slab containing 0 to 0.060%, N: 0.0030 to 0.010%, and P: 0.007 to 0.045%, with the balance being iron and unavoidable impurities, is heated to a temperature of 1200 ° C or less, hot-rolled, As-rolled or hot-rolled sheet annealed, cold rolled one or more times with intermediate annealing interposed, and decarburized annealing mixed with a nitrogen compound gas in a humid atmosphere and nitrified with decarburization ( Al, S
i) A method for producing a high magnetic flux density grain-oriented electrical steel sheet, comprising forming an inhibitor containing N as a main composition, applying an annealing separator, and performing finish annealing.
5%、Mn:0.07〜0.45%、S:0.012%以下、酸可溶Al:0.01
0〜0.060%、N:0.0030〜0.010%、P:0.007〜0.045%を
含み、さらに、Cr,Mo,V,Nb,Sb,Sn,Ti,Te,Bの1種以上を
合計で1.5%以下含有し、残部が鉄及び不可避的不純物
からなる電磁鋼スラブを、1200℃以下の温度に加熱し、
熱間圧延し、熱延まま又は熱延板焼鈍し、1回又は中間
焼鈍をはさんで2回以上の冷間圧延し、脱炭焼鈍をする
さい、湿潤雰囲気に窒素化合物ガスを混じえて脱炭とと
もに窒化し(Al,Si)Nを主組成とするインヒビターを
形成し、焼鈍分離剤を塗布し仕上焼鈍することを特徴と
する高磁束密度方向性電磁鋼板の製造法。2. C: 0.025-0.075% by weight, Si: 2.5-4.
5%, Mn: 0.07 to 0.45%, S: 0.012% or less, acid-soluble Al: 0.01
0-0.060%, N: 0.0030-0.010%, P: 0.007-0.045%, and in addition, one or more of Cr, Mo, V, Nb, Sb, Sn, Ti, Te, B, 1.5% or less in total Containing, the remainder is heated to a temperature of 1200 ° C. or less, electromagnetic steel slab consisting of iron and unavoidable impurities,
Hot-rolled, hot-rolled or hot-rolled sheet annealed, cold-rolled one or more times with intermediary annealing interposed, and decarburized annealing mixed with nitrogen compound gas in a humid atmosphere A method for producing a high magnetic flux density grain-oriented electrical steel sheet, comprising nitriding with carbon, forming an inhibitor mainly composed of (Al, Si) N, applying an annealing separator, and finish annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1114293A JP2603130B2 (en) | 1989-05-09 | 1989-05-09 | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1114293A JP2603130B2 (en) | 1989-05-09 | 1989-05-09 | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02294428A JPH02294428A (en) | 1990-12-05 |
JP2603130B2 true JP2603130B2 (en) | 1997-04-23 |
Family
ID=14634233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1114293A Expired - Fee Related JP2603130B2 (en) | 1989-05-09 | 1989-05-09 | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2603130B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102650014A (en) * | 2011-02-28 | 2012-08-29 | 新日本制铁株式会社 | Manufacturing method of directional electromagnetic steel plate |
KR101538777B1 (en) * | 2014-10-13 | 2015-07-22 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940003339B1 (en) * | 1991-12-26 | 1994-04-20 | 포항종합제철 주식회사 | Magnetic materials |
US6451128B1 (en) | 1997-06-27 | 2002-09-17 | Pohang Iron & Steel Co., Ltd. | Method for manufacturing high magnetic flux denshy grain oriented electrical steel sheet based on low temperature slab heating method |
KR100431608B1 (en) * | 1999-12-18 | 2004-05-17 | 주식회사 포스코 | Manufacturing of high magnetic density grain oriented silicon steel |
WO2011102455A1 (en) * | 2010-02-18 | 2011-08-25 | 新日本製鐵株式会社 | Manufacturing method for grain-oriented electromagnetic steel sheet |
CN102787276B (en) * | 2012-08-30 | 2014-04-30 | 宝山钢铁股份有限公司 | High magnetic induction oriented silicon steel and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0686632B2 (en) * | 1988-02-03 | 1994-11-02 | 新日本製鐵株式会社 | Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density |
JPH02200733A (en) * | 1989-01-31 | 1990-08-09 | Nippon Steel Corp | Manufacture of high magnetic density grain-oriented silicon steel sheet |
JPH0730396B2 (en) * | 1989-03-31 | 1995-04-05 | 新日本製鐵株式会社 | Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties |
-
1989
- 1989-05-09 JP JP1114293A patent/JP2603130B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102650014A (en) * | 2011-02-28 | 2012-08-29 | 新日本制铁株式会社 | Manufacturing method of directional electromagnetic steel plate |
CN102650014B (en) * | 2011-02-28 | 2014-08-13 | 新日铁住金株式会社 | Manufacturing method of directional electromagnetic steel plate |
KR101538777B1 (en) * | 2014-10-13 | 2015-07-22 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH02294428A (en) | 1990-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2782086B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties | |
JPH0717961B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties | |
JPH09118964A (en) | Grain-directional silicon steel having high volume resistivity | |
JPH0774388B2 (en) | Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density | |
JP3386751B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties | |
JP3456862B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
US5190597A (en) | Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties | |
JP2603130B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet | |
JPH0717953B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP4123679B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
KR950002895B1 (en) | Ultrahigh-silicon directional electrical steel sheet and production thereof | |
JPH02228425A (en) | Production of grain-oriented silicon steel sheet with high magnetic flux density | |
JPH0949023A (en) | Production of grain oriented silicon steel sheet excellent in iron loss | |
JPH08279408A (en) | Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics | |
JPH06256847A (en) | Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic | |
JPH0832928B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties | |
JP3463417B2 (en) | Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties | |
JPH0730396B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties | |
JPH09118920A (en) | Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property | |
JPH06336611A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH07310124A (en) | Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic | |
JP3507232B2 (en) | Manufacturing method of unidirectional electrical steel sheet with large product thickness | |
JPH10110217A (en) | Production of grain oriented silicon steel sheet | |
JPH1025516A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090129 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |